JP2002356362A - Hydraulic powder composition - Google Patents

Hydraulic powder composition

Info

Publication number
JP2002356362A
JP2002356362A JP2001165365A JP2001165365A JP2002356362A JP 2002356362 A JP2002356362 A JP 2002356362A JP 2001165365 A JP2001165365 A JP 2001165365A JP 2001165365 A JP2001165365 A JP 2001165365A JP 2002356362 A JP2002356362 A JP 2002356362A
Authority
JP
Japan
Prior art keywords
powder
powder composition
magnesium
composition
magnesium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001165365A
Other languages
Japanese (ja)
Other versions
JP4627120B2 (en
Inventor
Teruo Urano
輝男 浦野
Kosuke Mori
宏介 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murakashi Lime Industry Co Ltd
Original Assignee
Murakashi Lime Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murakashi Lime Industry Co Ltd filed Critical Murakashi Lime Industry Co Ltd
Priority to JP2001165365A priority Critical patent/JP4627120B2/en
Publication of JP2002356362A publication Critical patent/JP2002356362A/en
Application granted granted Critical
Publication of JP4627120B2 publication Critical patent/JP4627120B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/145Calcium sulfate hemi-hydrate with a specific crystal form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • C04B28/105Magnesium oxide or magnesium carbonate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00198Characterisation or quantities of the compositions or their ingredients expressed as mathematical formulae or equations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/1025Alkali-free or very low alkali-content materials

Abstract

PROBLEM TO BE SOLVED: To provide a hydraulic powder composition capable of constructing a structure without alkali elution, and displaying an excellent effect of stabilizing process on weak dirt. SOLUTION: The hydraulic powder composition is manufactured as follows that the powder composition containing magnesium oxide powder and magnesium hydrogen phosphate powder as main ingredients, and the weight ratio of MgO/P2 O5 of which is 10.0-23.0 is added with hemihydrate gypsum powder of 0.5-15.0 pts.wt. The powder composition is hardened by reacting with water, and formed into a low alkali hardened body. The ingredient of this hydraulic compact is so water insoluble that its alkali is hardly eluted into the water. Therefore, it is possible to construct an environmentally friendly structure. Furthermore, the stably processing effect of the powder composition on the weak dirt is beter than conventional cement-based composition or lime-based composition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明の水硬性粉体組成物は、主
成分として酸化マグネシウム粉末及びリン酸一水素マグ
ネシウム粉末を含み、且つMgO/P重量比が1
0.0〜23.0である粉体組成物100重量部に対し
て、半水石膏粉末を0.5〜15.0重量部添加して成
る水硬性粉体組成物で、アルカリ溶出のない硬化体が得
られ、構造用材料として建築物の内装材、外装材、骨材
を混合したコンクリート、モルタル等に利用できる。さ
らに、関東ローム、シルト、汚泥、有機質土等の軟弱土
壌に対して、優れた安定処理効果を発揮する土質安定処
理材として利用できる。
The hydraulic powder composition of the present invention contains a magnesium oxide powder and a magnesium monohydrogen phosphate powder as main components, and has a MgO / P 2 O 5 weight ratio of 1 to 1.
A hydraulic powder composition obtained by adding 0.5 to 15.0 parts by weight of a gypsum hemihydrate powder to 100 parts by weight of a powder composition of 0.0 to 23.0, without alkali elution. A cured product can be obtained, and it can be used as a structural material for building interior materials, exterior materials, concrete mixed with aggregate, mortar, and the like. Further, it can be used as a soil stabilizing material that exhibits an excellent stabilizing effect on soft soil such as Kanto loam, silt, sludge, and organic soil.

【0002】[0002]

【従来の技術】一般的な水硬性組成物であるセメント系
組成物は、砂利、砂、鉄筋を複合化させたコンクリート
やモルタルとして建築物や構造物に広く利用されてい
る。セメント系組成物の代表として、ポルトランドセメ
ントが挙げられる。ポルトランドセメントを構造物に利
用した場合、水和反応による硬化に伴って遊離した水酸
化カルシウムが硬化体から溶出して高アルカリ性とな
る。溶出した水酸化カルシウムは、空気中の二酸化炭素
と反応して炭酸カルシウムを生成し、硬化体表面に析出
して白華(エフロレッセンス)等の問題をおこす。これ
らを解決する手段として、合成樹脂エマルジョンを添加
してアルカリの溶出を低減させるとか、硬化体表面を熱
硬化性樹脂コーティングして表面改質する等の方法があ
るが、作業の複雑化及びコストアップは避けられず、問
題の解決には至っていない。
2. Description of the Related Art Cement-based compositions, which are common hydraulic compositions, are widely used in buildings and structures as concrete or mortar in which gravel, sand, and reinforcing bars are combined. Portland cement is a representative example of the cement-based composition. When Portland cement is used for a structure, calcium hydroxide released along with the hardening due to the hydration reaction elutes from the hardened material and becomes highly alkaline. The eluted calcium hydroxide reacts with carbon dioxide in the air to generate calcium carbonate, and precipitates on the surface of the cured product, causing problems such as efflorescence. Means for solving these problems include a method of adding a synthetic resin emulsion to reduce the elution of alkali and a method of coating the surface of a cured body with a thermosetting resin to modify the surface. Up is inevitable, has not solved the problem.

【0003】低アルカリ性のセメントとして、オキシク
ロライドセメント、オキシサルファイトセメントとリン
酸セメントが挙げられる。オキシクロライドセメント
は、弱アルカリ金属酸化物と、その金属の塩化物水溶液
を混合すると金属のヒドロキシ塩化物の水化物を生成し
て硬化することを利用している(化学式(1))。 mMO + MCl → mMO・MCl・nHO (M:Mg、Zn 等) (1) 一方オキシサルファイトセメントは塩化物の替りに硫酸
塩を用いたものである。しかし、オキシクロライドセメ
ント、オキシサルファイトセメントとも耐水性に乏し
く、熱に弱い欠点を有している。
[0003] Low-alkali cements include oxychloride cement, oxysulfite cement and phosphate cement. The oxychloride cement utilizes the fact that when a weak alkali metal oxide and an aqueous chloride solution of the metal are mixed, a hydrate of the metal hydroxychloride is generated and hardened (chemical formula (1)). mMO + MCl 2 → mMO ・ MCl 2・ nH 2 O (M: Mg, Zn, etc.) (1) On the other hand, oxysulfite cement uses sulfate instead of chloride. However, both oxychloride cement and oxysulfite cement have poor water resistance and are weak in heat.

【0004】リン酸セメントは、各種の酸化物粉末とリ
ン酸液を混練すると、両者が反応して酸性リン酸塩を形
成し、硬化する特性を利用している。強度の大きな硬化
体を得るには不整構造の水和物を生じなければならない
ので、弱アルカリ性、又は両性でイオン半径の小さい陽
イオンからなる酸化物を利用する。常温硬化性の良好な
陽イオンはAl、Zn、Mg、Ca等で、硬化する際に
第一リン酸塩(Mx(H PO)y、例えばAl(H
)等)、又は第二リン酸塩(Mx(HPO)y、例
えばZnHPO、MgHPO、CaHPO等)を
生成する。ただし、このセメントは液状リン酸を使う厄
介さ、耐水性に乏しい、高価である等から一般の用途に
は向かない。
[0004] Phosphate cement is used for various oxide powders and
When the acid solution is kneaded, they react to form acidic phosphate.
Utilizes the properties of forming and hardening. High strength hardening
Amorphous structure hydrate must be produced to obtain body
Therefore, weak alkaline or amphoteric and small ionic radius positive
An oxide composed of ions is used. Good room temperature curability
The cation is Al, Zn, Mg, Ca, etc.
Primary phosphate (Mx (H 2PO4) y, for example, Al (H2P
O4)3Etc.) or a second phosphate (Mx (HPO4) y, example
For example, ZnHPO4, MgHPO4, CaHPO4Etc.)
Generate. However, this cement has the disadvantage of using liquid phosphoric acid.
For general use due to poor penetration, poor water resistance, and high price
Is not suitable.

