JP2002355880A - Kneading/devolatilizing extrusion molding apparatus utilizing supercritical fluid - Google Patents

Kneading/devolatilizing extrusion molding apparatus utilizing supercritical fluid

Info

Publication number
JP2002355880A
JP2002355880A JP2001163635A JP2001163635A JP2002355880A JP 2002355880 A JP2002355880 A JP 2002355880A JP 2001163635 A JP2001163635 A JP 2001163635A JP 2001163635 A JP2001163635 A JP 2001163635A JP 2002355880 A JP2002355880 A JP 2002355880A
Authority
JP
Japan
Prior art keywords
supercritical fluid
kneading
devolatilizing
vent port
screw extruder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001163635A
Other languages
Japanese (ja)
Other versions
JP4094248B2 (en
Inventor
Takeshi Fukushima
武 福島
Hideki Tomiyama
秀樹 富山
Mitsuaki Yamachika
光昭 山近
Toru Emi
亨 江見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2001163635A priority Critical patent/JP4094248B2/en
Publication of JP2002355880A publication Critical patent/JP2002355880A/en
Application granted granted Critical
Publication of JP4094248B2 publication Critical patent/JP4094248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/94Liquid charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7461Combinations of dissimilar mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To gasify a supercritical fluid from a molten molding compound impregnated with the supercritical fluid while suppressing the deterioration of a polymer and the re-flocculation of a filler to certainly devolatilize the same. SOLUTION: The kneading/devolatilizing extrusion molding apparatus is equipped with a devolatilizing twin-screw extrusion molding machine E for gasifying the supercritical fluid in the molten molding compound impregnated with the supercritical fluid discharge from a discharge pipeline 25 to separate and remove the same and subsequently extruding the molding compound. The devolatilizing twin-screw extrusion molding machine E is constituted so that a supply port 3 provided with a pressure control means 11 is provided to a cylinder 1 on the upstream side thereof, and a downstream open vent port 6a, a first forcible exhaust vent port 7a and a second forcible exhaust vent port 7b are successively provided between the supply port 3 and a die 4 from an upstream side and an upstream open vent port 6b is provided to the upstream region of the supply port 3. A first weir part 5a is provided to the screw 2 in the vicinity of the upstream region of the first forcible exhaust vent port 7a and a second weir part 5b is provided in the vicinity of the upstream region of the second forcible exhaust vent port 7b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超臨界流体と成形
材料とを溶融・混練して超臨界流体が含浸された溶融成
形材料とし、この超臨界流体が含浸された溶融成形材料
中の超臨界流体をガス化させて効率よく分離除去して高
品質の成形品を成形することができる、超臨界流体を利
用した混練・脱揮押出成形装置に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a supercritical fluid and a molding material which are melted and kneaded to form a molten molding material impregnated with a supercritical fluid. The present invention relates to a kneading and devolatilizing extrusion molding apparatus using a supercritical fluid, which can gasify a critical fluid and efficiently separate and remove the same to form a high-quality molded product.

【0002】[0002]

【従来の技術】溶融温度と熱分解温度との差が小さいポ
リマー、異種ポリマーブレンド、ポリマーとフィラーと
の混合成形材料等、厳しい成形条件が要求される成形材
料の成形方法として、超臨界流体を利用した溶融成形方
法が注目されている。
2. Description of the Related Art A supercritical fluid is used as a molding method for molding materials requiring strict molding conditions, such as a polymer having a small difference between a melting temperature and a thermal decomposition temperature, a heterogeneous polymer blend, and a mixed molding material of a polymer and a filler. Attention has been paid to the melt molding method used.

【0003】次に、従来の超臨界流体を利用した溶融成
形方法の一例について説明する。
Next, an example of a conventional melt molding method using a supercritical fluid will be described.

【0004】この従来の超臨界流体を利用した溶融成形
方法は、オートクレーブやスクリュ押出機等の溶融・混
練装置により超臨界状態の炭酸ガスとポリマーとを溶融
・混練したのち、大気圧サイドベント口を有するかみ合
い型二軸押出機等の脱揮用押出機によって剪断発熱を抑
制しつつ溶融・混練し、大気圧サイドベント口より炭酸
ガスを放散させたのち、ダイよりストランドを水中に押
し出してペレットに切断するものである(特開平11−
292981号公報参照)。
In the conventional melt molding method using a supercritical fluid, a supercritical carbon dioxide gas and a polymer are melted and kneaded by a melting and kneading device such as an autoclave or a screw extruder, and then the atmospheric side vent port is formed. Melting and kneading while suppressing shear heat generation by a devolatilizing extruder such as an intermeshing type twin-screw extruder having a (Japanese Unexamined Patent Publication No.
No. 292981).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の技術では、例えば、ポリマーとフィラーとの混合成
形材料の場合、大気圧ベント口より炭酸ガスを放散除去
したのちも混合成形材料中に炭酸ガスが残存し、フィラ
ーの再凝集や物性の低下、ボイドの発生などの原因にな
ることがわかり、強制的に脱揮する必要が出てきた。
However, in the above-mentioned conventional technique, for example, in the case of a mixed molding material of a polymer and a filler, carbon dioxide gas is diffused and removed from an atmospheric pressure vent port and then mixed with the mixed molding material. Were found to remain, causing reagglomeration of the filler, deterioration of physical properties, generation of voids, etc., and it became necessary to forcibly devolatilize.

【0006】ところが、超臨界状態の炭酸ガスは、圧力
の低下によって超臨界状態から気体の状態に変化する
と、ポリマーに対する溶解度が急激に低下するという特
徴を持ち、ポリマーとフィラーとの混合成形材料の場
合、フィラーの再凝集を防ぐために、次のような操作が
必要となる。
However, carbon dioxide in a supercritical state has the characteristic that when it changes from a supercritical state to a gaseous state due to a decrease in pressure, the solubility in a polymer rapidly decreases. In this case, the following operation is required to prevent re-aggregation of the filler.

【0007】(1)溶融・混練装置の出口から脱揮用押
出機に至るまでの間の圧力を7.3MPa以上に保ち、
超臨界状態を維持する必要があるが、そのためには、脱
揮用押出機に溶融ポリマーを投入する直前に調圧ノズル
や調圧バルブを設け、脱揮用押出機内の樹脂圧力まで一
気に低下させることが望ましい。
(1) The pressure from the outlet of the melting and kneading apparatus to the extruder for devolatilization is maintained at 7.3 MPa or more,
It is necessary to maintain the supercritical state, but for that purpose, immediately before charging the molten polymer to the devolatilizing extruder, install a pressure regulating nozzle and a pressure regulating valve and reduce the resin pressure in the devolatilizing extruder at once It is desirable.

【0008】(2)溶融・混練装置の出口から脱揮用押
出機に至るまでの樹脂温度を可能な限り低下させてフィ
ラーの再凝集を抑制する必要がある。
(2) It is necessary to reduce the resin temperature from the outlet of the melting and kneading apparatus to the extruder for devolatilization as much as possible to suppress reaggregation of the filler.

