JP2002359388A - Solar battery device - Google Patents

Solar battery device

Info

Publication number
JP2002359388A
JP2002359388A JP2002154639A JP2002154639A JP2002359388A JP 2002359388 A JP2002359388 A JP 2002359388A JP 2002154639 A JP2002154639 A JP 2002154639A JP 2002154639 A JP2002154639 A JP 2002154639A JP 2002359388 A JP2002359388 A JP 2002359388A
Authority
JP
Japan
Prior art keywords
receiving surface
solar cell
light receiving
inner lead
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002154639A
Other languages
Japanese (ja)
Inventor
Hiroaki Takahashi
宏明 高橋
Kenji Fukui
健次 福井
Katsuhiko Shirasawa
勝彦 白沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002154639A priority Critical patent/JP2002359388A/en
Publication of JP2002359388A publication Critical patent/JP2002359388A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar battery device which solves the problems of an increase in series resistance with cell area and cell cracking resulting from an increase in the thickness of copper foil of a bus bar as its countermeasure. SOLUTION: The solar battery device has solar battery elements 1 connected by inner leads 4 and 5, on the reverse surface sides of translucent panels. The inner leads 4 and 5 are connected to the photodetection surface sides and opposite sides of the solar battery elements 1, and are connected to each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は太陽電池装置に関
し、特に複数の太陽電池素子がインナーリードによって
接続された太陽電池装置に関する。
The present invention relates to a solar cell device, and more particularly to a solar cell device in which a plurality of solar cell elements are connected by inner leads.

【0002】[0002]

【従来の技術】従来の太陽電池装置のインナーリードの
配線を図4ないし図6を用いて説明する。図4ないし図
6中、1は太陽電池素子、2は受光面側電極、3は反受
光面側電極である。
2. Description of the Related Art Wiring of inner leads of a conventional solar cell device will be described with reference to FIGS. 4 to 6, reference numeral 1 denotes a solar cell element, 2 denotes a light receiving surface side electrode, and 3 denotes an anti-light receiving surface side electrode.

【0003】太陽電池素子1は例えばP型シリコン基板
の受光面側にN型領域、反受光面側にP型領域を形成し
て構成されている。N型領域の表面には受光面側電極2
が設けられ、P型領域の表面には反受光面側電極3が設
けられている。この受光面側電極2は、銀と半田から成
るインナーリード接続用のバスバー部と、銀と半田から
成る集電用のフィンガー部とから構成される。また、反
受光面側電極3も銀と半田から成るインナーリード接続
用のバスバー部と、アルミニウムから成る集電用電極と
から構成される。
[0003] The solar cell element 1 is formed, for example, by forming an N-type region on the light-receiving surface side of a P-type silicon substrate and a P-type region on the opposite light-receiving surface side. The light receiving surface side electrode 2 is provided on the surface of the N-type region.
Are provided, and an anti-light receiving surface side electrode 3 is provided on the surface of the P-type region. The light-receiving-surface-side electrode 2 includes a bus bar portion made of silver and solder for connecting inner leads, and a current collecting finger portion made of silver and solder. The anti-light-receiving-surface-side electrode 3 also includes an inner lead connection busbar portion made of silver and solder, and a current collecting electrode made of aluminum.

【0004】複数の太陽電池素子を接続するには、イン
ナーリード6の一方端を受光面側電極2のバスバー部上
の略全長にわたって配設し、その複数個所を受光面側電
極2のバスバー部と接合することによって受光面側電極
2に接続するとともに、インナーリード6の他方端を、
反受光面側電極3のバスバー部の略全長にわたって配設
し、その複数個所を反受光面側電極3のバスバー部と接
合することによって反受光面側電極3に接続する。
In order to connect a plurality of solar cell elements, one end of the inner lead 6 is disposed over substantially the entire length of the bus bar portion of the light receiving surface side electrode 2, and a plurality of locations are provided at the bus bar portion of the light receiving surface side electrode 2. And the other end of the inner lead 6 is connected to the light receiving surface side electrode 2 by joining
The bus bar portion of the anti-light receiving surface side electrode 3 is disposed over substantially the entire length, and a plurality of locations are connected to the anti-light receiving surface side electrode 3 by joining the bus bar portion of the anti-light receiving surface side electrode 3.

【0005】このとき複数の太陽電池素子を接続する方
法は、インナーリード6の一方端を例えば受光面側電極
2のバスバー部上の略全長にわたって配設し、その複数
個所を受光面側電極2のバスバー部と接合することによ
って受光面側電極2に接続した後、インナーリード6の
他方端を、隣接する太陽電池素子の反受光面側電極3の
バスバー部の略全長にわたって配設し、その複数個所を
反受光面側電極3のバスバー部と接合することによって
反受光面側電極3に接続したとする。この時には先ず太
陽電池素子の受光面側を上向きに配置し、インナーリー
ド6を受光面側電極2に接続し、その後他端を接続予定
の隣接する太陽電池素子の反受光面側電極3のバスバー
部の略全長の長さを予定して、インナーリードを切断す
る。次にその隣接する太陽電池素子の反受光面側電極3
のバスバー部の略全長の長さ分インナーリードがはみ出
した太陽電池を表裏反転させ、隣接する太陽電池素子の
反受光面側に、はみ出したインナーリードを配置し接続
する。
At this time, a method of connecting a plurality of solar cell elements is such that one end of the inner lead 6 is disposed, for example, over substantially the entire length of the bus bar portion of the light receiving surface side electrode 2, and a plurality of locations are connected to the light receiving surface side electrode 2. After connecting to the light receiving surface side electrode 2 by joining with the bus bar portion, the other end of the inner lead 6 is disposed over substantially the entire length of the bus bar portion of the anti light receiving surface side electrode 3 of the adjacent solar cell element. It is assumed that a plurality of portions are connected to the anti-light receiving surface side electrode 3 by joining the bus bar portion of the anti-light receiving surface side electrode 3. At this time, first, the light receiving surface side of the solar cell element is arranged upward, the inner lead 6 is connected to the light receiving surface side electrode 2, and then the other end is connected to the bus bar of the opposite light receiving surface side electrode 3 of the adjacent solar cell element to be connected. Cut the inner lead with the length of approximately the entire length of the part. Next, the electrode 3 on the side opposite to the light receiving surface of the adjacent solar cell element
The solar cell in which the inner lead protrudes by the length of substantially the entire length of the bus bar portion is turned upside down, and the protruding inner lead is arranged and connected to the side opposite to the light receiving surface of the adjacent solar cell element.