【0005】他のリン酸セメントとして、リン酸マグネ
シウムセメント(ホスホマグネシアセメント)があり、速
硬性セメントとして、土木・建築用の緊急補修材等に使
用されている。リン酸マグネシウムセメントの主成分
は、酸化マグネシウム(MgO)とリン酸二水素アンモニ
ウム(NHPO)であり、その反応は一種の酸−
塩基反応と考えられ、以下の化学式(2)及び(3)で表すこ
とができる。 MgO + NHHPO → NHMgPO・HO (2) MgO + NHHPO + 5HO → NHMgPO・6HO (3) (2)及び(3)式の反応のように、最終的にリン酸マグネシ
ウム・アンモニウム水和物を形成し硬化する。この反応
は非常に速いため、適当な作業時間が得られるように予
め遅延剤が混合されている。また、硬化体を構成する化
合物が耐水性に乏しい酸性リン酸塩であるため、シリコ
ーン等の添加によって耐水性の向上を図っている。例え
ば特許第2866017号で開示している組成物があ
り、リン酸、リン酸誘導体、リン酸塩、リン酸水素塩
(カリウム塩、マグネシウム塩、アンモニウム塩等)或い
はこれらの混合物とMgOから成り、バインダー相:1
0〜40重量部(MgO/P重量比=1〜3)、凝
集体(シリカ、アルミナ等の骨材又は細骨材):60〜9
0重量部、撥水剤(シリコーン)、凝結遅延剤、その他の
添加剤によって構成されている。
As another phosphate cement, there is a magnesium phosphate cement (phosphomagnesia cement), which is used as an emergency repair material for civil engineering and construction as a fast-setting cement. The main components of magnesium phosphate cement are magnesium oxide (MgO) and ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), and the reaction is a kind of acid-
It is considered to be a base reaction and can be represented by the following chemical formulas (2) and (3). MgO + NH 4 H 2 PO 4 → NH 4 MgPO 4 · H 2 O (2) MgO + NH 4 H 2 PO 4 + 5H 2 O → NH 4 MgPO 4 · 6H 2 O (3) (2) and (3 Finally, as shown in the reaction of the formula, a magnesium ammonium phosphate hydrate is formed and hardened. The reaction is so fast that a retarder is pre-mixed to provide a suitable working time. In addition, since the compound constituting the cured product is an acidic phosphate having poor water resistance, the water resistance is improved by adding silicone or the like. For example, there is a composition disclosed in Japanese Patent No. 2866017, which includes phosphoric acid, a phosphoric acid derivative, a phosphate, and a hydrogen phosphate.
(Potassium salt, magnesium salt, ammonium salt, etc.) or a mixture thereof and MgO, binder phase: 1
0 to 40 parts by weight (MgO / P 2 O 5 weight ratio = 1 to 3), aggregate (aggregate or fine aggregate such as silica or alumina): 60 to 9
0 parts by weight, a water repellent (silicone), a setting retarder, and other additives.

【0006】その他の水硬性組成物として、酸化マグネ
シウムが挙げられる。酸化マグネシウムの水硬性は、水
和反応によって水酸化マグネシウムに変化することに起
因している。水酸化マグネシウムは水に対する溶解度が
小さいため、先ず始めに酸化マグネシウムが水和反応
し、一端水に溶解した後、直ちに過飽和状態となり、水
酸化マグネシウムの低結晶性コロイド状粒子として析出
する。このコロイド状粒子が凝集し、さらに粗粒子間の
空隙を埋めることによって緻密な硬化体が形成される。
しかし、酸化マグネシウムには、偽凝結による作業性の
悪化、硬化体中に残存した未反応酸化マグネシウムが遅
れて水和することに起因した硬化体の膨張による破壊等
の問題があるため、構造用材料への利用は難しい。
Another hydraulic composition is magnesium oxide. The hydraulic property of magnesium oxide is due to its change to magnesium hydroxide by a hydration reaction. Since magnesium hydroxide has a low solubility in water, magnesium hydroxide firstly undergoes a hydration reaction, and once dissolved in water, immediately becomes supersaturated and precipitates as low-crystalline colloidal particles of magnesium hydroxide. The colloidal particles aggregate and form a dense cured product by filling the gaps between the coarse particles.
However, magnesium oxide has problems such as deterioration of workability due to pseudo-coagulation, and destruction due to expansion of the cured product due to delayed hydration of unreacted magnesium oxide remaining in the cured product. It is difficult to use for materials.

【0007】土質安定処理は、処理材と土粒子とのイオ
ン交換反応やポゾラン反応によって土の力学的・水理学
的性質を改善する方法である。主として関東ローム、粘
土質土壌には石灰系組成物、シルト、砂質系土壌にはセ
メント系組成物が用いられている。これらの組成物は基
本的に高アルカリ性であるため、改良土壌のpH上昇に
よるアルカリ公害が問題となっている。
[0007] The soil stabilization treatment is a method for improving the mechanical and hydraulic properties of the soil by an ion exchange reaction or a pozzolan reaction between the treated material and the soil particles. Lime compositions are mainly used for Kanto loam and clay soils, and cement compositions are used for silt and sandy soils. Since these compositions are basically highly alkaline, there is a problem of alkaline pollution due to an increase in pH of the improved soil.

【0008】有機質土や高含水土壌には、ポゾラン材
(高炉水砕スラグ、フライアッシュ等)と水和刺激材(石
膏、硫酸ナトリウム等)を混合した複合組成物、或いは
アルミナセメント系組成物、アウイン系組成物等の特殊
セメントが使用されている。しかし、カルシウムアルミ
ネート系組成物やアウイン系組成物は高温焼成により製
造されるため、高価にならざるを得ない欠点を有してい
る。またアウイン系組成物は水の存在下で急結硬化性を
呈するため、土との混合中にゲル化を生じて作業性が悪
化する。この欠点を補うため凝結遅延剤を添加する方法
が採られているが、コストアップの原因となっている。
セメント系組成物及び石灰系組成物は、有機質土や高含
水土壌に対して多量に使用する必要があり、実用に適さ
ない。
[0008] Pozzolan materials are used for organic soils and highly hydrous soils.
(Blast-furnace granulated slag, fly ash, etc.) and a hydration stimulating material (gypsum, sodium sulfate, etc.) are mixed, or a special cement, such as an alumina cement-based composition or an Auyne-based composition, is used. However, the calcium aluminate-based composition and the auyne-based composition have a drawback that they must be expensive because they are manufactured by firing at a high temperature. In addition, since the awine-based composition exhibits quick-setting hardening property in the presence of water, gelation occurs during mixing with soil, resulting in poor workability. In order to compensate for this disadvantage, a method of adding a setting retarder has been adopted, but this causes an increase in cost.
Cement-based compositions and lime-based compositions need to be used in large amounts for organic soils and highly hydrous soils, and are not suitable for practical use.

【0009】[0009]

【発明が解決しようとする課題】したがって、ポルトラ
ンドセメントのようなアルカリ溶出がなく、自然環境に
優しい構造物を構築でき、且つ軟弱土壌に対して優れた
安定処理効果を発揮する水硬性組成物の開発が求められ
ていた。
Accordingly, there is provided a hydraulic composition which does not cause alkali elution such as Portland cement, can construct a structure friendly to the natural environment, and exhibits an excellent stabilizing effect on soft soil. Development was required.

【0010】[0010]

【課題を解決するための手段】このような現状に鑑み鋭
意研究を重ねた結果、酸化マグネシウム粉末、リン酸一
水素マグネシウム粉末、半水石膏粉末を所定の混合比率
で混合し水と混練したものについて、硬化体強度及び土
質安定処理効果を調べたところ、MgO/P重量
比が10.0〜23.0となるように酸化マグネシウム
粉末とリン酸一水素マグネシウム粉末を混合した粉体組
成物100重量部に対して、半水石膏粉末を0.5〜1
5.0重量部添加して成る水硬性粉体組成物が、高い硬
化体強度及び土質安定処理効果を示すことを見いだし
た。しかも、これらの粉体組成物は前述の課題を解決し
得ることを見い出し本発明を完成するに至った。以下、
本発明について詳細に説明する。
Means for Solving the Problems As a result of intensive studies in view of the present situation, magnesium oxide powder, magnesium monohydrogen phosphate powder and hemihydrate gypsum powder are mixed at a predetermined mixing ratio and kneaded with water. When the strength of the cured product and the effect of the soil stabilization treatment were examined, the powder obtained by mixing the magnesium oxide powder and the magnesium monohydrogen phosphate powder such that the MgO / P 2 O 5 weight ratio was 10.0 to 23.0 Gypsum hemihydrate was added in an amount of 0.5 to 1 based on 100 parts by weight of the composition.
It has been found that a hydraulic powder composition to which 5.0 parts by weight is added exhibits high cured product strength and soil stabilizing effect. In addition, they have found that these powder compositions can solve the above-mentioned problems, and have completed the present invention. Less than,
The present invention will be described in detail.