【0009】そこで、上記(1)、(2)の操作をその
まま適用しようとすると、高圧から急激に圧力が低下す
ることによって炭酸ガスが急激に膨張し、樹脂温度が低
下するとともに、炭酸ガスが溶融ポリマーから分離する
ことによって生じる可塑化効果の喪失および凝固点の上
昇による粘度の上昇がおきる。その結果、炭酸ガスの気
泡が高粘度の溶融ポリマー中に包含されるため、体積が
増加し、脱揮用押出機における溶融ポリマーの送り能力
が著しく低下し、送り能力を上げる必要があった。とろ
こが脱揮用押出機のスクリュ回転数を高速にして送り能
力を上げることは、脱揮後の溶融ポリマーに必要以上の
剪断力をかけることになり、樹脂温度の上昇に伴なうポ
リマーの劣化やフィラーの再凝集を引き起こすという問
題点があった。
Therefore, when the above operations (1) and (2) are applied as they are, the pressure rapidly drops from a high pressure, so that the carbon dioxide gas expands rapidly, and the resin temperature decreases and the carbon dioxide gas is reduced. There is a loss of plasticizing effect caused by separation from the molten polymer and an increase in viscosity due to an increase in freezing point. As a result, since bubbles of carbon dioxide gas are included in the high-viscosity molten polymer, the volume is increased, and the feeding ability of the molten polymer in the devolatilizing extruder is significantly reduced, and it is necessary to increase the feeding ability. To increase the feed capacity of the devolatilizing extruder by increasing the screw rotation speed of the devolatilizer will apply more shear force than necessary to the molten polymer after devolatilization, and the polymer will increase as the resin temperature rises. However, there is a problem that deterioration of the filler and re-aggregation of the filler are caused.

【0010】本発明は上記従来の技術の有する問題点に
鑑みてなされたものであって、超臨界流体が含浸された
溶融成形材料から、ポリマーの劣化やフィラーの再凝集
を抑制しつつ超臨界流体をガス化させて確実に脱揮する
ことができる、超臨界流体を利用した混練・脱揮押出成
形装置を実現することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and is intended to provide a supercritical fluid from a molten molding material impregnated with a supercritical fluid while suppressing polymer deterioration and filler reaggregation. It is an object of the present invention to realize a kneading and devolatilizing extrusion apparatus using a supercritical fluid, which can gasify a fluid and reliably devolatilize the fluid.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明の超臨界流体を利用した混練・脱揮押出成形
装置は、超臨界流体と成形材料とを溶融・混練するため
の超臨界流体用溶融・混練装置と、前記超臨界流体用溶
融・混練装置の吐出管路から吐出される超臨界流体が含
浸された溶融成形材料中の前記超臨界流体をガス化させ
て分離除去したのち押し出すための脱揮二軸押出成形機
とを備えた超臨界流体を利用した混練・脱揮押出成形装
置であって、前記脱揮二軸押出成形機は、シリンダと、
前記シリンダ内に回転自在に配設された2本のスクリュ
と、前記シリンダの上流側に設けられた調圧手段が付設
された供給口と、前記シリンダの下流端に配設されたダ
イとを備えており、前記シリンダには、前記吐出管路に
接続された前記供給口と前記ダイとの間に上流側より下
流側に向かって順次、下流側開放ベント口と少なくとも
1つの強制排気ベント口とが互いに間隔をおいて設けら
れているとともに、前記供給口の上流側部位に上流側開
放ベント口が設けられており、前記各スクリュには、前
記強制排気ベント口の上流側近傍部位にせき部が配設さ
れていることを特徴とするものである。
In order to achieve the above object, a kneading and devolatilizing extrusion molding apparatus using a supercritical fluid according to the present invention provides a supercritical fluid for melting and kneading a supercritical fluid and a molding material. A fluid melting / kneading device, and after the supercritical fluid in a molten molding material impregnated with a supercritical fluid discharged from a discharge conduit of the supercritical fluid melting / kneading device is gasified and separated and removed. A kneading and devolatilizing extrusion molding apparatus using a supercritical fluid including a devolatilizing twin-screw extruder for extruding, wherein the devolatilizing twin-screw extruder includes a cylinder,
Two screws rotatably disposed in the cylinder, a supply port provided with a pressure regulating means provided upstream of the cylinder, and a die disposed at the downstream end of the cylinder. The cylinder has a downstream open vent port and at least one forced exhaust vent port between the supply port connected to the discharge pipe line and the die in order from the upstream side to the downstream side. Are provided at an interval from each other, and an upstream opening vent port is provided at an upstream portion of the supply port, and each of the screws has a weir at a portion near the upstream side of the forced exhaust vent port. Parts are provided.

【0012】また、脱揮二軸押出成形機における各スク
リュには、上流側開放ベント口に対応する部位に、深溝
の順フライトを設けたものとする。
Further, each screw in the devolatilizing twin-screw extruder is provided with a deep groove forward flight at a portion corresponding to the upstream open vent port.

【0013】さらに、脱揮二軸押出成形機におけるせき
部は、逆ニーディングディスクまたはシールリングから
なるものとする。
Further, the weir portion in the devolatilizing twin-screw extruder is made of an inverse kneading disk or a seal ring.

【0014】加えて、脱揮二軸押出成形機における各ス
クリュには、下流側開放ベント口に対応する部位に、順
フライトと順ニーディングディスクとの組み合わせを設
ける。
In addition, each screw in the devolatilizing twin-screw extruder is provided with a combination of a forward flight and a forward kneading disc at a portion corresponding to a downstream open vent port.

【0015】[0015]

【発明の実施の形態】まず、超臨界流体を利用した混練
・脱揮押出成形装置の一実施の形態を図面に基づいて説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an embodiment of a kneading and devolatilizing extrusion molding apparatus using a supercritical fluid will be described with reference to the drawings.

【0016】図1に示すように、本実施の形態による超
臨界流体を利用した混練・脱揮押出成形装置は、超臨界
流体と成形材料とを溶融・混練して超臨界流体が含浸さ
れた溶融成形材料とするための図示しない超臨界流体用
溶融・混練装置と、前記超臨界流体用溶融・混練装置の
吐出管路25を介して供給された超臨界流体が含浸され
た溶融成形材料から、超臨界流体をガス化させて分離除
去して高品質の成形品を成形することができる脱揮二軸
押出成形機Eとを備えている。
As shown in FIG. 1, in the kneading and devolatilizing extrusion molding apparatus using a supercritical fluid according to the present embodiment, the supercritical fluid and the molding material are melted and kneaded to be impregnated with the supercritical fluid. A supercritical fluid melting / kneading device (not shown) for forming a melt molding material, and a supercritical fluid supplied through the discharge line 25 of the supercritical fluid melting / kneading device. And a devolatilizing twin-screw extruder E capable of forming a high-quality molded product by gasifying and removing a supercritical fluid.

【0017】ここで、超臨界流体用溶融・混練装置は、
超臨界流体と成形材料とを溶融・混練して超臨界流体が
含浸された溶融成形材料として吐出管路より超臨界流体
状態を維持しつつ吐出できるものであれば、その種類を
問わない。
Here, the melting and kneading apparatus for supercritical fluid is as follows:
As long as the supercritical fluid and the molding material are melted and kneaded, and the supercritical fluid is impregnated with the molten molding material and can be discharged from the discharge pipe while maintaining the supercritical fluid state, any type can be used.

