JP2002277862A - Liquid crystal light modulator and display device using the same - Google Patents

Liquid crystal light modulator and display device using the same

Info

Publication number
JP2002277862A
JP2002277862A JP2001081409A JP2001081409A JP2002277862A JP 2002277862 A JP2002277862 A JP 2002277862A JP 2001081409 A JP2001081409 A JP 2001081409A JP 2001081409 A JP2001081409 A JP 2001081409A JP 2002277862 A JP2002277862 A JP 2002277862A
Authority
JP
Japan
Prior art keywords
liquid crystal
light modulator
resin
crystal light
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001081409A
Other languages
Japanese (ja)
Inventor
Hideo Fujikake
英夫 藤掛
Hiroto Sato
弘人 佐藤
Yuzuru Tsuchiya
讓 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2001081409A priority Critical patent/JP2002277862A/en
Publication of JP2002277862A publication Critical patent/JP2002277862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid crystal light modulator which can be made light- weight, is superior in portability and storability, has a high speed and a high light contrast and is free of after image and image persistence, and to provide a display device using this liquid crystal light modulator. SOLUTION: The liquid crystal light modulator is provided with a liquid crystal-resin complex 3, where an independent porous film obtained by flocculating fine resin fibers is impregnated with a liquid crystal, two transparent substrates 5a and 5b, which have transparent electrodes formed and are arranged on both sides of the liquid crystal-resin complex with the transparent electrodes inside, and a voltage source 8, which applies positive or negative DC or AC voltage to the two transparent electrodes. Thus a display panel, having a large area, is easily manufactured because the porous film having a mechanical strength keeps the gap between the two transparent substrates fixed, and the weight is reduced because it is unnecessary to use thick glass panels, and portability and storability are improved, because the display panel can be bent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液晶光変調器及びそ
れを用いた表示装置に関し、特に、液晶を用いて光強度
を変調する液晶光変調器及びそれを用いた表示装置に関
する。
The present invention relates to a liquid crystal light modulator and a display device using the same, and more particularly, to a liquid crystal light modulator that modulates light intensity using a liquid crystal and a display device using the same.

【0002】[0002]

【従来の技術】液晶に電界を加えて、液晶分子の配列状
態を変化させるという液晶の電気光学効果を応用すると
光変調器が実現できる。液晶光変調器は、他の電気光学
効果を示す光学結晶に比べて低電圧で動作し、また比較
的大きな面積のものを作ることができるため、ディスプ
レイ用の電気光学素子として近年注目されている。
2. Description of the Related Art An optical modulator can be realized by applying an electro-optic effect of a liquid crystal, which changes an alignment state of liquid crystal molecules by applying an electric field to the liquid crystal. Liquid crystal light modulators have been attracting attention as electro-optical elements for displays in recent years because they operate at a lower voltage than optical crystals exhibiting other electro-optical effects and can be made with a relatively large area. .

【0003】そのような液晶光変調器の一つとして、液
晶内に合成樹脂の微細構造を形成し、その配向規制力に
より液晶配向を3次元的に制御した素子がある。液晶と
合成樹脂からなる複合体では、基板表面に加えて樹脂表
面の配向規制力が働くため、ポリマーを分散しない液晶
光変調器に比べて、高速な応答が得られることが知られ
ており、フラットディスプレイや投写型ディスプレイな
どに応用が期待されている。
As one of such liquid crystal light modulators, there is an element in which a fine structure of a synthetic resin is formed in a liquid crystal and the liquid crystal alignment is three-dimensionally controlled by the alignment regulating force. It is known that in a composite composed of liquid crystal and synthetic resin, a high-speed response can be obtained compared to a liquid crystal optical modulator that does not disperse a polymer because the alignment regulating force acts on the resin surface in addition to the substrate surface. It is expected to be applied to flat displays and projection displays.

【0004】液晶・樹脂複合体を含む素子として、従
来、液晶に合成樹脂の原材料(モノマー、オリゴマーな
ど)を溶解した混合液を透明基板で挟んだ上で、樹脂原
材料の光重合反応(参考文献1 N.A.Vaz,G.
W.Smith and G.P.Montgomer
y,Jr.:”A light control fi
lm composed of liquid cry
stal droplets dispersed i
n an UV−curable polymer”,
Mol.Cryst.Liq.Cryst.,vol.
146,pp.1−15(1987))や熱重合反応
(参考文献2 N.A.Vaz,G.W.Smith
and G.P.Montgomery,Jr.:”A
lightcontrol film compos
ed of liquid crystal drop
lets dispersed in an epox
ymatrix”,Mol.Cryst.Liq.Cr
yst.,vol.146,pp.17−34(198
7))により、合成樹脂と液晶を分離させた液晶光変調
器がある。
Conventionally, as a device containing a liquid crystal / resin composite, a liquid mixture of a synthetic resin material (monomer, oligomer, etc.) dissolved in liquid crystal is sandwiched between transparent substrates, and then a photopolymerization reaction of the resin material (see References). 1 NA Vaz, G .;
W. Smith and G.S. P. Montgomer
y, Jr. : "A light control fi
lm composed of liquid cry
stall drops dispersed i
n an UV-curable polymer ",
Mol. Cryst. Liq. Cryst. , Vol.
146, pp. 1-15 (1987)) and thermal polymerization reaction (Ref. 2, NA Vaz, GW Smith).
and G. P. See Montgomery, Jr. : "A
lightcontrol film compos
ed of liquid crystal drop
Lets dispersed in an epox
ymatrix ", Mol. Cryst. Liq. Cr
yst. , Vol. 146, pp. 17-34 (198
According to 7)), there is a liquid crystal light modulator in which a synthetic resin and a liquid crystal are separated.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記参考文献
1,2の光変調器は以下に述べるような問題を抱えてい
る。液晶・樹脂複合体の厚みを一定に保つため、2枚の
ガラス基板で精密にギャップを形成しなければならず、
大面積の表示パネルを作製することが困難である。ま
た、ガラス基板を用いるため、素子の大面積化に伴って
表示パネルの重量が増大し、携帯性や収納性が劣るなど
の問題が生じる。
However, the optical modulators of References 1 and 2 have the following problems. In order to keep the thickness of the liquid crystal / resin composite constant, a gap must be precisely formed between the two glass substrates.
It is difficult to manufacture a large-area display panel. In addition, since a glass substrate is used, the weight of the display panel increases with an increase in the area of the element, which causes problems such as poor portability and storage.

【0006】また、高速な光変調と高いコントラスト比
を得るためには、液晶内に微細なポリマー構造を形成す
る必要があり、それには複合体の形成過程において強い
紫外光を照射し、急速にポリマーと液晶を分離しなけれ
ばならない。その場合、強い紫外光照射による液晶や合
成樹脂の光分解が避けられず、分解生成物がイオン性の
不純物となり複合体の電気抵抗の低下が生じ、アクティ
ブマトリックスや単純マトリックスに基づき駆動して表
示装置を構成した場合、電圧除去後も表示が残る残像や
焼き付きにより画質低下が生じるという問題が生じる。
Further, in order to obtain high-speed light modulation and a high contrast ratio, it is necessary to form a fine polymer structure in the liquid crystal. The polymer and liquid crystal must be separated. In this case, photodecomposition of liquid crystal and synthetic resin due to strong ultraviolet light irradiation is unavoidable, the decomposition products become ionic impurities and the electrical resistance of the composite decreases, and the display is driven by active matrix or simple matrix. When the apparatus is configured, there is a problem that image quality is deteriorated due to an afterimage or burn-in in which a display remains even after voltage is removed.

【0007】本発明は、上記の点に鑑みなされたもの
で、軽量化でき携帯性・収納性に優れ、また、高速かつ
高い光コントラスト比で残像・焼き付きのない液晶光変
調器及びそれを用いた表示装置を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and is intended to provide a liquid crystal light modulator which can be reduced in weight, is excellent in portability and storage properties, has a high speed and a high light contrast ratio, and has no afterimage or image sticking. It is an object of the present invention to provide a display device.

【0008】[0008]

【課題を解決するための手段】請求項1に記載の発明
は、微細な樹脂繊維が凝集した自立性の多孔質膜に液晶
を浸透させた液晶・樹脂複合体と、それぞれ透明電極が
形成され前記透明電極を内側にして前記液晶・樹脂複合
体を挟み、かつ前記透明電極が前記液晶・樹脂複合体に
固着している2つの透明基板と、前記2つの透明電極に
正または負の直流電圧または交流電圧を印加する電圧源
とを有することにより、機械強度を有する多孔質膜が2
枚の透明基板のギャップを一定に保つため、大面積の表
示パネルの作製が容易であり、厚いガラス基板を用いる
必要がなくなるため軽量化を図ることができ、表示パネ
ルを曲げることが可能になるため、携帯性・収納性が向
上する。
According to a first aspect of the present invention, there is provided a liquid crystal / resin composite in which liquid crystal is penetrated into a self-supporting porous film in which fine resin fibers are aggregated, and a transparent electrode is formed. Two transparent substrates sandwiching the liquid crystal / resin composite with the transparent electrode inside and the transparent electrode fixed to the liquid crystal / resin composite; and a positive or negative DC voltage applied to the two transparent electrodes. Or, by having a voltage source for applying an AC voltage, a porous membrane having mechanical strength
Since the gap between the two transparent substrates is kept constant, it is easy to manufacture a large-sized display panel, and it is not necessary to use a thick glass substrate, so that the weight can be reduced and the display panel can be bent. Therefore, portability and storability are improved.