【0006】[0006]

【発明が解決しようとする課題】この従来の太陽電池装
置では、太陽電池素子の面積増大に伴い、発生電流が増
加したり、受光面側電極2のバスバー部の長さ及び反受
光面側電極3のバスバー部の長さが長くなるために、直
列抵抗成分が増大して変換効率が低下するという問題が
あった。
In this conventional solar cell device, as the area of the solar cell element increases, the generated current increases, the length of the bus bar portion of the light receiving surface side electrode 2 and the length of the electrode opposite to the light receiving surface side increase. Since the length of the bus bar portion of No. 3 becomes long, there is a problem that the series resistance component increases and the conversion efficiency decreases.

【0007】変換効率の低下を防止するためには、イン
ナーリード6の断面積を増加させればよいが、受光面側
では、幅を広くすると太陽電池素子1の受光面積が減少
して変換効率の低下を招く。受光面積を減少させないよ
うにするためには、インナーリード6の厚みを厚くして
断面積を増加させなければならない。
To prevent the conversion efficiency from lowering, the cross-sectional area of the inner lead 6 may be increased. On the light-receiving surface side, if the width is increased, the light-receiving area of the solar cell element 1 decreases, and the conversion efficiency decreases. Causes a decrease in In order not to reduce the light receiving area, the thickness of the inner lead 6 must be increased to increase the sectional area.

【0008】ところが、インナーリード6が厚くなる
と、このインナーリード6をホットエアーや半田ごてで
太陽電池素子の受光面側電極2及び反受光面側電極3に
溶着する際に、このホットエアーや半田ごての熱が受光
面側電極2及び反受光面側電極3の半田まで伝わりにく
く、受光面側電極2及び反受光面側電極3とインナーリ
ード6との溶着に時間がかかり、インナーリード6の熱
膨張による伸びが大きくなる。インナーリード6が伸び
た状態で受光面側電極2及び反受光面側電極3に接続さ
れると、インナーリード6が縮む際に、太陽電池素子1
に圧縮応力が印加されて、セル割れを誘発し、歩留まり
が低下するという問題があった。また、インナーリード
6の厚みが厚くなることで、太陽電池素子1の総厚みが
増加し、後工程であるガラスと樹脂でパッケージするラ
ミネート工程等で割れるという問題があった。
However, when the inner lead 6 becomes thicker, when the inner lead 6 is welded to the light-receiving side electrode 2 and the non-light-receiving side electrode 3 of the solar cell element by hot air or a soldering iron, The heat of the soldering iron is hardly transmitted to the solder of the light receiving surface side electrode 2 and the anti-light receiving surface side electrode 3, and it takes time to weld the light receiving surface side electrode 2 and the anti-light receiving surface side electrode 3 to the inner lead 6. The elongation due to thermal expansion of No. 6 increases. When the inner lead 6 is connected to the light receiving surface side electrode 2 and the non-light receiving surface side electrode 3 in a stretched state, the solar cell element 1
, A compressive stress is applied to the cells to induce cell cracking, which lowers the yield. In addition, when the thickness of the inner lead 6 is increased, the total thickness of the solar cell element 1 is increased, and there is a problem that the solar cell element 1 is broken by a laminating step of packaging with glass and resin, which is a subsequent step.

【0009】また、従来の一方端がすでに接続され、他
方端が隣接する太陽電池素子のバスバー部の略全長の長
さ分、インナーリードがはみ出した太陽電池素子を表裏
反転させる方法では、はみ出したインナーリードがよれ
たり、曲がったりしてしまい、作業性が悪いという問題
があった。
Further, in the conventional method of reversing the front and back of the solar cell element in which the inner lead protrudes by the length of substantially the entire length of the bus bar portion of the solar cell element in which one end is already connected and the other end is adjacent. There was a problem that the inner lead was twisted or bent, resulting in poor workability.

