JP2002345157A - Charging and discharging device - Google Patents

Charging and discharging device

Info

Publication number
JP2002345157A
JP2002345157A JP2001403007A JP2001403007A JP2002345157A JP 2002345157 A JP2002345157 A JP 2002345157A JP 2001403007 A JP2001403007 A JP 2001403007A JP 2001403007 A JP2001403007 A JP 2001403007A JP 2002345157 A JP2002345157 A JP 2002345157A
Authority
JP
Japan
Prior art keywords
pond
battery
charging
switch
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001403007A
Other languages
Japanese (ja)
Inventor
Kazumichi Fujioka
一路 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001403007A priority Critical patent/JP2002345157A/en
Publication of JP2002345157A publication Critical patent/JP2002345157A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charging circuit capable of attaining size and weight reductions and little loss, without the need for a transformer. SOLUTION: This charging and discharging device comprises switches, capacitors, and a processing device, and the plurality of capacitors are connected through the switches to increase charging efficiency by changing capacitor voltage, so as to follow the input voltage.

Description

【発明の詳細な説明】 【発明の属する技術分野】電気自動車、電車、電気自転
車、電動三輪車、カート、風力発電装置、ソーラ発電装
置 【従来の技術】 【0001】従来、外部から来るモータやソーラの電圧
を充電する場合、この電圧が低い場合、まず高周波に変
換し、トランスで昇圧後整流して充電するのが一般的で
あった。トランスは重くかさばり、また色々の動作を経
由するため損失も大きくなる欠点があった。ところで、
電気自動車やハイブリッド自動車などの多くは、回生機
能を有する。いわゆるブレーキをかけるとき、モータを
発電機として働かせ、電力をバッテリに蓄えてブレーキ
をかける機能である。ところが、低速時は特に、発電電
圧はバッテリ電圧より低いためにバッテリへの充電がで
きず、このため従来は昇圧回路が必要であり、また重い
トランスなどによる複雑な回路を使用していた。 【発明が解決しようとする課題】よりシンプルで軽量な
充放電装置を提案する。風車、ソーラ、モータ回生、の
電圧を効率よく回収する。トランスなど重くてかさばる
ものは使用せず電子化した装置を提案する。 【問題を解決するための手段】 【0002】 【図1】は、本発明に基づく回路例で、1−8は並列ス
イッチ、12は正の共通線、13は負の共通線、14−
17は蓄電器(池)、18はモータ、19は外部抵抗
器、20は制御装置である。同図に従って、まず充電動
作を説明する。モータ18が逆回転すると発電機になる
ことは知られている。この発電電圧値(または電流値)
が大きい場合、制御装置20はスイッチ1とスイッチ8
のみがオンになる信号を出す。すると複数個の蓄電器
(池)14−17は直列接続となり、均一電流が流れて
充電される。モータ18の電圧値が下がってくると、制
御装置20はスイッチ1と8をオフにし、スイッチ1と
スイッチ6,スイッチ3とスイッチ8の2組が交互にオ
ンオフを繰り返すような信号を出す。すると2組の蓄電
器(池)14−17は交互に均一にタイムシェア的に充
電される。(2個直列のものが2組交互に) 【0003】発電機電圧、しいては2本の共通線12,
13の電圧が更に下がると蓄電器(池)14−17は個
別に充電される。すなわち、スイッチ1と5,2と6、
3と7,4と8がタイムシェア的にオンオフする。(4
個並列のものが1個づつ)以上が 【図1】の回路の動作概要であるが、この方法では電流
が小さい用途では問題無いが、大電流では実用上問題が
ある。例えば、スイッチ1とスイッチ5のみがオンの時
間中、(1つの蓄電器(池)のみ充電)他の蓄電器
(池)15−17は充電されない。この1/4時間内に
同等の電力を蓄えようとすると、電流を4倍流さなくて
はならない。(電圧一定として) 【0004】半導体スイッチ1−8や蓄電器(池)14
−17には内部抵抗があり、この内部抵抗での損失は電
流の二乗に比例するので、16倍の損失が発生する。確
かに他の3区間はオフになるので、損失は1/4で(平
均では)あるが、それでも全蓄電器(池)に流した場合
に比べ、16×1/4=4倍の損失が発生する。 【図2】は本発明による改良回路概要図である。同図に
添って符号の説明をすると、18はモータ等電圧発生源
であり、風力発電機や自動車・電車のブレーキ時のモー
タでもよい。12は正の共通線、13は負の共通線であ
る。14−17は蓄電器(池)、1−8は並列スイッ
チ、9−11は直列スイッチ、20は制御装置である。
なお,スイッチは機械的に構成してもよいし半導体で構
成してもよい。 【0005】同図に添って動作を説明する。電圧源18
により、高い電圧が共通線12,13に供給されると、
制御装置20はスイッチ1,9,10,11,8のみを
オンにし、蓄電器(池)14,15,16,17を直列
接続構成として充電する。(4直列と呼ぶ)この動作は
電圧が大きい時でも良いし、電流が大きい時でも良い。
次に電圧(または電流)が小さくなった時は、スイッチ
1,9,6とスイッチ3,11,8のみをオンにする。
(2直列・2並列と呼ぶ) 【0006】さらに電圧(又は電流)が小さくなった時
は、スイッチ1,5とスイッチ2,6とスイッチ3,7
とスイッチ4,8のみを同時にオンする(4並列と呼
ぶ)。つまり、個別の蓄電器(池)14−17を全て同
時に充電する。このように入力電圧の大小に合わせて蓄
電器(池)14−17の接続や個数をスイッチ1−11
により変えることにより、外部抵抗19の値を小さくし
ても充電電流を大きからず小さからずにすることがで
き、しいては外部抵抗19での損失を少なくすることが
でき、総合的に充電効率を上げることができる。 【0007】具体的には、制御装置20は外部抵抗19
に流れる電流値を取りこみ、この値が小さければ制御装
置20は以下の矢印の蓄電器(池)接続になるよう並列
スイッチ1−8、直列スイッチ9−11のオンオフをお
こなえばよい。 4直列⇒2直列・2並列⇒4並列 なお、4直列でも電流・電圧が大きすぎるときは、スイ
ッチ1,8−11のいずれか1つを一定時間オフにして
もよい。 【0008】 【図4】は実際の電圧発生源18の時間変化に伴う電圧
を感覚的に表現したもので、23は商用電源の全波整流
波形、24はソーラ電圧波形、25は風力やブレーキ回
生の波形である。点線26より電圧が下がると、前記の
例ではスイッチ1−11の切換をおこない、蓄電器
(池)14−17が2直列2並列に充電され、点線27
より電圧が下がると4並列に充電される。 【0009】 【図2】では 【図1】と違い、どの時間でも全蓄電器14−17が充
電されている。勿論、例えば15に充電量のみが足りな
い時は該当のスイッチ2とスイッチ6のみオンにして、
(いわゆる個別充電)全体の充電量の均一化を計ること
ができる。また、電流を流しても電圧の上昇がない時は
処理装置20が判別して蓄電器(池)14−17の劣化
を外部表示することもできる。ところで、 【図2】では4個の蓄電器(池)14−17を使用した
回路構成であるが、2個、6個、8個の回路構成であっ
てもよい。 【0010】 【図3】は走行中半給電式の電気自動車に適用可能な多
機能な充放電回路である。同図で28は外部電源で、自
動車に搭載しないAC整流電圧、高周波整流電圧、ソー
ラや風力の電圧、等から成る電源である。29,30は
外部電源をオンオフするスイッチであり、31はモータ
をオンオフするスイッチである。スイッチ1−11は、
前図同様、制御装置20によりオンオフを制御される機