【0018】脱揮二軸押出成形機Eは、図示しない加熱
手段によって加熱されるシリンダ1と、シリンダ1内に
回転自在に配設された2本のスクリュ2とを有し、シリ
ンダ1の上流側には調圧弁や調圧ノズル等の調圧手段1
1が付設された供給口3が設けられているとともに、シ
リンダ1の下流端にはダイ4が配設されている。
The devolatilizing twin-screw extruder E has a cylinder 1 heated by a heating means (not shown), and two screws 2 rotatably disposed in the cylinder 1. Pressure control means 1 such as a pressure control valve and a pressure control nozzle
A supply port 3 is provided, and a die 4 is provided at the downstream end of the cylinder 1.

【0019】シリンダ1には、吐出管路25に接続され
た供給口3側からダイ4側に向かって順次、下流側開放
ベント口6a、第1強制排気ベント口7aおよび第2強
制排気ベント口7bが互いに間隔をおいて設けられてい
るとともに、供給口3の上流側に上流側開放ベント口6
bが設けられている。そして、第1強制排気ベント口7
aと第2強制排気ベント口7bは、分岐管路9a、9b
を介して吸引管路8の一端側に接続されており、吸引管
路8の他端側は真空ポンプ10等の真空発生手段に接続
されている。また、各分岐管路9a、9bには、各強制
排気ベント口7a、7bの排気能力を調節するため、流
量調節弁や流量調節ノズル等の調節手段12a、12b
が付設されている。
In the cylinder 1, a downstream open vent port 6a, a first forced exhaust vent port 7a and a second forced exhaust vent port are sequentially provided from the supply port 3 side connected to the discharge pipe line 25 to the die 4 side. 7b are provided at intervals from each other, and an upstream open vent port 6 is provided upstream of the supply port 3.
b is provided. And the first forced exhaust vent 7
a and the second forced exhaust vent 7b are connected to the branch pipes 9a, 9b.
Is connected to one end of the suction pipe 8, and the other end of the suction pipe 8 is connected to vacuum generating means such as a vacuum pump 10. The branch pipes 9a and 9b are provided with adjusting means 12a and 12b such as a flow control valve and a flow control nozzle in order to adjust the exhaust capacity of each of the forced exhaust vents 7a and 7b.
Is attached.

【0020】これに対し、各スクリュ2には、第1強制
排気ベント口7aの上流側近傍部位に第1せき部5aが
配設されており、第2強制排気ベント口7bの上流側近
傍部位に第2せき部5bが配設されている。
On the other hand, each screw 2 is provided with a first weir portion 5a near the upstream side of the first forced exhaust vent 7a, and a portion near the upstream side of the second forced exhaust vent 7b. Is provided with a second weir portion 5b.

【0021】続いて、本実施の形態による超臨界流体を
利用した混練・脱揮押出成形装置の動作について説明す
る。
Next, the operation of the kneading and devolatilizing extrusion molding apparatus using a supercritical fluid according to the present embodiment will be described.

【0022】調圧手段11が付設された供給口3には吐
出管路25が接続されており、吐出管路25を介して超
臨界流体が含浸された溶融成形材料が供給される。吐出
管路25内において超臨界流体が含浸された溶融成形材
料は高圧(炭酸ガスの場合は7.3MPa以上)に保た
れており、調圧手段11によって大気圧に近い低い圧力
にまで急激に降圧されてシリンダ1内に導入される。
A discharge pipe 25 is connected to the supply port 3 provided with the pressure regulating means 11, and a molten molding material impregnated with a supercritical fluid is supplied through the discharge pipe 25. The molten molding material impregnated with the supercritical fluid in the discharge conduit 25 is maintained at a high pressure (7.3 MPa or more in the case of carbon dioxide gas), and is rapidly reduced to a low pressure close to the atmospheric pressure by the pressure regulating means 11. The pressure is reduced and introduced into the cylinder 1.

【0023】超臨界流体が含浸された溶融成形材料は、
調圧手段11を通過してシリンダ1内に導入されると超
臨界流体が一気にガス化することによって発泡して体積
が急増する。その際に、気泡の一部が破泡し、シリンダ
1内の空間へ分離してその一部がシリンダ1内を上流側
へ流れて上流側開放ベント口6bより大気中へ放散され
るが、大部分は溶融成形材料中に包含された状態で下流
側へ移送される。
The molten molding material impregnated with the supercritical fluid is:
When the supercritical fluid is introduced into the cylinder 1 after passing through the pressure regulating means 11, the supercritical fluid gasifies at a stretch and foams to increase the volume rapidly. At that time, a part of the air bubbles breaks and separates into a space in the cylinder 1 and a part of the air bubbles flows upstream in the cylinder 1 and is radiated to the atmosphere from the upstream open vent port 6b. Most of them are transferred to the downstream side while being contained in the molten molding material.

【0024】供給口3から下流側に移送される溶融成形
材料は、第1せき部5aまでの間(ガス分離部A)で、
スクリュの回転による表面更新機能によって引き延ばさ
れてガス化した超臨界流体の気泡が破壊されて分離さ
れ、供給口3と第1せき部5aの間(ガス分離部A)の
下流側開放ベント口6aから機外へ放出される。これに
伴なって溶融成形材料の体積が低減し、脱揮二軸押出成
形機Eにおける樹脂送り能力は高い状態に維持される。
その結果、スクリュ回転数を上げなくても第1せき部5
aを通過させることができるため、脱揮後の溶融成形材
料に必要以上に剪断力がかかって温度上昇することがな
くなり、ポリマーの劣化やフィラーの再凝集が防止でき
る。
The molten molding material transferred from the supply port 3 to the downstream side is supplied to the first weir section 5a (gas separation section A).
The bubbles of the supercritical fluid elongated and gasified by the surface renewal function by the rotation of the screw are broken and separated, and a downstream open vent between the supply port 3 and the first weir part 5a (gas separation part A). It is released from the mouth 6a to the outside of the machine. Along with this, the volume of the molten molding material is reduced, and the resin feeding ability in the devolatilizing twin-screw extruder E is maintained at a high state.
As a result, the first weir portion 5 can be formed without increasing the screw rotation speed.
Since a can pass through, the melt-molded material after devolatilization does not needlessly exert a shearing force to increase the temperature, thereby preventing polymer deterioration and filler re-aggregation.

【0025】第1せき部5aを通過した溶融成形材料
は、第1せき部5aと第2せき部5bの間(第1減圧部
B)の第1強制排気ベント口7aより残存するガス化し
た超臨界流体および成形材料中に含まれている揮発成分
が強制排気され、さらには、第2せき部5bとダイ4の
間(第2減圧部C)の第2強制排気ベント口7bより残
存するガス化した超臨界流体および成形材料中に含まれ
ている揮発成分が強制排気されたのち、ダイ4より押し
出される。
The molten molding material that has passed through the first weir 5a is gasified and remains from the first forced exhaust vent 7a between the first weir 5a and the second weir 5b (first decompression unit B). The supercritical fluid and the volatile components contained in the molding material are forcibly exhausted, and further remain from the second forced exhaust vent port 7b between the second weir section 5b and the die 4 (second decompression section C). The gasified supercritical fluid and the volatile components contained in the molding material are forcibly evacuated and then extruded from the die 4.