【0011】リン酸一水素マグネシウム(MgHPO)
は、水に難溶性を示す化合物であり、反応性は緩やかで
あるが、酸化マグネシウム(MgO)共存下で適度の水を
加えて混練することにより、両者が反応して水不溶性リ
ン酸マグネシウム水和物(Mg(PO)・xH
O、x=8又は22)が生成する。例えば、リン酸一
水素マグネシウムが三水和物(MgHPO・3HO)
である場合、下式に従って反応が進行する。 MgO + HO → Mg(OH) (4) Mg(OH) + 2MgHPO・3HO → Mg(PO)・ 8HO (5) Mg(OH) + 2MgHPO・3HO + 14HO → Mg(PO)・22HO (6) (5)及び(6)式から分かるように酸化マグネシウム1分子
に対してMgHPO・3HOが2分子反応し、その
際に水を結晶中に取り込む。生成したMg(PO)
・xH Oの形状を走査型電子顕微鏡で観察すると、
基本的に直径0.5〜1μm、長さ10〜50μmの柱
状結晶(主にMg(PO)・8HO)と、大きさ数
十μmの緻密なブロック状の結晶(主にMg(PO)
・22HO)が混在していることが確認できる。
Magnesium monohydrogen phosphate (MgHPO 4 )
Is a compound that is hardly soluble in water and has a moderate reactivity, but by adding and kneading appropriate water in the presence of magnesium oxide (MgO), the two react to form a water-insoluble magnesium phosphate aqueous solution. Japanese (Mg 3 (PO 4 ) 2 xH
2 O, x = 8 or 22). For example, magnesium monohydrogen phosphate is trihydrate (MgHPO 4 .3H 2 O)
In the case of, the reaction proceeds according to the following formula. MgO + H 2 O → Mg ( OH) 2 (4) Mg (OH) 2 + 2MgHPO 4 · 3H 2 O → Mg 3 (PO 4) 2 · 8H 2 O (5) Mg (OH) 2 + 2MgHPO 4 · 3H 2 O + 14H 2 O → Mg 3 (PO 4) 2 · 22H 2 O (6) (5) and (6) MgHPO 4 · 3H 2 O 2 molecules relative to the magnesium oxide per molecule as can be seen from equation React, at which time water is incorporated into the crystals. Generated Mg 3 (PO 4 ) 2
When observing the shape of xH 2 O with a scanning electron microscope,
Basically diameter 0.5 to 1 [mu] m, the columnar crystals of length 10~50μm and (primarily Mg 3 (PO 4) 2 · 8H 2 O), dense block-like crystals of size of several tens of [mu] m (mainly Mg 3 (PO 4 )
2 · 22H 2 O) it can be confirmed that are mixed.

【0012】既存のリン酸セメント或いはリン酸マグネ
シウムセメントとは異なり、本発明で対象となる粉体組
成物の水硬性は、酸化マグネシウムの水和反応による水
酸化マグネシウムの生成(化学式(4))、及び酸化マグネ
シウムとリン酸一水素マグネシウムの反応による水不溶
性リン酸マグネシウム水和物の生成(化学式(5)及び
(6))、更に半水石膏と水の反応による二水石膏の生成に
起因している。この反応を利用した水硬性粉体組成物は
新規なものである。
Unlike the existing phosphate cement or magnesium phosphate cement, the hydraulic property of the powder composition of the present invention is determined by the hydration reaction of magnesium oxide to form magnesium hydroxide (chemical formula (4)). , And the formation of water-insoluble magnesium phosphate hydrate by the reaction of magnesium oxide and magnesium monohydrogen phosphate (chemical formula (5) and
(6)) Furthermore, it is caused by the formation of gypsum by the reaction of hemihydrate gypsum and water. The hydraulic powder composition utilizing this reaction is a novel one.

【0013】上記のように、酸化マグネシウム粉末とリ
ン酸一水素マグネシウム粉末と水が反応してMg(P
)・xHOの柱状結晶ブロック状の結晶が生成
する。上記反応で余った酸化マグネシウムの水和によっ
て生成する水酸化マグネシウム微細結晶と、半水石膏の
水和によって生成する二水石膏の針状結晶が、Mg
(PO)・xH O結晶間に生じた空隙に侵入・
成長したり、ネット状に絡み合って他粒子の移動を拘束
するため、含水比の低下と相まって硬化体の強度を増加
させる。水に溶解したMg2+イオン及びOH イオ
ンは、Mg(PO)・xHOの構成成分として消
費されてpHが下がり、酸化マグネシウムの水和反応速
度が抑えられ、偽凝結をおこさず緩やかに凝結が終了す
る。このあと、酸化マグネシウムの水和反応物である水
酸化マグネシウムのコロイド状粒子、並びに生成した二
水石膏の針状結晶が、初期に水が存在していた空隙を徐
々に満たして緻密化が進行するため、急激な緻密化によ
る硬化体の膨張及び破壊をおこさずに硬化する。本発明
の水硬性粉体組成物の特徴は、Mg(PO)・xH
O結晶、水酸化マグネシウムコロイド状結晶、二水石
膏の針状結晶の絡み合いが、硬化体強度発現の大きな要
因となっていることである。
As described above, magnesium oxide powder and
Magnesium monohydrogen phosphate powder reacts with water to form Mg3(P
O4)2・ XH2O columnar crystal block-shaped crystal is generated
I do. Hydration of the excess magnesium oxide from the above reaction
Of magnesium hydroxide fine crystals produced by
The needle-like crystals of gypsum formed by hydration are Mg
3(PO4)2・ XH2 Invading the voids created between O crystals
Growing or entangled in a net-like manner restricting the movement of other particles
To increase the strength of the cured product in conjunction with a decrease in the water content
Let it. Mg dissolved in water2+Ions and OH Io
Is Mg3(PO4)2・ XH2Disappears as a component of O
Spent and lowered the pH, the hydration rate of magnesium oxide
The degree of control is reduced and the setting ends slowly without causing false setting
You. After this, water, which is a hydration product of magnesium oxide,
Colloidal particles of magnesium oxide
Needle-shaped crystals of water gypsum gradually remove the voids where water was initially present.
As the densification progresses by filling various parts,
Curing without causing expansion and destruction of the cured body. The present invention
The characteristic of the hydraulic powder composition of3(PO4)2・ XH
2O crystal, magnesium hydroxide colloidal crystal, dihydrate
The entanglement of the needle-shaped crystals of the plaster is a key factor in
That is the cause.

【0014】硬化体は耐水性に富み、また、リン酸マグ
ネシウム、二水石膏が酸性であるためpHが低下する。
そのため、セメント系組成物のような硬化体からのアル
カリ溶出はなく、自然環境に優しい構造物を構築でき
る。
The cured product has high water resistance, and the pH is lowered because magnesium phosphate and gypsum are acidic.
Therefore, there is no alkali elution from a hardened material such as a cement-based composition, and a structure friendly to the natural environment can be constructed.

【0015】本発明の水硬性粉体組成物は、Mg(P
)・xHO、水酸化マグネシウム、二水石膏の
生成による自硬性の発現及び酸化マグネシウムと土壌成
分(SiO、Al等)とのポゾラン反応などの作
用によって土質安定効果を発揮する。更に、Mg(P
)・xHOの生成及び酸化マグネシウム、半水
石膏の水和反応によって多量の水を固定できるので、高
含水土壌に対する安定化処理に適している。
The hydraulic powder composition of the present invention contains Mg 3 (P
O 4 ) 2 · xH 2 O, magnesium hydroxide, gypsum dihydrate to form self-hardening, and soil stabilizing effect by the action of magnesium oxide and the soil component (SiO 2 , Al 2 O 3, etc.) pozzolanic reaction Demonstrate. Further, Mg 3 (P
A large amount of water can be fixed by the generation of O 4 ) 2 xH 2 O and the hydration reaction of magnesium oxide and hemihydrate gypsum.

【0016】水硬性粉体組成物の主成分である酸化マグ
ネシウム粉末とリン酸一水素マグネシウム粉末は、Mg
O/P重量比が10.0〜23.0の範囲となる
ようにする。MgO/P重量比が23.0より大
きい場合はMg(PO)・xH Oの生成量が少
なすぎるため、本発明の特徴であるMg(PO)
xHO、水酸化マグネシウム、二水石膏の結晶同士の
相互作用による強度発現が期待できない。MgO/P
重量比が10.0未満では、硬化体強度の発現要因
であるMg(PO)・xHO、水酸化マグネシウ
ム、二水石膏の生成量のバランスが悪く、高い硬化体強
度が得られない。
The magnesium oxide powder and the magnesium monohydrogen phosphate powder, which are the main components of the hydraulic powder composition, are made of Mg
The O / P 2 O 5 weight ratio is adjusted to be in the range of 10.0 to 23.0. If the MgO / P 2 O 5 weight ratio is greater than 23.0, the amount of generated Mg 3 (PO 4 ) 2 .xH 2 O is too small, so that Mg 3 (PO 4 ) 2.
xH 2 O, magnesium hydroxide, strength development can not be expected due to the interaction of the crystal between the gypsum. MgO / P 2
If the O 5 weight ratio is less than 10.0, the balance between the amounts of Mg 3 (PO 4 ) 2 .xH 2 O, magnesium hydroxide, and gypsum dihydrate, which are the factors of manifesting the strength of the cured body, is poor, and the strength of the cured body is high. Can not be obtained.

【0017】酸化マグネシウム粉末は、水和活性の高い
ものが良く、炭酸マグネシウム及び/又は水酸化マグネ
シウムを1000℃以下で焼成したものが好ましい。ま
た反応性、作業性を考慮した場合、最大粒子径が0.3
mm以下であることが好ましい。
The magnesium oxide powder preferably has a high hydration activity, and is preferably obtained by calcining magnesium carbonate and / or magnesium hydroxide at 1000 ° C. or lower. In consideration of reactivity and workability, the maximum particle diameter is 0.3
mm or less.