械的あるいは半導体的スイッチである。 【0011】同図に従い、まず第一のモードである”外
部電源28と蓄電器(池)14−17との充放電”の動
作を説明する。まず、モータスイッチ31はオフにす
る。つぎにスイッチ1−11は全てオフのままで、スイ
ッチ29,30をオンにする。次に、外部電源28より
蓄電器(池)14−17に充電したいのであれば並列ス
イッチ1−8、直列スイッチ9−11を前述したように
オンオフし、適切な電流値で均一に蓄電器(池)14−
17を充電する。具体的使用例としては、停留所で自動
車や電車の内部蓄電器(池)に外部に設置された電源よ
り充電することが挙げられる。また蓄電器(池)14−
17より外部電源に放電したいのであれば、適切な放電
電流が流れるよう、並列スイッチ1−8、直列スイッチ
9−11を前記と同様にオンオフすればよい。このオン
オフ周波数を高くすると、外部電源にはトランス結合の
放電電流を供給することもできる。 【0012】つぎに、第2のモード、”充電+加速”に
ついて説明する。この場合まず、外部電源スイッチ2
9,30をオンにする。PWMで速度指令値に比例して
モータスイッチ32をオンオフにする。一方、蓄電器
(池)14−17をまず4個直列に接続し、電流を計
り、大きすぎると2個直列のを2組並列に接続する。そ
れでも大きすぎると4個並列に接続する。具体的使用例
としては、自動車の加速と蓄電器(池)への充電を同時
に実施することが挙げられる。 【0013】第3のモードは“走行と回生”で、前回 【図2】において説明した働きと同じである。まず、外
部電源スイッチ29、30はオフにする。初めに“走
行”であるが、スイッチ1,9,10,11,8を常に
オンにしてモータスイッチ32をいわゆるPWM的にオ
ンオフしても良いし,モータスイッチ32を常にオンに
し、充電時と同じようにスイッチ1−11をオンオフし
て、電圧値変化法あるいはPWM法によりモータ18を
制御しても良い。 【0014】次に“回生”であるが、 【図4】はブレーキ回生に関するものである。21は発
電機出力電圧(しいては自動車の速度)、22は蓄電器
(池)から出る電圧で、この差のエネルギーが蓄電器
(池)14−17に蓄えられ、結果的にブレーキがかか
ることになり、車速が落ち、モータ電圧も低下するので
蓄電器(池)電圧を下げ、ブレーキを続行させることを
示している。上記“回生“時には、もしも外部電源28
が別途蓄電器(池)を内蔵し、かつ内部蓄電器(池)1
4−17の充電量が満杯の場合は、スイッチ29、30
をオンにして、外部電源内蔵の蓄電器(池)に充電して
も良い。 【本発明による効果】本発明によると、2重層コンデン
サなど内部抵抗が高くても効率のよい充電が実現でき、
ブレーキ回生などに有効になる。ソーラ・風力などのエ
ネルギーを、直接、外部蓄電器(池)に貯め他の供給手
段を用いて、走行中あるいは停止中の電動車や建物にエ
ネルギーを供給する、いわゆる外部給電装置が実現でき
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention Electric vehicles, trains, electric bicycles, electric tricycles, carts, wind power generators, and solar power generators. When charging this voltage, if this voltage is low, it is common to first convert it to a high frequency, boost it with a transformer, rectify it and then charge it. The transformer has the drawback that the transformer is heavy and bulky, and the loss is increased due to various operations. by the way,
Many electric vehicles and hybrid vehicles have a regenerative function. This is a function to operate the motor as a generator when applying the brake, store the electric power in the battery, and apply the brake. However, especially at low speeds, the battery cannot be charged because the generated voltage is lower than the battery voltage. Therefore, conventionally, a booster circuit has been required, and a complicated circuit such as a heavy transformer has been used. A simpler and lighter charging / discharging device is proposed. Efficiently recovers the voltage of wind turbines, solar, and motor regeneration. We propose an electronic device without using heavy and bulky things such as transformers. FIG. 1 is a circuit example according to the present invention, wherein 1-8 are parallel switches, 12 is a positive common line, 13 is a negative common line, and 14-
Reference numeral 17 denotes a storage battery (pond), 18 denotes a motor, 19 denotes an external resistor, and 20 denotes a control device. First, the charging operation will be described with reference to FIG. It is known that when the motor 18 rotates in the reverse direction, it becomes a generator. This generated voltage value (or current value)
Is larger, the controller 20 switches the switches 1 and 8
A signal that only turns on. Then, the plurality of capacitors (ponds) 14-17 are connected in series, and a uniform current flows to be charged. When the voltage value of the motor 18 decreases, the control device 20 turns off the switches 1 and 8, and outputs a signal such that the two sets of the switch 1, the switch 6, the switch 3, and the switch 8 alternately turn on and off. Then, the two sets of capacitors (ponds) 14-17 are alternately and uniformly charged in a time-sharing manner. (Two sets of two series are alternately arranged.) The generator voltage, and thus the two common lines 12,
When the voltage at 13 further decreases, the capacitors (ponds) 14-17 are individually charged. That is, switches 1 and 5, 2 and 6,
3, 7, 4 and 8 are turned on / off in a time-sharing manner. (4