【0026】なお、強制排気ベント口の数は、上述した
2箇所に限らず、脱揮の状況により増減することができ
る。しかし、強制排気ベント口の数を増やすほどL/D
が長くなり、必要以上に増やすと樹脂の劣化やフィラ−
の再凝集が起き易くなることから、1箇所〜2箇所とす
ることが好ましい。
The number of forced exhaust vents is not limited to the two described above, but can be increased or decreased depending on the situation of devolatilization. However, L / D increases as the number of forced exhaust vents increases.
Becomes longer, and if it is increased more than necessary, resin degradation and filler
It is preferable to use one or two places because reagglomeration of the particles easily occurs.

【0027】本発明において、脱揮二軸押出成形機とし
ては、セルフクリーニング性を備えているものが好まし
い。そして、脱揮二軸押出成形機における各スクリュに
は、供給口上流側つまり上流側開放ベント口に対応する
部位に、深溝の順フライトを設けることが好ましい。他
方、下流側開放ベント口6aよりガス化した超臨界流体
が放出されるガス分離部Aにおけるスクリュ形状は、順
フライトスクリュや順ニーディングディスクのように下
流側へ送り能力を持ったものとするが、できれば送り能
力維持と剪断発熱回避のため、送りおよび引き延ばして
薄膜化する能力の高い順フライトスクリュと、表面更新
能力の高いニーディングディスクとの組み合わせたもの
とすることが好ましい。
In the present invention, the devolatilizing twin-screw extruder preferably has a self-cleaning property. Preferably, each screw in the devolatilizing twin-screw extruder is provided with a deep groove forward flight at a position upstream of the supply port, that is, at a position corresponding to the upstream open vent. On the other hand, the screw shape in the gas separation section A from which the gasified supercritical fluid is released from the downstream side open vent port 6a has the ability to send to the downstream side like a forward flight screw or a forward kneading disk. However, if possible, it is preferable to use a combination of a forward flight screw having a high ability to feed and stretch to form a thin film and a kneading disk having a high surface renewal ability, in order to maintain the feeding ability and avoid shear heat generation.

【0028】また、せき部としては、シールリング、ゲ
ートバルブ、ロータリーゲートバルブ、逆ニーディング
ディスク、逆フライトディスク等、溶融成形材料の流れ
をせき止めてシール機能を生じるものであれば、いずれ
でもよいが、単純な機構でかつ剪断力が低い、逆ニーデ
ィングディスクやシールリングが好ましい。また、分離
部でニーディングディスクを用いた場合は、樹脂温度の
上昇をできるだけ抑えるため、シールリング、ゲートバ
ルブ等の剪断がかかり難いものを用いることが好まし
い。
The weir portion may be any of seal rings, gate valves, rotary gate valves, reverse kneading disks, reverse flight disks, etc., as long as they block the flow of the molten molding material and provide a sealing function. However, an inverted kneading disc or a seal ring having a simple mechanism and low shearing force is preferable. When a kneading disk is used in the separation section, it is preferable to use a seal ring, a gate valve, or the like that is not easily sheared, in order to suppress a rise in resin temperature as much as possible.

【0029】さらに、強制排気ベント口から強制排気を
行なう真空発生手段は、真空ポンプに限らず、アスピレ
ーター、ブロアー等、溶融成形材料がベントアップしな
い圧力に調整できるものであれば他の公知の手段を用い
ることができる。
Further, the vacuum generating means for forcibly exhausting the gas from the forced exhaust vent port is not limited to a vacuum pump, but may be any other known means such as an aspirator, a blower or the like, as long as the pressure can be adjusted so that the molten molding material does not vent up. Can be used.

【0030】次に、他の実施の形態による超臨界流体を
利用した混練・脱揮押出成形装置について説明する。
Next, a kneading and devolatilizing extrusion molding apparatus using a supercritical fluid according to another embodiment will be described.

【0031】本実施の形態による超臨界流体を利用した
混練・脱揮押出成形装置は、図2に示すように、脱揮二
軸押出成形機E1 として、シリンダ1の下流側開放ベン
ト口6aの下流側の1箇所に強制排気ベント口7を設け
たものを用い、シリンダ1の供給口3に超臨界流体用溶
融・混練装置E2 の吐出管路25を接続したものであ
る。
The kneading and devolatilizing forming apparatus using a supercritical fluid according to the present embodiment, as shown in FIG. 2, as devolatilization twin-screw extruder E 1, downstream open vent 6a of the cylinder 1 the used one provided a forced exhaust vent 7 at one place downstream, it is obtained by connecting the discharge line 25 of the melt for the supercritical fluid to the supply port 3 of the cylinder 1 and kneading apparatus E 2.

【0032】脱揮二軸押出成形機E1 は、強制排気ベン
ト口7を1箇所に設けた点が上述した図1に示した脱揮
二軸押出成形機Eと異なるだけであるので、同一部分に
は同一符号を付して説明は省略する。
The devolatilizing twin-screw extruder E 1 is the same as the devolatilizing twin-screw extruder E shown in FIG. 1 except that the forced exhaust vent port 7 is provided at one place. The same reference numerals are given to the portions and the description is omitted.

【0033】超臨界流体用溶融・混練装置E2 は、シリ
ンダ21内に2本のスクリュ22が回転自在に配設され
た二軸スクリュ押出機20と、シリンダ21の先端に吹
込側が接続されたギヤポンプ24と、ギヤポンプ24の
吐出側に一端側が接続された吐出管路25とを有し、ホ
ッパ23が設けられた供給部側からギヤポンプ側へ順
次、輸送部、溶融部、混練・混合部、排出部を備えてい
る。
The supercritical fluid melting / kneading apparatus E 2 has a twin-screw extruder 20 in which two screws 22 are rotatably arranged in a cylinder 21, and a blowing side connected to the tip of the cylinder 21. It has a gear pump 24 and a discharge pipe 25 having one end connected to the discharge side of the gear pump 24, and sequentially from the supply part side where the hopper 23 is provided to the gear pump side, a transport part, a melting part, a kneading / mixing part, It has a discharge unit.

【0034】各スクリュ22における混練・混合部に対
応する部位には、ニーディングディスク22aが設けら
れているとともに、ニーディングディスク22aの上流
側近傍部位にはシールリングやゲートバルブ等の逆流防
止手段26が配設されている。
A kneading disk 22a is provided at a position corresponding to the kneading / mixing section of each screw 22, and a backflow preventing means such as a seal ring or a gate valve is provided at a position near the upstream side of the kneading disk 22a. 26 are provided.

【0035】また、シリンダ21における混練・混合部
に対応する部位には、超臨界流体注入口27が設けられ
ており、この超臨界流体注入口27は、流量調整弁3
1、流量計等が介在された供給管路30を介して超臨界
流体発生装置28に接続されている。
A supercritical fluid injection port 27 is provided at a position corresponding to the kneading / mixing section of the cylinder 21. The supercritical fluid injection port 27 is connected to the flow control valve 3
1. It is connected to a supercritical fluid generator 28 via a supply pipe 30 in which a flow meter and the like are interposed.

