JP2002301577A - Method of joining martensitic stainless steel - Google Patents

Method of joining martensitic stainless steel

Info

Publication number
JP2002301577A
JP2002301577A JP2001107189A JP2001107189A JP2002301577A JP 2002301577 A JP2002301577 A JP 2002301577A JP 2001107189 A JP2001107189 A JP 2001107189A JP 2001107189 A JP2001107189 A JP 2001107189A JP 2002301577 A JP2002301577 A JP 2002301577A
Authority
JP
Japan
Prior art keywords
joining
cooling
martensitic stainless
temperature
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001107189A
Other languages
Japanese (ja)
Inventor
Koji Horio
浩次 堀尾
Kazunari Kito
一成 鬼頭
Shigeyuki Inagaki
繁幸 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001107189A priority Critical patent/JP2002301577A/en
Publication of JP2002301577A publication Critical patent/JP2002301577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a joining method which makes it possible to obtain a defectless joint part which does not give a cracking and other defects in a short joining work time in heating and joining of martensitic stainless steels. SOLUTION: In cooling after the heating and joining in the diffusion joining of the martensitic stainless steels, the heated areas are forcibly cooled and are then cooled at cooling rates from 0.6 to 10 deg.C/s during >=1,100 deg.C, from 2.4 to 25 deg.C/s between 300 and 1100 deg.C and from 0.6 to 8 deg.C/s between 100 and 300 deg.C. In the case of the martensitic stainless steel of <=0.05 mass% in (C+N) content, the stainless steels are cooled at a cooling rate 0.6 to 10 deg.C/s during >=1100 deg.C, from 2.4 to 30 deg.C/s between 100 and 1100 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、石油掘削管、化学
プラントなどの配管に用いられるマルテンサイト系ステ
ンレス鋼の接合方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for joining martensitic stainless steel used for piping of oil drilling pipes, chemical plants, and the like.

【0002】[0002]

【従来の技術】SUS410などのマルテンサイト系ス
テンレス鋼は、耐食性、耐熱性に優れ、オーステナイト
系ステンレス鋼と比較すると安価なことから、耐摩耗
性、耐硫化水素性を要する石油掘削管とか硫酸プラント
などの各種化学プラント装置の配管の材料として多く用
いられている。石油掘削においては、掘削作業の進捗に
したがって、ケーシングチューブを順次接合して延長
し、その総長は数千mにもおよぶ。また、化学プラント
の製造工程では、現地組立工程において、マルテンサイ
ト系ステンレス鋼管同士の接合作業が多数必要となる。
これらの接合方法としては、フランジ継手、ねじ込み形
継手などの機械的接合方法も用いられるが、接合部の気
密性が良好であり、接合強度も良好であることから、頻
繁に取外しを行う必要がない部位の接合には、突合せ溶
接のように接合部を溶融して接合する方法も多く用いら
れている。
2. Description of the Related Art Martensitic stainless steel such as SUS410 has excellent corrosion resistance and heat resistance and is inexpensive compared with austenitic stainless steel. It is widely used as a material for piping of various chemical plant equipment such as. In oil drilling, as the drilling operation progresses, casing tubes are sequentially joined and extended, and the total length is several thousand meters. Further, in the manufacturing process of a chemical plant, a large number of joining operations between martensitic stainless steel pipes are required in a local assembly process.
As these joining methods, mechanical joining methods such as flange joints and threaded joints are also used, but since the joints have good airtightness and good joining strength, it is necessary to frequently remove them. For joining non-existent parts, a method of melting and joining a joint portion, such as butt welding, is often used.

【0003】加熱を伴う接合方法(加熱接合)として
は、上述の突合せ溶接のような溶接接合のほか、接合部
にインサート材を介挿して該接合部を高温に加熱し、前
記インサート材を溶融拡散する拡散接合、接合部を高温
に加熱して接合面に高圧を加えて接合する圧接法などが
行われている。
[0003] As a joining method involving heating (heating joining), in addition to the above-described welding joining such as butt welding, an insert material is inserted into a joint portion, the joint portion is heated to a high temperature, and the insert material is melted. Diffusion bonding in which diffusion is performed, a pressure welding method in which a bonding portion is heated to a high temperature and high pressure is applied to a bonding surface to perform bonding, and the like are performed.

【0004】ところで、マルテンサイト系ステンレス鋼
は、自硬性がある材料であることから、高温に加熱して
接合するとき、接合作業が終了した後の冷却過程におい
て、溶融金属および溶接熱影響部などの高温に加熱され
た部分が硬化する。これに伴って、接合部に靭性の低下
を生じたり、熱応力によって割れを生じたりするおそれ
がある。これらの不具合を防ぐために、通常、マルテン
サイト系ステンレス鋼の加熱接合後の冷却は、できるだ
け徐冷するものとされている。さらには、鋼の強靭化を
はかるため、接合後焼戻し熱処理を施す。そのためマル
テンサイト系ステンレス鋼の接合には長時間を要し、接
合後の冷却に長時間を要し、接合作業の冗長化が避けら
れなかった。石油掘削用ケーシングチューブの接合と
か、化学プラントの配管接合のような現地組立て作業で
は、能率向上、工期短縮の観点からマルテンサイト系ス
テンレス鋼の接合作業時間を一層短縮することが望まれ
ている。石油掘削用マルテンサイト系ステンレス鋼管の
接合においては、被接合材を接合装置にセットしてから
接合作業終了までの所要時間として、現状では30分間
を要しているが、これを10分間以下とすることが望ま
れている。
[0004] By the way, since martensitic stainless steel is a material having self-hardening properties, when it is heated to a high temperature and joined, in the cooling process after the joining operation is completed, the molten metal and the heat affected zone of the weld are affected. The part heated to a high temperature hardens. Along with this, there is a possibility that the toughness may be reduced at the joint, or cracks may be generated due to thermal stress. In order to prevent these inconveniences, the cooling of the martensitic stainless steel after heating and joining is usually performed as slowly as possible. Furthermore, in order to strengthen the steel, a tempering heat treatment is performed after joining. Therefore, joining of martensitic stainless steel requires a long time, cooling after joining takes a long time, and redundancy of the joining operation is inevitable. In the field of assembly work such as joining of casing tubes for oil drilling and piping of chemical plants, it is desired to further shorten the joining work time of martensitic stainless steel from the viewpoint of improving efficiency and shortening the construction period. In the joining of martensitic stainless steel pipes for oil drilling, it currently takes 30 minutes as the time required from the setting of the material to be joined to the joining device to the end of the joining operation, but this time is reduced to 10 minutes or less. It is desired to do.