【0018】リン酸一水素マグネシウム粉末は、無水物
(MgHPO)、三水和物(MgHPO・3HO)、
四.五水和物(MgHPO・4.5HO)、七水和物
(MgHPO・7HO)の内、いずれか一種以上を含
んでいるものが好ましい。リン酸一水素マグネシウム
は、水に対する溶解度が低く潮解性が無い安定な物質で
ある。酸化マグネシウム粉末と混合した場合、注水しな
い限り反応を開始せず、且つ両者間の反応は緩やかに進
行するため、保存性、作業性に優れた粉体組成物が得ら
れる。他のリン酸源として、リン酸セメント或いはリン
酸マグネシウムセメントで用いられている、正リン酸
(HPO)、水溶性リン酸塩等が存在するが、これら
と酸化マグネシウムを混合した場合、激しく反応が進行
することや、注水せずとも、大気中の水分等によって酸
化マグネシウムと反応するので好ましくない。リン酸一
水素マグネシウム粉末は、反応性、作業性を考慮した場
合、最大粒子径が0.3mm以下であることが好まし
い。
The magnesium monohydrogen phosphate powder is anhydrous.
(MgHPO 4 ), trihydrate (MgHPO 4 .3H 2 O),
Four. Pentahydrate (MgHPO 4・ 4.5H 2 O), heptahydrate
(MgHPO 4 · 7H 2 O) of, preferably one containing any one or more. Magnesium monohydrogen phosphate is a stable substance having low solubility in water and no deliquescence. When mixed with magnesium oxide powder, the reaction does not start unless water is injected, and the reaction between the two proceeds slowly, so that a powder composition excellent in storage stability and workability can be obtained. As another source of phosphoric acid, orthophosphoric acid used in phosphate cement or magnesium phosphate cement
(H 3 PO 4 ), water-soluble phosphates, etc. are present, but when these are mixed with magnesium oxide, the reaction proceeds violently, and even if water is not injected, it reacts with magnesium oxide due to moisture in the atmosphere. Is not preferred. In consideration of reactivity and workability, the magnesium monohydrogen phosphate powder preferably has a maximum particle size of 0.3 mm or less.

【0019】半水石膏粉末は、所定のMgO/P
重量比となるように酸化マグネシウム粉末及びリン酸一
水素マグネシウム粉末を混合した粉体組成物に添加する
ことによって、組成物に対して適正な凝結挙動を与え、
更に半水石膏自身の水和反応による脱水効果及び水硬性
によって硬化体強度を増加させる働きをする。その添加
効果は、硬化体形成時に生成する水酸化マグネシウム量
が多いほど顕著になる傾向があるため、リン酸一水素マ
グネシウム粉末の混合量を少なくすることができる。他
の石膏源として二水石膏が挙げられるが、二水石膏は水
和反応による脱水効果及び水硬性による硬化体強度を増
加させる効果を発揮しないため、使用に適さない。
The gypsum hemihydrate powder has a predetermined MgO / P 2 O 5
By adding the magnesium oxide powder and magnesium monohydrogen phosphate powder to the powder composition in a weight ratio to give a proper setting behavior to the composition,
Further, it acts to increase the strength of the cured product due to the dehydration effect due to the hydration reaction of hemihydrate gypsum itself and the hydraulic property. The effect of the addition tends to be more remarkable as the amount of magnesium hydroxide generated at the time of forming the cured product increases, so that the mixing amount of the magnesium monohydrogen phosphate powder can be reduced. Other gypsum sources include gypsum gypsum, but gypsum dihydrate is not suitable for use because it does not exhibit the dehydration effect of the hydration reaction and the effect of increasing the strength of the cured product due to hydraulic properties.

【0020】半水石膏粉末は、所定のMgO/P
重量比となるように酸化マグネシウム粉末及びリン酸一
水素マグネシウム粉末を混合した粉体組成物100重量
部に対して0.5〜15.0重量部添加することによっ
て、凝結促進剤としての効果及び硬化体強度を増加させ
る効果を発揮する。添加量が0.5重量部未満では、こ
れらの効果は期待できず、15重量部より多い場合は、
硬化体を構成する物質のバランスが悪くなり強度が低下
する。半水石膏粉末は、反応性、作業性を考慮した場
合、最大粒子径が0.3mm以下であることが好まし
い。
The gypsum hemihydrate powder has a predetermined MgO / P 2 O 5
By adding 0.5 to 15.0 parts by weight to 100 parts by weight of the powder composition in which the magnesium oxide powder and the magnesium monohydrogen phosphate powder are mixed so as to have a weight ratio, the effect as a setting accelerator and It has the effect of increasing the strength of the cured body. When the amount is less than 0.5 part by weight, these effects cannot be expected. When the amount is more than 15 parts by weight,
The balance of the substances constituting the cured product is deteriorated, and the strength is reduced. In consideration of reactivity and workability, the hemihydrate gypsum powder preferably has a maximum particle diameter of 0.3 mm or less.

【0021】なお、本発明の水硬性粉体組成物に、当該
成分の水和反応に影響を及ぼさない反応性の低い無機化
合物粉末、すなわちフィラーを添加することもできる。
この場合、水硬性粉体組成物100重量部に対し100
重量部を限度として添加するのが良い。混合した組成物
は、水硬性粉体組成物としての性能は損なわれず、粉体
物性(流動性、付着性、凝集性)の改善や製造コストの削
減が可能となる。フィラーの含有量が前述の割合より多
い場合、硬化性能が十分に発揮されない為、好ましくな
い。フィラーは、常温・湿空中において化学変化が起こ
らない反応性の低い材料が好ましく、炭酸塩、水酸化
物、天然鉱産物、フライアッシュ、高炉水砕スラグのう
ち、いずれか一種以上を、主成分と同様に最大粒子径
0.3mm以下に粉砕して使用する。
The hydraulic powder composition of the present invention may contain an inorganic compound powder having a low reactivity which does not affect the hydration reaction of the component, that is, a filler.
In this case, 100 parts by weight of the hydraulic powder composition
It is advisable to add up to parts by weight. The mixed composition does not impair the performance as a hydraulic powder composition, and can improve powder properties (fluidity, adhesion, and cohesion) and reduce production costs. When the content of the filler is more than the above-mentioned ratio, the curing performance is not sufficiently exhibited, and thus it is not preferable. The filler is preferably a low-reactivity material that does not undergo a chemical change at room temperature and in wet air, and contains at least one of carbonate, hydroxide, natural mineral products, fly ash, and granulated blast furnace slag as a main component. In the same manner as described above, pulverized to a maximum particle diameter of 0.3 mm or less for use.

【0022】炭酸塩は、炭酸カルシウム、炭酸マグネシ
ウム、炭酸水素マグネシウム、ドロマイトのうち、いず
れか一種以上を使用することができる。
As the carbonate, any one or more of calcium carbonate, magnesium carbonate, magnesium hydrogen carbonate and dolomite can be used.

【0023】酸化物は、酸化鉄、酸化アルミニウムのう
ち、いずれか一種以上を使用することができる。
As the oxide, any one or more of iron oxide and aluminum oxide can be used.

【0024】水酸化物は、水酸化マグネシウム、水酸化
鉄、水酸化アルミニウムのうち、いずれか一種以上を使
用することが好ましい。
As the hydroxide, it is preferable to use any one or more of magnesium hydroxide, iron hydroxide and aluminum hydroxide.

【0025】天然鉱産物は、珪石、珪砂、明礬石、スピ
ネル、長石、蛭石、パーライト、軽石、花崗岩、クレ
ー、カオリン、タルク、ベントナイト、酸性白土、セピ
オライト、クリストバライト、珪藻土、ゼオライトのう
ち、いずれか一種以上を使用することができる。
Natural mineral products include any of quartzite, quartz sand, alunite, spinel, feldspar, vermiculite, perlite, pumice, granite, clay, kaolin, talc, bentonite, acid clay, sepiolite, cristobalite, diatomaceous earth, and zeolite. Or more than one can be used.

【0026】本発明の水硬性粉体組成物は、酸化マグネ
シウム粉末、リン酸一水素マグネシウム粉末、半水石膏
粉末、フィラー粉末同士を均一に混合することによって
得られる。そのため、これらの材料は、予め粒子径を揃
えておくことが好ましい。混合には、粉体が均一に混合
できる機器(V型混合機、水平円筒型混合機、リボン型
混合機、円錐型スクリュー混合機、高速流動型混合機
等)を選択して使用することができる。
The hydraulic powder composition of the present invention can be obtained by uniformly mixing magnesium oxide powder, magnesium monohydrogen phosphate powder, hemihydrate gypsum powder and filler powder. Therefore, it is preferable that these materials have a uniform particle diameter in advance. For mixing, equipment that can uniformly mix the powder (V-type mixer, horizontal cylindrical mixer, ribbon-type mixer, conical screw mixer, high-speed flow mixer, etc.) can be selected and used. it can.