【0036】ここで、超臨界流体発生装置28は、ボン
ベ29に貯留された炭酸ガスや窒素ガス等の不活性ガス
を臨界圧力および臨界温度以上にして超臨界流体を生成
することができるものであればその種類は問わない。
Here, the supercritical fluid generator 28 is capable of generating a supercritical fluid by making an inert gas such as carbon dioxide gas or nitrogen gas stored in a cylinder 29 higher than a critical pressure and a critical temperature. Any type is acceptable.

【0037】因みに、炭酸ガスの場合は、臨界温度3
1.1℃、臨界圧力7.38MPa以上にて超臨界流体
となり、窒素ガスの場合は、臨界温度が−147℃、臨
界圧力3.4MPa以上にて超臨界流体となる。
Incidentally, in the case of carbon dioxide gas, the critical temperature 3
It becomes a supercritical fluid at 1.1 ° C. and a critical pressure of 7.38 MPa or more. In the case of nitrogen gas, it becomes a supercritical fluid at a critical temperature of −147 ° C. and a critical pressure of 3.4 MPa or more.

【0038】(実施例1)図2に示したものと同様の構
成の超臨界流体を利用した混練・脱揮押出成形装を用い
た。
Example 1 A kneading and devolatilizing extrusion molding apparatus using a supercritical fluid having the same structure as that shown in FIG. 2 was used.

【0039】汎用のポリプロピレン85重量%に、フィ
ラ−を混合したマスターバッチ樹脂15重量%を混合し
た成形材料を二軸スクリュ押出機(日本製鋼所製、TE
X30α、L/D42、耐圧仕様)のホッパに15kg
/hの割合で投入して溶融させたのち、超臨界流体注入
口より超臨界状態にした炭酸ガス(62℃、9MPa)
を、添加量が6重量%となるように注入し、十分混練し
た。このとき、シリンダ内の樹脂圧力は9〜11MP
a、ギヤポンプ手前の樹脂温度は170℃〜180℃で
あった。ギヤポンプから吐出管路へ吐出された超臨界流
体が含浸された溶融成形材料は吐出管路中において超臨
界状態が維持されており、調圧弁の手前の樹脂温度は1
65℃、樹脂圧力は8MPaであった。
A twin-screw extruder (manufactured by Nippon Steel Works, Ltd.) was prepared by mixing a molding material obtained by mixing 15% by weight of a master batch resin obtained by mixing a filler with 85% by weight of general-purpose polypropylene.
X30α, L / D42, pressure-resistant hopper) 15kg
/ H and injected at a rate of / h and melted, and then brought into a supercritical state from a supercritical fluid inlet (62 ° C, 9 MPa)
Was added so that the addition amount was 6% by weight, and the mixture was sufficiently kneaded. At this time, the resin pressure in the cylinder is 9-11MP
a, The resin temperature before the gear pump was 170 ° C to 180 ° C. The supercritical state of the molten molding material impregnated with the supercritical fluid discharged from the gear pump into the discharge line is maintained in the discharge line, and the resin temperature before the pressure regulating valve is 1.
At 65 ° C., the resin pressure was 8 MPa.

【0040】超臨界流体が含浸された溶融成形材料が脱
揮二軸押出成形機(日本製鋼所製、TEX30α、L/
D42、せき部:逆ニーディングディスク0.5D設
置)に到達したことを確認し、スクリュを90rpmで
回転させて運転し、ダイより溶融成形材料が安定して出
るようになってから、スクリュ回転数を74rpmと
し、真空ポンプ(アンレット社製、ドライ方式)を運転
させて供給口からベントアップしないように徐々に強制
ベント口(減圧部)の圧力を下げ、脱揮を開放した。こ
のときの強制ベント口(減圧部)の圧力ゲージは−98
Kpa(−760mmHg)を指していた。
The molten molding material impregnated with the supercritical fluid is devolatilized by a twin-screw extruder (Nippon Steel Works, TEX30α, L /
D42, crevice: reverse kneading disc 0.5D installed), and operated by rotating the screw at 90 rpm. After the molten molding material came out of the die stably, the screw was rotated. The number was set to 74 rpm, and a vacuum pump (manufactured by Anlet Co., Ltd., dry system) was operated to gradually lower the pressure at the forced vent port (decompression section) so as not to vent up from the supply port, thereby releasing devolatilization. At this time, the pressure gauge at the forced vent port (decompression section) is -98.
Kpa (-760 mmHg).

【0041】そして20分後、水中置換法により開放ベ
ント口から排気されたガス量を測定したところ、供給口
上流の上流側開放ベント口からは約100L/hのガス
が、供給口下流の下流側開放ベント口からは約500L
/hのガスが放出されていた。このときの樹脂温度は、
ダイの出口で181℃であった。
After 20 minutes, when the amount of gas exhausted from the open vent port was measured by the underwater replacement method, about 100 L / h of gas was discharged from the upstream open vent port on the upstream side of the supply port to the downstream side on the downstream side of the supply port. Approx. 500L from the side vent
/ H of gas was released. The resin temperature at this time is
It was 181 ° C. at the exit of the die.

【0042】同様にして超臨界炭酸ガスを添加量が3重
量%となるように注入した場合の結果を合わせて表1に
示す。
Table 1 also shows the results when supercritical carbon dioxide gas was similarly injected so that the addition amount was 3% by weight.

【0043】[0043]

【表1】 [Table 1]

【0044】成形品のMFR値(Melt Flow Rateの略で
溶融樹脂の流動性を示す値。ポリプロピレンのMFRは
通常、230℃で荷重2.16kgの荷重をかけて流れ
出す量を測定。)が原料のMFR値とほぼ同等の値を示
し、残存ガスによる粘度の低下が生じていないこと、ま
た、SEM(走査型電子顕微鏡)を用いた成形体の観察
で、フィラーの周囲または周辺に気泡が見られなかった
ことから、樹脂中の炭酸ガスは完全に除去されているこ
とが確認できた。
The MFR value of the molded article (abbreviation of Melt Flow Rate, which indicates the fluidity of the molten resin. The MFR of polypropylene is usually measured at 230 ° C. under a load of 2.16 kg under a load of 2.16 kg). Shows almost the same value as the MFR value of the filler, no decrease in viscosity due to residual gas has occurred, and bubbles were found around or around the filler by observation of the molded product using a scanning electron microscope (SEM). From this, it was confirmed that carbon dioxide in the resin was completely removed.

【0045】(比較例1)実施例1で用いた脱揮二軸押
出成形機の下流側開放ベント口を盲目金物で塞ぎ、これ
以外は実施例1と同様のテストを行なった。
(Comparative Example 1) The same test as in Example 1 was performed except that the downstream open vent of the devolatilizing twin-screw extruder used in Example 1 was closed with blind metal.