【0005】上記のようなマルテンサイト系ステンレス
鋼の加熱接合における所要時間の冗長化を改善するた
め、例えば、特開平8−311563号公報では、接合
面にインサート材を挿入し、被接合材の融点以下の温度
域に加熱し、加圧して液相拡散接合した後の冷却途中に
おいて、840〜950℃の温度で加熱保持し、次いで
その温度から30℃/h以下の冷却速度で冷却する方法
が提案されている。この方法によれば、接合後になんら
の熱処理を行うことなく靭延性に富む接合部が得られる
という。しかし、この方法では、作業時間が1継手当り
20時間以上という長時間を要する。
[0005] In order to improve the redundancy of the required time in the heating and joining of the martensitic stainless steel as described above, for example, in Japanese Patent Application Laid-Open No. H8-311563, an insert material is inserted into the joining surface and the material to be joined is inserted. A method in which heating is performed at a temperature of not higher than the melting point, heating and holding at a temperature of 840 to 950 ° C., and then cooling at a cooling rate of 30 ° C./h or less from the temperature during cooling after the liquid phase diffusion bonding by pressurizing. Has been proposed. According to this method, it is possible to obtain a joint having high toughness and ductility without performing any heat treatment after joining. However, this method requires a long working time of 20 hours or more per joint.

【0006】また、高周波誘導加熱あるいは高周波直接
通電加熱によって接合部を加熱して行う拡散接合におい
て、インサート材の融点、インサート材の厚さ、接合界
面の表面粗さ、および接合温度、接合圧力等の接合条件
を改善することにより、被接合材を接合装置にセットし
た後、接合作業が終了するまでの所要時間は1継手当り
12分まで短縮されている(特開平11−197853
号公報)。
In diffusion bonding performed by heating a joint by high-frequency induction heating or high-frequency direct current heating, the melting point of the insert material, the thickness of the insert material, the surface roughness of the bonding interface, the bonding temperature, the bonding pressure, etc. The time required for setting the material to be joined in the joining apparatus and completing the joining operation is reduced to 12 minutes per joint by improving the joining conditions (JP-A-11-197853).
No.).

【0007】[0007]

【発明が解決しようとする課題】本発明は、マルテンサ
イト系ステンレス鋼の加熱接合において、短い接合作業
時間で、割れ、その他の欠陥を生じることがない健全な
接合部が得られる接合方法を提供することを目的とす
る。
DISCLOSURE OF THE INVENTION The present invention provides a joining method which can provide a sound joining portion which does not cause cracks or other defects in a short joining operation time in heating joining of martensitic stainless steel. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
めに種々検討した結果、発明者らは、マルテンサイト系
ステンレス鋼の加熱接合において、前記加熱接合後の冷
却時に、加熱された部位を強制冷却して冷却所要時間を
短縮しつつ、特定の温度区間における冷却速度を制御す
ることによって、割れ、その他の欠陥を生じることがな
い健全な接合部が得られることを見出した。すなわち、
本発明のマルテンサイト系ステンレス鋼の接合方法は、 (1)マルテンサイト系ステンレス鋼の加熱接合におい
て、加熱接合後の冷却時に、加熱された部位を強制冷却
することによって、前記部位の温度が1100℃以上の
間は0.6℃/s〜10℃/sの冷却速度で冷却し、1
100℃未満〜300℃の間は2.4℃/s〜25℃/
sの冷却速度で冷却し、300℃未満〜100℃の間は
0.6℃/s〜8℃/sの冷却速度で冷却することを特
徴とする。 (2)質量%で、(C+N):0.05%以下を含有す
るマルテンサイト系ステンレス鋼の加熱接合において、
前記加熱接合後の冷却時に、加熱された部位を強制冷却
することによって、前記部位の温度が1100℃以上の
間は0.6℃/s〜10℃/sの冷却速度で冷却し、1
100℃未満〜100℃の間は2.4℃/s〜30℃/
sの冷却速度で冷却することを特徴とする。 (3)前記(1)および(2)のいずれか1項記載のマ
ルテンサイト系ステンレス鋼の接合方法において、前記
加熱接合が拡散接合であることを特徴とする。
As a result of various studies to solve the above-mentioned problems, the present inventors have found that, in the heat joining of martensitic stainless steel, a portion heated at the time of cooling after the above-mentioned heat joining is removed. It has been found that by controlling the cooling rate in a specific temperature section while shortening the required cooling time by forcible cooling, a sound joint without cracks or other defects can be obtained. That is,
The method for joining martensitic stainless steel according to the present invention includes the following steps: (1) In heating and joining martensitic stainless steel, the temperature of the heated portion is set to 1100 by forcibly cooling the heated portion during cooling after the heat joining. Cooling at a cooling rate of 0.6 ° C./s to 10 ° C./s
Between less than 100 ° C and 300 ° C, 2.4 ° C / s to 25 ° C /
The cooling is performed at a cooling rate of 0.6 ° C./s to 8 ° C./s when the cooling rate is lower than 300 ° C. to 100 ° C. (2) In the heat bonding of martensitic stainless steel containing (C + N): 0.05% or less by mass%,
At the time of cooling after the heat bonding, the heated portion is forcibly cooled, so that the portion is cooled at a cooling rate of 0.6 ° C./s to 10 ° C./s while the temperature of the portion is 1100 ° C. or higher.
2.4 ° C / s to 30 ° C /
The cooling rate is s. (3) The method for joining martensitic stainless steel according to any one of (1) and (2), wherein the heat joining is diffusion joining.

