JP2002318039A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2002318039A
JP2002318039A JP2001121987A JP2001121987A JP2002318039A JP 2002318039 A JP2002318039 A JP 2002318039A JP 2001121987 A JP2001121987 A JP 2001121987A JP 2001121987 A JP2001121987 A JP 2001121987A JP 2002318039 A JP2002318039 A JP 2002318039A
Authority
JP
Japan
Prior art keywords
defrosting
gas
reverse
temperature
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001121987A
Other languages
Japanese (ja)
Other versions
JP2002318039A5 (en
Inventor
Hisashi Daisaka
恒 台坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001121987A priority Critical patent/JP2002318039A/en
Publication of JP2002318039A publication Critical patent/JP2002318039A/en
Publication of JP2002318039A5 publication Critical patent/JP2002318039A5/ja
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To lessen worsening of an indoor environment, by shortening the time of reverse defrosting, in an air conditioner having gas injection function for defrosting (reverse defrosting) by reversing the direction of circulation of a refrigerant by switching over a four-way valve in a heating operation. SOLUTION: In the case the temperature of an outdoor heat exchanger becomes a prescribed temperature or below and a prescribed time passes for the heating operation, before the reverse defrosting is executed in the heating operation, high-temperature gas in compression is made to flow backward to a vapor-liquid separator by regulating the valve travel of an expansion valve, so as to raise the temperature of the outdoor heat exchanger.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、暖房運転時に四
方弁を切り替えて冷媒循環方向を逆にすることによる除
霜(リバース除霜)を行うガスインジェクション機能を
備える空気調和機の除霜技術に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defrosting technique for an air conditioner having a gas injection function for performing defrosting (reverse defrosting) by switching a four-way valve to reverse a refrigerant circulation direction during a heating operation. It is concerned.

【0002】[0002]

【従来の技術】従来より、ヒートポンプ式空気調和機等
の効率向上を図るものとして、図1に示すように、凝縮
器と蒸発器の間に2個の膨張弁とその間に気液分離器を
設け、気液分離器内のガス冷媒を圧縮機の圧縮室にイン
ジェクションする機能を備える空気調和機が知られてい
る。
2. Description of the Related Art Conventionally, as an attempt to improve the efficiency of a heat pump type air conditioner or the like, as shown in FIG. 1, two expansion valves are provided between a condenser and an evaporator and a gas-liquid separator is provided between the two expansion valves. An air conditioner provided with a function of injecting a gas refrigerant in a gas-liquid separator into a compression chamber of a compressor is known.

【0003】圧縮機にインジェクションされるガス冷媒
流量(即ち、インジェクションガス流量)は、インジェ
クション通路の長さおよび径、インジェクション通路と
圧縮室をつなぐインジェクションポートの径および位置
などの圧縮機形状、気液分離器内の圧力(即ち、インジ
ェクション圧力)、吸込圧力などの運転条件によって決
定される。圧縮室にインジェクションされるインジェク
ションガス流量とインジェクション圧力の関係は、図2
に示すように、インジェクション圧力が高いほどインジ
ェクションガス流量は増加する。
The flow rate of the gas refrigerant injected into the compressor (ie, the flow rate of the injection gas) depends on the shape of the compressor, such as the length and diameter of the injection passage, the diameter and position of the injection port connecting the injection passage and the compression chamber, and the gas-liquid ratio. It is determined by operating conditions such as the pressure in the separator (that is, the injection pressure) and the suction pressure. The relationship between the flow rate of the injection gas injected into the compression chamber and the injection pressure is shown in FIG.
As shown in (2), the injection gas flow rate increases as the injection pressure increases.

【0004】このように2個の膨張弁を用いる場合、イ
ンジェクション圧力は膨張弁の開度を調整することによ
り、なるべくインジェクションガス流量を大きくするよ
うに設定する。すなわち、インジェクション圧力が、気
液分離器内のガス冷媒をすべてインジェクションする圧
力C1になるように、膨張弁の開度を調整する。なお、
インジェクション圧力がC0より低い場合には、圧縮機
の圧縮室から気液分離器側へ圧縮途中のガス冷媒が逆流
する。
When two expansion valves are used as described above, the injection pressure is set so as to increase the flow rate of the injection gas as much as possible by adjusting the opening degree of the expansion valve. That is, the opening degree of the expansion valve is adjusted so that the injection pressure becomes the pressure C1 at which all the gas refrigerant in the gas-liquid separator is injected. In addition,
When the injection pressure is lower than C0, the gas refrigerant that is being compressed flows backward from the compression chamber of the compressor to the gas-liquid separator side.

【0005】逆流することによって、圧縮途中の高温ガ
ス冷媒が蒸発器入口へ流入するので、蒸発器間でのエン
タルピー差を減少させてしまい、結果としてインジェク
ションしない場合よりも能力および効率は低下する。し
たがって、逆流を避けるために、インジェクション通路
または圧縮機のインジェクションポート部付近に逆止弁
を設けることを行う場合がある。また、逆止弁がなくて
も逆流が発生するような条件において確実に能力および
性能低下を防止するために、特開平10−176866
号公報に示すように、インジェクション通路に開閉弁を
設け、冷暖房の能力に応じてインジェクション通路を開
閉することによって、広い能力範囲で高効率な運転を可
能とさせることができる。
[0005] The backflow causes the hot gaseous refrigerant during compression to flow into the evaporator inlet, thereby reducing the enthalpy difference between the evaporators, and as a result, the capacity and efficiency are lower than when no injection is performed. Therefore, in order to avoid a backflow, a check valve may be provided in the vicinity of the injection passage or the injection port of the compressor. Further, in order to surely prevent deterioration in performance and performance under conditions where backflow occurs without a check valve, Japanese Patent Application Laid-Open No. H10-176866 has been proposed.
As shown in the publication, an on-off valve is provided in the injection passage, and the injection passage is opened and closed according to the cooling and heating capacity, thereby enabling highly efficient operation in a wide capacity range.