【0010】本発明は、このような従来の問題点に鑑み
てなされたものであり、セル面積の増大に伴って発生す
る直列抵抗の増大と、その対抗策であるバスバー部の銅
箔を厚くすることによって発生するセル割れの問題を解
消すると共に、作業性の問題を解消した太陽電池装置を
提供することを目的とする。
The present invention has been made in view of such a conventional problem. The present invention has been made to increase the series resistance generated as the cell area increases, and to increase the thickness of the copper foil of the bus bar portion as a countermeasure. It is an object of the present invention to provide a solar cell device that solves the problem of cell cracking caused by the above-mentioned process and the problem of workability.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る発明では、透光性パネルの裏面側に
受光面側電極と反受光面側電極とを有する複数の太陽電
池素子をインナーリードで接続した太陽電池装置におい
て、前記太陽電池素子の受光面側と反受光面側に接続し
たインナーリード同士を接続する。この方法によれば、
受光面側および反受光面側電極に別々のインナーリード
を接続し、後からこれらインナーリード同士を接続する
ことによって、インナーリードの熱膨張および収縮によ
って太陽電池素子に加わる圧縮応力が、1枚の太陽電池
素子の分だけになり、隣同士の太陽電池素子が引っ張り
合うことがない。
In order to achieve the above object, according to the first aspect of the present invention, a plurality of solar cells having a light receiving surface side electrode and a non-light receiving surface side electrode on the back side of a translucent panel are provided. In a solar cell device in which elements are connected by inner leads, inner leads connected to the light receiving surface side and the opposite light receiving surface side of the solar cell element are connected. According to this method,
By connecting separate inner leads to the light-receiving surface side and anti-light-receiving surface side electrodes and connecting these inner leads later, the compressive stress applied to the solar cell element due to thermal expansion and contraction of the inner leads is reduced by one sheet. It is only for the solar cell element, and the adjacent solar cell elements do not pull each other.

【0012】また、請求項2に係る太陽電池装置では、
前記太陽電池素子の反受光面側電極に接続されたインナ
ーリードの幅を受光面側電極に接続されたインナーリー
ドの幅より広くすることにより、太陽電池素子の受光面
積の低下を防ぎ、素子特性の向上を図る。
Further, in the solar cell device according to claim 2,
By making the width of the inner lead connected to the anti-light-receiving-side electrode of the solar cell element wider than the width of the inner lead connected to the light-receiving-surface-side electrode, it is possible to prevent a decrease in the light-receiving area of the solar cell element, To improve.

【0013】さらに、請求項3に係る太陽電池装置によ
れば、前記太陽電池素子の反受光面側電極に接続された
インナーリードの厚みを受光面側電極に接続されたイン
ナーリードの厚みより薄くすることにより、太陽電池素
子の総厚みの増加を防ぎ、後工程であるガラスと樹脂で
パッケージするラミネート工程等で割れるという問題を
解消すると共に、反受光面側電極に接続されたインナー
リードの幅を受光面側電極に接続されたインナーリード
の幅より広くすることと組み合わせることによって、イ
ンナーリードの断面積を変化させることなく太陽電池素
子の受光面積を増やせるので、モジュール特性の向上が
図れる。
Further, according to the solar cell device of the third aspect, the thickness of the inner lead connected to the opposite light receiving surface electrode of the solar cell element is smaller than the thickness of the inner lead connected to the light receiving surface side electrode. By doing so, it is possible to prevent the total thickness of the solar cell element from increasing, to eliminate the problem of cracking in a later step such as a laminating step of packaging with glass and resin, and to reduce the width of the inner lead connected to the electrode on the side opposite to the light receiving surface. By combining this with the width of the inner lead connected to the light receiving surface side electrode, the light receiving area of the solar cell element can be increased without changing the cross-sectional area of the inner lead, so that the module characteristics can be improved.

【0014】[0014]

【発明の実施の形態】以下、本発明に係る太陽電池装置
の実施形態を添付図面に基づき詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the solar cell device according to the present invention will be described below in detail with reference to the accompanying drawings.

【0015】図1ないし図3は本発明の太陽電池装置を
説明するための図であり、1は太陽電池素子、2は受光
面側電極、3は反受光面側電極、4は受光面側インナー
リード、5は反受光面側インナーリードである。
1 to 3 are views for explaining a solar cell device according to the present invention, wherein 1 is a solar cell element, 2 is a light-receiving surface side electrode, 3 is an anti-light-receiving side electrode, and 4 is a light-receiving surface side. Inner leads 5 and 5 are inner leads on the side opposite to the light receiving surface.

【0016】太陽電池素子1は、厚み0.3mm程度の
単結晶シリコンや多結晶シリコンなどから成る。この太
陽電池素子1内には、N型領域とP型領域があり、N型
領域とP型領域との界面部分で半導体接合が形成され
る。このN型領域はP型のシリコン基板を拡散炉中に配
置して、オキシ塩化リン(POCl3)中で加熱するこ
とによって、シリコン基板の表面部全体にリン原子を拡
散させ、厚み0.3〜0.4μm程度に形成する。その
後に側面部と底面部の拡散層を除去する。なお、このシ
リコン基板は単結晶ガリウム砒素などにも変更できる。
The solar cell element 1 is made of single-crystal silicon or polycrystalline silicon having a thickness of about 0.3 mm. The solar cell element 1 has an N-type region and a P-type region, and a semiconductor junction is formed at an interface between the N-type region and the P-type region. This N-type region is formed by placing a P-type silicon substrate in a diffusion furnace and heating the substrate in phosphorus oxychloride (POCl 3 ) to diffuse phosphorus atoms over the entire surface of the silicon substrate, thereby obtaining a thickness of 0.3%. 0.40.4 μm. Thereafter, the diffusion layers on the side and bottom portions are removed. The silicon substrate can be changed to single crystal gallium arsenide or the like.

【0017】太陽電池素子1の表面側には、図示されて
いないが、例えば窒化シリコン膜などから成る反射防止
膜が形成される。このような反射防止膜は例えばプラズ
マCVD法などで形成される。
Although not shown, an antireflection film made of, for example, a silicon nitride film is formed on the front surface of the solar cell element 1. Such an antireflection film is formed by, for example, a plasma CVD method.