【0009】[0009]

【発明の実施の形態】本発明のマルテンサイト系ステン
レス鋼の接合方法においては、被接合材であるマルテン
サイト系ステンレス鋼を接合装置にセットし、次いで該
接合装置が備える、加熱手段によって被接合材を接合温
度に加熱し、接合操作を行って前記接合材を接合した
後、冷却媒を用いて前記加熱によって加熱された部位を
強制冷却する。そして、前記部位の温度が1100℃以
上の間は0.6℃/s〜10℃/sの冷却速度で冷却
し、1100℃未満〜300℃の間は2.4℃/s〜2
5℃/sの冷却速度で冷却し、300℃未満〜100℃
の間は0.6℃/s〜8℃/sの冷却速度で冷却する。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for joining martensitic stainless steel according to the present invention, martensitic stainless steel as a material to be joined is set in a joining device, and then joined by a heating means provided in the joining device. After the material is heated to the joining temperature and the joining operation is performed to join the joining material, the portion heated by the heating is forcibly cooled using a cooling medium. Then, when the temperature of the portion is 1100 ° C. or more, cooling is performed at a cooling rate of 0.6 ° C./s to 10 ° C./s, and when the temperature is less than 1100 ° C. to 300 ° C., 2.4 ° C./s to 2 ° C.
Cool at a cooling rate of 5 ° C./s, less than 300 ° C. to 100 ° C.
During this period, cooling is performed at a cooling rate of 0.6 ° C./s to 8 ° C./s.

【0010】被接合材であるマルテンサイト系ステンレ
ス鋼の(C+N)含有率が0.05質量%以下の場合に
は、上記の強制冷却において1100℃未満〜100℃
の間は2.4℃/s〜30℃/sの冷却速度で冷却して
もよい。
In the case where the (C + N) content of the martensitic stainless steel to be joined is 0.05% by mass or less, the above-mentioned forced cooling is performed at a temperature of less than 1100 ° C. to 100 ° C.
During this time, cooling may be performed at a cooling rate of 2.4 ° C./s to 30 ° C./s.

【0011】ここに、マルテンサイト系ステンレス鋼
は、例えば、SUS403、SUS410、SUS41
0J1、SUS416、SUS420J1、SUS43
1などのようにC:0.25質量%以下、Cr:11〜
17質量%を含み、焼入れによってマルテンサイト変態
する鋼とする。これらの鋼は自硬性を有し、変態点以上
の温度から空冷することによってマルテンサイト変態を
生じ、硬化する。
Here, the martensitic stainless steel is, for example, SUS403, SUS410, SUS41.
0J1, SUS416, SUS420J1, SUS43
C: 0.25% by mass or less, Cr: 11 to 11, etc.
The steel contains 17% by mass and undergoes martensitic transformation by quenching. These steels have self-hardening properties and undergo a martensitic transformation by air cooling from a temperature above the transformation point and harden.

【0012】加熱を伴う接合(加熱接合)の方法として
は、突合せ溶接のような溶接接合のほか、接合部にイン
サート材を介挿して該接合部を高温に加熱するとともに
接合面に加圧し、前記インサート材を溶融拡散する拡散
接合、接合部を高温に加熱して接合面に高圧を加えて接
合する圧接法などで行うことができる。しかし、加熱お
よび接合操作の迅速性の点から、拡散接合法で行うのが
好ましい。また、加熱の迅速性の点から、拡散接合、鍛
接を行う際の加熱は、高周波誘導加熱または高周波直接
通電加熱によることが好ましい。前記接合装置は、少な
くとも、被接合材を把持する手段および上述の加熱接合
を行うのに適した加熱手段と接合手段とを備えるものと
する。
As a method of joining with heating (heating joining), in addition to welding joining such as butt welding, an insert material is inserted into the joining portion to heat the joining portion to a high temperature and pressurize the joining surface, Diffusion bonding in which the insert material is melted and diffused, and a pressure welding method in which the joint is heated to a high temperature and high pressure is applied to the joint surface to join the joint. However, from the viewpoint of quickness of the heating and joining operations, it is preferable to carry out the diffusion joining method. In addition, from the viewpoint of rapidity of heating, the heating at the time of performing diffusion bonding and forging is preferably performed by high-frequency induction heating or high-frequency direct current heating. It is assumed that the joining apparatus includes at least means for gripping the material to be joined and heating means and joining means suitable for performing the above-described heat joining.

【0013】接合操作終了後の強制冷却は、例えば、温
度測定手段と、計時手段と、冷却パターンの設定手段
と、演算回路と、冷却剤の噴出量を調整する手段等を備
える制御冷却機構および冷却剤噴出機構とを用いて行う
のが好ましい。
The forced cooling after the completion of the joining operation includes, for example, a control cooling mechanism including a temperature measuring means, a time measuring means, a cooling pattern setting means, an arithmetic circuit, a means for adjusting the amount of coolant jetted, and the like. It is preferable to use a coolant ejection mechanism.