【0006】しかし、これらのような高効率なヒートポ
ンプ式空気調和機においても、特定条件下での暖房運転
時に室外熱交換器が着霜して暖房能力および性能が低下
することから、その着霜を除去する制御を行う必要があ
る。除霜方式としては、四方弁を切り替えて冷媒循環方
向を逆にすることによる除霜方式(以下、リバース除霜
方式)あるいはホットガスバイパス除霜方式があり、こ
の何れかを採用しているものが多い。
However, even in such high-efficiency heat pump type air conditioners, the outdoor heat exchanger is frosted during heating operation under specific conditions and the heating capacity and performance are reduced. Needs to be controlled. As a defrosting method, there is a defrosting method by switching a four-way valve to reverse a refrigerant circulation direction (hereinafter, a reverse defrosting method) or a hot gas bypass defrosting method, and any one of these methods is adopted. There are many.

【0007】リバース除霜方式の場合、室外熱交換器の
温度が低下して着霜状態と判断すると、四方弁を切り替
えて冷媒の流れを逆とし、凝縮熱により室外熱交器の除
霜を行うものである。つまり、暖房運転を中断するの
で、この除霜時間が長いほど室内環境を悪化させてしま
う。
[0007] In the case of the reverse defrosting method, when the temperature of the outdoor heat exchanger drops and it is determined that frost is formed, the four-way valve is switched to reverse the flow of the refrigerant, and the defrosting of the outdoor heat exchanger is performed by the heat of condensation. Is what you do. That is, since the heating operation is interrupted, the longer the defrosting time, the worse the indoor environment.

【0008】また、ホットガスバイパス除霜方式の場
合、図3に示すように、室外熱交換器の温度が低下して
着霜状態と判断すると、圧縮機から吐出される高温のガ
ス冷媒の一部をバイパス配管を介して室外熱交換器に供
給することにより除霜を行うものである。この場合、冷
凍サイクルの冷媒循環経路が暖房時のままであり、つま
り暖房運転を継続しながら室外熱交換器の除霜ができる
が、リバース除霜方式と比べると室内熱交換器の除霜に
長い時間がかかるために、着霜が多い場合には有効でな
い。
In the case of the hot gas bypass defrosting method, as shown in FIG. 3, when the temperature of the outdoor heat exchanger decreases and it is determined that the frost is formed, one of the high-temperature gas refrigerant discharged from the compressor is discharged. The defrosting is performed by supplying the unit to the outdoor heat exchanger via a bypass pipe. In this case, the refrigerant circulation path of the refrigeration cycle remains at the time of heating, that is, the outdoor heat exchanger can be defrosted while the heating operation is continued, but compared to the reverse defrosting method, the indoor heat exchanger defrosts. Since it takes a long time, it is not effective when there is much frost formation.

【0009】そこで、更に効率的な除霜方式として、図
4に示すように、リバース除霜方式とホットガスバイパ
ス除霜方式を組み合わせることにより、より室内環境の
悪化を少なくできるものがある(特開平11−2577
19号公報参照)。
Therefore, as a more efficient defrosting method, as shown in FIG. 4, by combining a reverse defrosting method and a hot gas bypass defrosting method, the deterioration of the indoor environment can be further reduced. Kaihei 11-2577
No. 19).

【0010】[0010]

【発明が解決しようとする課題】しかしながら、ガスイ
ンジェクション機能を有するヒートポンプ式空気調和機
において、ホットガスバイパス除霜方式とリバース除霜
方式を組み合わせようとすると、インジェクション通路
以外にホットガスバイパス通路を設けることが必要であ
り、装置が複雑化してしまう。この場合、ホットガスバ
イパス通路に開閉弁が付加されるなど部品が多くなるの
で信頼性も低下してしまう。ガスインジェクション機能
を備えるヒートポンプ式空気調和機の除霜効率向上技術
として、特開平5−60411号公報に示すように、冷
媒加熱器を付加するのがあるが、これも装置を複雑化さ
せてしまう。
However, in a heat pump type air conditioner having a gas injection function, if an attempt is made to combine the hot gas bypass defrosting method and the reverse defrosting method, a hot gas bypass passage is provided in addition to the injection passage. Is necessary, and the apparatus becomes complicated. In this case, the number of components increases, such as an on-off valve being added to the hot gas bypass passage, so that the reliability is reduced. As a technique for improving the defrosting efficiency of a heat pump type air conditioner having a gas injection function, as shown in Japanese Patent Application Laid-Open No. 5-60411, a refrigerant heater may be added, but this also complicates the apparatus. .

【0011】この発明は、前記課題に鑑みなされたもの
であり、その目的は、ガスインジェクション機能を備え
るヒートポンプ式空気調和機において、ホットガスバイ
パス通路や冷媒加熱装置などの除霜促進装置を付加せず
に除霜の時間を短くすることができることにより、室内
環境の悪化をより少なくするとができるようにした空気
調和機を提供することである。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and has as its object to provide a heat pump type air conditioner having a gas injection function in which a defrost accelerating device such as a hot gas bypass passage or a refrigerant heating device is added. It is an object of the present invention to provide an air conditioner capable of reducing the deterioration of the indoor environment by shortening the defrosting time without reducing the indoor environment.

【0012】[0012]

【課題を解決するための手段】請求項1の発明では、上
記課題を解決するための手段として、暖房運転時に四方
弁を切り替えて冷媒循環方向を逆にすることによる除霜
(リバース除霜)を行うガスインジェクション機能を備
える空気調和機において、前記リバース除霜を行う前
に、膨張弁の開度を調整することにより、圧縮途中の高
温ガスを気液分離器へ逆流させる膨張弁開度調整手段を
備えたことを特徴とする。
According to the first aspect of the present invention, as a means for solving the above-mentioned problems, defrosting (reverse defrosting) is performed by switching a four-way valve to reverse the refrigerant circulation direction during a heating operation. Before performing the reverse defrosting in the air conditioner having the gas injection function for performing the decompression, the opening degree of the expansion valve is adjusted by adjusting the opening degree of the expansion valve so that the hot gas that is being compressed flows back to the gas-liquid separator. Means are provided.