【0027】[0027]

【発明の実施の形態】以下、実施例によって本発明の水
硬性粉体組成物の具体例及びその効果を説明するが、本
発明は下記の実施例に限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific examples of the hydraulic powder composition of the present invention and effects thereof will be described with reference to examples, but the present invention is not limited to the following examples.

【0028】炭酸マグネシウム(マグネサイト:MgC
)を1000℃以下で十分に焼成して酸化マグネシ
ウム(MgO)を得た。この酸化マグネシウムを粉砕し
て、0.3mm篩い通過分を回収した。同様に、リン酸
水素マグネシウム無水物(MgHPO4)、リン酸一水素
マグネシウム三水和物(MgHPO・3HO)、半
水石膏(CaSO・0.5HO)、二水石膏(CaS
・2HO)、炭酸カルシウム(カルサイト:Ca
CO)、水酸化アルミニウム(Al(OH))、タルク
(主成分として、SiO:63%、MgO:30%)、
花崗岩(主成分として、SiO2:72%、Al
:13%、KO:5%、NaO:5%)を粉
砕して0.3mm篩い通過分を回収し、以下の試験に使
用した。
Magnesium carbonate (magnesite: MgC
O 3 ) was sufficiently calcined at 1000 ° C. or lower to obtain magnesium oxide (MgO). The magnesium oxide was pulverized to recover a 0.3 mm sieve. Similarly, magnesium hydrogen phosphate anhydride (MgHPO4), hydrogen phosphate magnesium trihydrate (MgHPO 4 · 3H 2 O) , hemihydrate gypsum (CaSO 4 · 0.5H 2 O) , gypsum (CaS
O 4 · 2H 2 O), calcium carbonate (calcite: Ca
CO 3 ), aluminum hydroxide (Al (OH) 3 ), talc
(As main components, SiO 2 : 63%, MgO: 30%),
Granite (main component: SiO2: 72%, Al
2 O 3: 13%, K 2 O: 5%, Na 2 O: 5%) recovered 0.3mm sieve passing fraction was ground and used in the following test.

【0029】[0029]

【比較例1】酸化マグネシウム粉末8.0kg及びリン
酸一水素マグネシウム三水和物粉末2.0kgをV型混
合機で1時間混合攪拌して粉体組成物10.0kgを得
た。この粉体組成物に含まれるMgO成分及びP
成分を分析した結果、MgO/P重量比は10.
37であった。配合割合を表1に示す。この粉体組成物
について、JIS R 5201「セメントの物理試験
法」に従い、水/粉体比(%)、凝結時間(h)を測定し
た。測定結果を表2に示す。なお表中(wt)は重量部を表
す。粉体組成物1重量部に対して砂(ケイ砂4号)2重量
部を混合したモルタルを調製し、JIS R 5201
に記載の「圧縮強さ試験方法」に従ってフロー値(m
m)、水/粉体比(%)、成形体比重、材令7日及び28
日の圧縮強度(N/mm)を測定した。測定結果を表3
に示す。
COMPARATIVE EXAMPLE 1 8.0 kg of magnesium oxide powder and 2.0 kg of magnesium monohydrogen phosphate trihydrate powder were mixed and stirred with a V-type mixer for 1 hour to obtain 10.0 kg of a powder composition. MgO component and P 2 O 5 contained in this powder composition
As a result of analyzing the components, the MgO / P 2 O 5 weight ratio was 10.
37. The proportions are shown in Table 1. With respect to this powder composition, the water / powder ratio (%) and the setting time (h) were measured in accordance with JIS R 5201 “Physical Testing Method for Cement”. Table 2 shows the measurement results. In the table, (wt) represents parts by weight. A mortar was prepared by mixing 2 parts by weight of sand (silica sand No. 4) with respect to 1 part by weight of the powder composition, and was subjected to JIS R5201.
According to the “Compression strength test method” described in
m), water / powder ratio (%), specific gravity of compact, material age 7 days and 28
The daily compressive strength (N / mm 2 ) was measured. Table 3 shows the measurement results.
Shown in

【0030】[0030]

【比較例2】酸化マグネシウム粉末9.0kg及びリン
酸一水素マグネシウム三水和物粉末1.0kgをV型混
合機で混合攪拌して粉体組成物10.0kgを得た。こ
の粉体組成物のMgO/P重量比は22.62で
あった。この粉体組成物について、比較例1と同様に物
理試験を行った。配合割合を表1に、測定結果を表2及
び3に示す。
Comparative Example 2 9.0 kg of a magnesium oxide powder and 1.0 kg of a magnesium monohydrogen phosphate trihydrate powder were mixed and stirred by a V-type mixer to obtain 10.0 kg of a powder composition. MgO / P 2 O 5 weight ratio of the powder composition was 22.62. This powder composition was subjected to a physical test in the same manner as in Comparative Example 1. Table 1 shows the mixing ratio, and Tables 2 and 3 show the measurement results.

【0031】[0031]

【比較例3】酸化マグネシウム粉末5.5kg、リン酸
一水素マグネシウム無水物粉末4.5kg、半水石膏
0.5kgをV型混合機で1時間混合攪拌して粉体組成
物10.5kgを得た。この粉体組成物のMgO/P
重量比は2.63であった。この粉体組成物につい
て、比較例1と同様に物理試験を行った。配合割合を表
1に、測定結果を表2及び3に示す。
Comparative Example 3 5.5 kg of magnesium oxide powder, 4.5 kg of anhydrous magnesium monohydrogen phosphate powder, and 0.5 kg of gypsum hemihydrate were mixed and stirred for 1 hour with a V-type mixer to obtain 10.5 kg of a powder composition. Obtained. MgO / P 2 of this powder composition
The O 5 weight ratio was 2.63. This powder composition was subjected to a physical test in the same manner as in Comparative Example 1. Table 1 shows the mixing ratio, and Tables 2 and 3 show the measurement results.

【0032】[0032]

【比較例4】酸化マグネシウム粉末7.5kg、リン酸
一水素マグネシウム無水物粉末2.5kg、半水石膏
0.5kgをV型混合機で1時間混合攪拌して粉体組成
物10.5kgを得た。この粉体組成物のMgO/P
重量比は5.63であった。この粉体組成物につい
て、比較例1と同様に物理試験を行った。配合割合を表
1に、測定結果を表2及び3に示す。
Comparative Example 4 7.5 kg of magnesium oxide powder, 2.5 kg of anhydrous magnesium monohydrogen phosphate powder and 0.5 kg of gypsum hemihydrate were mixed and stirred for 1 hour with a V-type mixer to obtain 10.5 kg of a powder composition. Obtained. MgO / P 2 of this powder composition
O 5 weight ratio was 5.63. This powder composition was subjected to a physical test in the same manner as in Comparative Example 1. Table 1 shows the mixing ratio, and Tables 2 and 3 show the measurement results.

【0033】[0033]

【実施例1】酸化マグネシウム粉末8.0kg、リン酸
一水素マグネシウム三水和物粉末2.0kg、半水石膏
粉末0.5kgをV型混合機で1時間混合攪拌して水硬
性粉体組成物10.5kgを得た。この粉体組成物のM
gO/P重量比は10.37であった。この粉体
組成物について、比較例1と同様に物理試験を行った。
配合割合を表1に、測定結果を表2及び3に示す。
Example 1 8.0 kg of magnesium oxide powder, 2.0 kg of magnesium monohydrogen phosphate trihydrate powder, and 0.5 kg of hemihydrate gypsum powder were mixed and stirred for 1 hour with a V-type mixer to form a hydraulic powder composition. 10.5 kg of the product were obtained. M of this powder composition
gO / P 2 O 5 weight ratio was 10.37. This powder composition was subjected to a physical test in the same manner as in Comparative Example 1.
Table 1 shows the mixing ratio, and Tables 2 and 3 show the measurement results.

【0034】[0034]

【実施例2】酸化マグネシウム粉末9.0kg、リン酸
一水素マグネシウム無水物粉末1.0kg、半水石膏粉
末0.5kgをV型混合機で1時間混合攪拌して水硬性
粉体組成物10.5kgを得た。この粉体組成物のMg
O/P重量比は15.77であった。この粉体組
成物について、比較例1と同様に物理試験を行った。配
合割合を表1に、測定結果を表2及び3に示す。
Example 2 9.0 kg of magnesium oxide powder, 1.0 kg of anhydrous magnesium hydrogen phosphate and 0.5 kg of hemihydrate gypsum powder were mixed and stirred for 1 hour with a V-type mixer to obtain a hydraulic powder composition 10 0.5 kg was obtained. Mg of this powder composition
The O / P 2 O 5 weight ratio was 15.77. This powder composition was subjected to a physical test in the same manner as in Comparative Example 1. The mixing ratio is shown in Table 1, and the measurement results are shown in Tables 2 and 3.