The above is the outline of the operation of the circuit shown in FIG. 1. Although this method has no problem in applications where the current is small, there is a problem in practice with a large current. For example, while only the switch 1 and the switch 5 are on, (only one battery (pond) is charged), the other batteries (ponds) 15-17 are not charged. If the same power is to be stored within this 1/4 hour, the current must be quadrupled. (Assuming a constant voltage) [0004] The semiconductor switch 1-8 and the storage battery (pond) 14
-17 has an internal resistance, and the loss at this internal resistance is proportional to the square of the current, so that a loss of 16 times occurs. Certainly, the other three sections are turned off, so the loss is 1/4 (on average), but the loss is still 16 x 1/4 = 4 times compared to the case where it flows through all capacitors (ponds). I do. FIG. 2 is a schematic diagram of an improved circuit according to the present invention. Referring to FIG. 2, reference numeral 18 denotes a voltage source such as a motor, which may be a wind power generator or a motor for braking an automobile or train. 12 is a positive common line, and 13 is a negative common line. 14-17 is a storage battery (pond), 1-8 is a parallel switch, 9-11 is a series switch, and 20 is a control device.
The switch may be formed mechanically or may be formed of a semiconductor. The operation will be described with reference to FIG. Voltage source 18
When a high voltage is supplied to the common lines 12 and 13,
The control device 20 turns on only the switches 1, 9, 10, 11, and 8 and charges the capacitors (ponds) 14, 15, 16, and 17 in a series connection configuration. This operation may be performed when the voltage is large or when the current is large.
Next, when the voltage (or current) decreases, only the switches 1, 9, 6 and the switches 3, 11, 8 are turned on.
[0006] When the voltage (or current) further decreases, the switches 1, 5 and 2, 6 and 3, 7
And only the switches 4 and 8 are turned on at the same time (referred to as 4-parallel). That is, all the individual capacitors (ponds) 14-17 are charged simultaneously. In this way, the connection and the number of the capacitors (ponds) 14-17 are changed according to the magnitude of the input voltage.
Thus, even if the value of the external resistor 19 is reduced, the charging current can be kept small and small, and the loss in the external resistor 19 can be reduced. Can be raised. Specifically, the control device 20 controls the external resistor 19
The controller 20 may turn on / off the parallel switch 1-8 and the series switch 9-11 so as to connect to a battery (battery) indicated by the following arrow if the value is small. 4 series → 2 series / 2 parallel → 4 parallel If the current / voltage is too large even in 4 series, one of the switches 1 and 8-11 may be turned off for a certain period of time. [0008] FIG. 4 is an intuitive representation of an actual voltage generated by a voltage source 18 over time, 23 is a full-wave rectified waveform of a commercial power supply, 24 is a solar voltage waveform, and 25 is a wind or brake. It is a waveform of regeneration. When the voltage drops below the dotted line 26, the switch 1-11 is switched in the above-described example, and the capacitors (ponds) 14-17 are charged in two series and two parallel, and the dotted line 27
When the voltage drops further, the batteries are charged in four parallels. In FIG. 2, unlike in FIG. 1, all the capacitors 14-17 are charged at any time. Of course, for example, when only the charge amount is insufficient in 15, only the corresponding switches 2 and 6 are turned on,