【0013】請求項2の発明では、上記課題を解決する
ための手段として、暖房運転時に四方弁を切り替えて冷
媒循環方向を逆にすることによる除霜(リバース除霜)
を行うガスインジェクション機能を備える空気調和機に
おいて、室外熱交換器温度センサーとタイマーを備え、
室外熱交換器温度が所定温度以下および暖房運転時間が
所定時間経過した場合、リバース除霜を行う前に膨張弁
の開度を調整することにより、圧縮途中の高温ガスを気
液分離器へ逆流させる膨張弁開度調整手段を備えたこと
を特徴とする。
According to a second aspect of the present invention, as a means for solving the above-mentioned problems, a defrost (reverse defrost) by switching a four-way valve to reverse a refrigerant circulation direction during a heating operation is provided.
An air conditioner with a gas injection function for performing an outdoor heat exchanger temperature sensor and a timer,
When the outdoor heat exchanger temperature is equal to or lower than the predetermined temperature and the heating operation time has elapsed for a predetermined time, the high-temperature gas during compression is returned to the gas-liquid separator by adjusting the opening of the expansion valve before performing reverse defrosting. An expansion valve opening adjusting means is provided for adjusting the opening degree of the expansion valve.

【0014】請求項3の発明では、上記課題を解決する
ための手段として、請求項1または2記載の空気調和機
において、膨張弁を電動膨張弁とすることを特徴とす
る。
According to a third aspect of the present invention, there is provided an air conditioner according to the first or second aspect, wherein the expansion valve is an electric expansion valve.

【0015】請求項1の発明では、上記手段によって次
のような作用が得られる。即ち、気液分離器に流入した
高温ガス冷媒は、室外熱交換器(蒸発器)に流入して室
外熱交換器の温度を上昇させる。その結果、リバース除
霜において除霜に必要な熱量を少なくすることができる
ので、リバース除霜時間を短縮できる。なお、ガスイン
ジェクション通路からの逆流による除霜方式とリバース
除霜方式およびホットガスバイパス除霜方式の関係は、
図5に示される関係にある。
According to the first aspect of the present invention, the following effects can be obtained by the above means. That is, the high-temperature gas refrigerant that has flowed into the gas-liquid separator flows into the outdoor heat exchanger (evaporator) and raises the temperature of the outdoor heat exchanger. As a result, the amount of heat required for the defrost in the reverse defrost can be reduced, and the reverse defrost time can be shortened. In addition, the relationship between the defrosting method by reverse flow from the gas injection passage, the reverse defrosting method, and the hot gas bypass defrosting method is as follows.
The relationship is as shown in FIG.

【0016】請求項2の発明では、上記手段によって次
のような作用が得られる。
According to the second aspect of the present invention, the following effects can be obtained by the above means.

【0017】即ち、請求項1の発明における作用に加え
て、インジェクション通路からの逆流を適正に行うこと
ができるので、さほど着霜していない場合など、不必要
に逆流を行わないようにできる。その結果、室内環境の
悪化をより少なくすることができる。
That is, in addition to the effect of the first aspect of the present invention, since the backflow from the injection passage can be appropriately performed, the backflow can be prevented from being performed unnecessarily when the frost is not so much formed. As a result, deterioration of the indoor environment can be reduced.

【0018】請求項3の発明では、上記手段によって次
のような作用が得られる。
According to the third aspect of the present invention, the following effects can be obtained by the above means.

【0019】即ち、請求項1または2の発明における作
用に加えて、2つの膨張弁を電動膨張弁にすることによ
って膨張弁の開度を精度良く調整できるので、インジェ
クション圧力すなわち逆流量を細かく設定できる。
That is, in addition to the effects of the first or second aspect of the present invention, the opening degree of the expansion valve can be adjusted with high precision by using two electric expansion valves as electric expansion valves, so that the injection pressure, that is, the reverse flow rate is set finely. it can.

【0020】[0020]

【発明の実施の形態】以下、本発明の空気調和機の具体
的な実施例について図面に従って詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a specific embodiment of an air conditioner of the present invention will be described in detail with reference to the drawings.

【0021】図1は、本発明による空気調和機の構成を
示す実施であり、動作を冷媒循環路に沿って説明する。
配管1bから吸入される低圧のガス冷媒は圧縮機1によ
り圧縮されて、高圧のガス冷媒となって配管1aへ吐出
される。その後、高圧のガス冷媒は、四方弁2を通り、
暖房運転ならば配管3へ、冷房運転ならば配管15へ流
出する。
FIG. 1 is an embodiment showing the configuration of an air conditioner according to the present invention, and its operation will be described along a refrigerant circuit.
The low-pressure gas refrigerant sucked from the pipe 1b is compressed by the compressor 1 and is discharged to the pipe 1a as a high-pressure gas refrigerant. Thereafter, the high-pressure gas refrigerant passes through the four-way valve 2,
It flows out to the pipe 3 in the heating operation and to the pipe 15 in the cooling operation.