【0014】ここに、温度測定手段は、加熱された部位
の温度を計測するためのものである。計時手段は、温度
測定の時刻を記録するためのものである。冷却パターン
の設定手段は、各時刻における温度を設定するためのも
のである。演算回路は、温度測定手段と計時手段とによ
って得られらデータから冷却速度を算定する。算定され
た冷却速度と冷却パターンの設定手段によって設定され
る冷却速度とを比較し、その差額に応じて冷却剤の噴出
量を調整する手段を作動させ、設定された冷却パターン
に沿って冷却が行われるようにする。冷却剤の噴出量を
調整する手段としては、例えば、電磁開閉弁を用いるこ
とができる。冷却剤噴出機構は、少なくとも、冷却剤の
貯蔵部、冷却剤の輸送機構、冷却剤の噴出ノズル部を備
える。
Here, the temperature measuring means is for measuring the temperature of the heated portion. The timer means is for recording the time of the temperature measurement. The cooling pattern setting means is for setting the temperature at each time. The arithmetic circuit calculates the cooling rate from the data obtained by the temperature measuring means and the time measuring means. The calculated cooling rate is compared with the cooling rate set by the cooling pattern setting means, and the means for adjusting the amount of coolant jetted according to the difference is actuated, and cooling is performed along the set cooling pattern. To be done. As a means for adjusting the amount of coolant discharged, for example, an electromagnetic on-off valve can be used. The coolant ejection mechanism includes at least a coolant storage unit, a coolant transport mechanism, and a coolant ejection nozzle unit.

【0015】演算回路は、温度測定手段と計時手段とに
よって得られらデータから冷却速度を算定するととも
に、該算定された冷却速度と冷却パターンの設定手段に
よって設定した冷却速度とを比較し、その差異に応じて
冷却剤の噴出量を調整する手段と冷却剤噴出手段とを作
動させて冷却剤の噴出ノズル部から噴出する冷却剤の量
を調整する。冷却剤としては、空気のほか、アルゴンや
窒素のような不活性ガスを用いることができるが、好ま
しくは水を用いる。
The arithmetic circuit calculates the cooling rate from the data obtained by the temperature measuring means and the time measuring means, and compares the calculated cooling rate with the cooling rate set by the cooling pattern setting means. The means for adjusting the coolant ejection amount and the coolant ejection means are operated according to the difference to adjust the amount of coolant ejected from the coolant ejection nozzle portion. As the cooling agent, in addition to air, an inert gas such as argon or nitrogen can be used, but water is preferably used.

【0016】次に、本発明のマルテンサイト系ステンレ
ス鋼の接合方法において、加熱接合後の冷却時に、所定
の温度区間内の冷却速度を限定する理由について説明す
る。本発明が対象とするマルテンサイト系ステンレス鋼
は、1100℃以上の高温に加熱すると、鋼中の炭化
物、窒化物が固溶して結晶粒が粗大化し、鋼の機械的性
質に大きな影響をもたらす。また、この鋼のMs点は3
00℃付近にあって高温からの急冷によってマルテンサ
イト変態を生じ、大きな容積変化をもたらすとともに機
械的性質が大きく変わる。
Next, in the method for joining martensitic stainless steels of the present invention, the reason for limiting the cooling rate within a predetermined temperature zone during cooling after heating and joining will be described. When the martensitic stainless steel targeted by the present invention is heated to a high temperature of 1100 ° C. or higher, carbides and nitrides in the steel are dissolved and crystal grains are coarsened, which greatly affects the mechanical properties of the steel. . The Ms point of this steel is 3
At around 00 ° C., rapid cooling from a high temperature causes martensitic transformation, resulting in a large volume change and a large change in mechanical properties.

【0017】本発明者は、種々実験・調査の結果、接合
時の加熱温度からの冷却において、温度区間を1100
℃以上、1100℃未満〜300℃、300℃未満〜1
00℃の3区間に分け、各温度区間の冷却速度を調整す
ることにより、有害な欠陥を生じることなく短時間内に
高温から100℃まで冷却できることを見出したもので
ある。すなわち、
As a result of various experiments and investigations, the present inventor has set a temperature range of 1100 in cooling from the heating temperature at the time of joining.
℃ to 1100 ℃ to 300 ℃, less than 300 ℃ to 1
By dividing into three sections of 00 ° C. and adjusting the cooling rate in each temperature section, it has been found that cooling can be performed from a high temperature to 100 ° C. in a short time without causing harmful defects. That is,

【0018】1100℃以上の温度区間は0.6℃/s
〜10℃/sの冷却速度で冷却する。冷却速度が10℃
/sより高いと接合部に割れを生じるので1100℃以
上の温度区間における冷却速度の上限を10℃/sとす
る。また、冷却速度が0.6℃/sより低いと冷却時間
が冗長となるので1100℃以上の温度区間における冷
却速度の下限を0.6℃/sとする。
The temperature zone above 1100 ° C. is 0.6 ° C./s
Cool at a cooling rate of 〜1010 ° C./s. Cooling rate is 10 ℃
If it is higher than / s, cracks occur in the joints, so the upper limit of the cooling rate in the temperature section of 1100 ° C or more is set to 10 ° C / s. If the cooling rate is lower than 0.6 ° C./s, the cooling time becomes redundant, so the lower limit of the cooling rate in the temperature section of 1100 ° C. or more is set to 0.6 ° C./s.