(So-called individual charging) It is possible to equalize the total charge amount. Further, when the voltage does not rise even when the current is supplied, the processing device 20 can determine the deterioration and externally display the deterioration of the storage batteries (ponds) 14-17. By the way, FIG. 2 shows a circuit configuration using four capacitors (ponds) 14-17. However, two, six, or eight circuit configurations may be used. [0010] FIG. 3 is a multifunctional charge / discharge circuit applicable to an electric vehicle of a semi-powered type during traveling. In the figure, reference numeral 28 denotes an external power supply, which is not mounted on a vehicle and is composed of an AC rectified voltage, a high-frequency rectified voltage, a solar or wind voltage, or the like. 29 and 30 are switches for turning on and off the external power supply, and 31 is a switch for turning on and off the motor. Switch 1-11 is
Similar to the previous figure, this is a mechanical or semiconductor switch whose on / off is controlled by the control device 20. The operation of the first mode "charging / discharging between the external power supply 28 and the storage cells (ponds) 14-17" will be described with reference to FIG. First, the motor switch 31 is turned off. Next, the switches 29 and 30 are turned on while the switches 1-11 are all kept off. Next, if it is desired to charge the battery (battery) 14-17 from the external power supply 28, the parallel switch 1-8 and the series switch 9-11 are turned on and off as described above, and the battery (bowl) is uniformly charged with an appropriate current value. 14-
Charge 17 As a specific example of use, charging at a stop from an external power supply in an internal battery (pond) of an automobile or a train can be cited. In addition, storage battery (pond) 14-
If it is desired to discharge to the external power supply from the switch 17, the parallel switch 1-8 and the series switch 9-11 may be turned on and off in the same manner as described above so that an appropriate discharge current flows. If the on / off frequency is increased, a discharge current of a transformer coupling can be supplied to the external power supply. Next, the second mode, "charging + acceleration" will be described. In this case, first, the external power switch 2
Turn on 9, 30. The motor switch 32 is turned on / off in proportion to the speed command value by PWM. On the other hand, first, four capacitors (ponds) 14-17 are connected in series, and the current is measured. If the current is too large, two sets of two capacitors are connected in parallel. If it is still too large, four are connected in parallel. As a specific example of use, it can be mentioned that acceleration of a vehicle and charging of a storage battery (pond) are simultaneously performed. The third mode is "running and regeneration", which is the same as the operation described previously in FIG. First, the external power switches 29 and 30 are turned off. First, "running", the switches 1, 9, 10, 11, 8 may be always turned on to turn on / off the motor switch 32 in a so-called PWM manner. Similarly, the switch 1-11 may be turned on and off, and the motor 18 may be controlled by the voltage change method or the PWM method. Next, "regeneration" will be described. FIG. 4 relates to brake regeneration. Reference numeral 21 denotes a generator output voltage (and, consequently, the speed of the vehicle), and reference numeral 22 denotes a voltage output from a storage battery (pond). This indicates that the vehicle speed decreases and the motor voltage also decreases, so that the voltage of the storage battery is reduced and braking is continued. At the time of “regeneration”, if the external power supply 28
Has a separate built-in battery (pond) and an internal battery (pond) 1
If the charge amount of 4-17 is full, the switches 29 and 30
May be turned on to charge a battery (pond) with a built-in external power supply. According to the present invention, efficient charging can be realized even if the internal resistance of a double-layer capacitor is high.
This is effective for brake regeneration. A so-called external power supply device can be realized in which energy such as solar power and wind power is directly stored in an external storage battery (pond) and energy is supplied to a running or stopped electric vehicle or building using other supply means.