【0022】以降、暖房運転時を例として説明する。配
管3を通った高圧のガス冷媒は、室内熱交換器4を通過
する途中で、室内ファン5による送風によって冷却され
て凝縮し、高圧の液冷媒となる。その後、高圧の液冷媒
は配管6を通り、膨張弁7を通過することによって等エ
ンタルピー的にインジェクション圧力まで減圧され、ガ
ス冷媒と液冷媒の2相となる。その後、インジェクショ
ン圧力の2相冷媒は配管8を通り、気液分離器9へ流入
する。気液分離器9では、2相冷媒はガス冷媒と液冷媒
に分離され、ガス冷媒はインジェクション通路9aへ流
れ、液冷媒は配管10へ流出する。ただし、インジェク
ション圧力によっては、気液分離器内のガス冷媒が配管
へ流出したり、また、圧縮機1の圧縮室の高温ガス冷媒
がインジェクションポート1cを通じて気液分離器9へ
逆流する場合がある。
Hereinafter, the case of the heating operation will be described as an example. The high-pressure gas refrigerant that has passed through the pipe 3 is cooled and condensed by the air blown by the indoor fan 5 while passing through the indoor heat exchanger 4, and becomes a high-pressure liquid refrigerant. Thereafter, the high-pressure liquid refrigerant passes through the pipe 6 and passes through the expansion valve 7 so that the pressure is reduced to the injection pressure in an isenthalpy manner, and the two-phase gas refrigerant and liquid refrigerant are formed. Thereafter, the two-phase refrigerant at the injection pressure flows through the pipe 8 and flows into the gas-liquid separator 9. In the gas-liquid separator 9, the two-phase refrigerant is separated into a gas refrigerant and a liquid refrigerant, the gas refrigerant flows to the injection passage 9a, and the liquid refrigerant flows out to the pipe 10. However, depending on the injection pressure, the gas refrigerant in the gas-liquid separator may flow out to the pipe, or the high-temperature gas refrigerant in the compression chamber of the compressor 1 may flow back to the gas-liquid separator 9 through the injection port 1c. .

【0023】なお、インジェクション通路9aには開閉
弁9bが備え付けられていて、条件により逆流してしま
う場合(逆流が好ましくない場合)や、後述するリバー
ス除霜時は閉となるようにしてある。
The injection passage 9a is provided with an opening / closing valve 9b, which is closed when a backflow occurs depending on conditions (when backflow is not preferable) or during reverse defrosting described later.

【0024】インジェクション通路9aへ流れたガス冷
媒は圧縮機1の圧縮室へインジェクションポート1c通
ってインジェクションされ、圧縮室の圧縮途中のガス冷
媒と混合する。一方、配管10へ流れた液冷媒または2
相冷媒は、膨張弁11を通過することによって再び等エ
ンタルピー的に減圧されて、低圧の2相冷媒となって、
配管12へ流出する。その後、低圧の2相冷媒は、室外
熱交換器13へ流入し、室外ファン14により送風され
る空気流から吸熱し、低圧のガス冷媒となって配管15
へ流出する。その後、低圧のガス冷媒は、四方弁2と配
管1bを通り、再び圧縮機1に返流する。
The gas refrigerant flowing into the injection passage 9a is injected into the compression chamber of the compressor 1 through the injection port 1c, and is mixed with the gas refrigerant being compressed in the compression chamber. On the other hand, the liquid refrigerant flowing to the pipe 10 or 2
The phase refrigerant is decompressed again isenthalpy by passing through the expansion valve 11, and becomes a low-pressure two-phase refrigerant.
It flows out to the pipe 12. Thereafter, the low-pressure two-phase refrigerant flows into the outdoor heat exchanger 13, absorbs heat from the airflow blown by the outdoor fan 14, becomes a low-pressure gas refrigerant, and becomes a pipe 15.
Outflow to After that, the low-pressure gas refrigerant returns to the compressor 1 again through the four-way valve 2 and the pipe 1b.

【0025】以上、図1の空気調和機について述べた
が、上記のような空気調和機のサイクルをガスインジェ
クションサイクルという。
Although the air conditioner shown in FIG. 1 has been described above, the cycle of the air conditioner as described above is called a gas injection cycle.

【0026】次に、上記の調和機の従来の除霜方法(リ
バース除霜)を説明する。
Next, a conventional defrosting method (reverse defrosting) for the above-mentioned conditioner will be described.

【0027】外気温度が0℃付近での暖房運転時には、
室外熱交換器に着霜が発生し、そのまま運転を続ける
と、次第に着霜の程度が大きくなる。着霜は、熱交換器
の空気側熱伝達率を低下させ、その結果、能力および効
率を低下させる。リバース除霜の場合、室外熱交換器1
3の温度が所定温度、かつ、暖房運転時間が所定時間以
上経過した場合に四方弁2を切り替えて冷房時サイクル
(逆サイクル)にして除霜を行う。そして、室外熱交換
器13の温度が所定温度以上になり、除霜が完了したと
判断すると、四方弁2を再び元に戻して暖房運転を再開
する。なお、逆サイクル時は、インジェクション通路9
aに備えられた開閉弁9bを閉および膨張弁7、11を
全開としている場合が多い。これは、圧縮機1から吐出
される高温ガス冷媒をなるべく多く室外熱交換器13へ
流入させるためである。
During the heating operation when the outside air temperature is around 0 ° C.,
When frost is generated in the outdoor heat exchanger and the operation is continued as it is, the degree of frost gradually increases. Defrosting reduces the air-side heat transfer coefficient of the heat exchanger, thereby reducing capacity and efficiency. In the case of reverse defrost, outdoor heat exchanger 1
When the temperature of 3 is a predetermined temperature and the heating operation time has exceeded a predetermined time, the four-way valve 2 is switched to perform a cooling cycle (reverse cycle) to perform defrosting. Then, when it is determined that the temperature of the outdoor heat exchanger 13 has become equal to or higher than the predetermined temperature and the defrosting has been completed, the four-way valve 2 is returned to the original position, and the heating operation is restarted. During the reverse cycle, the injection passage 9
In many cases, the opening / closing valve 9b provided in a is closed and the expansion valves 7, 11 are fully opened. This is to allow the high-temperature gas refrigerant discharged from the compressor 1 to flow into the outdoor heat exchanger 13 as much as possible.