【0046】しかし、超臨界炭酸ガスが含浸された溶融
成形材料を流した場合、脱揮二軸押出成形機における供
給口下流の樹脂の食い込みが悪く、吐出管路の樹脂圧力
が上昇し、また、調圧弁と脱揮二軸押出成形機の接続部
より溶融成形材料が漏れ始めたため、脱揮二軸押出成形
機スクリュ回転数を74rpmから111rpmに上げ
て移送能力を確保した。
However, when a molten molding material impregnated with supercritical carbon dioxide gas is flowed, the penetration of the resin downstream of the supply port in the devolatilizing twin-screw extruder is poor, so that the resin pressure in the discharge pipe increases, and Since the molten molding material began to leak from the connection between the pressure regulating valve and the devolatilizing twin-screw extruder, the screw speed of the devolatilizing twin-screw extruder was increased from 74 rpm to 111 rpm to secure the transfer capacity.

【0047】また、超臨界炭酸ガスの添加量が6重量%
の場合、下流側開放ベント口からは、定期的に破裂音が
聞こえたことから、逃げ場を失った炭酸ガスが間欠的に
上流側に開放ベント口へ向かって溶融成形材料を伴なっ
て移動し、それにより溶融成形材料の移送が不安定にな
っていることが推察された。さらには、減圧部にあるベ
ント口の金物開口部が、ベントアップしてきて溶融成形
材料によって徐々に閉鎖されて行き、定期的に清掃しな
ければならない状態であった。
The amount of supercritical carbon dioxide added is 6% by weight.
In the case of, since a bursting sound was periodically heard from the downstream open vent, the carbon dioxide gas that had lost its escape area intermittently moved upstream along with the molten molding material toward the open vent. It was inferred that the transfer of the molten molding material became unstable. Furthermore, the metal opening of the vent port in the decompression section vented up, was gradually closed by the molten molding material, and had to be periodically cleaned.

【0048】同様にして超臨界炭酸ガスを添加量が3重
量%となるように注入した場合の結果とを合わせて表2
に示す。
In the same manner, the results obtained when supercritical carbon dioxide gas was injected so that the added amount became 3% by weight are shown in Table 2 together.
Shown in

【0049】[0049]

【表2】 [Table 2]

【0050】成形品のMFR値およびSEM観察から、
成形品中から炭酸ガスは除去されていることが確認でき
たが、MFR値は実施例1の値に比べて0.3〜0.8
高く、また分子量分布を比較すると、ブロードになって
いることが確認され、ポリマーの劣化が起きていること
が示された。
From the MFR value and SEM observation of the molded product,
Although it was confirmed that carbon dioxide was removed from the molded article, the MFR value was 0.3 to 0.8 as compared with the value of Example 1.
When the molecular weight distribution was high and the molecular weight distributions were compared, broadening was confirmed, indicating that polymer degradation had occurred.

【0051】(比較例2)実施例1で用いた脱揮二軸押
出成形機の上流側開放ベント口を盲目金物で塞ぎ、これ
以外は実施例1と同様のテストを行なった。
(Comparative Example 2) The same test as in Example 1 was conducted except that the upstream open vent of the devolatilizing twin-screw extruder used in Example 1 was closed with blind metal.

【0052】超臨界炭酸ガスが含浸された溶融成形材料
を流した場合は、比較例1ほどではないが脱揮二軸押出
成形機における供給口下流側の樹脂の食い込みが悪かっ
た。
When the molten molding material impregnated with the supercritical carbon dioxide gas was flowed, the penetration of the resin downstream of the supply port in the devolatilizing twin-screw extruder was poor, though not as much as in Comparative Example 1.

【0053】しかし、吐出管路の樹脂圧力が上昇し始め
たため、脱揮二軸押出成形機のスクリュ回転数を74r
pmから89rpmに上げて移送能力を確保した。
However, since the resin pressure in the discharge pipe began to rise, the screw rotation speed of the devolatilizing twin-screw extruder was reduced to 74 rpm.
pm to 89 rpm to ensure transfer capacity.

【0054】また、超臨界炭酸ガスの添加量が6重量%
の場合、下流側開放ベント口からは、定期的に破裂音が
聞こえ、溶融成形材料が少しずつベントアップし始めた
ため、さらに脱揮二軸押出成形機のスクリュ回転数を1
11rpmに上げてベントアップを回避させた。
The amount of supercritical carbon dioxide added was 6% by weight.
In the case of, a bursting sound was periodically heard from the downstream open vent, and the molten molding material began to vent little by little.
Increased to 11 rpm to avoid vent up.

【0055】同様にして超臨界炭酸ガスを添加量が3重
量%となるように注入した場合の結果とを合わせて表3
に示す。
Table 3 also shows the results obtained when supercritical carbon dioxide gas was injected so that the addition amount was 3% by weight.
Shown in

【0056】[0056]

【表3】 [Table 3]

【0057】[0057]

【発明の効果】本発明は、上述のとおり構成されている
ので、次に記載するような効果を奏する。
Since the present invention is configured as described above, the following effects can be obtained.

【0058】超臨界流体が含浸された溶融成形材料か
ら、ポリマーの劣化を抑制して効率よくガス化した超臨
界流体および揮発成分を完全に脱揮することができ、ポ
リマーの劣化やフィラ−の再凝集が起きることがなく、
高品質の成形品を製造することができる。
From the melt molding material impregnated with the supercritical fluid, the deterioration of the polymer can be suppressed and the gasified supercritical fluid and volatile components can be completely devolatilized efficiently, and the deterioration of the polymer and the filler Without re-aggregation,
High quality molded products can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施の形態による脱揮二軸押出成形機の説明
図である。
FIG. 1 is an explanatory view of a devolatilizing twin-screw extruder according to an embodiment.

【図2】他の実施の形態による脱揮二軸押出成形機を用
いた超臨界流体を利用した混練・混合押出成形装置の説
明図である。
FIG. 2 is an explanatory diagram of a kneading / mixing extrusion molding apparatus using a supercritical fluid using a devolatilizing twin-screw extruder according to another embodiment.

【符号の説明】[Explanation of symbols]

1、21 シリンダ 2、22 スクリュ 3 供給口 4 ダイ 5 せき部 5a 第1せき部 5b 第2せき部 6a 下流側開放ベント口 6b 上流側開放ベント口 7 強制排気ベント口 7a 第1強制排気ベント口 7b 第2強制排気ベント口 8 吸引管路 9a、9b 分岐管路 10 真空ポンプ 11 調圧手段 12a、12b 調節手段 20 二軸スクリュ押出機 23 ホッパ 24 ギヤポンプ 25 吐出管路 26 逆流防止手段 27 超臨界流体注入口 28 超臨界流体発生装置 29 ボンベ 30 供給管路 31 流量調整弁 32 流量計 1, 21 cylinder 2, 22 screw 3 supply port 4 die 5 weir 5a first weir 5b second weir 6a downstream open vent 6b upstream open vent 7 forced exhaust vent 7a first forced exhaust vent 7b Second forced exhaust vent port 8 Suction line 9a, 9b Branch line 10 Vacuum pump 11 Pressure adjusting unit 12a, 12b Adjusting unit 20 Twin screw extruder 23 Hopper 24 Gear pump 25 Discharge line 26 Backflow prevention unit 27 Supercritical Fluid inlet 28 Supercritical fluid generator 29 Cylinder 30 Supply line 31 Flow control valve 32 Flow meter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山近 光昭 広島県広島市安芸区船越南一丁目6番1号 株式会社日本製鋼所内 (72)発明者 江見 亨 広島県広島市安芸区船越南一丁目6番1号 株式会社日本製鋼所内 Fターム(参考) 4F201 AA11 AB11 AB16 BA01 BC02 BC12 BC33 BC37 BD05 BK02 BK13 BK27 BK36 BK40 BK49 BK75 4F207 KA01 KB21 KF03 KK13 KL05 KL22 KL47  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mitsuaki Yamachika 1-6-1, Funakoshi Minami, Aki-ku, Hiroshima-shi, Hiroshima Japan Steel Works Co., Ltd. (72) Inventor Toru Emi 1-chome, Funakoshi-minami, Aki-ku, Hiroshima-shi, Hiroshima No. 6 No. 1 F term in Japan Steel Works, Ltd. (reference) 4F201 AA11 AB11 AB16 BA01 BC02 BC12 BC33 BC37 BD05 BK02 BK13 BK27 BK36 BK40 BK49 BK75 4F207 KA01 KB21 KF03 KK13 KL05 KL22 KL47