【0018】N型領域の表面部分には、受光面側電極2
が形成されている。この受光面側電極2は、受光面側イ
ンナーリード4を接続するためのバスバー部とこのバス
バー部と交差して分岐して形成された集電用のフィンガ
ー部とから成る。バスバー部は太陽電池素子1の略全長
にわたって二本平行に形成されており、フィンガー部は
バスバー部に交差して多数本が太陽電池素子1の略全長
にわたって形成されている。バスバー部は例えば2mm
程度の幅に形成され、フィンガー部は例えば0.2mm
程度の幅に形成される。このような受光面側電極2は、
例えば銀粉末、ガラスフリット、結合剤、および溶剤か
ら成るペーストをスクリーン印刷して700℃〜800
℃程度の温度で焼き付け、全体を半田層で被覆すること
により形成される。
A light-receiving surface side electrode 2 is
Are formed. The light-receiving-surface-side electrode 2 includes a bus bar portion for connecting the light-receiving surface-side inner lead 4 and a current-collecting finger portion formed by crossing the bus bar portion. Two busbar portions are formed substantially in parallel over the entire length of the solar cell element 1, and a large number of finger portions cross the busbar portion and are formed substantially over the entire length of the solar cell element 1. The busbar part is, for example, 2 mm
About 0.2 mm, and the finger part is, for example, 0.2 mm
It is formed to a width of about. Such a light receiving surface side electrode 2
For example, a paste composed of silver powder, glass frit, a binder, and a solvent is screen-printed at 700 ° C. to 800 ° C.
It is formed by baking at a temperature of about ° C and covering the whole with a solder layer.

【0019】この受光面側電極2のバスバー部上には受
光面側インナーリード4をバスバー部全長もしくは複数
ポイントでホットエアーなどの熱溶着により貼り付け
る。この受光面側インナーリード4は、受光面側電極2
のバスバー部の断面積を大きくして受光面側電極2の電
気抵抗を下げるとともに、太陽電池の出力を取り出すた
めに設けるものであり、例えば幅2mm程度、厚み0.
2mm程度に形成される。
On the bus bar portion of the light receiving surface side electrode 2, a light receiving surface side inner lead 4 is adhered over the entire length of the bus bar portion or a plurality of points by hot welding such as hot air. This light receiving surface side inner lead 4 is
In order to reduce the electric resistance of the light-receiving-surface-side electrode 2 by increasing the cross-sectional area of the busbar portion, and to take out the output of the solar cell, for example, the width is about 2 mm and the thickness is about 0.1 mm.
It is formed to about 2 mm.

【0020】太陽電池素子1の反受光面側には反受光面
側電極3が設けられている。この反受光面側電極3もバ
スバー部と、このバスバー部と1mm程度重なるよう反
受光面側全面に形成される集電用電極部とから成る。
An electrode 3 on the opposite side of the light receiving surface of the solar cell element 1 is provided. The anti-light-receiving-surface-side electrode 3 also includes a bus bar portion and a current-collecting electrode portion formed on the entire surface of the anti-light-receiving surface so as to overlap the bus bar portion by about 1 mm.

【0021】この反受光面側電極3のバスバー部も、例
えば銀粉末、ガラスフリット、結合剤、および溶剤から
成るペーストをスクリーン印刷して700℃〜800℃
程度の温度で焼き付け、全体を半田層で被覆することに
より形成される。この反受光面側電極3のバスバー部上
には反受光面側インナーリード5をバスバー部全長もし
くは複数ポイントでホットエアーなどの熱溶着により貼
り付ける。この反受光面側インナーリード5は、反受光
面側電極3のバスバー部の断面積を大きくして反受光面
側電極3の電気抵抗を下げるとともに、太陽電池の出力
を取り出すために設けるものであり、例えば幅5mm程
度、厚み0.1mm程度に形成される。
The bus bar portion of the anti-light-receiving surface side electrode 3 is also screen-printed with a paste made of, for example, silver powder, glass frit, a binder, and a solvent at 700 ° C. to 800 ° C.
It is formed by baking at about the temperature and covering the whole with a solder layer. On the busbar portion of the electrode 3 on the opposite side of the light receiving surface, an inner lead 5 on the opposite side of the light receiving surface is attached by thermal welding such as hot air over the entire length of the busbar or at a plurality of points. The anti-light-receiving side inner lead 5 is provided to reduce the electric resistance of the anti-light-receiving side electrode 3 by increasing the cross-sectional area of the bus bar portion of the anti-light-receiving side electrode 3 and to take out the output of the solar cell. For example, it is formed to have a width of about 5 mm and a thickness of about 0.1 mm.

【0022】次に、そのインナーリード4、5同士を接
続することによって太陽電池素子同士を接続配線する。
その後、この太陽電池素子同士を接続配線したものを透
光性パネルと裏面部材との間に樹脂などを用いてパッケ
ージングすることにより、太陽電池装置を得る。
Next, the solar cell elements are connected to each other by connecting the inner leads 4 and 5 to each other.
Then, the solar cell device is obtained by packaging the connection and wiring of the solar cell elements using a resin or the like between the translucent panel and the back surface member.

【0023】この方法によれば、受光面側および反受光
面側電極2、3に個々のインナーリード4、5を別々に
接続し、後からインナーリード4、5同士を接続するこ
とによって、インナーリード4、5の熱膨張および収縮
によって太陽電池素子に加わる圧縮応力が、1枚の太陽
電池素子の分だけになり、隣同士の太陽電池素子が引っ
張り合うことがない。これにより、素子割れを回避でき
る。
According to this method, the inner leads 4 and 5 are separately connected to the light-receiving surface side electrode 2 and the non-light-receiving surface side electrode 2 and 3 respectively, and the inner leads 4 and 5 are connected later. The compressive stress applied to the solar cell element by thermal expansion and contraction of the leads 4 and 5 is only for one solar cell element, and adjacent solar cell elements do not pull. Thereby, element breakage can be avoided.