【0009】請求項2に記載の発明では、樹脂繊維の向
きが一方向に揃っており、また、請求項3記載の発明で
は、樹脂繊維の表面分子が繊維の方向に配向しているこ
とにより、高い秩序で液晶を配向させて高コントラスト
比を得ることができる。
According to the second aspect of the invention, the directions of the resin fibers are aligned in one direction, and in the third aspect of the invention, the surface molecules of the resin fibers are oriented in the direction of the fibers. In addition, a high contrast ratio can be obtained by orienting the liquid crystal in a high order.

【0010】請求項8に記載の発明は、液晶もしくは合
成樹脂材料に対し表面ぬれ性が高い微粒子が分散された
液晶と合成樹脂からなる液晶・樹脂複合体と、それぞれ
透明電極が形成され前記透明電極を内側にして前記液晶
・樹脂複合体を挟み、かつ前記透明電極が前記液晶・樹
脂複合体に固着している2つの透明基板と、前記2つの
透明電極に正または負の直流電圧または交流電圧を印加
する電圧源とを有することにより、強い紫外光を照射し
なくても綴密な複合構造が形成でき、高速かつ光コント
ラストの液晶光変調器や残像・焼き付きがない表示装置
を実現できる。
The invention according to claim 8 is a liquid crystal or resin composite comprising a liquid crystal and a synthetic resin in which fine particles having high surface wettability are dispersed in a liquid crystal or a synthetic resin material, and a transparent electrode formed on each of the transparent electrodes. Two transparent substrates sandwiching the liquid crystal / resin composite with the electrodes inside, and the transparent electrode fixed to the liquid crystal / resin composite, and a positive or negative DC voltage or AC applied to the two transparent electrodes. By having a voltage source for applying a voltage, a tightly bound composite structure can be formed without irradiating strong ultraviolet light, and a high-speed and light-contrast liquid crystal light modulator and a display device with no afterimage or image sticking can be realized. .

【0011】請求項12に記載の発明では、透明基板
は、プラスティックフィルムであることにより、軽量で
折り曲げが可能な液晶光変調器を構成することができ
る。
According to the twelfth aspect of the present invention, since the transparent substrate is a plastic film, a light-weight and bendable liquid crystal light modulator can be formed.

【0012】請求項13に記載の発明は、請求項1乃至
12のいずれかに記載の液晶光変調器を用いて表示を行
うことにより、軽量化でき携帯性・収納性に優れ、ま
た、高速かつ高い光コントラスト比で残像・焼き付きの
ない表示装置を実現できる。
According to a thirteenth aspect of the present invention, by performing display using the liquid crystal light modulator according to any one of the first to twelfth aspects, the weight can be reduced, the portability and storage properties are excellent, and the high speed can be achieved. In addition, it is possible to realize a display device with a high light contrast ratio and no afterimage or image sticking.

【0013】[0013]

【発明の実施の形態】図1は、本発明の液晶光変調器の
第1実施例の模式的断面図を示す。同図中、合成樹脂も
しくは天然樹脂の微細な繊維が凝集した自立性の多孔質
膜2に液晶1が浸透されており、その液晶・樹脂複合体
3はそれぞれ透明基板5a,5bに付着された透明電極
4a,4bに挟まれて配設される。透明電極4a,4b
はリード線6a,6bを介して、正または負の直流電
圧、もしくは交流電圧を供給する電圧源8に接続されて
いる。一方の透明基板5aから光10が入射し、液晶・
樹脂複合体3で光変調されて、出射光11となる。
FIG. 1 is a schematic sectional view of a first embodiment of the liquid crystal light modulator according to the present invention. In the figure, the liquid crystal 1 has penetrated into a self-supporting porous film 2 in which fine fibers of a synthetic resin or a natural resin are aggregated, and the liquid crystal / resin composite 3 is attached to transparent substrates 5a and 5b, respectively. It is disposed between the transparent electrodes 4a and 4b. Transparent electrodes 4a, 4b
Is connected to a voltage source 8 for supplying a positive or negative DC voltage or an AC voltage via the lead wires 6a and 6b. Light 10 is incident on one of the transparent substrates 5a,
The light is modulated by the resin complex 3 and becomes the emission light 11.

【0014】上記の液晶・樹脂複合体3は、自立性の多
孔質膜2に液晶1を浸透させた後、2枚の透明基板5
a,5bで挟み込むことにより作製される。多孔質膜2
としては、樹脂繊維を織り上げた布や、樹脂繊維を固着
させた紙などを用いることができる。多孔質膜2内の樹
脂繊維の分散密度やサイズを変えることにより、液晶・
樹脂複合体3への電界印加で生じる光変調の応答速度や
コントラスト比を制御できる。繊維の太さは1μm以下
が望ましく、良好な光変調を行うためには、多孔質膜の
厚みが2μmから50μmが適当である。
After the liquid crystal 1 is penetrated into the self-supporting porous film 2 after the liquid crystal / resin composite 3
a, 5b. Porous membrane 2
For example, a cloth in which resin fibers are woven or paper to which resin fibers are fixed can be used. By changing the dispersion density and size of the resin fibers in the porous membrane 2,
The response speed and contrast ratio of light modulation generated by applying an electric field to the resin composite 3 can be controlled. The thickness of the fiber is desirably 1 μm or less, and the thickness of the porous film is suitably 2 μm to 50 μm in order to perform good light modulation.

【0015】樹脂繊維2の方向がランダムで等方的であ
る場合、液晶1がランダムに配向し光が散乱されるた
め、それを利用して光変調を行うことができる。すなわ
ち、透明電極4a,4b間に電圧が印加されない状態で
は、入射光10がランダムに配向した液晶1による散乱
によって遮断されるが、電圧が印加されると液晶1の液
晶分子が電界方向に配向して一様になるため、光が透過
するようになる。分散構造が綴密であれば、強い光散乱
が生じるため、高いコントラスト比を得ることが可能で
ある。
When the directions of the resin fibers 2 are random and isotropic, the liquid crystal 1 is randomly oriented and the light is scattered, and light modulation can be performed by utilizing the orientation. That is, when no voltage is applied between the transparent electrodes 4a and 4b, the incident light 10 is cut off by scattering by the randomly oriented liquid crystal 1, but when a voltage is applied, the liquid crystal molecules of the liquid crystal 1 are oriented in the direction of the electric field. As a result, the light is transmitted. If the dispersion structure is tight, strong light scattering occurs, so that a high contrast ratio can be obtained.

【0016】樹脂樹脂2の向きが一方向にほぼ揃った自
己保持膜の場合、液晶分子の配向もその方向に配向す
る。その場合、電圧を印加することにより、配向変化に
伴って液晶の複屈折を制御できるため、2枚の偏光板で
液晶・樹脂複合体3を狭めば、光変調を行うことができ
る。この場合、高い秩序で液晶を配向させて高コントラ
スト比を得るためには、繊維の表面分子も繊維の方向に
配向していることが望ましい。そのため、合成繊維2の
材料として、液晶性のモノマーを硬化させた合成樹脂
や、高分子液晶を用いることも可能である。また、多孔
質樹脂2により液晶1が配向するため、従来の液晶素子
に用いられてきたポリイミド配向膜を必ずしも透明電極
上に設ける必要はない。
In the case of a self-holding film in which the direction of the resin 2 is substantially aligned in one direction, the liquid crystal molecules are also oriented in that direction. In this case, by applying a voltage, the birefringence of the liquid crystal can be controlled in accordance with the change in alignment. Therefore, if the liquid crystal / resin composite 3 is narrowed by two polarizing plates, light modulation can be performed. In this case, in order to obtain a high contrast ratio by orienting the liquid crystal in a high order, it is desirable that the surface molecules of the fiber are also oriented in the direction of the fiber. Therefore, as a material of the synthetic fiber 2, a synthetic resin obtained by curing a liquid crystalline monomer or a polymer liquid crystal can be used. In addition, since the liquid crystal 1 is aligned by the porous resin 2, it is not always necessary to provide a polyimide alignment film used for a conventional liquid crystal element on the transparent electrode.

【0017】機械的安定性に優れた自立性の多孔質膜に
用いられる樹脂2としては、アクリル樹脂、メタクリル
樹脂、エポキシ樹脂、ウレタン樹脂、ポリスチレン、ポ
リビニルアルコール、またはそれらの共重合体(例えば
アクリルウレタン樹脂)、セルロースなどを用いること
ができる。
The resin 2 used for the self-supporting porous film having excellent mechanical stability includes acrylic resin, methacrylic resin, epoxy resin, urethane resin, polystyrene, polyvinyl alcohol, or a copolymer thereof (eg, acrylic resin). (Urethane resin), cellulose and the like can be used.