【図面の簡単な説明】 【図1】:充放電回路1 概要構成図 【図2】:充放電回路2 概要構成図 【図3】:充放電回路3 概要構成図 【図4】:ブレーキ回生波形 概要図 【図5】:各種外部電源電圧 波形概要図 1−8:並列スイッチ 26:切り換え基準
電圧値1 9−11:直列スイッチ 27:切り換え基
準電圧値2 12:正の共通線 28:外部電源 13:負の共通線 29−30:外部電源スイッ
チ 14−17:蓄電器(池) 31:モータス
イッチ 18:モータ 19:外部抵抗器 20:制御装置 21:発電機 回生電圧 22:蓄電器(池)電圧 23:AC全波整流波形 24:ソーラ電圧波形 25:風力・回生電圧波形
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1: Schematic configuration of charge / discharge circuit 1 [FIG. 2]: Schematic configuration of charge / discharge circuit 2 [FIG. 3]: Schematic configuration of charge / discharge circuit 3 [FIG. 4]: Brake regeneration Waveform outline diagram [Figure 5]: Various external power supply voltage Waveform outline diagram 1-8: Parallel switch 26: Switching reference voltage value 1 9-11: Series switch 27: Switching reference voltage value 2 12: Positive common line 28: External Power supply 13: negative common line 29-30: external power switch 14-17: battery (pond) 31: motor switch 18: motor 19: external resistor 20: control device 21: generator regenerative voltage 22: battery (pond) Voltage 23: AC full-wave rectified waveform 24: Solar voltage waveform 25: Wind / regenerative voltage waveform