【0024】また、図3に示すように、受光面側に使用
するインナーリード4の幅を反受光面側に使用するイン
ナーリード5の幅より狭くすることにより、太陽電池素
子の受光面積の低下を防ぎ、素子特性の向上を図れる。
Also, as shown in FIG. 3, the width of the inner lead 4 used on the light receiving surface side is made smaller than the width of the inner lead 5 used on the opposite light receiving surface side, thereby reducing the light receiving area of the solar cell element. Is prevented, and the element characteristics can be improved.

【0025】さらに、反受光面側に使用するインナーリ
ード5の厚みを受光面側に使用するインナーリード4の
厚みより薄くすることにより、太陽電池素子の総厚みの
増加を防ぎ、後工程であるガラスと樹脂でパッケージす
るラミネート工程等で割れるという問題を解消すると共
に、受光面側に使用するインナーリード4の厚みを反受
光面側に使用するインナーリード5の厚みより厚くし、
受光面側に使用するインナーリード4の幅を反受光面側
に使用するインナーリード5の幅より狭くすることによ
り、インナーリードの断面積を変化させることなく、太
陽電池素子の受光面積を増やせるので、モジュール特性
の向上が図れる。
Further, by making the thickness of the inner lead 5 used on the side opposite to the light receiving surface smaller than the thickness of the inner lead 4 used on the side of the light receiving surface, it is possible to prevent an increase in the total thickness of the solar cell element, which is a post-process. In addition to solving the problem of cracking in the laminating step of packaging with glass and resin, the thickness of the inner lead 4 used on the light receiving surface side is made larger than the thickness of the inner lead 5 used on the anti-light receiving surface side,
By making the width of the inner lead 4 used on the light receiving surface side smaller than the width of the inner lead 5 used on the opposite light receiving surface side, the light receiving area of the solar cell element can be increased without changing the cross-sectional area of the inner lead. In addition, the module characteristics can be improved.

【0026】またこのインナーリード同士を接続させる
方法によれば、インナーリードの一方端を太陽電池素子
に接続した後に、太陽電池素子の表裏を反転させる際、
従来よりもインナーリードのはみ出しが少ないため、作
業性の向上が図れる。
According to the method of connecting the inner leads to each other, when one end of the inner lead is connected to the solar cell element and then the solar cell element is turned over,
Since the inner leads are less protruding than before, the workability can be improved.

【0027】なお、本発明は、上記実施形態に限定され
るものではなく、本発明の範囲内で上記実施形態に多く
の修正および変更を加えることができる。例えば電極形
状は上記にとらわれるものではないし、例えば銀などの
1種類の材料のみで形成しても構わないし、複数の材料
を組み合わせても構わない。また、インナーリードとの
接続ができれば、電極上に半田を被覆しなくても構わな
いし、接続方法も例えばホットエアーなどの熱溶着に限
定されるものではない。さらに、図1に示すように、受
光面側インナーリードと反受光面側インナーリードは、
太陽電池素子の反受光面側で接続してもよいし、太陽電
池素子の受光面側や、太陽電池素子間など他の位置で接
続しても構わない。
The present invention is not limited to the above embodiment, and many modifications and changes can be made to the above embodiment within the scope of the present invention. For example, the shape of the electrode is not limited to the above, and may be formed of only one kind of material such as silver, or may be a combination of a plurality of materials. Further, as long as the connection with the inner lead can be made, the electrode does not have to be coated with solder, and the connection method is not limited to thermal welding such as hot air. Further, as shown in FIG. 1, the light-receiving surface side inner lead and the non-light-receiving surface side inner lead
The connection may be made on the side opposite to the light receiving surface of the solar cell element, or on another side such as between the light receiving surface of the solar cell element and between the solar cell elements.

【0028】[0028]

【実施例】以下、本発明の実施例を示す。シリコン基板
として15cm角で厚さ0.3mm、比抵抗1.5Ω・
cmのP型基板を準備した。そして熱拡散法でオキシ塩
化リン(POCl3)を拡散源として、深さ0.5μm
のN型拡散層を形成した。
Embodiments of the present invention will be described below. 15cm square, 0.3mm thick, specific resistance 1.5Ω
cm of a P-type substrate was prepared. Then, a thermal diffusion method using phosphorus oxychloride (POCl 3 ) as a diffusion source and a depth of 0.5 μm
Was formed.

【0029】次に、表面にプラズマCVD法で窒化シリ
コンの反射防止膜を800Åの厚さで形成した後、拡散
層を分離した。
Next, an antireflection film of silicon nitride was formed on the surface to a thickness of 800 ° by plasma CVD, and then the diffusion layer was separated.

【0030】受光面側インナーリードを接続するための
バスバー部とこのバスバー部と交差して分岐して形成さ
れた集電用のフィンガー部からなる受光面側電極と、反
受光面側インナーリードを接続するためのバスバー部を
銀ペーストで、またこの反受光面側バスバー部と1mm
程度重なるよう反受光面側全面に形成される集電用電極
部をアルミニウムペーストを用いてスクリーンプリント
し、750℃の温度で焼き付けた後、200℃のはんだ
浴槽に上記基板1を浸漬して引き上げることで、全体を
半田層で被覆した。
A busbar portion for connecting the light-receiving surface side inner lead, a light-receiving surface-side electrode composed of a current-collecting finger portion that is formed by crossing the busbar portion, and an anti-light-receiving surface-side inner lead. The busbar portion for connection is made of silver paste, and the busbar portion on the opposite side of the light receiving surface is 1 mm.
The electrode for current collection formed on the entire surface opposite to the light receiving surface is screen-printed using an aluminum paste so as to be overlapped to a certain extent, baked at a temperature of 750 ° C., and then immersed in the solder bath at 200 ° C. and pulled up. Thus, the whole was covered with the solder layer.