【0019】1100℃未満〜300℃の温度区間は
2.4℃/s〜25℃/sの冷却速度で冷却する。冷却
速度が25℃/sより高いと接合部に割れを生じるので
1100℃未満〜300℃の温度区間における冷却速度
の上限を25℃/sとする。また、冷却速度が2.4℃
/sより低いと冷却時間が冗長となるので1100℃未
満〜300℃の温度区間における冷却速度の下限を2.
4℃/sとする。
In a temperature range of less than 1100 ° C. to 300 ° C., cooling is performed at a cooling rate of 2.4 ° C./s to 25 ° C./s. If the cooling rate is higher than 25 ° C./s, cracks occur at the joints. Therefore, the upper limit of the cooling rate in a temperature range of less than 1100 ° C. to 300 ° C. is set to 25 ° C./s. The cooling rate is 2.4 ° C.
If the cooling rate is lower than 1 / s, the cooling time becomes redundant.
4 ° C./s.

【0020】300℃未満〜100℃の温度区間は0.
6℃/s〜8℃/sの冷却速度で冷却する。冷却速度が
8℃/sより高いと接合部に割れを生じるので300℃
未満〜100℃の温度区間における冷却速度の上限を8
℃/sとする。また、冷却速度が0.6℃/sより低い
と冷却時間が冗長となるので300℃未満〜100℃の
区間における冷却速度の下限を0.6℃/sとする。
The temperature range from less than 300.degree. C. to 100.degree.
Cool at a cooling rate of 6 ° C / s to 8 ° C / s. If the cooling rate is higher than 8 ° C / s, cracks occur at the joints, so
The upper limit of the cooling rate in the temperature range from
° C / s. If the cooling rate is lower than 0.6 ° C./s, the cooling time becomes redundant. Therefore, the lower limit of the cooling rate in the section of less than 300 ° C. to 100 ° C. is set to 0.6 ° C./s.

【0021】被接合材の(C+N)含有率が0.05質
量%以下である場合は、マルテンサイト変態による容積
変化が小さく、また、生成するマルテンサイトの組織の
靭性も比較的大きいので1100℃未満〜100℃の温
度区間における冷却速度の上限を30℃/sとすること
ができる。この場合には冷却時間の冗長化をさけるため
冷却速度の下限を2.4℃/sとする。
When the (C + N) content of the material to be joined is 0.05% by mass or less, the change in volume due to martensite transformation is small and the toughness of the formed martensite structure is relatively large, so that the temperature is 1100 ° C. The upper limit of the cooling rate in a temperature range of less than 100C may be set to 30C / s. In this case, the lower limit of the cooling rate is set to 2.4 ° C./s in order to avoid redundant cooling time.

【0022】なお、冷却速度を制御しつつ冷却する下限
の温度を100℃とする理由は、本発明が対象とするマ
ルテンサイト系ステンレス鋼においては、100℃以上
の温度で変態などの大きな組織変化は概ね終了してしま
うし。また、100℃より低温では熱応力等の力学的影
響も僅少となるからである。さらに、石油掘削等の用途
において石油類の発火点120℃を十分に下回ってお
り、接合材が蓄える余熱による発火の危険性を防ぐこと
による。
The reason that the lower limit temperature for cooling while controlling the cooling rate is set to 100 ° C. is that, in the martensitic stainless steel targeted by the present invention, a large structural change such as transformation occurs at a temperature of 100 ° C. or more. Will almost end. Further, at a temperature lower than 100 ° C., a mechanical effect such as a thermal stress becomes small. Further, in applications such as oil drilling, the ignition point of petroleum is sufficiently lower than 120 ° C., thereby preventing the risk of ignition due to residual heat stored in the bonding material.

【0023】加熱接合の際には、接合部のみでなく、接
合部の近傍一帯の領域が付随的に加熱されるので、これ
らの加熱された領域全てについて前記のように冷却速度
を制御して冷却する必要がある。
At the time of heating and joining, not only the joint but also a whole area in the vicinity of the joint is heated together. Therefore, the cooling rate is controlled for all the heated areas as described above. Requires cooling.

【0024】以上、マルテンサイト系ステンレス鋼の接
合方法によって、短い接合作業時間で、割れその他の欠
陥を生じることがない健全な接合部が得られるが、前記
接合後、さらに、700〜750℃の温度に加熱して6
0s以上保持する後熱処理を施すことが好ましい。該後
熱処理よって接合材の靭性を高めることができる。
As described above, according to the method of joining martensitic stainless steel, a sound joining portion that does not cause cracks or other defects can be obtained in a short joining operation time, but after joining, the joint is further heated to 700 to 750 ° C. Heat to temperature 6
It is preferable to perform a heat treatment after holding for 0 s or more. The post heat treatment can increase the toughness of the joining material.

【0025】[0025]

【実施例】(C+N)含有率0.2質量%のSUS41
0相当鋼(鋼1)で製造された外径140mm、肉厚7
mmの鋼管について液相拡散接合法によって該鋼管の端
面を突合せ接合した。前記突合せ接合は、高周波誘導加
熱式接合装置を用いて行った。該接合装置は、被接合材
を把持する把持手段、接合面に圧力を加える加圧手段、
接合部を加熱する高周波誘導加熱手段を備え、かつ、温
度測定手段、計時手段、加熱・冷却パターンの設定手
段、演算回路、冷却剤の噴出量を調整する手段等を有す
る制御機構および冷却剤噴出機構を備える。
EXAMPLES SUS41 with (C + N) content of 0.2% by mass
Outer diameter 140mm, wall thickness 7 made of 0 equivalent steel (steel 1)
The end faces of the steel pipes were butt-joined by a liquid phase diffusion bonding method. The butt joining was performed using a high-frequency induction heating type joining apparatus. The joining apparatus is a holding unit that holds a material to be joined, a pressing unit that applies pressure to a joining surface,
A control mechanism including a high-frequency induction heating means for heating a joint portion, and having a temperature measuring means, a timing means, a heating / cooling pattern setting means, an arithmetic circuit, a means for adjusting a coolant ejection amount, and a coolant ejection. It has a mechanism.