Claims (1)

【特許請求の範囲】 【請求項1】複数の蓄電器(池)と、正負2本の共通線
と、前記蓄電器(池)の正負の各々の電極と前記正負の
共通線とを接続する並列スイッチと、前記蓄電器(池)
の負電極と他の前記蓄電器(池)の正電極を接続する直
列スイッチと、前記共通線に接続するモータと、前記蓄
電器(池)の電流・電圧検出器と、マイクロコンピュー
タ等制御装置とからなり、前記制御装置の指令による前
記並列スイッチ、前記直列スッチのオンオフにより、前
記蓄電器(池)を並列接続あるいは直列接続に変更し
て、前記モータの負荷や発電電圧が変動しても前記蓄電
器(池)に流れる電流値が大き過ぎず、小さ過ぎず制御
する充放電装置 【請求項2】前記蓄電器(池)の充電量が他の前記蓄電
器(池)の充電量より少ない時、前記制御装置は充電量
の少ない前記蓄電器(池)のみ充電するよう前記並列ス
イッチをオンにすることを特徴とした 【請求項1】に記載の充放電装置 【請求項3】前記直列スイッチの代りに接続線を用い、
前記蓄電器(池)が常に直列接続されていることを特徴
とした 【請求項1】に記載の充放電装置 【請求項4】別途外部電源を設け、前記記蓄電器(池)
または前記モータとの間で充電または放電をすることを
特徴とした 【請求項1】に記載の充放電装置
Claims: 1. A parallel switch for connecting a plurality of capacitors (ponds), two positive and negative common lines, and each of the positive and negative electrodes of the capacitors (ponds) and the positive and negative common lines. And the storage battery (pond)
A series switch for connecting the negative electrode of the battery and the positive electrode of the other battery (pond), a motor connected to the common line, a current / voltage detector of the battery (pond), and a control device such as a microcomputer. When the parallel switch and the series switch are turned on and off according to a command from the control device, the storage device (pond) is changed to a parallel connection or a series connection, so that the storage device ( A charging / discharging device for controlling a current value flowing through the pond to be neither too large nor too small. 2. The control device when the charged amount of the battery (pond) is smaller than the charged amount of the other battery (pond). 3. The charging / discharging device according to claim 1, wherein the parallel switch is turned on so as to charge only the battery (pond) having a small amount of charge. Using,
The charging / discharging device according to claim 1, wherein the storage device (pond) is always connected in series. 4. An external power source is separately provided, and the storage device (pond) is provided.
Or a charging / discharging device according to claim 1, wherein the charging / discharging device is charged or discharged with the motor.
JP2001403007A 2001-03-16 2001-12-25 Charging and discharging device Pending JP2002345157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001403007A JP2002345157A (en) 2001-03-16 2001-12-25 Charging and discharging device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-123604 2001-03-16
JP2001123604 2001-03-16
JP2001403007A JP2002345157A (en) 2001-03-16 2001-12-25 Charging and discharging device