【0031】この反受光面側電極のバスバー部上に、幅
5mm、厚み0.1mmの銅箔を半田コートした反受光
面側インナーリードをバスバー部全長にわたってホット
エアーの熱溶着により貼り付けた。また、受光面側電極
のバスバー部上には幅2mm、厚み0.2mmの受光面
側インナーリードをバスバー部全長にわたってホットエ
アーの熱溶着で貼り付けた。次に、そのインナーリード
同士を図1に示すように太陽電池素子の反受光面側で接
続することによって太陽電池素子同士を接続配線した。
その後、この太陽電池素子同士を接続配線したものを透
光性パネルと裏面部材との間に樹脂などを用いてパッケ
ージングすることにより、太陽電池装置を得た。
On the anti-light-receiving surface side electrode, an anti-light-receiving side inner lead coated with a copper foil having a width of 5 mm and a thickness of 0.1 mm by solder was attached by hot air thermal welding over the entire length of the bus bar portion. Also, a light-receiving-surface-side inner lead having a width of 2 mm and a thickness of 0.2 mm was attached to the busbar portion of the light-receiving-surface-side electrode by hot air heat welding over the entire length of the busbar portion. Next, as shown in FIG. 1, the inner leads were connected to each other on the side opposite to the light receiving surface of the solar cell element, thereby connecting and wiring the solar cell elements.
Then, the solar cell device was obtained by packaging the connection and wiring of the solar cell elements using a resin or the like between the translucent panel and the back surface member.

【0032】この太陽電池装置のインナーリード接続後
の製造工程における素子割れの発生率およびモジュール
の光電変換効率を従来の幅2mm、厚み0.2mmの銅
箔を用いた方法と比較して表1に示す。
The rate of occurrence of element cracking and the photoelectric conversion efficiency of the module in the manufacturing process after the inner lead connection of this solar cell device were compared with those of a conventional method using a copper foil having a width of 2 mm and a thickness of 0.2 mm. Shown in

【0033】[0033]

【表1】 [Table 1]

【0034】表1に示すように、本発明によれば、素子
割れの発生率が7分の1程度減少すると共に、モジュー
ル変換効率は13.8%から14.2%に向上した。
As shown in Table 1, according to the present invention, the rate of occurrence of element cracks was reduced by about 1/7, and the module conversion efficiency was improved from 13.8% to 14.2%.

【0035】[0035]

【発明の効果】本発明によれば、受光面側および反受光
面側電極に個々のインナーリードを別々に接続し、後か
らインナーリード同士を接続することによって、インナ
ーリードの熱膨張および収縮によって太陽電池素子に加
わる圧縮応力が、1枚の太陽電池素子の分だけになり、
隣同士の太陽電池素子が引っ張り合うことがない。これ
により、素子割れを回避できる。
According to the present invention, the individual inner leads are separately connected to the light-receiving surface side electrode and the opposite light-receiving surface side electrode, and the inner leads are connected later. The compressive stress applied to the solar cell element is only for one solar cell element,
Adjacent solar cell elements do not pull each other. Thereby, element breakage can be avoided.

【0036】また、受光面側に使用するインナーリード
の幅を反受光面側に使用するインナーリードの幅より狭
くすることにより、太陽電池素子の受光面積の低下を防
ぎ、素子特性の向上を図れる。
Further, by making the width of the inner lead used on the light receiving surface side smaller than the width of the inner lead used on the opposite light receiving surface side, a decrease in the light receiving area of the solar cell element can be prevented, and the element characteristics can be improved. .

【0037】さらに、反受光面側に使用するインナーリ
ードの厚みを受光面側に使用するインナーリードの厚み
より薄くすることにより、太陽電池素子の総厚みの増加
を防ぎ、後工程であるガラスと樹脂でパッケージするラ
ミネート工程等で割れるという問題を解消すると共に、
受光面側に使用するインナーリードの厚みを反受光面側
に使用するインナーリードの厚みより厚くし、受光面側
に使用するインナーリードの幅を反受光面側に使用する
インナーリードの幅より狭くすることにより、インナー
リードの断面積を変化させることなく、太陽電池素子の
受光面積を増やせるのでモジュール特性の向上が図れ
る。
Further, by making the thickness of the inner lead used on the side opposite to the light receiving surface smaller than the thickness of the inner lead used on the side of the light receiving surface, it is possible to prevent the total thickness of the solar cell element from being increased, and to reduce In addition to solving the problem of cracking in the laminating process of packaging with resin,
Make the thickness of the inner lead used on the light receiving surface side thicker than the thickness of the inner lead used on the anti-light receiving surface side, and make the width of the inner lead used on the light receiving surface side smaller than the width of the inner lead used on the anti-light receiving surface side By doing so, the light receiving area of the solar cell element can be increased without changing the cross-sectional area of the inner lead, so that the module characteristics can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る太陽電池を説明するための断面図
である
FIG. 1 is a cross-sectional view illustrating a solar cell according to the present invention.

【図2】本発明に係る太陽電池の受光面側電極に接続さ
れたインナーリード部を説明するための図である
FIG. 2 is a view for explaining an inner lead portion connected to a light-receiving surface side electrode of the solar cell according to the present invention.

【図3】本発明に係る太陽電池の反受光面側電極に接続
されたインナーリード部を説明するための図である
FIG. 3 is a view for explaining an inner lead portion connected to the electrode on the side opposite to the light receiving surface of the solar cell according to the present invention.

【図4】従来の太陽電池を説明するための断面図であるFIG. 4 is a cross-sectional view illustrating a conventional solar cell.