【0028】リバース除霜方式の場合、暖房運転を中断
するので、この除霜時間が長いほど室内環境を悪化させ
てしまう。したがって、如何にして除霜時間を短くする
かが重要である。除霜時間を短くするには、ホットガス
バイパス除霜方式または冷媒加熱方式を組み合わせるこ
とが実施例としてあるが、これらは装置を複雑化してし
まう。
In the case of the reverse defrosting method, since the heating operation is interrupted, the longer the defrosting time, the worse the indoor environment. Therefore, it is important how to shorten the defrosting time. In order to shorten the defrosting time, a combination of a hot gas bypass defrosting method or a refrigerant heating method is mentioned as an example, but these complicate the apparatus.

【0029】そこで、本実施形態では、暖房運転時にリ
バース除霜方式を行うガスインジェクション機能を備え
る空気調和機において、リバース除霜を行う前に膨張弁
の開度を調整することにより圧縮途中の高温ガスを気液
分離器へ逆流させる膨張弁開度調整手段を20を備えて
いる。この手段20による膨張弁7、11の開度調整手
段の基本原理を以下に説明する。
Therefore, in the present embodiment, in an air conditioner having a gas injection function of performing a reverse defrosting method during a heating operation, the opening degree of the expansion valve is adjusted before performing the reverse defrosting, so that the high temperature during the compression is reduced. An expansion valve opening adjusting means 20 for backflowing the gas to the gas-liquid separator is provided. The basic principle of the means for adjusting the degree of opening of the expansion valves 7 and 11 by this means 20 will be described below.

【0030】ガスインジェクションサイクルでの暖房運
転時において、インジェクション圧力が図2に示すよう
にインジェクションガス流量が最大となるインジェクシ
ョン圧力C1となるように2つの膨張弁7、11の開度
が設定される。なお、本実施形態では、膨張弁の開度は
大きく変化させることができるようになっている。すな
わちインジェクション圧力を大きく変化させることがで
きるようになっている。外気温度が0℃付近において暖
房運転をそのまま続けると、室外熱交換器13に次第に
着霜し始め、その着霜の度合いが増すとともに空気側熱
伝達が悪化するので、暖房能力および性能が低下する。
このような場合、能力を回復させるために圧縮機1の回
転数を増加させるなどして冷媒循環量を増大させると、
一時的に能力は向上するが、蒸発温度が更に低下して着
霜の度合いが更に悪化してしまうため、さほど能力は向
上しない。また、着霜が増える分、リバース除霜時間が
多くなるので結果として室内環境を悪化させてしまう可
能性がある。 したがって、暖房能力の低下を極力抑え
ながらリバース除霜時間を短くすることが、室内環境の
悪化を少なくすることの重要な手段である。
During the heating operation in the gas injection cycle, the opening degrees of the two expansion valves 7 and 11 are set so that the injection pressure becomes the injection pressure C1 at which the injection gas flow rate becomes maximum as shown in FIG. . In the present embodiment, the degree of opening of the expansion valve can be largely changed. That is, the injection pressure can be largely changed. If the heating operation is continued in the vicinity of the outside air temperature of 0 ° C., the frost gradually starts to form on the outdoor heat exchanger 13, and the degree of the frost increases and the heat transfer on the air side deteriorates, so that the heating capacity and the performance decrease. .
In such a case, when the refrigerant circulation amount is increased by, for example, increasing the rotation speed of the compressor 1 in order to restore the capacity,
Although the capacity is temporarily improved, the capacity is not improved much because the evaporation temperature is further lowered and the degree of frost is further deteriorated. In addition, the reverse defrosting time increases as the amount of frost increases, which may result in deterioration of the indoor environment. Therefore, shortening the reverse defrosting time while minimizing the decrease in the heating capacity is an important means for reducing the deterioration of the indoor environment.

【0031】そのため、リバース除霜を行う前に膨張弁
7、11の開度を調整することにより圧縮途中の高温ガ
スを気液分離器9へ逆流させて室外熱交換器13の温度
を上昇させておくことによって、図6に示すように、リ
バース除霜時間を短くすることができる。
Therefore, before performing the reverse defrosting, the opening degree of the expansion valves 7 and 11 is adjusted so that the high-temperature gas in the middle of compression flows back to the gas-liquid separator 9 to raise the temperature of the outdoor heat exchanger 13. By doing so, as shown in FIG. 6, the reverse defrost time can be shortened.

【0032】次に、図7に示すフローチャートで、更に
図1の実施例を説明すると、膨張弁開度調整手段20
は、室外熱交換器13に付設された室外熱交換器温度セ
ンサ21により検出される室外熱交換器温度Teと、室
外制御部19に設置された内部タイマー21により計測
される暖房運転時間TTに基づいて行われる。通常の暖
房運転から、インジェクションポートから逆流を起こさ
せる運転に移行するのは、室外熱交換器温度Teが基準
温度以下Te0以下になったとき、かつ、暖房運転時間
TTが基準時間TT0以上になったときとしている。
Next, the embodiment of FIG. 1 will be described with reference to the flowchart shown in FIG.
Is the outdoor heat exchanger temperature Te detected by the outdoor heat exchanger temperature sensor 21 attached to the outdoor heat exchanger 13 and the heating operation time TT measured by the internal timer 21 installed in the outdoor control unit 19. It is done based on. The transition from the normal heating operation to the operation of causing a backflow from the injection port is performed when the outdoor heat exchanger temperature Te becomes equal to or less than the reference temperature Te0 and the heating operation time TT becomes equal to or more than the reference time TT0. When