【0018】また、液晶1としては、ネマティック液
晶、コレステリック液晶、スメクティック液晶を用いる
ことができる。ただし、高速応答を得るには、低粘性か
つ高弾性の液晶材料が適しており、液晶の屈折率異方性
△n(△n=異常光屈折率ne−常光屈折率no)が大
きいシアノ系、ビフェニール系、ターフェニール系、ピ
リミジン系、トラン系、フッ素系のネマティック液晶が
適している。
As the liquid crystal 1, a nematic liquid crystal, a cholesteric liquid crystal, or a smectic liquid crystal can be used. However, in order to obtain a high-speed response, a liquid crystal material having a low viscosity and a high elasticity is suitable, and a cyano-based liquid crystal having a large refractive index anisotropy Δn (Δn = abnormal light refractive index ne−ordinary refractive index no) is large. Suitable are biphenyl, terphenyl, pyrimidine, tolan, and fluorine nematic liquid crystals.

【0019】スメクティック液晶を用いる場合、自発分
極を有して高速応答を示す強誘電性液晶が有用である。
例えば、シッフ塩基系強誘電性液晶、アゾ系強誘電性液
晶、アゾキシ系強誘電性液晶、ビフェニル系強誘電性液
晶、エステル系強誘電性液晶、もしくはフェニルピリミ
ジン系強誘電性液晶などが好ましい。強誘電性液晶を用
いる場合、合成繊維の方向を一方向に揃った多孔質膜2
が不可欠である。
When a smectic liquid crystal is used, a ferroelectric liquid crystal having spontaneous polarization and exhibiting a high-speed response is useful.
For example, a Schiff base ferroelectric liquid crystal, an azo ferroelectric liquid crystal, an azoxy ferroelectric liquid crystal, a biphenyl ferroelectric liquid crystal, an ester ferroelectric liquid crystal, or a phenylpyrimidine ferroelectric liquid crystal is preferable. When a ferroelectric liquid crystal is used, the porous film 2 in which the directions of the synthetic fibers are aligned in one direction
Is essential.

【0020】透明基板5a,5bとしては、厚み0.3
mm以下のポリカーボネート、ポリエチレンテレフタレ
ート、ポリエーテルスルホンなど柔軟なプラスティック
フィルムをはじめ、0.6mm以下の薄いガラス板を用
いることができる。特に、プラスティックフィルムの透
明基板5a,5bと、自己支持性の液晶・樹脂複合体3
を一体化することにより、軽量で折り曲げが可能な液晶
光変調器を構成することができる。
The transparent substrates 5a and 5b have a thickness of 0.3
A thin glass plate of 0.6 mm or less can be used, including a flexible plastic film such as polycarbonate, polyethylene terephthalate, or polyether sulfone having a thickness of 0.6 mm or less. In particular, transparent substrates 5a and 5b of a plastic film and a self-supporting liquid crystal / resin composite 3
By integrating them, a light-weight and bendable liquid crystal light modulator can be configured.

【0021】透明電極4a,4bとしては、錫をドープ
した酸化インジウム(ITO:In :Sn)など
が好適である。透明電極4a,4b間の短絡を避けるた
めに透明な有機物や無機酸化物(例えばSiO、Ti
)などの絶縁層を配向膜と透明電極4a,4bの間
に設けることも可能である。
The transparent electrodes 4a and 4b are doped with tin.
Indium oxide (ITO: In) 2O3: Sn) etc.
Is preferred. To avoid short circuit between the transparent electrodes 4a and 4b
Organic or inorganic oxides (eg, SiO 22, Ti
O2) Between the alignment film and the transparent electrodes 4a and 4b.
Can also be provided.

【0022】上記の液晶光変調器にバックライトを設け
ることにより、高速かつ高コントラストの表示装置を構
成することができる。一方、上記の液晶光変調器に光を
反射する反射板や拡散板を設けることにより、バックラ
イトを用いず低消費電力の反射型表示装置を構成するこ
とも可能である。
By providing a backlight for the liquid crystal light modulator, a high-speed and high-contrast display device can be constructed. On the other hand, by providing a reflection plate or a diffusion plate for reflecting light in the liquid crystal light modulator, it is possible to configure a reflection type display device with low power consumption without using a backlight.

【0023】第1実施例として、屈折率異方性が大きな
ネマティック液晶1(メルク社BL−008)をセルロ
ース繊維が凝集した多孔質膜(コピー紙)に浸透させ
て、2枚の透明電極(厚み72nm)付きのガラス基板
を用いて挟み込んで液晶光変調器を試作した。透明電極
間に100Vrms以上の交流電圧を印加したところ、
素子が光散乱状態から透明に変化し、透過光の変調が可
能であることが確認された。
As a first example, a nematic liquid crystal 1 having a large refractive index anisotropy (BL-008, manufactured by Merck) is penetrated into a porous film (copy paper) in which cellulose fibers are aggregated, and two transparent electrodes ( A liquid crystal light modulator was prototyped by using a glass substrate with a thickness of 72 nm). When an AC voltage of 100 Vrms or more is applied between the transparent electrodes,
It was confirmed that the element changed from the light scattering state to transparent, and that the transmitted light could be modulated.

【0024】以上説明したように本実施例によれば、樹
脂繊維からなる多孔質膜に液晶を浸透させて、透明基板
で挟むことにより、大面積かつ軽量で柔軟な液晶光変調
器や表示装置を提供することができる。
As described above, according to this embodiment, the liquid crystal is made to penetrate into the porous film made of the resin fiber and is sandwiched between the transparent substrates, so that the liquid crystal optical modulator and the display device having a large area, light weight and flexibility are provided. Can be provided.

【0025】図2は、本発明の液晶光変調器の第2実施
例の模式的断面図を示す。同図中、液晶21の中に3次
元網目状もしくは粒状の合成樹脂22が分散された液晶
・樹脂複合体23が、それぞれ透明基板25a,25b
に付着された透明電極24a,24bに挟まれて配設さ
れる。液晶・樹脂複合体23の内部には、微粒子27が
分散される。透明電極24a,24bはリード線26
a,26bを介して、正または負の直流電圧、もしくは
交流電圧を供給する電圧源28に接続されている。一方
の透明基板25aから光30が入射し、液晶・樹脂複合
体23で光変調されて出射光31となる。
FIG. 2 is a schematic sectional view of a liquid crystal light modulator according to a second embodiment of the present invention. In the figure, a liquid crystal / resin composite 23 in which a three-dimensional mesh-like or granular synthetic resin 22 is dispersed in a liquid crystal 21 is provided on transparent substrates 25a and 25b, respectively.
Are disposed between the transparent electrodes 24a and 24b attached to the. In the liquid crystal / resin composite 23, fine particles 27 are dispersed. The transparent electrodes 24a and 24b are lead wires 26.
Via a and 26b, it is connected to a voltage source 28 for supplying a positive or negative DC voltage or AC voltage. Light 30 enters from one of the transparent substrates 25a, and is light-modulated by the liquid crystal / resin composite 23 to become outgoing light 31.

【0026】液晶・樹脂複合体23は、合成樹脂22の
原材料(モノマーやオリゴマーなど)と液晶21の混合
液において、合成樹脂22の原材料が紫外線照射によっ
て光重合し、液晶と樹脂が分離することによって形成さ
れる。微粒子27は、混合液から液晶21もしくは合成
樹脂22の分離を促進する役割を有する。微粒子27を
分散し、その分散密度やサイズを変えることにより、複
合構造の形態が制御できるため、液晶・樹脂複合体23
への電界印加で生じる光変調の応答速度や、コントラス
ト比を制御することが可能となる。
The liquid crystal / resin composite 23 is a liquid mixture of the raw material (monomer, oligomer, etc.) of the synthetic resin 22 and the liquid crystal 21. Formed by The fine particles 27 have a role of promoting the separation of the liquid crystal 21 or the synthetic resin 22 from the liquid mixture. By dispersing the fine particles 27 and changing their dispersion density and size, the form of the composite structure can be controlled.
It is possible to control the response speed of light modulation and the contrast ratio generated by applying an electric field to the device.

【0027】微粒子27の材質としては、液晶21もし
くは合成樹脂22材料に対し表面ぬれ性が高い透明な材
料を用いることが好ましく、無機材料(SiOなど)
および有機材料(ポリエステル、ポリエチレン、ポリス
チレンなど)を用いることができる。さらに微粒子27
の形状は、球状、棒状などのものを使用でき、液晶配向
に直接影響を与えないように、その最大サイズは2μm
以下が望ましい。
As a material of the fine particles 27, it is preferable to use a transparent material having a high surface wettability with respect to the liquid crystal 21 or the synthetic resin 22, and an inorganic material (such as SiO 2 ).
And organic materials (eg, polyester, polyethylene, and polystyrene) can be used. Further fine particles 27
Can have a spherical shape or a rod shape, and the maximum size is 2 μm so as not to directly affect the liquid crystal alignment.
The following is desirable.