【0035】[0035]

【実施例3】酸化マグネシウム粉末9.0kg、リン酸
一水素マグネシウム無水物粉末1.0kg、半水石膏粉
末1.5kgをV型混合機で1時間混合攪拌して水硬性
粉体組成物11.5kgを得た。この粉体組成物のMg
O/P重量比は15.77であった。この粉体組
成物について、比較例1と同様に物理試験を行った。配
合割合を表1に、測定結果を表2及び3に示す。
Example 3 9.0 kg of magnesium oxide powder, 1.0 kg of anhydrous magnesium monohydrogen phosphate powder and 1.5 kg of gypsum hemihydrate gypsum were mixed and stirred for 1 hour with a V-type mixer to obtain a hydraulic powder composition 11. 0.5 kg was obtained. Mg of this powder composition
The O / P 2 O 5 weight ratio was 15.77. This powder composition was subjected to a physical test in the same manner as in Comparative Example 1. Table 1 shows the mixing ratio, and Tables 2 and 3 show the measurement results.

【0036】[0036]

【実施例4】酸化マグネシウム粉末9.0kg、リン酸
一水素マグネシウム三水和物粉末1.0kg、半水石膏
粉末0.5kgをV型混合機で1時間混合攪拌して水硬
性粉体組成物10.5kgを得た。この粉体組成物のM
gO/P重量比は22.62であった。この粉体
組成物について、比較例1と同様に物理試験を行った。
配合割合を表1に、測定結果を表2及び3に示す。
Example 4 9.0 kg of magnesium oxide powder, 1.0 kg of magnesium monohydrogen phosphate trihydrate powder and 0.5 kg of hemihydrate gypsum powder were mixed and stirred for 1 hour with a V-type mixer to form a hydraulic powder composition. 10.5 kg of the product were obtained. M of this powder composition
gO / P 2 O 5 weight ratio was 22.62. This powder composition was subjected to a physical test in the same manner as in Comparative Example 1.
Table 1 shows the mixing ratio, and Tables 2 and 3 show the measurement results.

【0037】[0037]

【実施例5】酸化マグネシウム粉末9.0kg、リン酸
一水素マグネシウム三水和物粉末1.0kg、半水石膏
粉末1.5kgをV型混合機で1時間混合攪拌して水硬
性粉体組成物11.5kgを得た。この粉体組成物のM
gO/P重量比は22.62であった。この粉体
組成物について、比較例1と同様に物理試験を行った。
配合割合を表1に、測定結果を表2及び3に示す。
Example 5 9.0 kg of magnesium oxide powder, 1.0 kg of magnesium monohydrogen phosphate trihydrate powder and 1.5 kg of hemihydrate gypsum powder were mixed and stirred for 1 hour with a V-type mixer to form a hydraulic powder composition. 11.5 kg of the product were obtained. M of this powder composition
gO / P 2 O 5 weight ratio was 22.62. This powder composition was subjected to a physical test in the same manner as in Comparative Example 1.
Table 1 shows the mixing ratio, and Tables 2 and 3 show the measurement results.

【0038】[0038]

【比較例5】酸化マグネシウム粉末9.0kg、リン酸
一水素マグネシウム三水和物粉末1.0kg、半水石膏
粉末2.0kgをV型混合機で1時間混合攪拌して粉体
組成物12.0kgを得た。この粉体組成物のMgO/
重量比は22.62であった。この粉体組成物
について、比較例1と同様に物理試験を行った。配合割
合を表1に、測定結果を表2及び3に示す。
Comparative Example 5 9.0 kg of magnesium oxide powder, 1.0 kg of magnesium monohydrogen phosphate trihydrate powder and 2.0 kg of hemihydrate gypsum powder were mixed and stirred for 1 hour with a V-type mixer to obtain powder composition 12 0.0 kg was obtained. The MgO /
The P 2 O 5 weight ratio was 22.62. This powder composition was subjected to a physical test in the same manner as in Comparative Example 1. Table 1 shows the mixing ratio, and Tables 2 and 3 show the measurement results.

【0039】[0039]

【比較例6】酸化マグネシウム粉末9.0kg、リン酸
一水素マグネシウム無水物粉末1.0kg、二水石膏
0.5kgをV型混合機で1時間混合攪拌して粉体組成
物10.5kgを得た。この粉体組成物のMgO/P
重量比は15.77であった。この粉体組成物につ
いて、比較例1と同様に物理試験を行った。配合割合を
表1に、測定結果を表2及び3に示す。
Comparative Example 6 9.0 kg of magnesium oxide powder, 1.0 kg of anhydrous magnesium monohydrogen phosphate powder and 0.5 kg of gypsum dihydrate were mixed and stirred for 1 hour with a V-type mixer to obtain 10.5 kg of a powder composition. Obtained. MgO / P 2 of this powder composition
The O 5 weight ratio was 15.77. This powder composition was subjected to a physical test in the same manner as in Comparative Example 1. Table 1 shows the mixing ratio, and Tables 2 and 3 show the measurement results.

【0040】[0040]

【比較例7】酸化マグネシウム粉末9.0kg、リン酸
一水素マグネシウム無水物粉末1.0kg、二水石膏
2.0kgをV型混合機で1時間混合攪拌して粉体組成
物10.5kgを得た。この粉体組成物のMgO/P
重量比は15.77であった。この粉体組成物につ
いて、比較例1と同様に物理試験を行った。配合割合を
表1に、測定結果を表2及び3に示す。
COMPARATIVE EXAMPLE 7 9.0 kg of magnesium oxide powder, 1.0 kg of anhydrous magnesium monohydrogen phosphate powder, and 2.0 kg of gypsum dihydrate were mixed and stirred with a V-type mixer for 1 hour to obtain 10.5 kg of a powder composition. Obtained. MgO / P 2 of this powder composition
The O 5 weight ratio was 15.77. This powder composition was subjected to a physical test in the same manner as in Comparative Example 1. Table 1 shows the mixing ratio, and Tables 2 and 3 show the measurement results.

【0041】[0041]

【比較例8】酸化マグネシウム粉末について、比較例1
と同様に物理試験を行った。配合割合を表1に、測定結
果を表2及び3に示す。
Comparative Example 8 Comparative Example 1 for magnesium oxide powder
A physical test was performed in the same manner as described above. Table 1 shows the mixing ratio, and Tables 2 and 3 show the measurement results.

【0042】[0042]

【比較例9】酸化マグネシウム粉末10.0kg、半水
石膏0.5kgをV型混合機で1時間混合攪拌して粉体
組成物10.5kgを得た。この粉体組成物について、
比較例1と同様に物理試験を行った。配合割合を表1
に、測定結果を表2及び3に示す。
Comparative Example 9 10.0 kg of magnesium oxide powder and 0.5 kg of hemihydrate gypsum were mixed and stirred for 1 hour by a V-type mixer to obtain 10.5 kg of a powder composition. About this powder composition,
A physical test was performed as in Comparative Example 1. Table 1 shows the mixing ratio
Tables 2 and 3 show the measurement results.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【表3】 [Table 3]

【0046】半水石膏を添加していない組成物(比較例
1、2)では、MgO/P重量比が大きくなる
と、酸化マグネシウム水和による膨張の影響によって亀
裂が生じてしまった。酸化マグネシウム粉末、リン酸一
水素マグネシウム粉末、半水石膏粉末を混合した粉体組
成物は、MgO/P重量比が10を超えると圧縮
強度が大きくなった(比較例3、4及び実施例1、2、
3、4、5)。半水石膏を外比で20重量部添加した粉
体組成物は、硬化時に生成する物質のバランスが悪いた
め、実施例に比較して圧縮強度が低かった(比較例5)。
二水石膏粉末を添加した粉体組成物は、酸化マグネシウ
ムの水和による膨張に由来した亀裂の発生が抑制され
が、石膏の水和反応による水硬性は期待できず、二水石
膏粉末添加による強度発現効果は得られなかった(比較
例6及び7)。酸化マグネシウム粉末、酸化マグネシウ
ム粉末と半水石膏粉末の混合物では、偽凝結をおこし凝
結始発時間が測定できず、また、材令4週では成形体が
膨張し亀裂が生じてしまった(比較例8及び9)。
[0046] In hemihydrate gypsum without addition composition (Comparative Examples 1 and 2), the MgO / P 2 O 5 weight ratio increases, cracks had caused by influence of expansion due to magnesium oxide hydration. The powder composition obtained by mixing the magnesium oxide powder, the magnesium monohydrogen phosphate powder, and the gypsum hemihydrate powder had a large compressive strength when the MgO / P 2 O 5 weight ratio exceeded 10 (Comparative Examples 3, 4, and 5). Examples 1, 2,
3, 4, 5). The powder composition to which hemihydrate gypsum was added in an external ratio of 20 parts by weight had a poor compressive strength as compared with the examples (Comparative Example 5) because the balance of the substances generated during curing was poor.
The powder composition to which gypsum dihydrate powder is added, generation of cracks due to expansion due to hydration of magnesium oxide is suppressed, but hydraulicity due to hydration reaction of gypsum cannot be expected, due to addition of gypsum gypsum powder No strength developing effect was obtained (Comparative Examples 6 and 7). In the case of magnesium oxide powder, a mixture of magnesium oxide powder and hemihydrate gypsum powder, pseudo-coagulation was caused and the initial setting time could not be measured, and the molded product expanded and cracked after 4 weeks of material age (Comparative Example 8). And 9).