【0033】まず、ステップS1において、室外熱交換
器が着霜状態か判断し、着霜状態とするとステップS2
に進む。着霜状態か否かの判断は、室外熱交換器温度T
eが所定基準温度以下となった場合としてもよいし、そ
の他の着霜検知手段を用いてもよい。ステップS2では
室外熱交換器温度Teと基準温度Te0が比較され、室
外熱交換器温度Teが基準温度Te0より低い場合、ス
テップS3に進む。次にステップS3では、暖房運転時
間TTと、基準時間TT0が比較され、暖房運転時間T
Tが基準時間TT0より大きければ、ステップS4へ移
行して、膨張弁開度調整手段20によってインジェクシ
ョンポートからの逆流を行う。次に、ステップS5で
は、暖房運転時間TTと基準時間TT1が比較され、暖
房運転時間TTが基準時間TT1より大きければ、ステ
ップS6に進み、従来のリバース除霜運転を行う。ステ
ップS7では、室外熱交換器の除霜が完了したかどうか
を判断し、除霜が完了したと判断すると、リバース除霜
運転を終了し、通常の暖房運転を再開する。なお、除霜
完了の判断は、室外熱交換器温度Teが所定温度以上と
なった場合でもよいし、その他の除霜終了検知手段を用
いてもよい。
First, in step S1, it is determined whether or not the outdoor heat exchanger is in a frosted state.
Proceed to. The determination as to whether the vehicle is in the frost state depends on the outdoor heat exchanger temperature T.
e may be equal to or lower than the predetermined reference temperature, or other frost detection means may be used. In step S2, the outdoor heat exchanger temperature Te is compared with the reference temperature Te0. If the outdoor heat exchanger temperature Te is lower than the reference temperature Te0, the process proceeds to step S3. Next, in step S3, the heating operation time TT is compared with the reference time TT0, and the heating operation time T
If T is greater than the reference time TT0, the process proceeds to step S4, and the backflow from the injection port is performed by the expansion valve opening degree adjusting means 20. Next, in step S5, the heating operation time TT is compared with the reference time TT1, and if the heating operation time TT is longer than the reference time TT1, the process proceeds to step S6 to perform the conventional reverse defrosting operation. In step S7, it is determined whether or not defrosting of the outdoor heat exchanger has been completed. If it is determined that defrosting has been completed, the reverse defrosting operation is terminated, and normal heating operation is resumed. The determination of the completion of the defrosting may be performed when the outdoor heat exchanger temperature Te is equal to or higher than a predetermined temperature, or may use other defrosting completion detecting means.

【0034】[0034]

【発明の効果】以上の説明のように、この発明の請求項
1の空気調和機においては、ホットガスバイパスの機能
や冷媒加熱機能を付加しなくても、2つの膨張弁の開度
を調整することにより、圧縮途中の高温ガスを気液分離
器へ逆流させ、室外熱交換器の温度を上昇させることが
できる。それによって、リバース除霜時間を短縮できる
ので、室内環境の悪化を少なくすることができる。
As described above, in the air conditioner according to the first aspect of the present invention, the opening degrees of the two expansion valves are adjusted without adding a hot gas bypass function or a refrigerant heating function. By doing so, the high-temperature gas in the middle of compression is caused to flow back to the gas-liquid separator, and the temperature of the outdoor heat exchanger can be increased. As a result, the reverse defrosting time can be shortened, so that deterioration of the indoor environment can be reduced.

【0035】請求項2の空気調和機においては、室外熱
交換器温度が所定温度以下、かつ、暖房運転時間が所定
時間以上経過した場合に、圧縮途中の高温ガスを気液分
離器へ逆流させ、室外熱交換器の温度を上昇させること
ができるので、さほど着霜していない場合など、不必要
に逆流を行わないようにできる。
In the air conditioner according to the second aspect, when the outdoor heat exchanger temperature is equal to or lower than a predetermined temperature and the heating operation time is equal to or longer than a predetermined time, the high-temperature gas being compressed is returned to the gas-liquid separator. Since the temperature of the outdoor heat exchanger can be increased, unnecessary backflow can be prevented, for example, when frost is not so significant.

【0036】請求項3の空気調和機においては、2つの
膨張弁を電動膨張弁にすることによって膨張弁の開度を
精度良く調整できるので、インジェクション圧力すなわ
ち逆流量を細かく設定できる。
In the air conditioner according to the third aspect, the opening degree of the expansion valve can be adjusted with high precision by using the two expansion valves as electric expansion valves, so that the injection pressure, that is, the reverse flow rate can be set finely.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す空気調和機のサイクル
構成を示す図である。
FIG. 1 is a diagram showing a cycle configuration of an air conditioner showing an embodiment of the present invention.

【図2】インジェクション圧力に対するインジェクショ
ンガス流量と気液分離器内乾き度の特性図である。
FIG. 2 is a characteristic diagram of an injection gas flow rate and a dryness in a gas-liquid separator with respect to an injection pressure.

【図3】ホットガスバイパス除霜を行うことができる空
気調和機の従来例を示す図である。
FIG. 3 is a diagram showing a conventional example of an air conditioner capable of performing hot gas bypass defrosting.

【図4】ガスインジェクションサイクルでホットガスバ
イパス除霜を行うことができる空気調和機の従来例を示
す図である。
FIG. 4 is a diagram showing a conventional example of an air conditioner capable of performing hot gas bypass defrost in a gas injection cycle.

【図5】各除霜方式の大まかな除霜時間の比較を示した
図である。
FIG. 5 is a diagram showing a comparison of rough defrosting time of each defrosting method.

【図6】リバース除霜方式と、前記除霜方式に加え、イ
ンジェクションポートからの逆流による除霜方式を組み
合わせた除霜方式の大まかな除霜時間の比較を示した図
である。
FIG. 6 is a diagram showing a comparison of a rough defrosting time of a defrosting method in which a reverse defrosting method and a defrosting method by a reverse flow from an injection port are combined in addition to the defrosting method.