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超臨界流体と成形材料とを溶融・混練す
るための超臨界流体用溶融・混練装置(E2 )と、前記
超臨界流体用溶融・混練装置の吐出管路(25)から吐
出される超臨界流体が含浸された溶融成形材料中の前記
超臨界流体をガス化させて分離除去したのち押し出すた
めの脱揮二軸押出成形機(E、E1 )とを備えた超臨界
流体を利用した混練・脱揮押出成形装置であって、 前記脱揮二軸押出成形機は、シリンダ(1)と、前記シ
リンダ内に回転自在に配設された2本のスクリュ(2)
と、前記シリンダの上流側に設けられた調圧手段(1
1)が付設された供給口(3)と、前記シリンダの下流
端に配設されたダイ(4)とを備えており、 前記シリンダには、前記吐出管路に接続された前記供給
口と前記ダイとの間に上流側より下流側に向かって順
次、下流側開放ベント口(6a)と少なくとも1つの強
制排気ベント口(7、7a、7b)とが互いに間隔をお
いて設けられているとともに、前記供給口の上流側部位
に上流側開放ベント口(6b)が設けられており、 前記各スクリュには、前記強制排気ベント口の上流側近
傍部位にせき部(5、5a、5b)が配設されているこ
とを特徴とする超臨界流体を利用した混練・脱揮押出成
形装置。
1. A supercritical fluid melting / kneading device (E 2 ) for melting / kneading a supercritical fluid and a molding material, and a discharge line (25) of the supercritical fluid melting / kneading device. A supercritical fluid provided with a devolatilizing twin-screw extruder (E, E 1 ) for gasifying, separating and removing the supercritical fluid in the molten molding material impregnated with the discharged supercritical fluid, and extruding the gas; A kneading and devolatilizing extrusion molding apparatus using a fluid, wherein the devolatilizing twin-screw extruder comprises a cylinder (1) and two screws (2) rotatably disposed in the cylinder.
And pressure regulating means (1) provided on the upstream side of the cylinder.
1) a supply port (3) attached thereto; and a die (4) disposed at a downstream end of the cylinder. The cylinder includes: a supply port connected to the discharge pipe; A downstream open vent port (6a) and at least one forced exhaust vent port (7, 7a, 7b) are sequentially provided between the die and the downstream from the upstream side to the downstream side. At the same time, an upstream open vent port (6b) is provided at an upstream portion of the supply port, and each screw has a weir portion (5, 5a, 5b) at a location near the upstream side of the forced exhaust vent port. Is a kneading and devolatilizing extrusion molding apparatus using a supercritical fluid.
【請求項2】 脱揮二軸押出成形機(E、E1 )におけ
る各スクリュ(2)には、上流側開放ベント口(6b)
に対応する部位に、深溝の順フライトを設けたことを特
徴とする請求項1記載の超臨界流体を利用した混練・脱
揮押出成形装置。
2. Each of the screws (2) in the devolatilizing twin-screw extruder (E, E 1 ) has an upstream open vent port (6b).
2. A kneading and devolatilizing extrusion molding apparatus using a supercritical fluid according to claim 1, wherein a deep groove forward flight is provided at a portion corresponding to (1).
【請求項3】 脱揮二軸押出成形機(E、E1 )におけ
るせき部(5、5a、5b)は、逆ニーディングディス
クまたはシールリングからなることを特徴とする請求項
1または2記載の超臨界流体を利用した混練・脱揮押出
成形装置。
3. The devolatilizing twin-screw extruder (E, E 1 ), wherein the weirs (5, 5a, 5b) comprise an inverse kneading disc or a seal ring. Kneading and devolatilizing extrusion equipment using supercritical fluid.
【請求項4】 脱揮二軸押出成形機(E、E1 )におけ
る各スクリュ(2)には、下流側開放ベント口(6a)
に対応する部位に、順フライトと順ニーディングディス
クとの組み合わせを設けたことを特徴とする請求項1な
いし3いずれか1項記載の超臨界流体を利用した混練・
脱揮押出成形装置。
4. Each of the screws (2) in the devolatilizing twin-screw extruder (E, E 1 ) has a downstream open vent port (6a).
4. A kneading / mixing process using a supercritical fluid according to claim 1, wherein a combination of a forward flight and a forward kneading disc is provided at a portion corresponding to
Devolatilization extrusion molding equipment.
JP2001163635A 2001-05-31 2001-05-31 Kneading and devolatilization extrusion equipment using supercritical fluid Expired - Fee Related JP4094248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001163635A JP4094248B2 (en) 2001-05-31 2001-05-31 Kneading and devolatilization extrusion equipment using supercritical fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001163635A JP4094248B2 (en) 2001-05-31 2001-05-31 Kneading and devolatilization extrusion equipment using supercritical fluid

Publications (2)

Publication Number Publication Date
JP2002355880A true JP2002355880A (en) 2002-12-10
JP4094248B2 JP4094248B2 (en) 2008-06-04

Family

ID=19006566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001163635A Expired - Fee Related JP4094248B2 (en) 2001-05-31 2001-05-31 Kneading and devolatilization extrusion equipment using supercritical fluid

Country Status (1)