【0047】栃木県葛生町、村樫石灰工業(株)宮本鉱山
で採取した表土は、関東ロームで、密度1.47g/c
、含水比91.8%(外比)であった。この土に対
し、実施例1〜5及び比較例1〜8で調製した水硬性粉
体組成物を用いて土質安定処理を行った。水硬性粉体組
成物を土壌1m当り100kgの割合で添加して、よ
く混合した後、処理土を採取して一軸圧縮強度試験用供
試体を作成した。供試体の寸法は直径50mm、高さ1
00mm、成形は1.5kgランマーによる突き固めを
25回/3層で行った。養生期間は20℃湿空中7日間
で、供試体の一軸圧縮強度はJIS A 1216「土
の一軸圧縮試験方法」に従って測定した。作成した供試
体の一軸圧縮強度(N/mm)、含水比(%)、湿潤密度
(g/cm )、乾燥密度(g/cm)の測定結果を表5
に示す。
Kuzuu Town, Tochigi Prefecture, Murakashi Lime Industry Co., Ltd. Miyamoto Mine
The topsoil collected in the above is Kanto loam with a density of 1.47 g / c.
m3The water content was 91.8% (external ratio). Against this soil
And hydraulic powders prepared in Examples 1 to 5 and Comparative Examples 1 to 8
Soil stabilization treatment was performed using the body composition. Hydraulic powder set
1m soil3Per 100kg per day
After mixing, collect the treated soil and provide it for uniaxial compressive strength testing.
I made a sample. The dimensions of the specimen are 50 mm in diameter and 1 height.
00mm, compacting by 1.5kg rammer
Performed 25 times / 3 layers. Curing period: 7 days in 20 ° C humid air
The unconfined compressive strength of the specimen is JIS A 1216 "Soil
And the uniaxial compression test method. The created test
Uniaxial compressive strength of body (N / mm2), Water content (%), wet density
(g / cm 2), Dry density (g / cm2Table 5 shows the measurement results
Shown in

【0048】[0048]

【実施例6】酸化マグネシウム粉末7.0kg、リン酸
一水素マグネシウム三水和物粉末1.0kg、炭酸カル
シウム粉末2.0kg、半水石膏粉末0.5kgをV型
混合機で1時間混合攪拌して水硬性粉体組成物10.5
kgを得た。この粉体組成物のMgO/P重量比
は17.72であった。この粉体組成物について、実施
例1〜5及び比較例1〜9と同様に関東ロームに対する
土質安定処理を行った。配合割合を表4に、試験結果を
表5に示す。
EXAMPLE 6 7.0 kg of magnesium oxide powder, 1.0 kg of magnesium monohydrogen phosphate trihydrate powder, 2.0 kg of calcium carbonate powder and 0.5 kg of gypsum hemihydrate powder were mixed and stirred for 1 hour with a V-type mixer. To obtain a hydraulic powder composition 10.5
kg. MgO / P 2 O 5 weight ratio of the powder composition was 17.72. About this powder composition, the soil stabilization process with respect to Kanto loam was performed similarly to Examples 1-5 and Comparative Examples 1-9. Table 4 shows the mixing ratio, and Table 5 shows the test results.

【0049】[0049]

【実施例7】酸化マグネシウム粉末6.0kg、リン酸
一水素マグネシウム三水和物粉末1.0kg、水酸化ア
ルミニウム粉末3.0kg、半水石膏粉末0.5kgを
V型混合機で1時間混合攪拌して水硬性粉体組成物1
0.5kgを得た。この粉体組成物のMgO/P
重量比は15.27であった。この粉体組成物につい
て、実施例1〜5及び比較例1〜8と同様に関東ローム
に対する土質安定処理を行った。配合割合を表4に、試
験結果を表5に示す。
Example 7 6.0 kg of magnesium oxide powder, 1.0 kg of magnesium monohydrogen phosphate trihydrate powder, 3.0 kg of aluminum hydroxide powder and 0.5 kg of gypsum hemihydrate powder were mixed with a V-type mixer for 1 hour. Stir to obtain hydraulic powder composition 1
0.5 kg was obtained. MgO / P 2 O 5 of this powder composition
The weight ratio was 15.27. About this powder composition, the soil stabilization process with respect to Kanto loam was performed similarly to Examples 1-5 and Comparative Examples 1-8. Table 4 shows the mixing ratio, and Table 5 shows the test results.

【0050】[0050]

【実施例8】酸化マグネシウム粉末5.0kg、リン酸
一水素マグネシウム三水和物粉末1.0kg、タルク粉
末4.0kg、半水石膏粉末0.5kgをV型混合機で
1時間混合攪拌して水硬性粉体組成物10.5kgを得
た。MgO/P重量比は15.76であった。タ
ルク粉末を混合したことで、他の粉体組成物に比較して
流動性が向上し、付着性が低減した。この粉体組成物に
ついて、実施例1〜6及び比較例1〜8と同様に関東ロ
ームに対する土質安定処理を行った。配合割合を表4
に、試験結果を表5に示す。
Example 8 5.0 kg of magnesium oxide powder, 1.0 kg of magnesium monohydrogen phosphate trihydrate powder, 4.0 kg of talc powder, and 0.5 kg of gypsum hemihydrate powder were mixed and stirred for 1 hour by a V-type mixer. Thus, 10.5 kg of a hydraulic powder composition was obtained. MgO / P 2 O 5 weight ratio was 15.76. By mixing the talc powder, the fluidity was improved and the adhesion was reduced as compared with other powder compositions. About this powder composition, the soil stabilization process with respect to Kanto loam was performed similarly to Examples 1-6 and Comparative Examples 1-8. Table 4 shows the mixing ratio
Table 5 shows the test results.

【0051】[0051]

【実施例9】酸化マグネシウム粉末4.0kg、リン酸
一水素マグネシウム三水和物粉末1.0kg、花崗岩粉
末5.0kg、半水石膏粉末0.5kgをV型混合機で
1時間混合攪拌して水硬性粉体組成物10.5kgを得
た。この粉体組成物のMgO/P重量比は10.
37であった。この粉体組成物について、実施例1〜6
及び比較例1〜8と同様に関東ロームに対する土質安定
処理を行った。配合割合を表4に、試験結果を表5に示
す。
EXAMPLE 9 4.0 kg of magnesium oxide powder, 1.0 kg of magnesium monohydrogen phosphate trihydrate powder, 5.0 kg of granite powder, and 0.5 kg of gypsum hemihydrate powder were mixed and stirred with a V-type mixer for 1 hour. Thus, 10.5 kg of a hydraulic powder composition was obtained. MgO / P 2 O 5 weight ratio of the powder composition 10.
37. About this powder composition, Examples 1-6
And the soil stabilization process with respect to Kanto loam was performed like Comparative Examples 1-8. Table 4 shows the mixing ratio, and Table 5 shows the test results.

【0052】[0052]

【比較例10】生石灰粉末(CaO純度95%)を用い
て、実施例1〜6及び比較例1〜8と同様に関東ローム
に対する土質安定処理を行った。配合割合を表4に、試
験結果を表5に示す。
Comparative Example 10 Soil stabilization treatment was performed on Kanto loam using quicklime powder (CaO purity 95%) in the same manner as in Examples 1 to 6 and Comparative Examples 1 to 8. Table 4 shows the mixing ratio, and Table 5 shows the test results.

【0053】[0053]

【比較例11】セメント系固化材(CaO:60%、S
iO:19%、Al:4.7%、Fe
2.5%、MgO:1.3%、SO:7.5%)を用
いて、実施例1〜6及び比較例1〜8と同様に関東ロー
ムに対する土質安定処理を行った。配合割合を表4に、
試験結果を表5に示す。
Comparative Example 11 Cement-based solidifying material (CaO: 60%, S
iO 2 : 19%, Al 2 O 3 : 4.7%, Fe 2 O 3 :
2.5%, MgO: 1.3%, SO 3: 7.5%) was performed using soil stabilization process for similarly Kanto loam with Examples 1-6 and Comparative Examples 1-8. Table 4 shows the mixing ratio.
Table 5 shows the test results.