Publications (1)

Publication Number Publication Date
JP2002345157A true JP2002345157A (en) 2002-11-29

Family

ID=26613969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001403007A Pending JP2002345157A (en) 2001-03-16 2001-12-25 Charging and discharging device

Country Status (1)

Country Link
JP (1) JP2002345157A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086876A (en) * 2003-09-05 2005-03-31 Kazumichi Fujioka Intermittent power supply type electric vehicle system and the electric vehicle
JP4590520B1 (en) * 2009-09-02 2010-12-01 日本蓄電器工業株式会社 AC output power storage device
KR101016209B1 (en) * 2009-10-16 2011-02-25 한국과학기술원 Feeding segmentation of on-line electric vehicle, method for installation and controlling thereof
JP2011087459A (en) * 2003-10-09 2011-04-28 Access Business Group Internatl Llc Miniature hydro-power generation system and control method for the same
KR101036627B1 (en) 2009-12-21 2011-05-24 한국과학기술원 Apparatus for arc detection and arc protection on high voltage circuit of olev, method therefor and recording medium for programming the same method
JP2011239603A (en) * 2010-05-12 2011-11-24 Tamura Seisakusho Co Ltd Charge and discharge system
US9318779B2 (en) 2009-09-02 2016-04-19 Japan Aerospace Exploration Agency Electric energy storage units connected in series and selectively charged/discharged via a balancing circuit or directly from a charger or to a load
CN106160147A (en) * 2016-08-09 2016-11-23 天津中科泰平科技发展有限公司 Battery inductive charge circuit
CN106208291A (en) * 2016-08-31 2016-12-07 天津中科泰平科技发展有限公司 Vicarious electric automobile Rapid Circulation charging device
JP6418705B1 (en) * 2017-09-15 2018-11-07 武雄 岩井 Capacitor power supply
CN110015134A (en) * 2017-09-29 2019-07-16 比亚迪股份有限公司 Electric vehicle and its charge control method and control device
DE102018218312A1 (en) * 2018-10-26 2020-04-30 Audi Ag Energy supply arrangement for supplying an electrical consumer of a low-voltage electrical system of a motor vehicle, electrical system and method for operating an energy supply arrangement
JP2021083285A (en) * 2019-11-22 2021-05-27 株式会社Nttドコモ Terminal, controller and program