【図5】従来の太陽電池の受光面側電極に接続されたイ
ンナーリード部を説明するための図である
FIG. 5 is a view for explaining an inner lead portion connected to a light-receiving-surface-side electrode of a conventional solar cell.

【図6】従来の太陽電池の反受光面側電極に接続された
インナーリード部を説明するための図である
FIG. 6 is a view for explaining an inner lead portion connected to an electrode opposite to a light receiving surface of a conventional solar cell.

【符号の説明】[Explanation of symbols]

1:太陽電池素子、2:受光面側電極、3:反受光面側
電極、4:受光面側インナーリード、5:反受光面側イ
ンナーリード、6:インナーリード
1: solar cell element, 2: light receiving side electrode, 3: anti-light receiving side electrode, 4: light receiving side inner lead, 5: anti-light receiving side inner lead, 6: inner lead

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白沢 勝彦 滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀工場八日市ブロック 内 Fターム(参考) 5F051 AA02 BA17 CB20 DA03 EA02 FA14 FA15 GA04 HA03 JA02 JA05 JA06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Katsuhiko Shirasawa 1166, Haseno, Snake-cho, Yokaichi City, Shiga Prefecture F-term (reference) 5F051 AA02 BA17 CB20 DA03 EA02 FA14 FA15 GA04 HA03 JA02 JA05 JA06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 透光性パネルの裏面側に受光面側電極と
反受光面側電極とを有する複数の太陽電池素子をインナ
ーリードで接続した太陽電池装置において、前記太陽電
池素子の受光面側電極と反受光面側電極に別々のインナ
ーリードを接続し、この別々のインナーリード同士を接
続したことを特徴とする太陽電池装置。
1. A solar cell device in which a plurality of solar cell elements having a light-receiving surface side electrode and an anti-light-receiving surface side electrode on the back side of a translucent panel are connected by inner leads. A solar cell device, wherein separate inner leads are connected to the electrode and the electrode opposite to the light receiving surface, and the separate inner leads are connected to each other.
【請求項2】 前記太陽電池素子の反受光面側電極に接
続されたインナーリードの幅が受光面側電極に接続され
たインナーリードの幅より広いことを特徴とする請求項
1に記載の太陽電池装置。
2. The solar cell according to claim 1, wherein the width of the inner lead connected to the electrode on the opposite side of the light receiving surface of the solar cell element is wider than the width of the inner lead connected to the electrode on the opposite side of the light receiving surface. Battery device.
【請求項3】 前記太陽電池素子の反受光面側電極に接
続されたインナーリードの厚みが受光面側電極に接続さ
れたインナーリードの厚みより薄いことを特徴とする請
求項1または2に記載の太陽電池装置。
3. The method according to claim 1, wherein the thickness of an inner lead connected to the electrode on the opposite side of the light receiving surface of the solar cell element is smaller than the thickness of the inner lead connected to the electrode on the opposite side of the light receiving surface. Solar cell device.
JP2002154639A 2002-05-28 2002-05-28 Solar battery device Pending JP2002359388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002154639A JP2002359388A (en) 2002-05-28 2002-05-28 Solar battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002154639A JP2002359388A (en) 2002-05-28 2002-05-28 Solar battery device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000297619A Division JP4458651B2 (en) 2000-09-28 2000-09-28 Solar cell device

Publications (1)

Publication Number Publication Date
JP2002359388A true JP2002359388A (en) 2002-12-13

Family

ID=19194834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002154639A Pending JP2002359388A (en) 2002-05-28 2002-05-28 Solar battery device

Country Status (1)

Country Link
JP (1) JP2002359388A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200515A (en) * 2002-12-19 2004-07-15 Kyocera Corp Solar cell module
JP2005217131A (en) * 2004-01-29 2005-08-11 Kyocera Corp Solar cell and solar cell module employing it
JP2006066570A (en) * 2004-08-26 2006-03-09 Eco & Engineering Co Ltd Connection method of solar cell element
JP2006270043A (en) * 2005-02-22 2006-10-05 Kyocera Corp Solar cell module
WO2007043428A1 (en) * 2005-10-14 2007-04-19 Sharp Kabushiki Kaisha Solar cell, solar cell provided with interconnector, solar cell string and solar cell module
WO2007119365A1 (en) * 2006-04-14 2007-10-25 Sharp Kabushiki Kaisha Solar cell, solar cell string and solar cell module
JP2007287861A (en) * 2006-04-14 2007-11-01 Sharp Corp Solar cell, solar cell string, and solar cell module
JP2007294866A (en) * 2006-03-31 2007-11-08 Sanyo Electric Co Ltd Photovoltaic module
JP2008021831A (en) * 2006-07-13 2008-01-31 Sharp Corp Solar battery, solar-battery string, and solar-battery module
WO2008023795A1 (en) 2006-08-25 2008-02-28 Sanyo Electric Co., Ltd. Solar battery module and solar battery module manufacturing method
WO2009017174A1 (en) * 2007-07-30 2009-02-05 Kyocera Corporation Solar cell module
WO2009069415A1 (en) 2007-11-30 2009-06-04 Sharp Kabushiki Kaisha Solar battery module and solar battery module manufacturing method
WO2009099179A1 (en) 2008-02-08 2009-08-13 Sanyo Electric Co., Ltd. Solar cell module and solar cell
EP2113948A2 (en) 2008-04-28 2009-11-04 SANYO Electric Co., Ltd. Solar cell module
JP2009260240A (en) * 2008-03-28 2009-11-05 Mitsubishi Electric Corp Solar battery module
JP2011258747A (en) * 2010-06-09 2011-12-22 Mitsubishi Electric Corp Solar cell module
US8492644B2 (en) 2005-03-31 2013-07-23 Sanyo Electric Co., Ltd. Solar cell module and method of manufacturing the same
CN104218121A (en) * 2014-08-22 2014-12-17 上海晶澳太阳能科技有限公司 Weld strip welding method capable of lowering cell fragment rate
US10483419B2 (en) 2007-05-29 2019-11-19 Panasonic Intellectual Property Management Co., Ltd. Solar cell module and method of manufacturing the solar cell module