【図7】本発明による膨張弁開度調整手段の作動手順の
一例を示す図である。
FIG. 7 is a diagram showing an example of an operation procedure of the expansion valve opening adjusting means according to the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、1c…インジェクションポート、2…四方
弁、4…室内熱交換器、7…第1膨張弁、9…気液分離
器、9a…インジェクション通路、9b…開閉弁、9c
…ホットガスバイパス通路、11…第2膨張弁、13…
室外熱交換器、18…室外熱交換器温度センサ、19…
室外制御部、20…膨張弁開度調整手段、21…タイマ
ー。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 1c ... Injection port, 2 ... Four-way valve, 4 ... Indoor heat exchanger, 7 ... First expansion valve, 9 ... Gas-liquid separator, 9a ... Injection passage, 9b ... On-off valve, 9c
... hot gas bypass passage, 11 ... second expansion valve, 13 ...
Outdoor heat exchanger, 18 ... outdoor heat exchanger temperature sensor, 19 ...
Outdoor control unit, 20: expansion valve opening adjusting means, 21: timer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25B 13/00 311 F25B 13/00 311 ────────────────────────────────────────────────── ─── of the front page continued (51) Int.Cl. 7 identification mark FI theme Court Bu (reference) F25B 13/00 311 F25B 13/00 311

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 暖房運転時に四方弁を切り替えて冷媒循
環方向を逆にすることによる除霜(リバース除霜)を行
うガスインジェクション機能を備える空気調和機におい
て、リバース除霜を行う前に膨張弁の開度を調整するこ
とにより圧縮途中の高温ガスを気液分離器へ逆流させる
膨張弁開度調整手段を備えたことを特徴とする空気調和
機。
In an air conditioner having a gas injection function for performing defrosting (reverse defrosting) by switching a four-way valve to reverse a refrigerant circulation direction during a heating operation, an expansion valve is provided before performing reverse defrosting. An air conditioner comprising an expansion valve opening adjusting means for adjusting the opening of the expansion valve so that the hot gas in the middle of compression flows back to the gas-liquid separator.
【請求項2】 暖房運転時に四方弁を切り替えて冷媒循
環方向を逆にすることによる除霜(リバース除霜)を行
うガスインジェクション機能を備える空気調和機におい
て、室外熱交換器温度センサーとタイマーを備え、室外
熱交換器温度が所定温度以下および暖房運転時間が所定
時間経過した場合、リバース除霜を行う前に膨張弁の開
度を調整することにより圧縮途中の高温ガスを気液分離
器へ逆流させる膨張弁開度調整手段を備えたことを特徴
とする空気調和機。
2. An air conditioner having a gas injection function for performing defrosting (reverse defrosting) by switching a four-way valve to reverse a refrigerant circulation direction during a heating operation, wherein an outdoor heat exchanger temperature sensor and a timer are used. When the outdoor heat exchanger temperature is equal to or lower than the predetermined temperature and the heating operation time has elapsed for a predetermined time, the high-temperature gas during compression is adjusted to the gas-liquid separator by adjusting the opening of the expansion valve before performing reverse defrosting. An air conditioner comprising an expansion valve opening adjusting means for causing reverse flow.
【請求項3】 請求項1または2記載の空気調和機にお
いて、膨張弁を電動膨張弁としたことを特徴とする空気
調和機。
3. The air conditioner according to claim 1, wherein the expansion valve is an electric expansion valve.
JP2001121987A 2001-04-20 2001-04-20 Air conditioner Pending JP2002318039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001121987A JP2002318039A (en) 2001-04-20 2001-04-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001121987A JP2002318039A (en) 2001-04-20 2001-04-20 Air conditioner

Publications (2)

Publication Number Publication Date
JP2002318039A true JP2002318039A (en) 2002-10-31
JP2002318039A5 JP2002318039A5 (en) 2005-02-17

Family

ID=18971766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001121987A Pending JP2002318039A (en) 2001-04-20 2001-04-20 Air conditioner

Country Status (1)

Country Link
JP (1) JP2002318039A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1826513A1 (en) * 2005-07-26 2007-08-29 Mitsubishi Electric Corporation Refrigerating air conditioner
JP2008175410A (en) * 2007-01-16 2008-07-31 Mitsubishi Electric Corp Heat source-side unit and air conditioning system
WO2009131088A1 (en) * 2008-04-22 2009-10-29 ダイキン工業株式会社 Refrigeration device
JP2010139232A (en) * 2008-12-15 2010-06-24 Yamaguchi Michiko Compression type heat pump equipped with latent heat storage device
EP2119984A3 (en) * 2004-10-18 2011-01-12 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
JP2014517248A (en) * 2011-06-13 2014-07-17 リンゲルバック、フレッド Condenser / evaporator for cooling device and method thereof
CN104676991A (en) * 2013-11-26 2015-06-03 珠海格力电器股份有限公司 Air conditioner and defrosting method thereof
WO2015198475A1 (en) * 2014-06-27 2015-12-30 三菱電機株式会社 Refrigeration cycle device
CN105612394A (en) * 2013-08-09 2016-05-25 特灵空调系统(中国)有限公司 Transitional refrigerant migration control in refrigeration systems
US9513033B2 (en) 2011-06-13 2016-12-06 Aresco Technologies, Llc Refrigeration system and methods for refrigeration
CN106415156A (en) * 2014-03-14 2017-02-15 三菱电机株式会社 Refrigerating cycle device
WO2017037891A1 (en) * 2015-09-02 2017-03-09 三菱電機株式会社 Refrigeration cycle device
CN110736216A (en) * 2019-09-27 2020-01-31 青岛海尔空调器有限总公司 Control method and control device for defrosting of air conditioner and air conditioner
CN110736214A (en) * 2019-09-27 2020-01-31 青岛海尔空调器有限总公司 Control method and control device for defrosting of air conditioner and air conditioner
CN116336711A (en) * 2023-03-15 2023-06-27 珠海格力电器股份有限公司 Defrosting control method and device for air source heat pump and air source heat pump

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2119984A3 (en) * 2004-10-18 2011-01-12 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
EP2119983A3 (en) * 2004-10-18 2011-01-12 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
EP2119982A3 (en) * 2004-10-18 2011-01-12 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
USRE43805E1 (en) 2004-10-18 2012-11-20 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
USRE43998E1 (en) 2004-10-18 2013-02-19 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
EP1826513A1 (en) * 2005-07-26 2007-08-29 Mitsubishi Electric Corporation Refrigerating air conditioner
EP1826513A4 (en) * 2005-07-26 2009-04-22 Mitsubishi Electric Corp Refrigerating air conditioner
US7856836B2 (en) 2005-07-26 2010-12-28 Mitsubishi Electric Corporation Refrigerating air conditioning system
JP2008175410A (en) * 2007-01-16 2008-07-31 Mitsubishi Electric Corp Heat source-side unit and air conditioning system
WO2009131088A1 (en) * 2008-04-22 2009-10-29 ダイキン工業株式会社 Refrigeration device
JP2010139232A (en) * 2008-12-15 2010-06-24 Yamaguchi Michiko Compression type heat pump equipped with latent heat storage device
US9513033B2 (en) 2011-06-13 2016-12-06 Aresco Technologies, Llc Refrigeration system and methods for refrigeration
JP2014517248A (en) * 2011-06-13 2014-07-17 リンゲルバック、フレッド Condenser / evaporator for cooling device and method thereof
US10260779B2 (en) 2011-06-13 2019-04-16 Aresco Technologies, Llc Refrigeration system and methods for refrigeration
US11549727B2 (en) 2011-06-13 2023-01-10 Aresco Technologies, Llc Refrigeration system and methods for refrigeration
US10989445B2 (en) 2011-06-13 2021-04-27 Aresco Technologies, Llc Refrigeration system and methods for refrigeration
CN105612394A (en) * 2013-08-09 2016-05-25 特灵空调系统(中国)有限公司 Transitional refrigerant migration control in refrigeration systems
WO2015018054A3 (en) * 2013-08-09 2017-01-19 Trane Air Conditioning Systems (China) Co., Ltd. Transitional refrigerant migration control in refrigeration systems
CN104676991B (en) * 2013-11-26 2017-03-08 珠海格力电器股份有限公司 Air-conditioner and its Defrost method
CN104676991A (en) * 2013-11-26 2015-06-03 珠海格力电器股份有限公司 Air conditioner and defrosting method thereof
CN106415156A (en) * 2014-03-14 2017-02-15 三菱电机株式会社 Refrigerating cycle device
CN106415156B (en) * 2014-03-14 2019-05-31 三菱电机株式会社 Refrigerating circulatory device
CN106415153A (en) * 2014-06-27 2017-02-15 三菱电机株式会社 Refrigeration cycle device
JP5865561B1 (en) * 2014-06-27 2016-02-17 三菱電機株式会社 Refrigeration cycle equipment
WO2015198475A1 (en) * 2014-06-27 2015-12-30 三菱電機株式会社 Refrigeration cycle device
CN106415153B (en) * 2014-06-27 2019-04-23 三菱电机株式会社 Refrigerating circulatory device
US10401047B2 (en) 2014-06-27 2019-09-03 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JPWO2017037891A1 (en) * 2015-09-02 2018-04-19 三菱電機株式会社 Refrigeration cycle equipment
WO2017037891A1 (en) * 2015-09-02 2017-03-09 三菱電機株式会社 Refrigeration cycle device
CN110736214A (en) * 2019-09-27 2020-01-31 青岛海尔空调器有限总公司 Control method and control device for defrosting of air conditioner and air conditioner
CN110736216A (en) * 2019-09-27 2020-01-31 青岛海尔空调器有限总公司 Control method and control device for defrosting of air conditioner and air conditioner
CN110736214B (en) * 2019-09-27 2021-11-23 青岛海尔空调器有限总公司 Control method and control device for defrosting of air conditioner and air conditioner
CN110736216B (en) * 2019-09-27 2021-11-23 青岛海尔空调器有限总公司 Control method and control device for defrosting of air conditioner and air conditioner
CN116336711A (en) * 2023-03-15 2023-06-27 珠海格力电器股份有限公司 Defrosting control method and device for air source heat pump and air source heat pump

Similar Documents

Publication Publication Date Title
US7302807B2 (en) Refrigerating cycle device
US6923016B2 (en) Refrigeration cycle apparatus
CN106461253B (en) Air conditioner and defrosting operation method thereof
JP4675927B2 (en) Air conditioner
JP2002318039A (en) Air conditioner
JPWO2013111177A1 (en) Air conditioner
JP2007051825A (en) Air-conditioner
KR102350935B1 (en) Air conditioner
CN112050399B (en) Air conditioner
JP6161741B2 (en) Air conditioner
US20130104580A1 (en) Air conditioner and method of controlling the same
US20230074034A1 (en) Air conditioner
JP2003240391A (en) Air conditioner
JP5659908B2 (en) Heat pump equipment
JP4622901B2 (en) Air conditioner
JP4661451B2 (en) Air conditioner
JP2007051839A (en) Air conditioning unit
CN213089945U (en) Air conditioner
JP5313467B2 (en) Air conditioning system and control method thereof
JP2014149103A (en) Refrigeration cycle device
KR102313304B1 (en) Air conditioner for carbon dioxide
JPH0823427B2 (en) Defrost control device for heat pump type air conditioner
JP2523534B2 (en) Air conditioner
KR0177709B1 (en) Cooling apparatus for a refrigerator
KR100575693B1 (en) Air conditioner with sub compression loop

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040315

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070426