【0026】2本の鋼管の、それぞれの端面の間にイン
サート材を介挿し、前記把持手段を用いて、前記2本の
鋼管を把持するとともに、加圧手段によって両鋼管を互
いに軸方向に押圧してインサート材を挟圧した。インサ
ート材としては、厚さ40μmのBNi−2合金箔を用
いた。また、インサート材を挟圧する圧力は4MPaと
した。
An insert material is inserted between the respective end faces of the two steel pipes, the two steel pipes are gripped by the gripping means, and both steel pipes are pressed in the axial direction by the pressing means. Then, the insert material was pressed. As the insert material, a BNi-2 alloy foil having a thickness of 40 μm was used. Further, the pressure for clamping the insert material was 4 MPa.

【0027】接合部を取囲むように、前記高周波誘導加
熱手段が備える高周波誘導加熱コイルを配置し、これに
周波数3kHzの高周波電流を流して前記接合部を加熱
し、60秒間で温度1300℃まで昇温した後、30秒
間加熱保持した。次いで、前記高周波誘導加熱コイルを
挟んで接合部の周囲に配置した冷却剤噴射ノズルから水
を噴出して接合部およびその近傍の被加熱領域を冷却し
た。
A high-frequency induction heating coil provided in the high-frequency induction heating means is disposed so as to surround the joint, and a high-frequency current having a frequency of 3 kHz is passed through the coil to heat the joint. After the temperature was raised, it was heated and held for 30 seconds. Next, water was jetted from a coolant injection nozzle disposed around the joint with the high-frequency induction heating coil interposed therebetween to cool the joint and the heated region near the joint.

【0028】接合部の温度は放射温度計により測定し、
その測定された温度データより接合部の温度が予め設定
された温度パターンとなるように高周波電源の出力、冷
却剤噴出量を前記制御機構によって制御した。冷却終了
後、前記高周波誘導加熱手段と前記制御機構とを用いて
接合部およびその近傍の加熱影響部の温度を30秒間で
720℃まで加熱し、60秒間保持後30秒間で100
℃まで冷却する後熱処理を施して接合体を得た。
The temperature of the junction is measured by a radiation thermometer,
From the measured temperature data, the output of the high-frequency power supply and the amount of coolant jetted were controlled by the control mechanism so that the temperature of the junction became a preset temperature pattern. After the cooling is completed, the temperature of the joint and the heat-affected zone in the vicinity thereof is heated to 720 ° C. for 30 seconds using the high-frequency induction heating means and the control mechanism.
After cooling to ℃, heat treatment was performed to obtain a joined body.

【0029】前記接合体について浸透探傷試験を行って
接合部の割れの有無を調べた。また、前記接合体から、
中央部に接合部を有し、JIS Z 3121に準ずる
3号試験片を切出して引張試験に供した。さらに、中央
に接合部を有し、接合界面にVノッチを設けたJIS
Z 2202に準ずる4号ハーフサイズシャルピー衝撃
試験片を切出してシャルピー試験に供した。(C+N)
含有率0.05質量%のSUS410相当鋼(鋼2)に
ついても、鋼1と同様にして接合体を得て、各試験片を
作成し、試験を行った。
The joined body was subjected to a penetrant test to check for cracks in the joint. Also, from the joined body,
A No. 3 test piece according to JIS Z 3121 was cut out and provided for a tensile test. Furthermore, JIS with a joint at the center and a V notch at the joint interface
A No. 4 half-size Charpy impact test piece according to Z2202 was cut out and subjected to a Charpy test. (C + N)
Regarding SUS410 equivalent steel (steel 2) having a content of 0.05% by mass, a joined body was obtained in the same manner as steel 1, and each test piece was prepared and tested.

【0030】試験結果を表1に示す。表1には、接合後
の冷却に要する時間を冷却時間として、また、接合装置
に被接合材をセットした後、接合体の冷却を終了するま
での時間(加熱時間60秒+保持時間30秒+冷却時間
+後熱処理時間120秒)を作業時間として示した。
Table 1 shows the test results. In Table 1, the time required for cooling after welding is taken as the cooling time, and the time from the setting of the material to be welded in the welding apparatus to the completion of cooling of the joined body (heating time 60 seconds + holding time 30 seconds) + Cooling time + post-heat treatment time of 120 seconds) was shown as the working time.

【0031】[0031]

【表1】 [Table 1]

【0032】表1から明らかなように、比較例では冷却
時間は短いが、接合後の冷却で接合部に割れを生じた。
これに対して、実施例はいずれの接合体も浸透探傷試験
で割れが認められず、また、引張試験の結果でも破断位
置は母材であって、接合部が健全なことを示している。
As is clear from Table 1, in the comparative example, the cooling time was short, but the cooling after the bonding caused cracks in the bonded portion.
On the other hand, in Examples, no cracks were observed in any of the joined bodies in the penetrant inspection test, and the results of the tensile test show that the fracture position was the base material and the joints were sound.