【0028】液晶21と樹脂22の配合比は任意に設定
できるが、1重量%未満では液晶配向を制御するだけの
効果を得ることが困難である。液晶・樹脂複合体23で
は、液晶21に対する合成樹脂22の配合比を小さくす
ることにより、合成樹脂22を3次元網目状もしくは粒
状に分散することができる。合成樹脂22の配合比が比
較的大きな場合(例えば40重量%以上)、逆に液晶を
小滴状に分散することも可能である。
The mixing ratio between the liquid crystal 21 and the resin 22 can be set arbitrarily, but if it is less than 1% by weight, it is difficult to obtain the effect of controlling the liquid crystal alignment. In the liquid crystal / resin composite 23, the synthetic resin 22 can be dispersed in a three-dimensional network or a granular form by reducing the mixing ratio of the synthetic resin 22 to the liquid crystal 21. When the compounding ratio of the synthetic resin 22 is relatively large (for example, 40% by weight or more), it is possible to disperse the liquid crystal in the form of droplets.

【0029】合成樹脂22の分散形態が等方的である場
合、液晶21がランダムに配向し、光が散乱されるた
め、それを利用して光変調を行うことができる。すなわ
ち、透明電極24a,24b間に電圧が印加されない状
態では、入射光30が散乱により遮断されるが、電圧が
印加されると液晶分子が電界方向に配向して一様になる
ため、光が透過するようになる。複合構造が綴密であれ
ば、強い光散乱が生じるため、高いコントラストを得る
ことが可能である。
When the dispersion form of the synthetic resin 22 is isotropic, the liquid crystal 21 is randomly oriented and the light is scattered, so that the light can be modulated using this. That is, when no voltage is applied between the transparent electrodes 24a and 24b, the incident light 30 is cut off by scattering. However, when a voltage is applied, the liquid crystal molecules are aligned in the direction of the electric field and become uniform. It becomes transparent. If the composite structure is tight, strong light scattering occurs, so that a high contrast can be obtained.

【0030】合成樹脂22の分散形態を、一方向に異方
性化させることにより(例えば、液晶・樹脂複合体23
の網目構造が一方向に延伸した形状とするか、分散され
る合成樹脂22の粒子もしくは液晶小滴を伸びた楕円体
状にした場合)、液晶分子の配向も一方向に揃う。その
場合、電圧を印加することにより、配向変化に伴って液
晶の複屈折を制御できるため、2枚の偏光板で液晶・樹
脂複合体23を狭めば、光を変調できる。液晶配向の秩
序性を高めて、高いコントラスト比を得るには、配向し
た細長い繊維を含む合成樹脂22の3次元網目形態が有
用である。
The dispersion form of the synthetic resin 22 is made anisotropic in one direction (for example, the liquid crystal / resin composite 23
(The case where the network structure of (1) is elongated in one direction, or the dispersed synthetic resin 22 particles or liquid crystal droplets have an elongated ellipsoidal shape), and the orientation of liquid crystal molecules is also aligned in one direction. In this case, by applying a voltage, the birefringence of the liquid crystal can be controlled in accordance with the change in alignment. Therefore, if the liquid crystal / resin composite 23 is narrowed by two polarizing plates, light can be modulated. In order to increase the order of the liquid crystal alignment and obtain a high contrast ratio, a three-dimensional network configuration of the synthetic resin 22 including elongated fibers oriented is useful.

【0031】液晶・樹脂複合体23に用いられる合成樹
脂22としては、上記の光硬化をはじめ、熱硬化または
反応硬化により形成されるアクリル樹脂、メタクリル樹
脂、エポキシ樹脂、ウレタン樹脂、ポリスチレン、ポリ
ビニルアルコールまたはそれらの共重合体(例えばアク
リルウレタン樹脂)を用いることができる。また、複合
構造が異方性化するためには、液晶と合成樹脂原材料の
混合液が、分子配向した状態で液晶21と合成樹脂22
を分離・析出させる必要がある。その場合の樹脂材料と
して、液晶21に溶解性が優れた液晶性モノマーを硬化
させたものが好ましい。液晶性モノマーの分子は、液晶
21とともに配向したまま固定されるため、硬化後の合
成樹脂は、液晶分子に強い配向規制力を及ぼす。
The synthetic resin 22 used in the liquid crystal / resin composite 23 includes acrylic resin, methacrylic resin, epoxy resin, urethane resin, polystyrene, polyvinyl alcohol formed by heat curing or reaction curing as well as the above-mentioned photocuring. Alternatively, a copolymer thereof (for example, an acrylic urethane resin) can be used. Further, in order to make the composite structure anisotropic, the liquid mixture of the liquid crystal 21 and the synthetic resin
Need to be separated and precipitated. In such a case, a resin material obtained by curing a liquid crystal monomer having excellent solubility in the liquid crystal 21 is preferable. Since the molecules of the liquid crystalline monomer are fixed while being oriented together with the liquid crystal 21, the cured synthetic resin exerts a strong alignment regulating force on the liquid crystal molecules.

【0032】また、液晶21と合成樹脂22原材料の混
合液の分子配向を一方向に定めるためには、透明電極2
4a,24b上に配向膜を塗布する必要があり、その配
向膜としては、摩擦(ラビング)処理もしくは偏光紫外
光の照射により選択的な光分解処理が施されたポリイミ
ド樹脂、ポリビニルアルコール樹脂、斜方蒸着されたS
iOx(xは1以上2以下)などが好ましい。もしくは
偏光した紫外線照射により、一方向のモノマーを選択的
に架橋・重合したシンナメート樹脂、ポリイミド樹脂を
用いることも可能である。
In order to determine the molecular orientation of the liquid mixture of the liquid crystal 21 and the raw material of the synthetic resin 22 in one direction, the transparent electrode 2
4a and 24b, it is necessary to apply an alignment film, such as a polyimide resin, a polyvinyl alcohol resin, a polyvinyl alcohol resin, which is subjected to a friction (rubbing) treatment or a selective photodecomposition treatment by irradiation with polarized ultraviolet light. S deposited
iOx (x is 1 or more and 2 or less) is preferable. Alternatively, it is also possible to use a cinnamate resin or a polyimide resin in which a monomer in one direction is selectively cross-linked and polymerized by irradiation with polarized ultraviolet light.

【0033】液晶21としては、ネマティック液晶、コ
レステリック液晶、スメクティック液晶21を用いるこ
とができる。ただし高速応答を得るには、低粘性かつ高
弾性の液晶材料が適しており、液晶の屈折率異方性△n
(△n=異常光屈折率ne−常光屈折率no)が大きい
シアノ系、ビフェニール系、ターフェニール系、ピリミ
ジン系、トラン系、フッ素系のネマティック液晶が適し
ている。スメクティック液晶を用いる場合、自発分極を
有して高速応答を示す強誘電性液晶が有用である。例え
ば、シッフ塩基系強誘電性液晶、アゾ系強誘電性液晶、
アゾキシ系強誘電性液晶、ビフェニル系強誘電性液晶、
エステル系強誘電性液晶、もしくはフェニルピリミジン
系強誘電性液晶などが好ましい。なお、強誘電性液晶を
均一に配向させるには、一方向に異方性化した樹脂22
の形態が好ましい。
As the liquid crystal 21, a nematic liquid crystal, a cholesteric liquid crystal, and a smectic liquid crystal 21 can be used. However, in order to obtain a high-speed response, a liquid crystal material having low viscosity and high elasticity is suitable.
A cyano-based, biphenyl-based, terphenyl-based, pyrimidine-based, tolan-based, or fluorine-based nematic liquid crystal having a large (△ n = extraordinary light refractive index ne-ordinary light refractive index no) is suitable. When a smectic liquid crystal is used, a ferroelectric liquid crystal having spontaneous polarization and exhibiting a high-speed response is useful. For example, Schiff base ferroelectric liquid crystal, azo ferroelectric liquid crystal,
Azoxy ferroelectric liquid crystal, biphenyl ferroelectric liquid crystal,
An ester-based ferroelectric liquid crystal or a phenylpyrimidine-based ferroelectric liquid crystal is preferable. In order to uniformly orient the ferroelectric liquid crystal, it is necessary to use a resin 22 which is anisotropic in one direction.
Is preferred.

【0034】透明基板25a,25bとしては、ポリカ
ーボネート、ポリエチレンテレフタレート、ポリエーテ
ルスルホンなど柔軟なプラスティックフィルムや、ガラ
ス板を用いることができる。プラスティックフィルムの
透明基板25a,25bと自己支持性の液晶・樹脂複合
体23を一体化することにより、軽量で折り曲げが可能
な柔軟な光変調器を構成することが可能である。
As the transparent substrates 25a and 25b, a flexible plastic film such as polycarbonate, polyethylene terephthalate, polyether sulfone, or a glass plate can be used. By integrating the plastic film transparent substrates 25a and 25b and the self-supporting liquid crystal / resin composite 23, it is possible to configure a light-weight and flexible optical modulator that can be bent.