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086876A (en) * 2003-09-05 2005-03-31 Kazumichi Fujioka Intermittent power supply type electric vehicle system and the electric vehicle
JP2011087459A (en) * 2003-10-09 2011-04-28 Access Business Group Internatl Llc Miniature hydro-power generation system and control method for the same
US9083187B2 (en) 2009-09-02 2015-07-14 Japan Aerospace Exploration Agency Electric energy storage apparatus capable of AC output
KR20160135863A (en) 2009-09-02 2016-11-28 코쿠리츠켄큐카이하츠호진 우츄우고우쿠우켄큐우카이하츠키코우 Electricity-storage device that can output alternating current
JP2011055648A (en) * 2009-09-02 2011-03-17 Japan Capacitor Industrial Co Ltd Power storage device in which ac output is possible
WO2011027660A1 (en) 2009-09-02 2011-03-10 独立行政法人 宇宙航空研究開発機構 Electricity-storage device that can output alternating current
KR20120062737A (en) 2009-09-02 2012-06-14 니혼 치쿠덴키 고교 가부시키가이샤 Electricity-storage device that can output alternating current
TWI484718B (en) * 2009-09-02 2015-05-11 Japan Aerospace Exploration Storage device and output voltage method of the storage device
JP4590520B1 (en) * 2009-09-02 2010-12-01 日本蓄電器工業株式会社 AC output power storage device
US9318779B2 (en) 2009-09-02 2016-04-19 Japan Aerospace Exploration Agency Electric energy storage units connected in series and selectively charged/discharged via a balancing circuit or directly from a charger or to a load
KR101016209B1 (en) * 2009-10-16 2011-02-25 한국과학기술원 Feeding segmentation of on-line electric vehicle, method for installation and controlling thereof
KR101036627B1 (en) 2009-12-21 2011-05-24 한국과학기술원 Apparatus for arc detection and arc protection on high voltage circuit of olev, method therefor and recording medium for programming the same method
JP2011239603A (en) * 2010-05-12 2011-11-24 Tamura Seisakusho Co Ltd Charge and discharge system
CN106160147A (en) * 2016-08-09 2016-11-23 天津中科泰平科技发展有限公司 Battery inductive charge circuit
CN106208291A (en) * 2016-08-31 2016-12-07 天津中科泰平科技发展有限公司 Vicarious electric automobile Rapid Circulation charging device
JP6418705B1 (en) * 2017-09-15 2018-11-07 武雄 岩井 Capacitor power supply
JP2019054640A (en) * 2017-09-15 2019-04-04 武雄 岩井 Capacitor power supply device
CN110015134A (en) * 2017-09-29 2019-07-16 比亚迪股份有限公司 Electric vehicle and its charge control method and control device
DE102018218312A1 (en) * 2018-10-26 2020-04-30 Audi Ag Energy supply arrangement for supplying an electrical consumer of a low-voltage electrical system of a motor vehicle, electrical system and method for operating an energy supply arrangement
JP2021083285A (en) * 2019-11-22 2021-05-27 株式会社Nttドコモ Terminal, controller and program

Similar Documents

Publication Publication Date Title
CN1946587B (en) Power supply system for vehicle with improved energy efficiency and vehicle including the same
CN104080639B (en) The propelling control device of electric car and control method thereof
WO2018188224A1 (en) Power supply system, electric driving device, pure electric vehicle and working method therefor
EP2812992B1 (en) Reconfigurable battery
JP2002345157A (en) Charging and discharging device
CN105172988A (en) Self-charging electric vehicle and charging method thereof
JP3908907B2 (en) Automatic vehicle energy supply device
WO2000037278A1 (en) Hybrid drive system
JP2004023993A (en) Electric power converter
JP2011524155A (en) Power supply unit, method of charging storage battery of power supply unit, and lightweight electric vehicle with power supply unit
JP3389324B2 (en) Hybrid power supply for electric vehicles
Burnett et al. A power system combining batteries and supercapacitors in a solar/hydrogen hybrid electric vehicle
TW200831319A (en) Regenerative braking system for restoring renewable energy from electric vehicles
CN206202007U (en) A kind of electrical integrated electric automobile high-voltage electrical architecture system of charge and discharge
CN107985091A (en) A kind of the transformation charging unit and control method of the wheel hub motor regenerative braking based on BMS
Sung et al. A power-assistance system using a battery and an electric double-layer capacitor bank for light electric vehicles
JP7160431B2 (en) Power transmission system and its control method
CN207150225U (en) A kind of elevator energy recovery system based on high voltage platform
Ji et al. A low cost battery equalizing scheme with buck-boost and series LC converter using synchronous phase-shift controller
Cheng et al. Energy management system with Bi-directional converter on hybrid sources electric scooters
JPH08126119A (en) Electric automobile
JP3568448B2 (en) Electric vehicle power system
JP2000059903A (en) Charging method with regenerative energy
CN107453449A (en) A kind of elevator energy recovery system based on high voltage platform
JPH08251711A (en) Battery apparatus for hybrid automobile