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200515A (en) * 2002-12-19 2004-07-15 Kyocera Corp Solar cell module
JP2005217131A (en) * 2004-01-29 2005-08-11 Kyocera Corp Solar cell and solar cell module employing it
JP2006066570A (en) * 2004-08-26 2006-03-09 Eco & Engineering Co Ltd Connection method of solar cell element
JP2006270043A (en) * 2005-02-22 2006-10-05 Kyocera Corp Solar cell module
US8492644B2 (en) 2005-03-31 2013-07-23 Sanyo Electric Co., Ltd. Solar cell module and method of manufacturing the same
WO2007043428A1 (en) * 2005-10-14 2007-04-19 Sharp Kabushiki Kaisha Solar cell, solar cell provided with interconnector, solar cell string and solar cell module
US8927850B2 (en) 2006-03-31 2015-01-06 Sanyo Electric Co., Ltd. Photovoltaic module
JP2007294866A (en) * 2006-03-31 2007-11-08 Sanyo Electric Co Ltd Photovoltaic module
US8440907B2 (en) 2006-04-14 2013-05-14 Sharp Kabushiki Kaisha Solar cell, solar cell string and solar cell module
WO2007119365A1 (en) * 2006-04-14 2007-10-25 Sharp Kabushiki Kaisha Solar cell, solar cell string and solar cell module
JP2007287861A (en) * 2006-04-14 2007-11-01 Sharp Corp Solar cell, solar cell string, and solar cell module
JP2008021831A (en) * 2006-07-13 2008-01-31 Sharp Corp Solar battery, solar-battery string, and solar-battery module
CN101506993B (en) * 2006-08-25 2011-04-06 三洋电机株式会社 Solar battery module and solar battery module manufacturing method
WO2008023795A1 (en) 2006-08-25 2008-02-28 Sanyo Electric Co., Ltd. Solar battery module and solar battery module manufacturing method
US10043931B2 (en) 2006-08-25 2018-08-07 Panasonic Itellectual Property Management Co., Ltd. Solar cell module and solar cell module manufacturing method
JP5213712B2 (en) * 2006-08-25 2013-06-19 三洋電機株式会社 Solar cell module and method for manufacturing solar cell module
US9660120B2 (en) 2006-08-25 2017-05-23 Panasonic Intellectual Property Management Co., Ltd. Solar cell module and solar cell module manufacturing method
EP1998379B1 (en) * 2007-05-29 2020-07-08 Panasonic Intellectual Property Management Co., Ltd. Solar cell module and method of manufacturing the solar cell module
US10483419B2 (en) 2007-05-29 2019-11-19 Panasonic Intellectual Property Management Co., Ltd. Solar cell module and method of manufacturing the solar cell module
JP5174817B2 (en) * 2007-07-30 2013-04-03 京セラ株式会社 Solar cell module
WO2009017174A1 (en) * 2007-07-30 2009-02-05 Kyocera Corporation Solar cell module
WO2009069415A1 (en) 2007-11-30 2009-06-04 Sharp Kabushiki Kaisha Solar battery module and solar battery module manufacturing method
WO2009099179A1 (en) 2008-02-08 2009-08-13 Sanyo Electric Co., Ltd. Solar cell module and solar cell
JP2009260240A (en) * 2008-03-28 2009-11-05 Mitsubishi Electric Corp Solar battery module
EP2113948A2 (en) 2008-04-28 2009-11-04 SANYO Electric Co., Ltd. Solar cell module
JP2011258747A (en) * 2010-06-09 2011-12-22 Mitsubishi Electric Corp Solar cell module
CN104218121A (en) * 2014-08-22 2014-12-17 上海晶澳太阳能科技有限公司 Weld strip welding method capable of lowering cell fragment rate

Similar Documents

Publication Publication Date Title
JP2002359388A (en) Solar battery device
US20110155203A1 (en) Solar cell module
WO2012001815A1 (en) Solar cell module and method for manufacturing same
JP5714080B2 (en) Solar cell module
JP2005129773A (en) Solar cell module and wiring for connecting solar cell element
JP2005252062A (en) Solar cell device
WO2017177726A1 (en) Solar cell module and method for manufacturing same, assembly, and system
JP6495649B2 (en) Solar cell element and solar cell module
JP2001068699A (en) Solar cell
JP3853953B2 (en) Solar cell device
JP3683700B2 (en) Solar cell device
JP4953562B2 (en) Solar cell module
JP2000340812A (en) Solar battery
US20190379321A1 (en) Solar roof tile connectors
JP4185332B2 (en) Solar cell and solar cell module using the same
JP2007281530A (en) Solar battery module
JP2014036069A (en) Solar cell module and manufacturing method thereof
US10211356B2 (en) Cell interconnects
JP5020179B2 (en) Solar cell module
JP4467466B2 (en) Manufacturing method of solar cell module
JP4658380B2 (en) Solar cell element and solar cell module using the same
JP2006278695A (en) Solar cell module
JP5153361B2 (en) Repair method of solar cell module
JP2005191116A (en) Inner lead for connecting solar cell element and solar cell module
JP5537637B2 (en) Solar cell element and solar cell module using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515