Country Link
JP (1) JP4094248B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161596A (en) * 2003-12-01 2005-06-23 Mitsui Chemicals Inc Manufacturing method of thermoplastic resin blend
JP2006021460A (en) * 2004-07-09 2006-01-26 Japan Steel Works Ltd:The Method and apparatus for producing thermoplastic resin and its mixture
JP2006199042A (en) * 2004-12-17 2006-08-03 Toray Ind Inc Manufacturing process of thermoplastic resin composite
JP2008018581A (en) * 2006-07-12 2008-01-31 Japan Steel Works Ltd:The Manufacturing method of thermoplastic resin composition
JP2008080809A (en) * 2007-10-25 2008-04-10 Hitachi Maxell Ltd Production process and molding device of molded article
JP2010214963A (en) * 2010-05-11 2010-09-30 Hitachi Maxell Ltd Method for manufacturing molded article
DE112009000318T5 (en) 2008-02-13 2011-03-03 Bando Chemical Industries, Ltd., Kobe-shi friction drive
WO2012120637A1 (en) * 2011-03-08 2012-09-13 日立マクセル株式会社 Kneading device, and method for producing thermoplastic resin molded body
JP2013006171A (en) * 2011-05-20 2013-01-10 Nitto Denko Corp Kneading machine
US8911828B2 (en) * 2005-08-18 2014-12-16 Hitachi Maxell, Ltd. Method of producing molded article
CN106003661A (en) * 2016-07-22 2016-10-12 浙江汇锋薄膜科技有限公司 Exhaust device of plastic thin film extruder
CN106182691A (en) * 2016-07-22 2016-12-07 浙江汇锋薄膜科技有限公司 A kind of plastic film extruder
EP2860013B1 (en) * 2013-10-11 2018-05-02 Blach Verwaltungs GmbH & Co. KG Sidefeeder with backward venting
CN114130303A (en) * 2021-11-27 2022-03-04 南京创博机械设备有限公司 TGIC high-efficiency devolatilization and melt extrusion granulation integrated processing method
CN114770899A (en) * 2022-03-08 2022-07-22 谭杰文 Extinction master batch preparation equipment for plastics and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08258115A (en) * 1995-03-24 1996-10-08 Toshiba Mach Co Ltd Method and apparatus for extruding solid resin material for volatilization
JPH11268098A (en) * 1998-03-24 1999-10-05 Japan Steel Works Ltd:The Tandem type devolatilizing extruder
JP2002187192A (en) * 2000-12-22 2002-07-02 Mitsubishi Chemicals Corp Extrusion molding machine
JP2002273777A (en) * 2001-03-16 2002-09-25 Japan Steel Works Ltd:The Kneading/mixing-extruding-molding device utilizing supercritical fluid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08258115A (en) * 1995-03-24 1996-10-08 Toshiba Mach Co Ltd Method and apparatus for extruding solid resin material for volatilization
JPH11268098A (en) * 1998-03-24 1999-10-05 Japan Steel Works Ltd:The Tandem type devolatilizing extruder
JP2002187192A (en) * 2000-12-22 2002-07-02 Mitsubishi Chemicals Corp Extrusion molding machine
JP2002273777A (en) * 2001-03-16 2002-09-25 Japan Steel Works Ltd:The Kneading/mixing-extruding-molding device utilizing supercritical fluid

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161596A (en) * 2003-12-01 2005-06-23 Mitsui Chemicals Inc Manufacturing method of thermoplastic resin blend
JP2006021460A (en) * 2004-07-09 2006-01-26 Japan Steel Works Ltd:The Method and apparatus for producing thermoplastic resin and its mixture
JP4563739B2 (en) * 2004-07-09 2010-10-13 株式会社日本製鋼所 Extruded product manufacturing method and manufacturing apparatus
JP2006199042A (en) * 2004-12-17 2006-08-03 Toray Ind Inc Manufacturing process of thermoplastic resin composite
US8911828B2 (en) * 2005-08-18 2014-12-16 Hitachi Maxell, Ltd. Method of producing molded article
JP2008018581A (en) * 2006-07-12 2008-01-31 Japan Steel Works Ltd:The Manufacturing method of thermoplastic resin composition
JP2008080809A (en) * 2007-10-25 2008-04-10 Hitachi Maxell Ltd Production process and molding device of molded article
JP4570651B2 (en) * 2007-10-25 2010-10-27 日立マクセル株式会社 Method for manufacturing molded product and molding apparatus
DE112009000318T5 (en) 2008-02-13 2011-03-03 Bando Chemical Industries, Ltd., Kobe-shi friction drive
JP2010214963A (en) * 2010-05-11 2010-09-30 Hitachi Maxell Ltd Method for manufacturing molded article
US9314943B2 (en) 2011-03-08 2016-04-19 Hitachi Maxell, Ltd. Kneading apparatus and method for producing thermoplastic resin molded product
WO2012120637A1 (en) * 2011-03-08 2012-09-13 日立マクセル株式会社 Kneading device, and method for producing thermoplastic resin molded body
JP2013006171A (en) * 2011-05-20 2013-01-10 Nitto Denko Corp Kneading machine
EP2860013B1 (en) * 2013-10-11 2018-05-02 Blach Verwaltungs GmbH & Co. KG Sidefeeder with backward venting
US10035291B2 (en) 2013-10-11 2018-07-31 Blach Verwaltungs Gmbh & Co. Kg Side feeder with rearwards ventilation
CN106003661A (en) * 2016-07-22 2016-10-12 浙江汇锋薄膜科技有限公司 Exhaust device of plastic thin film extruder
CN106182691A (en) * 2016-07-22 2016-12-07 浙江汇锋薄膜科技有限公司 A kind of plastic film extruder
CN114130303A (en) * 2021-11-27 2022-03-04 南京创博机械设备有限公司 TGIC high-efficiency devolatilization and melt extrusion granulation integrated processing method
CN114130303B (en) * 2021-11-27 2023-11-14 南京创博机械设备有限公司 TGIC efficient devolatilization and melt extrusion granulation integrated processing method
CN114770899A (en) * 2022-03-08 2022-07-22 谭杰文 Extinction master batch preparation equipment for plastics and preparation method thereof
CN114770899B (en) * 2022-03-08 2023-11-14 瀚脉化工科技(上海)有限公司 Preparation equipment and preparation method of extinction master batch for plastic

Also Published As

Publication number Publication date
JP4094248B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP2002355880A (en) Kneading/devolatilizing extrusion molding apparatus utilizing supercritical fluid
US9738770B2 (en) Degassing method, degassing device and use of screw elements
TW200942402A (en) Device and method for preparation of a profiled element from an elastomeric thermoplastic gel
JP5815257B2 (en) Method for producing resin composition
CA2806003C (en) Extruder with integrated die plate and method for degasing polymer mixtures
JP2004137450A (en) Method for producing resin composition and resin composition
JP3686002B2 (en) Kneading and mixing extrusion equipment using supercritical fluid
JPH09239726A (en) Tandem type kneading apparatus and kneading of thermoplastic resin and/or rubber using the same
JP4102260B2 (en) Polymer supercritical processing equipment
US4004787A (en) Mixing and venting extruder
WO2000074914A1 (en) Method of reclaiming crosslinked rubber
JP2002187192A (en) Extrusion molding machine
JP3819340B2 (en) Method and apparatus for devolatilizing molten resin
WO2016114305A1 (en) Extruder provided with vents
JP3886467B2 (en) Screw kneading extruder
JP2004137447A (en) Flame-retardant resin composition and manufacturing method therefor
US20080018010A1 (en) System and Method for Manufacture of Extruded Polymer Materials
JP2000000871A (en) Apparatus for manufacture of resin molding
WO2005021227A1 (en) Apparatus for producing polymer
JP7330056B2 (en) Method for producing resin composition and screw kneading and devolatilizing extruder
JP2009508715A (en) Method to increase production rate of continuous kneader or extruder
JP2009113295A (en) Manufacturing process of thermoplastic resin mixture
JPH10202652A (en) Material kneading method by twin-screw kneader
JPH11198213A (en) Production of ultra-high molecular weight polyethylene molding
JPH079441A (en) Method of removing solvent from elastomer solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4094248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees