JP2002318283A - 2次元アレイ型放射線検出器とそのx線遮蔽壁の製造方法 - Google Patents

2次元アレイ型放射線検出器とそのx線遮蔽壁の製造方法

Info

Publication number
JP2002318283A
JP2002318283A JP2001125823A JP2001125823A JP2002318283A JP 2002318283 A JP2002318283 A JP 2002318283A JP 2001125823 A JP2001125823 A JP 2001125823A JP 2001125823 A JP2001125823 A JP 2001125823A JP 2002318283 A JP2002318283 A JP 2002318283A
Authority
JP
Japan
Prior art keywords
ray
grid
groove
dimensional array
radiation detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001125823A
Other languages
English (en)
Inventor
Hiromichi Tonami
寛道 戸波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2001125823A priority Critical patent/JP2002318283A/ja
Publication of JP2002318283A publication Critical patent/JP2002318283A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

(57)【要約】 【課題】 2次元方向の散乱X線を除去し、画素ピッチ
との干渉縞、グリッド板傾斜による濃淡縞を発生しない
2次元アレイ型放射線検出器を提供する。 【解決手段】 板状の感光性ガラス1に、フォトマスク
を用いて、X線検出部の画素ピッチのn倍(nは整数)
となるピッチで、紫外線光源により光露光を行い、加熱
現像処理で結晶化させ、再露光後、エッチングしてX線
入射方向に格子溝をつくり、X線吸収材を充填して表面
に2次元状の表面縦溝遮蔽2と表面横溝遮蔽3を、裏面
に2次元状の裏面縦溝遮蔽2aと裏面横溝遮蔽3aを形
成したグリッドを製作する。そして、TFTガラス基板
5上に設けられたシンチレータ7と光電変換素子6と走
査回路8からなるX線検出部に、画素と一致するように
スペーサ4を用いて精度よく前面にグリッドを配置す
る。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、2次元アレイ型放
射線検出器に係わり、特に、X線フラットパネルディテ
クタの散乱線除去用のグリッド、もしくは、X線コーン
ビームCTの散乱線除去用のコリメータに用いられるX
線遮蔽壁及びその製造方法に関する。
【0002】
【従来の技術】X線によって被検者を透視し、撮影して
診断するとき、被検者で散乱する散乱X線は、入射X線
とはほとんど無関係な方向に放射されるため、被検者の
有用な情報を伝達せず画質を低下させる。そのため、透
視・撮影において散乱X線量を低減することは高画質を
得るために重要なことである。X線検出部に入射する散
乱X線の量が減少すると、X線像のコントラストが向上
する。そのためにX線検出部の前面にグリッドが備えら
れる。グリッドは、X線吸収の大きい金属のはく(X線
遮蔽壁)と、X線吸収の小さい中間物質の薄板を交互に
並べ板状にしたもので、金属のはくによって方向性の定
まらない散乱X線を吸収し減少させる。図6に、被検者
29で散乱した散乱X線32がグリッド34で除去され
る様子を示す。X線管焦点30から放射されたX線は、
被検者29に入射X線(一次X線)31として照射さ
れ、被検者29をまっすぐに透過した透過X線33と、
散乱した散乱X線(二次X線)32となる。透過X線3
3はグリッド34を透過しその背後に設けられたX線検
出部38に入射する。散乱X線32は、グリッド34の
X線遮蔽壁35に吸収され消滅する。グリッド34は、
X線吸収の大きい金属のはく(主に鉛)などからなるX
線遮蔽壁35と、X線吸収の小さい中間物質36(アル
ミニウム、紙、木、合成樹脂、カーボン樹脂など)の薄
板を交互に並べ、X線入射側とX線検出部38側の両面
を保持板37で補強した板状のものである。そのグリッ
ド密度は、40〜60本/cmのものが使われている。
上記のグリッド34に対するX線検出部38として、X
線フイルムを用いるもの、イメージインテンシファイア
を用いるもの、フラットパネルディテクタを用いるもの
等がある。フラットパネルディテクタは、X線の照射強
度に応じて良好な光導電特性を有し、電荷信号を発生す
るフラットな形状をしたフラットパネルディテクタ(F
PD)である。このようなフラットパネルのX線撮影装
置を、従来のX線透視撮影台に組込むことにより、X線
フイルムカセッテやカセッテレスの速写装置に比べて、
大きな空間を占有することが無く全体が小型になり、し
かも、軽量であるので、X線透視撮影台の操作性が向上
する。さらに、フイルム現像処理を必要としないので、
電気的な画像処理によって迅速に撮影画像を得ることが
できる。このFPDは、通常、X線を光に変換するX線
変換膜と、その直下に行列状に配置されたフォトダイオ
ードアレイと、各フォトダイオードアレイに接続された
TFTスイッチによって構成され、X線照射後、各TF
Tスイッチを順次ONすることで、各画素に蓄積された
信号電荷を読み出しX線画像を形成するタイプのもの
と、放射線に感応し入射線量に対応した電荷信号を直接
出力する変換層からなる放射線センサーアレイを有し、
その直下に行列状に配置され電極にTFTスイッチが接
続され、照射時に各TFTスイッチを順次ONすること
で、各画素に蓄積された信号電荷を読み出し、X線画像
を形成するタイプの2種類のものがある。
【0003】また、X線CT装置用の散乱X線32の除
去には、X線検出部38の前面にX線吸収の大きい金属
(タングステン、モリブデンなど)の薄板を、円弧状の
支持金具にその両端が保持されて、X線入射方向に並べ
られたコリメータが用いられる(コリメータの構成はグ
リッドと同様であるが、X線CT装置ではコリメータと
呼ばれる)。
【0004】
【発明が解決しようとする課題】従来のグリッド34も
しくはコリメータとX線検出部38を組合せた放射線検
出器は以上のように構成されているが、従来のグリッド
34又はコリメータは直線的に一方向しかX線遮蔽壁3
5(金属はく)が設けられていないため、それと水平直
角方向の散乱線除去能力が無く、X線画像のコントラス
トが低下するという問題がある。また、フラットパネル
ディテクタにグリッド34を用いる場合、グリッド34
のX線遮蔽壁35(金属はく)のピッチと、X線検出部
38のフラットパネルディテクタの画素ピッチが異な
り、整合する構造になっていないため、得られたX線画
像に干渉縞を発生させアーティファクトとなるという問
題がある。さらに、精度よくX線管焦点30の方向(X
線入射方向)にX線遮蔽壁35(金属はく)が向けられ
ていないためX線画像にグリッド縞が見られたりする現
象が発生し、良好なX線画像を得ることが出来ず、X線
の検出効率の低下を招くなどの問題がある。
【0005】本発明は、このような事情に鑑みてなされ
たものであって、X−Yの2次元方向の散乱X線を除去
し、X線検出部のフラットパネルディテクタの画素ピッ
チに合致したピッチを有し、X線入射方向に精度よく傾
斜したX線遮蔽壁を有するグリッドを、X線検出部の前
面に精度よく取付けた2次元アレイ型放射線検出器とそ
のX線遮蔽壁の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】上記の目的を達成するた
め、本発明の2次元アレイ型放射線検出器は、X線検出
部と散乱線除去用のグリッドとを備え、X線源からコー
ン状のX線ビームを被検者に照射して得られる透過X線
が、前記グリッドを介してX線検出部に導かれるように
構成した2次元アレイ型放射線検出器において、前記X
線検出部と平行なX−Y方向にX線検出部の画素ピッチ
のn倍(nは整数)となるピッチでX線入射方向に格子
溝を形成し、その格子溝にX線吸収材を充填したX線遮
蔽壁と、そのX線遮蔽壁に対応して配置されたX線検出
部とを備えるものである。
【0007】そして、そのX線遮蔽壁の製造方法は、感
光性ガラスの板に紫外線光源によりフォトマスクを用い
て光露光を行い、加熱現像処理により感光した部分を結
晶化させ、再露光後、酸で表裏両面からエッチングによ
り、X線検出部と平行なX−Y方向に格子溝を形成し、
その格子溝にX線吸収材を充填するものである。
【0008】また、他のX線遮蔽壁の製造方法は、感光
性ガラスの板に紫外線光源によりフォトマスクを用いて
光露光を行い、加熱現像処理により感光した部分を結晶
化させ、再露光後、酸で表裏何れかの面のみエッチング
によりX線検出部と平行なX−Y方向に格子溝を形成
し、その格子溝にX線吸収材を充填し、その後、エッチ
ングしなかったもう一方の面からエッチングを行い結晶
化された部分はすべて除去するように格子溝を形成し、
その格子溝にX線吸収材を充填するものである。
【0009】本発明の2次元アレイ型放射線検出器は上
記のように構成されており、感光性ガラスの板に、X−
Yの2次元方向にマスキングされたフォトマスクを用い
て、フラットパネルディテクタの画素ピッチのn倍(n
は整数)となるピッチで、入射X線方向と同じ方向から
紫外線光源により光露光を行い、加熱現像処理により感
光した部分を結晶化させ、再露光後、酸で表裏両面から
エッチングして、X線入射方向に格子溝を形成し、その
格子溝にX線吸収材を充填してグリッドを形成し、フラ
ットパネルディテクタの画素に一致するように前面に配
置される。また、再露光後、酸で表裏何れかの面のみエ
ッチングによりX線検出部と平行なX−Y方向に格子溝
を形成し、その格子溝にX線吸収材を充填し、その後、
エッチングしなかったもう一方の面から同様にエッチン
グを行い、結晶化された部分はすべて除去するように格
子溝を形成してから、その格子溝にX線吸収材を充填し
てグリッドを形成し、フラットパネルディテクタの画素
に一致するように前面に配置される。そのため、X−Y
の2次元方向の散乱X線を除去することができ、コント
ラストのよい画像を得ることができる。さらに、フラッ
トパネルディテクタの画素ピッチに合致したピッチを有
し、X線入射方向に精度よく傾斜したX線遮蔽壁を有す
るグリッドを、フラットパネルディテクタの前面に精度
よく取付けることにより、画素のピッチとグリッドのピ
ッチとによる干渉縞、X線遮蔽壁の傾斜不一致によるグ
リッド濃淡縞等がX線画像上に生じることが無く、鮮明
な画像を得ることができる。
【0010】
【発明の実施の形態】本発明の2次元アレイ型放射線検
出器の一実施例を図1を参照しながら説明する。図1は
本発明の2次元アレイ型放射線検出器の断面構造を示す
図である。本2次元アレイ型放射線検出器は、感光性ガ
ラス1の表裏両面の縦溝と横溝にX線吸収材を充填し表
面縦溝遮蔽2、表面横溝遮蔽3、裏面縦溝遮蔽2a、裏
面横溝遮蔽3aによるX線遮蔽壁を2次元状に形成した
グリッドと、行列状に配置され電極にTFTスイッチが
設けられたTFTガラス基板5上に光電変換素子6とC
sI:Tl、GdSに代表されるシンチレータ7
を組合せた間接変換タイプ、もしくは、a‐Se、Cd
Teに代表される光導電膜を組合せた直接変換タイプと
走査回路8が設けられたX線検出部と、前記グリッドと
前記X線検出部とを所定の間隔離して上下に配置するた
めのスペーサ4とから構成され、位置決め孔9、もしく
は、顕微鏡などで観察しながら配置することにより、グ
リッドとX線検出器との位置合わせが正確に行われ固定
される。
【0011】感光性ガラス1は、紫外線を照射すると、
照射された部分が結晶化しやすくなり、加熱すると金属
コロイドを生成し、結晶が析出する。そして、再び紫外
線を照射し、酸でエッチングすると照射された部分がエ
ッチングされ、照射されなかった部分との境界にシャー
プなエッジを形成して溝が出来る。溝の深さは、感光性
ガラスの材質、紫外線の照射条件、エッチング時間等で
決まり、制御することができる。外形寸法は用途に応じ
て、縦×横が228.6×228.6mm〜431.8
〜355.6mm、厚さ1〜3mmを用いる。表面縦溝
遮蔽2、表面横溝遮蔽3、裏面縦溝遮蔽2a、裏面横溝
遮蔽3aは、感光性ガラス1に光パターンマスク露光法
で形成された格子状の溝に、タングステンやモリブデン
などの重金属を熱CVD法により充填したり、ビスマス
を主成分とする共晶合金、インジウム‐スズ共晶合金等
の低融点金属を液状にして充填したものである。一般に
市販されているフラットパネルディテクタの画素ピッチ
は、約0.15mmであるが、感光性ガラス1の格子溝
のピッチは、干渉縞の発生を防止するために、そのn倍
(n:整数)にする。最適な値としてn=1、もしく
は、n=2が望ましく、0.15mm、もしくは、0.
3mmとなる。そして、溝となる部分の幅は、開口率の
観点から狭いほうが望ましいが、製造上の制限から、
0.05〜0.1mmとする。その溝の方向は、X線入
射方向に収斂して形成される。また、製造上の制限か
ら、溝の深さは、溝幅との関係から一般に、深さ:幅=
10:1とする。例えば、溝幅0.05mmの場合、溝
の深さは0.5mmとなる。一般に中心部のX線遮蔽壁
のピッチ(間隔)と深さ(高さ)の比を「グリッド比」
と呼び、グリッドの散乱線除去能力(コントラスト改
善)を示すパラメータとされる。この場合、グリッド比
が制限を受けてしまうが、感光性ガラス1の表裏表面に
グリッドを形成しているため、通常の2倍のグリッド比
が得られることになる。このように形成された表面縦溝
遮蔽2、表面横溝遮蔽3、裏面縦溝遮蔽2a、裏面横溝
遮蔽3aが不要な散乱X線を除去し、グリッドの役割を
果たしてX線検出部に被検者を透過した必要な透過X線
の情報を取り込むことができる。
【0012】次に、本2次元アレイ型放射線検出器のX
線遮蔽壁の製造方法を、図2を参照しながら説明する。
図2はX線遮蔽壁の製造工程を示す図である。まず、
(1)感光性ガラス1を、外形寸法228.6×22
8.6mm〜431.8×355.6mm、厚さ1〜3
mmから用途に応じて準備する。次に(2)感光性ガラ
ス1を露光するためのフォトマスク10を作成する。図
2(2)に示す白線の部分が光が透過する部分であり、
最終的に溝部12になる。用途に応じてピッチは0.1
5mmもしくは0.3mmなどフラットパネルディテク
タの画素ピッチのn倍(n:整数)となるように作成さ
れ、また、溝になる部分の溝幅は、0.05〜0.1m
mになるようなパターンを作成する。次に(3)点焦点
照射となるような紫外線露光装置を準備し、感光性ガラ
ス1と紫外線点焦点11との距離Lが、フラットパネル
ディテクタと組合せて2次元アレイ型放射線検出器を形
成する場合に、グリッドのすべての開口部がX線管焦点
の方向に向くように、かつ、紫外線が入射される空気層
と感光性ガラス1の層との間に屈折率の違いがあること
により、光の屈折が発生するが、そのことを考慮して、
通常、L=500〜1000mmに設定される。感光性
ガラス1の上面にフォトマスク10をセットし、紫外線
の強度を所定の値に設定し所定の時間露光する。図3に
具体的な露光装置の概略図を示す。Hg−Xeランプ1
7で発光した紫外線は楕円反射鏡16で反射して、イン
テグレータ20に入る。その上部にシャッター19が設
けられロータリソレノイド18で駆動され、所定の時
間、開口して露光が制御される。インテグレータ20は
熱をもつので冷却ブロアー21で冷却される。そして、
紫外線は石英製のコリメータレンズ22と集束レンズ2
3によって集束され、紫外線点焦点11に集光される。
その紫外線点焦点11から距離Lだけ離れた位置に感光
性ガラス1をセットし、その上部にフォトマスク10を
セットして、必要な時間、露光される。次に(4)加熱
現像処理して感光した部分に、金属コロイドを生成さ
せ、さらに、結晶物を析出させる。そして、全体に結晶
化しない条件で再露光する。次に(5)結晶析出部分を
表裏両面とも希沸酸溶液にてエッチングして除去する。
一具体例として、感光性ガラス1の基板厚さ1.3〜
1.5mm、溝ピッチ0.05mmとすると、限界溝部
12の深さは0.5mmとなるため、表裏両面から深さ
0.5mmの溝部12がエッチングでき、残り肉厚は
0.3mm〜0.5mmとなる。次に(6)ヒータ15
の熱による熱CVD法によって、タングステン、もしく
は、モリブデンなどの重金属を溝部12に充填する。あ
るいは、ビスマスを主成分とする共晶合金等の低融点金
属を液状にして溝部12に充填してもよい。次に(7)
熱CVD法等の工程で、溝部12のX線遮蔽材13以外
に、感光性ガラス1の表面に重金属や共晶合金等の堆積
X線遮蔽材14が生成するので、これをラッピング加工
により研磨して除去する。さらにX線の透過率をよくす
るために、あらかじめ工程(5)の後に、露光及び加熱
現像処理をしておいて、X線受光部のガラスをすべてエ
ッチング除去する方法をとっても良い。上記の工程によ
り、感光性ガラス1の表面に2次元状の表面縦溝遮蔽2
と表面横溝遮蔽3を、裏面に2次元状の裏面縦溝遮蔽2
aと裏面横溝遮蔽3aを形成することが出来る。
【0013】一方、X線検出部は、図1に示すように、
TFTガラス基板5上に、行列状に配置された電極とT
FTスイッチとが設けられ、その上部に形成されたフォ
トダイオードアレイからなる光電変換素子6と、その上
面に形成されたシンチレータ7と、電子走査をするため
の走査回路8とから構成される。透過X線33がシンチ
レータ7に入射すると、シンチレータ7内でX線が光に
変換されて、その発光は光電変換素子6で検知され、電
気信号に変換されて、走査回路8から入射X線量に比例
した信号が取出される。入射X線量を電気信号に変換す
る方法として、フォトダイオードアレイの光電変換素子
6上にCsI:Tlシンチレータ柱状結晶を蒸着等によ
り形成し、または、GdS増感紙を密着配置して
形成し、一旦X線を光に変換した後、光を電気に変換す
るタイプ、すなわち、間接変換型フラットパネルディテ
クタと、TFTスイッチング素子の基板上に、X線を直
接電気信号に変換できるX線変換半導体素子、例えば、
a‐Se、CdTe等が形成された直接変換型フラット
パネルディテクタがある。いずれも入射X線量が走査回
路8で走査されて電気信号として読み出される。
【0014】図4にX線検出部の信号読み出し回路を示
す。X線が入射すると図1に示すシンチレータ7が入射
X線量に応じて発光し、その光がフォトダイオードアレ
イの光電変換素子6に入る。光電変換素子6は入射した
光に応じて電荷を発生する。TFTガラス基板5には横
にゲート線25と縦に読出信号線27が、各光電変換素
子6に対応して配線されており、各光電変換素子6には
スイッチング素子の役割をするTFT26がパターンに
より形成されている。ゲートドライバー回路24の順次
信号をTFT26へ送ることによりTFT26がスイッ
チングされて、光電変換素子6の電荷信号を読出信号線
27から順次読出し読出アンプ28に入力される。そし
て、読出アンプ28から外部の回路にX線画像信号が送
り出される。
【0015】最後に、上記グリッドとフラットパネルデ
ィテクタは、図1に示すように、スペーサ4を用いてグ
リッドとフラットパネルディテクタを所定の間隔離し
て、位置決め孔9もしくは顕微鏡などで観察しながら配
置することにより、位置精度が正確に設定され、各画素
の検出感度を一様かつ最大になるようにしている。そし
て、グリッドとフラットパネルディテクタを一体とした
ものが主筐体に取付けられる。
【0016】次に、本2次元アレイ型放射線検出器のX
線遮蔽壁の他の製造方法を、図5を参照しながら説明す
る。図5はX線遮蔽壁の他の製造工程を示す図である。
工程(1)〜(4)については図2に示す工程と同じで
ある。(5)1回目エッチング工程では、感光性ガラス
1の表裏一方の面にダミーガラス1aを貼り付けた上
で、結晶析出部分を希沸酸溶液にてエッチングして除去
する。このとき一具体例として、感光性ガラス1の基板
厚さ1.0mm、溝幅0.05mmとすると、限界溝の
深さは0.5mmとなるため、ダミーガラス1aが貼り
付けられていない側の表面から深さ0.5mmの溝部1
2aがエッチングでき、残り肉厚は0.5mmとなる。
次に、(6)熱CVD法により、タングステン、もしく
は、モリブデンなどの重金属を溝部12aに充填する。
あるいは、ビスマスを主成分とする共晶合金やインジウ
ム‐スズ共晶合金等の低融点金属を液状にして、X線遮
蔽材13として溝部12aに充填しても良い。この場
合、感光性ガラス1の表面にも堆積X線遮蔽材14が堆
積する。次に、(7)ダミーガラス1aを取外し、もう
一方の面の結晶析出部分を希沸酸溶液にてエッチング除
去する。この場合、すでに同位相の溝部12aには金属
が充填されているため、エッチングをしても感光性ガラ
ス1の基板は剛性が保たれている。次に、(8)熱CV
D法により、タングステン、もしくは、モリブデンなど
の重金属を溝部12aに充填する。あるいは、ビスマス
を主成分とする共晶合金やインジウム‐スズ共晶合金等
の低融点金属を液状にして、X線遮蔽材13として溝部
12aに充填しても良い。この場合、感光性ガラス1の
表面にも堆積X線遮蔽材14が堆積する。次に、(9)
最後に(6)及び(8)工程で溝部12a以外に堆積し
た重金属や共晶合金を、表裏面ともラッピング工程によ
り研磨して除去する。
【0017】上記のように製作されたグリッドとフラッ
トパネルディテクタは、図1に示すように、スペーサ4
を用いてグリッドとフラットパネルディテクタを所定の
間隔離して、位置決め孔9もしくは顕微鏡などで観察し
ながら配置することにより、位置精度が正確に設定さ
れ、各画素の検出感度を一様かつ最大になるようにして
いる。そして、グリッドとフラットパネルディテクタを
一体としたものが主筐体に取付けられる。
【0018】
【発明の効果】本発明の2次元アレイ型放射線検出器は
上記のように構成されており、感光性ガラスの板に、フ
ォトマスクを用いて、フラットパネルディテクタの画素
ピッチのn倍(nは整数)となるピッチで、紫外線光源
により光露光を行い、加熱現像処理で結晶化させ、再露
光後、エッチングしてX線入射方向に格子溝をつくり、
X線吸収材を充填してグリッドを製作し、そのグリッド
がフラットパネルディテクタの画素に一致するように前
面に配置されるので、2次元方向の散乱X線を除去して
コントラストのよい画像を得ることができる。さらに、
画素ピッチに合致したピッチでX線入射方向に精度よく
傾斜したX線遮蔽壁を有し、そのグリッドがフラットパ
ネルディテクタの前面に精度よく取付けられるので、画
素のピッチとグリッドのピッチとによる干渉縞、X線遮
蔽壁の傾斜不一致によるグリッド濃淡縞等を生じること
が無く、鮮明な画像を得ることができ、X線の有効利用
によって被検者への被曝線量を下げることができる。
【図面の簡単な説明】
【図1】 本発明の2次元アレイ型放射線検出器の一実
施例を示す図である。
【図2】 本発明の2次元アレイ型放射線検出器のX線
遮蔽壁の製造方法を示す図である。
【図3】 本発明のX線遮蔽壁の製造方法に用いる光露
光用の光源を示す図である。
【図4】 本発明の2次元アレイ型放射線検出器のX線
検出部のTFTガラス基板を示す図である。
【図5】 本発明のX線遮蔽壁の他の製造方法を示す図
である。
【図6】 従来の散乱線除去用のグリッドを示す図であ
る。
【符号の説明】
1…感光性ガラス 1a…ダミーガラス 2…表面縦溝遮蔽 2a…裏面縦溝遮蔽 3…表面横溝遮蔽 3a…裏面横溝遮蔽 4…スペーサ 5…TFTガラス基板 6…光電変換素子 7…シンチレータ 8…走査回路 9…位置決め孔 10…フォトマスク 11…紫外線点焦点 12、12a…溝部 13…X線遮蔽材 14…堆積X線遮蔽材 15…ヒータ 29…被検者 30…X線管焦点 31…入射X線 32…散乱X線 33…透過X線 34…グリッド 35…X線遮蔽壁 36…中間物質 37…保持板 38…X線検出部
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G21K 1/02 G21K 1/02 M

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】X線検出部と散乱線除去用のグリッドとを
    備え、X線源からコーン状のX線ビームを被検者に照射
    して得られる透過X線が、前記グリッドを介してX線検
    出部に導かれるように構成した2次元アレイ型放射線検
    出器において、前記X線検出部と平行なX−Y方向にX
    線検出部の画素ピッチのn倍(nは整数)となるピッチ
    でX線入射方向に格子溝を形成し、その格子溝にX線吸
    収材を充填したX線遮蔽壁と、そのX線遮蔽壁に対応し
    て配置されたX線検出部とを備えることを特徴とする2
    次元アレイ型放射線検出器。
  2. 【請求項2】感光性ガラスの板に紫外線光源によりフォ
    トマスクを用いて光露光を行い、加熱現像処理により感
    光した部分を結晶化させ、再露光後、酸で表裏両面から
    エッチングにより、X線検出部と平行なX−Y方向に格
    子溝を形成し、その格子溝にX線吸収材を充填すること
    を特徴とする請求項1記載の2次元アレイ型放射線検出
    器に用いるX線遮蔽壁の製造方法。
  3. 【請求項3】感光性ガラスの板に紫外線光源によりフォ
    トマスクを用いて光露光を行い、加熱現像処理により感
    光した部分を結晶化させ、再露光後、酸で表裏何れかの
    面のみエッチングによりX線検出部と平行なX−Y方向
    に格子溝を形成し、その格子溝にX線吸収材を充填し、
    その後、エッチングしなかったもう一方の面からエッチ
    ングを行い結晶化された部分はすべて除去するように格
    子溝を形成し、その格子溝にX線吸収材を充填すること
    を特徴とする請求項1記載の2次元アレイ型放射線検出
    器に用いるX線遮蔽壁の製造方法。
JP2001125823A 2001-04-24 2001-04-24 2次元アレイ型放射線検出器とそのx線遮蔽壁の製造方法 Pending JP2002318283A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001125823A JP2002318283A (ja) 2001-04-24 2001-04-24 2次元アレイ型放射線検出器とそのx線遮蔽壁の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001125823A JP2002318283A (ja) 2001-04-24 2001-04-24 2次元アレイ型放射線検出器とそのx線遮蔽壁の製造方法

Publications (1)

Publication Number Publication Date
JP2002318283A true JP2002318283A (ja) 2002-10-31

Family

ID=18974974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001125823A Pending JP2002318283A (ja) 2001-04-24 2001-04-24 2次元アレイ型放射線検出器とそのx線遮蔽壁の製造方法

Country Status (1)

Country Link
JP (1) JP2002318283A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333490A (ja) * 2003-04-30 2004-11-25 Ge Medical Systems Global Technology Co Llc コリメータを一体として有するシンチレータ及びその製造方法
JP2008180713A (ja) * 2007-01-23 2008-08-07 General Electric Co <Ge> 画素型エネルギ識別検出器の電荷共有を低減する方法及び装置
JP2009509133A (ja) * 2005-09-19 2009-03-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電磁放射線の選択的吸収のための格子,及びその製造方法
WO2012057045A1 (ja) * 2010-10-25 2012-05-03 富士フイルム株式会社 放射線撮影装置、放射線撮影システム
KR101183968B1 (ko) 2008-12-22 2012-09-19 한국전자통신연구원 테라헤르츠파 검출기용 금속 그리드 모듈 및 그 제조 방법
JP2013536403A (ja) * 2010-06-17 2013-09-19 カールスルーアー・インスティトゥート・フュア・テヒノロギー 少なくとも二つの材料から成るx線撮像用の格子
JP2015184277A (ja) * 2014-03-21 2015-10-22 株式会社東芝 半導体x線検出器用コリメータ作製方法
JP2020044097A (ja) * 2018-09-19 2020-03-26 株式会社三田屋製作所 グリッドおよびグリッド付きx線検出器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS324575B1 (ja) * 1954-01-21 1957-07-06
JPH08322832A (ja) * 1995-03-10 1996-12-10 General Electric Co <Ge> 医療診断用放射線写真法に用いる散乱防止x線格子を製造する方法及び医療診断用放射線写真法に用いる散乱防止x線格子
JPH11231099A (ja) * 1997-10-24 1999-08-27 Trw Inc シリコンウエーハで形成された格子
JP2000325332A (ja) * 1999-04-12 2000-11-28 General Electric Co <Ge> イメージング・システム用のコリメータ装置およびその製作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS324575B1 (ja) * 1954-01-21 1957-07-06
JPH08322832A (ja) * 1995-03-10 1996-12-10 General Electric Co <Ge> 医療診断用放射線写真法に用いる散乱防止x線格子を製造する方法及び医療診断用放射線写真法に用いる散乱防止x線格子
JPH11231099A (ja) * 1997-10-24 1999-08-27 Trw Inc シリコンウエーハで形成された格子
JP2000325332A (ja) * 1999-04-12 2000-11-28 General Electric Co <Ge> イメージング・システム用のコリメータ装置およびその製作方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333490A (ja) * 2003-04-30 2004-11-25 Ge Medical Systems Global Technology Co Llc コリメータを一体として有するシンチレータ及びその製造方法
JP4576152B2 (ja) * 2003-04-30 2010-11-04 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 一体型のシンチレータ及びコリメータを有する検出器を製造する方法
JP2009509133A (ja) * 2005-09-19 2009-03-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電磁放射線の選択的吸収のための格子,及びその製造方法
JP2008180713A (ja) * 2007-01-23 2008-08-07 General Electric Co <Ge> 画素型エネルギ識別検出器の電荷共有を低減する方法及び装置
KR101183968B1 (ko) 2008-12-22 2012-09-19 한국전자통신연구원 테라헤르츠파 검출기용 금속 그리드 모듈 및 그 제조 방법
JP2013536403A (ja) * 2010-06-17 2013-09-19 カールスルーアー・インスティトゥート・フュア・テヒノロギー 少なくとも二つの材料から成るx線撮像用の格子
US9230703B2 (en) 2010-06-17 2016-01-05 Karlsruher Institut Fuer Technologie Gratings for X-ray imaging, consisting of at least two materials
WO2012057045A1 (ja) * 2010-10-25 2012-05-03 富士フイルム株式会社 放射線撮影装置、放射線撮影システム
JP2015184277A (ja) * 2014-03-21 2015-10-22 株式会社東芝 半導体x線検出器用コリメータ作製方法
JP2020044097A (ja) * 2018-09-19 2020-03-26 株式会社三田屋製作所 グリッドおよびグリッド付きx線検出器

Similar Documents

Publication Publication Date Title
US7149283B2 (en) Method for producing and applying an antiscatter grid or collimator to an x-ray or gamma detector
JPH0721560B2 (ja) X線作像配列を形成する方法と配列
JP2012150144A (ja) 放射線画像撮影用グリッド、放射線画像検出器、放射線画像撮影システム及び放射線画像撮影用グリッドの製造方法。
CN111244121B (zh) 放射线图像探测器
US5723865A (en) X-ray imaging device
JP2001066369A (ja) 電磁放射の検出器
US8138011B2 (en) Radiation-detecting device and method of manufacturing same
JP2002257939A (ja) 2次元放射線検出器とその製造方法、及びその補正方法
JP4338938B2 (ja) シンチレータ装置、x線検出器、x線検査装置、及び、シンチレータ装置を製造する方法
JP2002318283A (ja) 2次元アレイ型放射線検出器とそのx線遮蔽壁の製造方法
US20110001052A1 (en) Computed radiography system
JP4156709B2 (ja) シンチレータパネル、放射線イメージセンサ及びその製造方法
US6989539B2 (en) Flat dynamic radiation detector
Yu et al. Scintillating fiber optic screens: A comparison of MTF, light conversion efficiency, and emission angle with Gd2O2S: Tb screens
JP3526891B2 (ja) 放射線画像信号読出方法およびそれに用いられる放射線検出器
CN111134705A (zh) 一种放射线图像探测器及其制作方法
JP2001188096A (ja) 2次元アレイ型放射線検出器及びx線遮蔽壁の製造方法
KR20020082566A (ko) 디지털 엑스레이 장치
JP2012132793A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP4759131B2 (ja) X線画像撮影装置
JP2001215280A (ja) 吸光層を有する放射線撮影装置
JP2004167075A (ja) 放射線撮像装置及び放射線撮像方法
EP1481262B1 (en) Apparatus and method for detection of radiation
JPH05180945A (ja) 放射線検出素子およびその製造方法
JP2003014850A (ja) シンチレータユニットおよびシンチレータユニットの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323