【0035】透明電極24a,24bとしては、錫をド
ープした酸化インジウム(ITO:In:Sn)
などが好適である。透明電極24a,24b間の短絡を
避けるために透明な有機物や無機酸化物(例えばSiO
、TiO)などの絶縁層を透明電極24a,24b
の間に設けることも可能である。
The transparent electrodes 24a and 24b are made of indium oxide doped with tin (ITO: In 2 O 3 : Sn).
And the like are preferred. In order to avoid a short circuit between the transparent electrodes 24a and 24b, a transparent organic substance or inorganic oxide (for example, SiO 2
2 , TiO 2 ) or the like to form transparent layers 24a and 24b.
It is also possible to provide between them.

【0036】このような液晶光変調器にバックライトを
設けることにより、高速かつ高コントラストの表示装置
を構成することができる。一方、上記の液晶光変調器に
光を反射する反射板や拡散板を設けることにより、バッ
クライトを用いず低消費電力な反射型表示装置を構成す
ることも可能である。
By providing a backlight for such a liquid crystal light modulator, a high-speed and high-contrast display device can be constructed. On the other hand, by providing a reflection plate or a diffusion plate for reflecting light in the liquid crystal light modulator, it is possible to configure a reflection type display device with low power consumption without using a backlight.

【0037】第2実施例として、強誘電性液晶21(チ
ッソ社、屈折率異方性△n=0.15)と、合成樹脂2
2の原材料である紫外線硬化性アクリルモノマー(大日
本インキ、UCL−001)を用いて、作製した液晶光
変調器について述べる。作製方法は以下の通りである。
まず、2枚のガラス基板25a,25bに、それぞれ、
厚み72nmのIn:Snを蒸着して透明電極2
4a,24bを形成し、さらに透明電極24a,24b
上にスピンコート法によって、ポリイミド樹脂(JSR
社AL−1254)を塗布し、厚み50nmの配向膜を
形成した。この配向膜を微細なレーヨンブラシで一方向
に摩擦(ラビング)し、2枚の配向膜付きの基板のギャ
ップに、2μm径のプラスティック微粒子27(JSR
杜DYNOSHERES−1019)を微量添加(0.
1重量%)した液晶・モノマー混合液(モノマー濃度2
0重量%)を充填した。
As a second embodiment, a ferroelectric liquid crystal 21 (Chisso, refractive index anisotropy Δn = 0.15) and a synthetic resin 2
A liquid crystal light modulator manufactured using an ultraviolet curable acrylic monomer (Dainippon Ink, UCL-001), which is a raw material of No. 2, will be described. The fabrication method is as follows.
First, the two glass substrates 25a and 25b are respectively
A transparent electrode 2 is formed by evaporating In 2 O 3 : Sn with a thickness of 72 nm.
4a, 24b are formed, and the transparent electrodes 24a, 24b are further formed.
The polyimide resin (JSR
AL-1254) was applied to form an alignment film having a thickness of 50 nm. The alignment film is rubbed in one direction with a fine rayon brush (rubbing), and a plastic microparticle 27 (JSR) having a diameter of 2 μm is formed in a gap between two substrates having alignment films.
DYNOSHIRES-1019) in a small amount (0.
1% by weight) liquid crystal / monomer mixture (monomer concentration 2
0% by weight).

【0038】この混合液は、配向膜のラビング方向に分
子配向することが光学測定により判明した。最後に、紫
外光(中心波長365nm)を照射した結果、微粒子2
7を核として合成樹脂22の析出が始まり、その核から
合成樹脂22の繊維状ネットワークがラビング方向に成
長して固定されることが判明した。これにより微粒子2
7を用いて、合成樹脂22の構造を制御できることが確
認された。
It was found by optical measurement that the liquid mixture was molecularly oriented in the rubbing direction of the alignment film. Finally, as a result of irradiation with ultraviolet light (center wavelength 365 nm), fine particles 2
It was found that the precipitation of the synthetic resin 22 started with the nucleus 7, and the fibrous network of the synthetic resin 22 grew from the nucleus in the rubbing direction and was fixed. Thereby, the fine particles 2
7, it was confirmed that the structure of the synthetic resin 22 could be controlled.

【0039】以上説明したように本実施例によれば、液
晶・樹脂複合体の形成過程において、液晶もしくは合成
樹脂に親和性の高い微粒子を分散することにより、ポリ
マー構造を制御できるため、高速かつ高コントラストの
液晶光変調器や表示装置を提供することができる。
As described above, according to the present embodiment, the polymer structure can be controlled by dispersing fine particles having a high affinity for the liquid crystal or the synthetic resin in the process of forming the liquid crystal / resin composite. A high-contrast liquid crystal light modulator and a display device can be provided.

【0040】[0040]

【発明の効果】上述の如く、請求項1に記載の発明は、
微細な樹脂繊維が凝集した自立性の多孔質膜に液晶を浸
透させた液晶・樹脂複合体と、それぞれ透明電極が形成
され前記透明電極を内側にして液晶・樹脂複合体を挟
み、かつ透明電極が液晶・樹脂複合体に固着している2
つの透明基板と、2つの透明電極に正または負の直流電
圧または交流電圧を印加する電圧源とを有することによ
り、機械強度を有する多孔質膜が2枚の透明基板のギャ
ップを一定に保つため、大面積の表示パネルの作製が容
易であり、厚いガラス基板を用いる必要がなくなるため
軽量化を図ることができ、表示パネルを曲げることが可
能になるため、携帯性・収納性が向上する。
As described above, the first aspect of the present invention provides
A liquid crystal / resin composite in which liquid crystal is permeated into a self-supporting porous film in which fine resin fibers are aggregated, and a transparent electrode is formed, and the transparent electrode is placed inside the liquid crystal / resin composite, and the transparent electrode Is fixed to the liquid crystal / resin composite 2
By having one transparent substrate and a voltage source for applying a positive or negative DC or AC voltage to the two transparent electrodes, the porous film having mechanical strength can maintain a constant gap between the two transparent substrates. In addition, it is easy to manufacture a large-sized display panel, and it is not necessary to use a thick glass substrate. Therefore, the weight can be reduced, and the display panel can be bent, so that portability and storability are improved.

【0041】請求項2に記載の発明では、樹脂繊維の向
きが一方向に揃っており、また、請求項3記載の発明で
は、樹脂繊維の表面分子が繊維の方向に配向しているこ
とにより、高い秩序で液晶を配向させて高コントラスト
比を得ることができる。
According to the second aspect of the invention, the directions of the resin fibers are aligned in one direction, and in the third aspect of the invention, the surface molecules of the resin fibers are oriented in the direction of the fibers. In addition, a high contrast ratio can be obtained by orienting the liquid crystal in a high order.

【0042】請求項8に記載の発明は、液晶もしくは合
成樹脂材料に対し表面ぬれ性が高い微粒子が分散された
液晶と合成樹脂からなる液晶・樹脂複合体と、それぞれ
透明電極が形成され透明電極を内側にして液晶・樹脂複
合体を挟み、かつ透明電極が液晶・樹脂複合体に固着し
ている2つの透明基板と、2つの透明電極に正または負
の直流電圧または交流電圧を印加する電圧源とを有する
ことにより、強い紫外光を照射しなくても綴密な複合構
造が形成でき、高速かつ光コントラストの液晶光変調器
や残像・焼き付きがない表示装置を実現できる。
The invention according to claim 8 is a liquid crystal / resin composite comprising a liquid crystal in which fine particles having high surface wettability are dispersed in a liquid crystal or a synthetic resin material and a synthetic resin; Two transparent substrates with the liquid crystal / resin composite sandwiched between them with the transparent electrode fixed to the liquid crystal / resin composite, and a voltage for applying a positive or negative DC or AC voltage to the two transparent electrodes By having the light source, a tightly bound composite structure can be formed without irradiating strong ultraviolet light, and a high-speed and light-contrast liquid crystal light modulator and a display device with no afterimage or image sticking can be realized.

【0043】請求項12に記載の発明では、透明基板
は、プラスティックフィルムであることにより、軽量で
折り曲げが可能な液晶光変調器を構成することができ
る。
According to the twelfth aspect of the present invention, since the transparent substrate is a plastic film, a light-weight and bendable liquid crystal light modulator can be formed.

【0044】請求項13に記載の発明は、請求項1乃至
12のいずれかに記載の液晶光変調器を用いて表示を行
うことにより、軽量化でき携帯性・収納性に優れ、ま
た、高速かつ高い光コントラスト比で残像・焼き付きの
ない表示装置を実現できる。
According to a thirteenth aspect of the present invention, by performing display using the liquid crystal light modulator according to any one of the first to twelfth aspects, the weight can be reduced, the portability and storage properties are excellent, and the high speed operation is achieved. In addition, it is possible to realize a display device with a high light contrast ratio and no afterimage or image sticking.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の液晶光変調器の第1実施例の模式的断
面図である。
FIG. 1 is a schematic sectional view of a first embodiment of a liquid crystal light modulator according to the present invention.