【0033】後熱処理を行わなかった実施例5および実
施例8は、後熱処理を行ったものと比較すると作業時間
は短いが、シャルピー衝撃値が劣る。しかし、鋼2のよ
うに(C+N)含有率の低い鋼を用いれば、後熱処理を
省略しても十分に実用的な耐衝撃特性を示すので、可及
的短時間で接合する必要があるときには有効な手段とい
える。冷却速度が本発明の範囲を超えて低い場合は、冷
却時間が390秒間を超え、作業時間が10分間を超え
る長時間となってしまう。
In Examples 5 and 8 in which the post heat treatment was not performed, the working time was shorter, but the Charpy impact value was inferior as compared with those in which the post heat treatment was performed. However, if a steel having a low (C + N) content such as steel 2 is used, it exhibits sufficiently practical impact resistance even if the post heat treatment is omitted. This is an effective means. If the cooling rate is lower than the range of the present invention, the cooling time is longer than 390 seconds, and the working time is longer than 10 minutes.

【0034】[0034]

【発明の効果】以上に説明したように、本発明のマルテ
ンサイト系ステンレス鋼の接合方法によれば、短い接合
作業時間で、割れ、その他の欠陥を生じることがない健
全なマルテンサイト系ステンレス鋼の接合体を得ること
ができ、石油掘削用ケーシングチューブの接合、化学装
置配管の継手接合など、作業現場におけるマルテンサイ
ト系ステンレス鋼の接合作業の能率を著しく向上し、そ
の経済効果は極めて大きいといえる。
As described above, according to the method for joining martensitic stainless steels of the present invention, a sound martensitic stainless steel which is free from cracks and other defects in a short joining operation time. Can significantly improve the efficiency of joining martensitic stainless steel at work sites, such as joining casing tubes for oil drilling and joining joints of chemical equipment pipes, and the economic effect is extremely large. I can say.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲垣 繁幸 愛知県名古屋市南区大同町二丁目30番地 大同特殊鋼株式会社技術研究所内 Fターム(参考) 4E067 AA03 BA00 DC06 EA03 EC06 4K042 AA24 BA06 BA11 CA07 CA10 CA11 DA06 DE01 DE06  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Shigeyuki Inagaki 2-30, Datong-cho, Minami-ku, Nagoya-shi, Aichi F-term in the Technical Research Laboratory of Daido Steel Co., Ltd. 4E067 AA03 BA00 DC06 EA03 EC06 4K042 AA24 BA06 BA11 CA07 CA10 CA11 DA06 DE01 DE06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 マルテンサイト系ステンレス鋼の加熱接
合において、加熱接合後の冷却時に、加熱された部位を
強制冷却することによって、前記部位の温度が1100
℃以上の間は0.6℃/s〜10℃/sの冷却速度で冷
却し、1100℃未満〜300℃の間は2.4℃/s〜
25℃/sの冷却速度で冷却し、300℃未満〜100
℃の間は0.6℃/s〜8℃/sの冷却速度で冷却する
ことを特徴とするマルテンサイト系ステンレス鋼の接合
方法。
1. In the heat joining of martensitic stainless steel, the temperature of the heated portion is 1100 by forcibly cooling the heated portion during cooling after the heat joining.
Cooling at a cooling rate of 0.6 ° C./s to 10 ° C./s during a temperature of not less than 1 ° C .;
Cool at a cooling rate of 25 ° C./s,
A method for joining martensitic stainless steel, wherein the martensitic stainless steel is cooled at a cooling rate of 0.6 ° C / s to 8 ° C / s during ° C.
【請求項2】 質量%で、(C+N):0.05%以下
を含有するマルテンサイト系ステンレス鋼の加熱接合に
おいて、前記加熱接合後の冷却時に、加熱された部位を
強制冷却することによって、前記部位の温度が1100
℃以上の間は0.6℃/s〜10℃/sの冷却速度で冷
却し、1100℃未満〜100℃の間は2.4℃/s〜
30℃/sの冷却速度で冷却することを特徴とするマル
テンサイト系ステンレス鋼の接合方法。
2. In the heat joining of martensitic stainless steel containing (C + N): 0.05% or less by mass, by forcibly cooling the heated portion at the time of cooling after the heat joining. The temperature of the site is 1100
Cooling at a cooling rate of 0.6 ° C./s to 10 ° C./s during a temperature of not less than 1 ° C .;
A method for joining martensitic stainless steel, comprising cooling at a cooling rate of 30 ° C./s.
【請求項3】 前記加熱接合が拡散接合であることを特
徴とする請求項1および請求項2のいずれか1項記載の
マルテンサイト系ステンレス鋼の接合方法。
3. The method for joining martensitic stainless steel according to claim 1, wherein said heat joining is diffusion joining.
JP2001107189A 2001-04-05 2001-04-05 Method of joining martensitic stainless steel Pending JP2002301577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001107189A JP2002301577A (en) 2001-04-05 2001-04-05 Method of joining martensitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001107189A JP2002301577A (en) 2001-04-05 2001-04-05 Method of joining martensitic stainless steel

Publications (1)

Publication Number Publication Date
JP2002301577A true JP2002301577A (en) 2002-10-15

Family

ID=18959548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001107189A Pending JP2002301577A (en) 2001-04-05 2001-04-05 Method of joining martensitic stainless steel

Country Status (1)