【0054】[0054]

【表4】 [Table 4]

【0055】[0055]

【表5】 [Table 5]

【0056】生石灰及びセメント系固化材では、関東ロ
ームに対する一軸圧縮強度の値が小さく、それに比較し
て本発明の水硬性粉体組成物では両者を上回る強度が得
られた。半水石膏粉末を添加することによって強度が改
善され、MgO/P重量比が大きい場合に、特に
その効果が顕著となった(比較例1〜4及び実施例1〜
5)。モルタル試験の結果と同様に、二水石膏粉末添加
による強度発現効果は認められなかった(比較例6及び
7)。フィラーを添加した粉体組成物については、添加
量の増加に従って一軸圧縮強度が減少するが、酸化マグ
ネシウム、生石灰、セメント系固化材より高い強度が得
られた(実施例6〜9)。酸化マグネシウム粉末、又は酸
化マグネシウム粉末及び半水石膏粉末の混合物では、生
石灰及びセメント系固化材より高い強度が得られたが、
本発明の水硬性粉体組成物より劣っていた(比較例8及
び9)。
In the quicklime and cement-based solidified material, the value of the uniaxial compressive strength with respect to the Kanto loam was small, and in comparison, the hydraulic powder composition of the present invention obtained a strength exceeding both. Strength is improved by the addition of hemihydrate gypsum powder, when MgO / P 2 O 5 weight ratio is large, especially the effect becomes remarkable (Comparative Examples 1-4 and Example 1
5). Similar to the result of the mortar test, no strength developing effect was observed by adding gypsum dihydrate powder (Comparative Examples 6 and 7). With respect to the powder composition to which the filler was added, the uniaxial compressive strength decreased as the added amount increased, but higher strength than that of magnesium oxide, quick lime, and cement-based solidified material was obtained (Examples 6 to 9). Magnesium oxide powder, or a mixture of magnesium oxide powder and hemihydrate gypsum powder, higher strength than quick lime and cement-based solidified material was obtained,
It was inferior to the hydraulic powder composition of the present invention (Comparative Examples 8 and 9).

【0057】[0057]

【発明の効果】本発明品の水硬性粉体組成物は、主成分
が酸化マグネシウム粉末及びリン酸一水素マグネシウム
粉末であって、MgO/P重量比が10.0〜2
3.0である粉体組成物100重量部に、半水石膏粉末
を0.5〜15.0重量部添加したものである。当該粉
体組成物より得られる硬化体は低アルカリ性であり、自
然環境に優しい構造物の構築が可能となる。また、セメ
ント系組成物に比べて、安価に製造できる、優れた土質
安定効果を発揮するため施工における粉体組成物の使用
量を削減できる等の経済的効果が期待される。
The hydraulic powder composition of the present invention is mainly composed of magnesium oxide powder and magnesium monohydrogen phosphate powder, and has a MgO / P 2 O 5 weight ratio of 10.0 to 2 %.
Gypsum hemihydrate gypsum powder was added in an amount of 0.5 to 15.0 parts by weight to 100 parts by weight of a 3.0 powder composition. The cured product obtained from the powder composition has low alkalinity, and a structure that is friendly to the natural environment can be constructed. Further, compared to the cement-based composition, it is expected to be economical in that it can be manufactured at a low cost, and that it exhibits an excellent soil stabilizing effect, and that the amount of the powder composition used in construction can be reduced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 111:20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 111: 20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主成分として酸化マグネシウム粉末及び
リン酸一水素マグネシウム粉末を含み、且つMgO/P
重量比が10.0〜23.0である粉体組成物1
00重量部に対して、半水石膏粉末を0.5〜15.0
重量部添加して成る水硬性粉体組成物。
Claims 1. A magnesium oxide powder and a magnesium monohydrogen phosphate powder as main components, and MgO / P
Powder composition 1 in which 2 O 5 weight ratio is 10.0 to 23.0
Gypsum hemihydrate gypsum powder was added in an amount of 0.5 to 15.0 based on 00 parts by weight.
A hydraulic powder composition comprising parts by weight.
【請求項2】 リン酸一水素マグネシウムが、無水物、
三水和物、四.五水和物、七水和物のうち、いずれか一
種以上である請求項1に記載の水硬性粉体組成物。
2. Magnesium monohydrogen phosphate is an anhydride,
Trihydrate, 4. The hydraulic powder composition according to claim 1, which is at least one of pentahydrate and heptahydrate.
JP2001165365A 2001-05-31 2001-05-31 Hydraulic powder composition Expired - Lifetime JP4627120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001165365A JP4627120B2 (en) 2001-05-31 2001-05-31 Hydraulic powder composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001165365A JP4627120B2 (en) 2001-05-31 2001-05-31 Hydraulic powder composition

Publications (2)

Publication Number Publication Date
JP2002356362A true JP2002356362A (en) 2002-12-13
JP4627120B2 JP4627120B2 (en) 2011-02-09

Family

ID=19008038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001165365A Expired - Lifetime JP4627120B2 (en) 2001-05-31 2001-05-31 Hydraulic powder composition

Country Status (1)

Country Link
JP (1) JP4627120B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069351A1 (en) * 2005-12-14 2007-06-21 Azmec Co., Ltd. Adsorbent-containing cold-setting composition, adsorbent-containing molded object, and building material and impregnant for paving both containing adsorbent
JP2007161838A (en) * 2005-12-13 2007-06-28 Ube Material Industries Ltd Soil solidifier
JP2007161839A (en) * 2005-12-13 2007-06-28 Ube Material Industries Ltd Soil solidifier
KR20140020262A (en) * 2011-01-28 2014-02-18 라파르쥐 Hydraulic binder with low clinker content
JP6389312B1 (en) * 2017-11-27 2018-09-12 株式会社エービーシー商会 Magnesia cement composition and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034180A (en) * 1998-07-17 2000-02-02 Asahi Fiber Glass Co Ltd Production of inorganic foam
JP2001047548A (en) * 1999-08-10 2001-02-20 Asahi Fiber Glass Co Ltd Manufacture of decorative inorganic molded product
JP2002255602A (en) * 2001-02-27 2002-09-11 Murakashi Sekkai Kogyo Kk Hydraulic composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034180A (en) * 1998-07-17 2000-02-02 Asahi Fiber Glass Co Ltd Production of inorganic foam
JP2001047548A (en) * 1999-08-10 2001-02-20 Asahi Fiber Glass Co Ltd Manufacture of decorative inorganic molded product
JP2002255602A (en) * 2001-02-27 2002-09-11 Murakashi Sekkai Kogyo Kk Hydraulic composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161838A (en) * 2005-12-13 2007-06-28 Ube Material Industries Ltd Soil solidifier
JP2007161839A (en) * 2005-12-13 2007-06-28 Ube Material Industries Ltd Soil solidifier
WO2007069351A1 (en) * 2005-12-14 2007-06-21 Azmec Co., Ltd. Adsorbent-containing cold-setting composition, adsorbent-containing molded object, and building material and impregnant for paving both containing adsorbent
JPWO2007069351A1 (en) * 2005-12-14 2009-05-21 株式会社Azmec Adsorbent-containing room temperature solidifying composition, adsorbent-containing molded product, adsorbent-containing building material and pavement injection material
KR20140020262A (en) * 2011-01-28 2014-02-18 라파르쥐 Hydraulic binder with low clinker content
JP6389312B1 (en) * 2017-11-27 2018-09-12 株式会社エービーシー商会 Magnesia cement composition and use thereof
JP2019094243A (en) * 2017-11-27 2019-06-20 株式会社エービーシー商会 Magnesia cement composition and application thereof

Also Published As

Publication number Publication date
JP4627120B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
Vaičiukynienė et al. Effect of phosphogypsum on the stability upon firing treatment of alkali-activated slag
AU2010323416B2 (en) Inorganic binder system for the production of chemically resistant construction chemistry products
JP4562929B2 (en) Cement composition
CN107257778A (en) The binding agent of the solid inorganic compound rich in alkaline earth oxide with phosphoric acid salt activator
JP2003520749A (en) Reactive magnesium oxide cement
JP2011525885A (en) Binder composition
KR100655260B1 (en) Water proof admixtures for concrete and mortar
JP3894780B2 (en) Cement grout composition
Rashad et al. Valorization of limestone powder as an additive for fly ash geopolymer cement under the effect of the simulated tidal zone and seawater attack
JP3662052B2 (en) Mixed cement composition
JP2009504545A (en) Lime-independent cement mixture
JP4627120B2 (en) Hydraulic powder composition
KR100464819B1 (en) An ultra-rapid setting inorganic binder compound based of alkali-activated alumino-silicate
JP4798734B2 (en) Hydraulic composition
JPH1025476A (en) Cement composition for hardening ground or the like
US9856174B2 (en) Binder based on activated ground granulated blast furnace slag useful for forming a concrete type material
JP4744678B2 (en) Cement admixture and cement composition
WO2021215509A1 (en) Cement admixture, expansion material, and cement composition
JP2000344561A (en) Cement admixture and cement composition
JP3124578B2 (en) Cement admixture and cement composition
JP4459379B2 (en) Cement admixture and cement composition
JPH0826797A (en) Cement accelerator and cement composition
JP4131574B2 (en) Mixed cement stimulator and mixed cement composition
JP4459380B2 (en) Cement admixture and cement composition
JP4527269B2 (en) Cement admixture and cement composition

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040414

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4627120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term