【図2】本発明の液晶光変調器の第2実施例の模式的断
面図である。
FIG. 2 is a schematic sectional view of a liquid crystal light modulator according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,21 液晶 2 多孔質膜 3,23 液晶・樹脂複合体 4a,4b,24a,24b 透明電極 5a,5b,25a,25b 透明基板 6a,6b,26a,26b リード線 8,28 電圧源 10,30 入射光 11,31 出射光 22 合成樹脂 27 微粒子 1, 21 liquid crystal 2 porous film 3, 23 liquid crystal / resin composite 4a, 4b, 24a, 24b transparent electrode 5a, 5b, 25a, 25b transparent substrate 6a, 6b, 26a, 26b lead wire 8, 28 voltage source 10, Reference Signs List 30 incident light 11, 31 outgoing light 22 synthetic resin 27 fine particles

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02F 1/137 G02F 1/137 (72)発明者 土屋 讓 東京都世田谷区砧一丁目10番11号 日本放 送協会 放送技術研究所内 Fターム(参考) 2H088 HA01 HA03 HA28 JA14 JA17 JA20 MA02 MA10 2H089 HA02 HA04 QA16 RA11 RA13 RA14 TA01 TA04 TA18 2H090 HB08Y JB03 KA09 KA11 KA12 KA14 KA15 LA16 MA06 MA17 MB01 2H093 NA31 NC01 ND04 ND12 ND32 NE01 NE04 NF14 NF17 NF20──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G02F 1/137 G02F 1/137 (72) Inventor Yuzuru Tsuchiya 1-10-11 Kinuta, Setagaya-ku, Tokyo Japan Broadcasting Corporation Broadcasting Research Institute F-term (Reference) 2H088 HA01 HA03 HA28 JA14 JA17 JA20 MA02 MA10 2H089 HA02 HA04 QA16 RA11 RA13 RA14 TA01 TA04 TA18 2H090 HB08Y JB03 KA09 KA11 KA12 KA14 KA15 LA16 MA06 MA17 MB01 2NDND NE04 NF14 NF17 NF20

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 微細な樹脂繊維が凝集した自立性の多孔
質膜に液晶を浸透させた液晶・樹脂複合体と、 それぞれ透明電極が形成され前記透明電極を内側にして
前記液晶・樹脂複合体を挟み、かつ前記透明電極が前記
液晶・樹脂複合体に固着している2つの透明基板と、 前記2つの透明電極に正または負の直流電圧または交流
電圧を印加する電圧源とを有することを特徴とする液晶
光変調器。
1. A liquid crystal / resin composite in which liquid crystal is permeated into a self-supporting porous film in which fine resin fibers are aggregated, and a liquid crystal / resin composite in which a transparent electrode is formed and the transparent electrode is on the inside. And two transparent substrates having the transparent electrode fixed to the liquid crystal / resin composite, and a voltage source for applying a positive or negative DC voltage or an AC voltage to the two transparent electrodes. Characteristic liquid crystal light modulator.
【請求項2】 請求項1記載の液晶光変調器において、 前記樹脂繊維の向きが一方向に揃っていることを特徴と
する液晶光変調器。
2. The liquid crystal light modulator according to claim 1, wherein the directions of the resin fibers are aligned in one direction.
【請求項3】 請求項2記載の液晶光変調器において、 前記樹脂繊維の表面分子が繊維の方向に配向しているこ
とを特徴とする液晶光変調器。
3. The liquid crystal light modulator according to claim 2, wherein surface molecules of the resin fibers are oriented in the direction of the fibers.
【請求項4】 請求項1乃至3のいずれかに記載の液晶
光変調器において、 前記樹脂繊維は高分子液晶であることを特徴とする液晶
光変調器。
4. The liquid crystal light modulator according to claim 1, wherein the resin fiber is a polymer liquid crystal.
【請求項5】 請求項1乃至4のいずれかに記載の液晶
光変調器において、 前記多孔質膜内の繊維の分散密度やサイズを可変して、
光変調の応答速度やコントラスト比を制御することを特
徴とする液晶光変調器。
5. The liquid crystal optical modulator according to claim 1, wherein a dispersion density and a size of the fibers in the porous film are varied.
Liquid crystal light modulator characterized by controlling response speed and contrast ratio of light modulation.
【請求項6】 請求項1乃至5のいずれかに記載の液晶
光変調器において、 前記多孔質膜は、樹脂繊維を織り上げた布もしくは樹脂
繊維を固着させた紙であることを特徴とする液晶光変調
器。
6. The liquid crystal optical modulator according to claim 1, wherein the porous film is a cloth woven of resin fibers or a paper to which resin fibers are fixed. Light modulator.
【請求項7】 請求項1乃至6のいずれかに記載の液晶
光変調器において、 前記液晶は、ネマティック液晶、コレステリック液晶、
スメクティック液晶のいずれかであることを特徴とする
液晶光変調器。
7. The liquid crystal optical modulator according to claim 1, wherein the liquid crystal is a nematic liquid crystal, a cholesteric liquid crystal,
A liquid crystal light modulator characterized by being one of smectic liquid crystals.
【請求項8】 液晶もしくは合成樹脂材料に対し表面ぬ
れ性が高い微粒子が分散された液晶と合成樹脂からなる
液晶・樹脂複合体と、 それぞれ透明電極が形成され前記透明電極を内側にして
前記液晶・樹脂複合体を挟み、かつ前記透明電極が前記
液晶・樹脂複合体に固着している2つの透明基板と、 前記2つの透明電極に正または負の直流電圧または交流
電圧を印加する電圧源とを有することを特徴とする液晶
光変調器。
8. A liquid crystal / resin composite comprising a liquid crystal in which fine particles having high surface wettability with respect to a liquid crystal or a synthetic resin material are dispersed and a synthetic resin; -Two transparent substrates sandwiching a resin composite and the transparent electrode is fixed to the liquid crystal / resin composite; and a voltage source for applying a positive or negative DC voltage or AC voltage to the two transparent electrodes. A liquid crystal light modulator comprising:
【請求項9】 請求項8記載の液晶光変調器において、 前記微粒子の分散密度や大きさを可変して、光変調の応
答速度やコントラスト比を制御することを特徴とする液
晶光変調器。
9. The liquid crystal light modulator according to claim 8, wherein a response speed and a contrast ratio of light modulation are controlled by changing a dispersion density and a size of the fine particles.
【請求項10】 請求項8または9記載の液晶光変調器
において、 前記合成樹脂は3次元網目状もしくは粒状に分散され、
前記液晶は粒状に分散されていることを特徴とする液晶
光変調器。
10. The liquid crystal light modulator according to claim 8, wherein the synthetic resin is dispersed in a three-dimensional network or a granular shape.
A liquid crystal light modulator, wherein the liquid crystal is dispersed in a granular form.
【請求項11】 請求項8乃至10に記載の液晶光変調
器において、 前記液晶は、ネマティック液晶、コレステリック液晶、
スメクティック液晶のいずれかであることを特徴とする
液晶光変調器。
11. The liquid crystal optical modulator according to claim 8, wherein the liquid crystal is a nematic liquid crystal, a cholesteric liquid crystal,
A liquid crystal light modulator characterized by being one of smectic liquid crystals.
【請求項12】 請求項1乃至11のいずれかに記載の
液晶光変調器において、 前記透明基板は、プラスティックフィルムであることを
特徴とする液晶光変調器。
12. The liquid crystal light modulator according to claim 1, wherein the transparent substrate is a plastic film.
【請求項13】 請求項1乃至12のいずれかに記載の
液晶光変調器を用いて表示を行うことを特徴とする表示
装置。
13. A display device which performs display using the liquid crystal light modulator according to claim 1. Description:
JP2001081409A 2001-03-21 2001-03-21 Liquid crystal light modulator and display device using the same Pending JP2002277862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001081409A JP2002277862A (en) 2001-03-21 2001-03-21 Liquid crystal light modulator and display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001081409A JP2002277862A (en) 2001-03-21 2001-03-21 Liquid crystal light modulator and display device using the same

Publications (1)

Publication Number Publication Date
JP2002277862A true JP2002277862A (en) 2002-09-25

Family

ID=18937518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001081409A Pending JP2002277862A (en) 2001-03-21 2001-03-21 Liquid crystal light modulator and display device using the same

Country Status (1)