Country Link
JP (1) JP2002301577A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531414A (en) * 2001-06-29 2005-10-20 マッククリンク,エドワード,ジェイ. Seam welded air quenchable steel pipe
JP2007032465A (en) * 2005-07-28 2007-02-08 Nippon Steel Corp Lightweight engine valve superior in heat radiation
US7475478B2 (en) 2001-06-29 2009-01-13 Kva, Inc. Method for manufacturing automotive structural members
WO2009016764A1 (en) * 2007-08-02 2009-02-05 Toshiaki Kitazawa Method of bonding steel members, method of heightening bonding strength in bonded object comprising steel members, steel product, and resin product
WO2009034656A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material, steel product and diecast product
WO2009034657A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material and steel product
WO2009034655A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material, steel product and diecast product
WO2009034654A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Corporation Method of joining steel members together, method of enhancing junction strength of junction body composed of steel members, steel product and diecast product
US7540402B2 (en) 2001-06-29 2009-06-02 Kva, Inc. Method for controlling weld metal microstructure using localized controlled cooling of seam-welded joints
US7618503B2 (en) 2001-06-29 2009-11-17 Mccrink Edward J Method for improving the performance of seam-welded joints using post-weld heat treatment
US7926180B2 (en) 2001-06-29 2011-04-19 Mccrink Edward J Method for manufacturing gas and liquid storage tanks
JP5208106B2 (en) * 2007-04-09 2013-06-12 株式会社Mole’S Act Method for joining steel members, method for strengthening joining force in joined bodies made of steel members, and steel products
CN107002189A (en) * 2014-11-05 2017-08-01 日新制钢株式会社 Spread engagement stainless steel material

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7926180B2 (en) 2001-06-29 2011-04-19 Mccrink Edward J Method for manufacturing gas and liquid storage tanks
US7540402B2 (en) 2001-06-29 2009-06-02 Kva, Inc. Method for controlling weld metal microstructure using localized controlled cooling of seam-welded joints
US7618503B2 (en) 2001-06-29 2009-11-17 Mccrink Edward J Method for improving the performance of seam-welded joints using post-weld heat treatment
JP2005531414A (en) * 2001-06-29 2005-10-20 マッククリンク,エドワード,ジェイ. Seam welded air quenchable steel pipe
US7475478B2 (en) 2001-06-29 2009-01-13 Kva, Inc. Method for manufacturing automotive structural members
JP2007032465A (en) * 2005-07-28 2007-02-08 Nippon Steel Corp Lightweight engine valve superior in heat radiation
JP5208106B2 (en) * 2007-04-09 2013-06-12 株式会社Mole’S Act Method for joining steel members, method for strengthening joining force in joined bodies made of steel members, and steel products
JP4590014B2 (en) * 2007-08-02 2010-12-01 株式会社Mole’S Act Method for joining steel members and method for strengthening joining force in joined body comprising steel members
WO2009016764A1 (en) * 2007-08-02 2009-02-05 Toshiaki Kitazawa Method of bonding steel members, method of heightening bonding strength in bonded object comprising steel members, steel product, and resin product
JPWO2009016764A1 (en) * 2007-08-02 2010-10-14 株式会社Mole’S Act Method for joining steel members, method for strengthening joining force in joined bodies made of steel members, method for producing steel products, and method for producing resin products
WO2009034656A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material, steel product and diecast product
WO2009034654A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Corporation Method of joining steel members together, method of enhancing junction strength of junction body composed of steel members, steel product and diecast product
WO2009034655A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material, steel product and diecast product
JP5198458B2 (en) * 2007-09-14 2013-05-15 セイコーエプソン株式会社 Method for joining steel members, method for strengthening joining force in joined bodies composed of steel members, steel products and die-cast products
WO2009034657A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material and steel product
CN107002189A (en) * 2014-11-05 2017-08-01 日新制钢株式会社 Spread engagement stainless steel material
CN107002189B (en) * 2014-11-05 2019-07-05 日铁日新制钢株式会社 Diffusion bonding stainless steel material

Similar Documents

Publication Publication Date Title
Chandrasekar et al. Investigation on un-peened and laser shock peened dissimilar weldments of Inconel 600 and AISI 316L fabricated using activated-TIG welding technique
JP4790844B2 (en) Common rail manufacturing method and partially reinforced common rail
JP2002301577A (en) Method of joining martensitic stainless steel
JPH11129078A (en) Welding two phase stainless steel
US7804039B2 (en) Liquid phase diffusion bonding method of metal machine part and such metal machine part
Pai et al. Results of tensile, hardness and bend tests of modified 9Cr 1Mo steel welds: Comparison between cold wire and hot wire gas tungsten arc welding (GTAW) processes
WO1997036711A1 (en) Method of diffusion-welding metal materials
JPH0772530B2 (en) Water turbine runner manufacturing method
Urzynicok et al. Application of new GMAW welding methods used in prefabrication of P92 (X10CrWMoVNb9-2) pipe butt welds
JP7059572B2 (en) Welded joint manufacturing method and welded joint
JP3079995B2 (en) Diffusion bonding method of metal material
JPH09262685A (en) Stainless steel welding method
JP4740275B2 (en) Common rail manufacturing method and partially reinforced common rail
Lu et al. Microstructural characterization and wide temperature range mechanical properties of NiCrMoV steel welded joint with heavy section
JP4391992B2 (en) Reactor structure and manufacturing method and repair method thereof
JPH08311563A (en) Method for joining martensitic stainless steel pipes
JPH11197853A (en) Joining method for martensitic stainless steel
JPH11320120A (en) Steel pipe local joining method
JPS61229481A (en) High temperature high pressure steam turbine and its welding method
Kumar et al. Effect of post weld heat treatment on impact toughness of SA 516 GR. 70 Low Carbon Steel Welded by Saw Process
JP3530325B2 (en) Repair method of nozzle weld
Chennaiah et al. Effect of Heat Input and Heat Treatment on the Mechanical Properties of Is2062-Is103 Cr 1Steel Weldments
JPH09194997A (en) Welded steel tube and its production
JP3629184B2 (en) Liquid phase diffusion bonding method for joints with high strength and toughness
JP2899647B2 (en) Water wheel runner