Country Link
JP (1) JP2002277862A (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003005162A (en) * 2001-06-22 2003-01-08 Katsumi Yoshino Paper liquid crystal device
EP1522891A1 (en) 2003-10-08 2005-04-13 Fuji Photo Film Co., Ltd. Positive resist composition and pattern forming method using the same
JP2005326825A (en) * 2005-03-18 2005-11-24 Kenji Sato Liquid crystal device using raw material of biological origin, flexible transparent substrate, and carbon nanotube holding body
EP1621931A1 (en) 2004-07-08 2006-02-01 Fuji Photo Film Co., Ltd. Protective film-forming composition for immersion exposure and pattern-forming method using the same
EP1628159A2 (en) 2004-08-18 2006-02-22 Fuji Photo Film Co., Ltd. Chemical amplification resist composition and pattern-forming method using the same
EP1630610A1 (en) 2004-08-11 2006-03-01 Fuji Photo Film Co., Ltd. Protective film-forming composition for immersion exposure and pattern forming method using the same
JP2006058780A (en) * 2004-08-23 2006-03-02 Nippon Hoso Kyokai <Nhk> Optical element and display device
EP1635218A2 (en) 2004-09-14 2006-03-15 Fuji Photo Film Co., Ltd. Photosensitive composition, compound for use in the photosensitive composition, and pattern-forming method using the photosensitive composition
EP1637927A1 (en) 2004-09-02 2006-03-22 Fuji Photo Film Co., Ltd. Positive resist composition and pattern forming method using the same
EP1662317A2 (en) 2004-09-30 2006-05-31 Fuji Photo Film Co., Ltd. Resist composition and method of pattern formation with the same
EP1684116A2 (en) 2005-01-24 2006-07-26 Fuji Photo Film Co., Ltd. Photosensitive composition, compound for use in the photosensitive composition and pattern forming method using the photosensitive composition
EP1684119A2 (en) 2005-01-24 2006-07-26 Fuji Photo Film Co., Ltd. Positive resist composition for immersion exposure and pattern-forming method using the same
EP1688791A2 (en) 2005-01-28 2006-08-09 Fuji Photo Film Co., Ltd. Photosensitive composition, compound for use in the photosensitive composition and pattern forming method using the photosensitive composition
EP1693704A2 (en) 2005-02-02 2006-08-23 Fuji Photo Film Co., Ltd. Resist composition and pattern forming method using the same
EP1698937A2 (en) 2005-03-04 2006-09-06 Fuji Photo Film Co., Ltd. Positive resist composition and pattern-forming method using the same
EP1701214A1 (en) 2005-03-11 2006-09-13 Fuji Photo Film Co., Ltd. Positive photosensitive composition and pattern-forming method using the same
EP1703322A2 (en) 2005-03-17 2006-09-20 Fuji Photo Film Co., Ltd. Positive resist composition and pattern forming method using the resist composition
EP1720072A1 (en) 2005-05-01 2006-11-08 Rohm and Haas Electronic Materials, L.L.C. Compositons and processes for immersion lithography
EP1755000A2 (en) 2005-08-16 2007-02-21 Fuji Photo Film Co., Ltd. Positive resist composition and a pattern forming method using the same
EP1764647A2 (en) 2005-08-19 2007-03-21 FUJIFILM Corporation Positive resist composition for immersion exposure and pattern-forming method using the same
EP1925979A1 (en) 2006-11-21 2008-05-28 FUJIFILM Corporation Positive photosensitive composition, polymer compound used for the positive photosensitive composition, production method of the polymer compound, and pattern forming method using the positive photosensitive composition
EP1939691A2 (en) 2006-12-25 2008-07-02 FUJIFILM Corporation Pattern forming method, resist composition for multiple development used in the pattern forming method, developer for negative development used in the pattern forming method, and rinsing solution for negative development used in the pattern forming method
EP1959300A1 (en) 2007-02-14 2008-08-20 FUJIFILM Corporation Resist composition and pattern forming method using the same
EP1962139A1 (en) 2007-02-23 2008-08-27 FUJIFILM Corporation Negative resist composition and pattern forming method using the same
EP1972641A2 (en) 2007-03-23 2008-09-24 FUJIFILM Corporation Resist composition and pattern-forming method using same
EP1975716A2 (en) 2007-03-28 2008-10-01 Fujifilm Corporation Positive resist composition and pattern forming method
EP1975715A2 (en) 2007-03-30 2008-10-01 FUJIFILM Corporation Positive resist composition and pattern forming method using the same
EP1975712A2 (en) 2007-03-28 2008-10-01 FUJIFILM Corporation Positive resist composition and pattern forming method using the same
EP1975717A2 (en) 2007-03-30 2008-10-01 FUJIFILM Corporation Positive resist compostion and pattern forming method using the same
EP1975714A1 (en) 2007-03-28 2008-10-01 FUJIFILM Corporation Positive resist composition and pattern forming method
EP1975713A2 (en) 2007-03-27 2008-10-01 FUJIFILM Corporation Positive resist composition and pattern forming method using the same
EP1980911A2 (en) 2007-04-13 2008-10-15 FUJIFILM Corporation Pattern forming method, resist composition to be used in the pattern forming method, negative developing solution to be used in the pattern forming method and rinsing solution for negative development to be used in the pattern forming method
WO2008129964A1 (en) 2007-04-13 2008-10-30 Fujifilm Corporation Method for pattern formation, and resist composition, developing solution and rinsing liquid for use in the method for pattern formation
EP2003504A2 (en) 2007-06-12 2008-12-17 FUJIFILM Corporation Method of forming patterns
EP2003509A2 (en) 2007-06-15 2008-12-17 FUJIFILM Corporation Pattern forming method
WO2008153155A1 (en) 2007-06-15 2008-12-18 Fujifilm Corporation Surface treatment agent for forming pattern and pattern forming method using the treatment agent
EP2019334A2 (en) 2005-07-26 2009-01-28 Fujifilm Corporation Positive resist composition and method of pattern formation with the same
EP2020617A2 (en) 2007-08-03 2009-02-04 FUJIFILM Corporation Resist composition containing a sulfonium compound, pattern-forming method using the resist composition, and sulfonium compound
EP2020615A1 (en) 2007-07-30 2009-02-04 FUJIFILM Corporation Positive resist composition and pattern forming method
EP2020616A2 (en) 2007-08-02 2009-02-04 FUJIFILM Corporation Resist composition for electron beam, x-ray, or euv, and pattern-forming method using the same
WO2009022561A1 (en) 2007-08-10 2009-02-19 Fujifilm Corporation Positive working resist composition and method for pattern formation using the positive working resist composition
EP2034361A2 (en) 2005-05-23 2009-03-11 Fujifilm Corporation Photosensitive composition, compound for use in the photosensitive composition and pattern forming method using the photosensitive composition
EP2040122A2 (en) 2005-09-13 2009-03-25 Fujifilm Corporation Positive resist composition and pattern-forming method using the same
WO2009038148A1 (en) 2007-09-21 2009-03-26 Fujifilm Corporation Photosensitive composition, pattern-forming method using the photosensitive composition, and compound used in the photosensitive composition
EP2042925A2 (en) 2007-09-28 2009-04-01 FUJIFILM Corporation Resist composition and pattern-forming method using the same
EP2062950A2 (en) 2007-11-14 2009-05-27 FUJIFILM Corporation Topcoat composition, alkali developer-soluble topcoat film using the composition and pattern forming method using the same
EP2090932A1 (en) 2008-02-13 2009-08-19 FUJIFILM Corporation Positive resist composition for use with electron beam, X-ray or EUV and pattern forming method using the same
EP2105440A2 (en) 2008-03-26 2009-09-30 FUJIFILM Corporation Actinic ray-sensitive or radiation-sensitive resin composition, pattern forming method using the same, polymerizable compound and polymer compound obtained by polymerizing the polymerizable compound
EP2141544A1 (en) 2008-06-30 2010-01-06 Fujifilm Corporation Photosensitive composition and pattern forming method using same
EP2141183A1 (en) 2008-06-30 2010-01-06 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using same
EP2143711A1 (en) 2008-07-09 2010-01-13 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using same
EP2145931A1 (en) 2008-07-16 2010-01-20 Fujifilm Corporation Photo-curable composition, ink composition, and inkjet recording method using the ink composition
WO2010035894A1 (en) 2008-09-26 2010-04-01 Fujifilm Corporation Positive resist composition for immersion exposure and pattern forming method
WO2010067905A2 (en) 2008-12-12 2010-06-17 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the same
WO2010067898A2 (en) 2008-12-12 2010-06-17 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the composition
WO2010114107A1 (en) 2009-03-31 2010-10-07 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the same
EP2375285A2 (en) 2004-02-05 2011-10-12 FUJIFILM Corporation Photosensitive composition and pattern-forming method using the photosensitive composition
EP2623568A1 (en) 2012-02-03 2013-08-07 Fujifilm Corporation Ink composition, image forming method, and printed matter using the same
EP2626392A1 (en) 2012-02-13 2013-08-14 Fujifilm Corporation Ink composition, image forming method, and printed article using the same
EP3537217A2 (en) 2005-12-09 2019-09-11 FUJIFILM Corporation Positive resist composition, resin used for the positive resist composition, compound used for synthesis of the resin and pattern forming method using the positive resist composition

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003005162A (en) * 2001-06-22 2003-01-08 Katsumi Yoshino Paper liquid crystal device
JP4509428B2 (en) * 2001-06-22 2010-07-21 勝美 吉野 Paper LCD device
EP1522891A1 (en) 2003-10-08 2005-04-13 Fuji Photo Film Co., Ltd. Positive resist composition and pattern forming method using the same
EP2375285A2 (en) 2004-02-05 2011-10-12 FUJIFILM Corporation Photosensitive composition and pattern-forming method using the photosensitive composition
EP1621931A1 (en) 2004-07-08 2006-02-01 Fuji Photo Film Co., Ltd. Protective film-forming composition for immersion exposure and pattern-forming method using the same
EP1630610A1 (en) 2004-08-11 2006-03-01 Fuji Photo Film Co., Ltd. Protective film-forming composition for immersion exposure and pattern forming method using the same
EP1628159A2 (en) 2004-08-18 2006-02-22 Fuji Photo Film Co., Ltd. Chemical amplification resist composition and pattern-forming method using the same
EP2031445A2 (en) 2004-08-18 2009-03-04 FUJIFILM Corporation Chemical amplification resist composition and pattern-forming method using the same
JP2006058780A (en) * 2004-08-23 2006-03-02 Nippon Hoso Kyokai <Nhk> Optical element and display device
EP1637927A1 (en) 2004-09-02 2006-03-22 Fuji Photo Film Co., Ltd. Positive resist composition and pattern forming method using the same
EP1635218A2 (en) 2004-09-14 2006-03-15 Fuji Photo Film Co., Ltd. Photosensitive composition, compound for use in the photosensitive composition, and pattern-forming method using the photosensitive composition
EP1662317A2 (en) 2004-09-30 2006-05-31 Fuji Photo Film Co., Ltd. Resist composition and method of pattern formation with the same
EP1684119A2 (en) 2005-01-24 2006-07-26 Fuji Photo Film Co., Ltd. Positive resist composition for immersion exposure and pattern-forming method using the same
EP1684116A2 (en) 2005-01-24 2006-07-26 Fuji Photo Film Co., Ltd. Photosensitive composition, compound for use in the photosensitive composition and pattern forming method using the photosensitive composition
EP1688791A2 (en) 2005-01-28 2006-08-09 Fuji Photo Film Co., Ltd. Photosensitive composition, compound for use in the photosensitive composition and pattern forming method using the photosensitive composition
EP1693704A2 (en) 2005-02-02 2006-08-23 Fuji Photo Film Co., Ltd. Resist composition and pattern forming method using the same
EP1698937A2 (en) 2005-03-04 2006-09-06 Fuji Photo Film Co., Ltd. Positive resist composition and pattern-forming method using the same
EP1701214A1 (en) 2005-03-11 2006-09-13 Fuji Photo Film Co., Ltd. Positive photosensitive composition and pattern-forming method using the same
EP1703322A2 (en) 2005-03-17 2006-09-20 Fuji Photo Film Co., Ltd. Positive resist composition and pattern forming method using the resist composition
JP2005326825A (en) * 2005-03-18 2005-11-24 Kenji Sato Liquid crystal device using raw material of biological origin, flexible transparent substrate, and carbon nanotube holding body
EP1720072A1 (en) 2005-05-01 2006-11-08 Rohm and Haas Electronic Materials, L.L.C. Compositons and processes for immersion lithography
EP2034361A2 (en) 2005-05-23 2009-03-11 Fujifilm Corporation Photosensitive composition, compound for use in the photosensitive composition and pattern forming method using the photosensitive composition
EP2019334A2 (en) 2005-07-26 2009-01-28 Fujifilm Corporation Positive resist composition and method of pattern formation with the same
EP2020618A2 (en) 2005-07-26 2009-02-04 Fujifilm Corporation Positive resist composition and method of pattern formation with the same
EP1755000A2 (en) 2005-08-16 2007-02-21 Fuji Photo Film Co., Ltd. Positive resist composition and a pattern forming method using the same
EP1764647A2 (en) 2005-08-19 2007-03-21 FUJIFILM Corporation Positive resist composition for immersion exposure and pattern-forming method using the same
EP2040122A2 (en) 2005-09-13 2009-03-25 Fujifilm Corporation Positive resist composition and pattern-forming method using the same
EP3537217A2 (en) 2005-12-09 2019-09-11 FUJIFILM Corporation Positive resist composition, resin used for the positive resist composition, compound used for synthesis of the resin and pattern forming method using the positive resist composition
EP1925979A1 (en) 2006-11-21 2008-05-28 FUJIFILM Corporation Positive photosensitive composition, polymer compound used for the positive photosensitive composition, production method of the polymer compound, and pattern forming method using the positive photosensitive composition
EP2413194A2 (en) 2006-12-25 2012-02-01 Fujifilm Corporation Pattern forming method
EP2413195A2 (en) 2006-12-25 2012-02-01 Fujifilm Corporation Pattern forming method
EP2535771A1 (en) 2006-12-25 2012-12-19 Fujifilm Corporation Pattern forming method
EP1939691A2 (en) 2006-12-25 2008-07-02 FUJIFILM Corporation Pattern forming method, resist composition for multiple development used in the pattern forming method, developer for negative development used in the pattern forming method, and rinsing solution for negative development used in the pattern forming method
EP1959300A1 (en) 2007-02-14 2008-08-20 FUJIFILM Corporation Resist composition and pattern forming method using the same
EP1962139A1 (en) 2007-02-23 2008-08-27 FUJIFILM Corporation Negative resist composition and pattern forming method using the same
EP1972641A2 (en) 2007-03-23 2008-09-24 FUJIFILM Corporation Resist composition and pattern-forming method using same
EP1975713A2 (en) 2007-03-27 2008-10-01 FUJIFILM Corporation Positive resist composition and pattern forming method using the same
EP1975714A1 (en) 2007-03-28 2008-10-01 FUJIFILM Corporation Positive resist composition and pattern forming method
EP1975712A2 (en) 2007-03-28 2008-10-01 FUJIFILM Corporation Positive resist composition and pattern forming method using the same
EP1975716A2 (en) 2007-03-28 2008-10-01 Fujifilm Corporation Positive resist composition and pattern forming method
EP1975717A2 (en) 2007-03-30 2008-10-01 FUJIFILM Corporation Positive resist compostion and pattern forming method using the same
EP1975715A2 (en) 2007-03-30 2008-10-01 FUJIFILM Corporation Positive resist composition and pattern forming method using the same
WO2008129964A1 (en) 2007-04-13 2008-10-30 Fujifilm Corporation Method for pattern formation, and resist composition, developing solution and rinsing liquid for use in the method for pattern formation
EP1980911A2 (en) 2007-04-13 2008-10-15 FUJIFILM Corporation Pattern forming method, resist composition to be used in the pattern forming method, negative developing solution to be used in the pattern forming method and rinsing solution for negative development to be used in the pattern forming method
EP2003504A2 (en) 2007-06-12 2008-12-17 FUJIFILM Corporation Method of forming patterns
EP2579098A1 (en) 2007-06-12 2013-04-10 Fujifilm Corporation Method of forming patterns
EP2003509A2 (en) 2007-06-15 2008-12-17 FUJIFILM Corporation Pattern forming method
WO2008153155A1 (en) 2007-06-15 2008-12-18 Fujifilm Corporation Surface treatment agent for forming pattern and pattern forming method using the treatment agent
EP2020615A1 (en) 2007-07-30 2009-02-04 FUJIFILM Corporation Positive resist composition and pattern forming method
EP2020616A2 (en) 2007-08-02 2009-02-04 FUJIFILM Corporation Resist composition for electron beam, x-ray, or euv, and pattern-forming method using the same
EP2020617A2 (en) 2007-08-03 2009-02-04 FUJIFILM Corporation Resist composition containing a sulfonium compound, pattern-forming method using the resist composition, and sulfonium compound
WO2009022561A1 (en) 2007-08-10 2009-02-19 Fujifilm Corporation Positive working resist composition and method for pattern formation using the positive working resist composition
WO2009038148A1 (en) 2007-09-21 2009-03-26 Fujifilm Corporation Photosensitive composition, pattern-forming method using the photosensitive composition, and compound used in the photosensitive composition
EP2426154A1 (en) 2007-09-21 2012-03-07 Fujifilm Corporation Photosensitive composition, pattern forming method using the photosensitive composition and compound for use in the photosensitive composition
EP2042925A2 (en) 2007-09-28 2009-04-01 FUJIFILM Corporation Resist composition and pattern-forming method using the same
EP2062950A2 (en) 2007-11-14 2009-05-27 FUJIFILM Corporation Topcoat composition, alkali developer-soluble topcoat film using the composition and pattern forming method using the same
EP2090932A1 (en) 2008-02-13 2009-08-19 FUJIFILM Corporation Positive resist composition for use with electron beam, X-ray or EUV and pattern forming method using the same
EP2105440A2 (en) 2008-03-26 2009-09-30 FUJIFILM Corporation Actinic ray-sensitive or radiation-sensitive resin composition, pattern forming method using the same, polymerizable compound and polymer compound obtained by polymerizing the polymerizable compound
EP2468742A1 (en) 2008-03-26 2012-06-27 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition, pattern forming method using the same, polymerizable compound and polymer compound obtained by polymerizing the polymerizable compound
EP2141183A1 (en) 2008-06-30 2010-01-06 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using same
EP2141544A1 (en) 2008-06-30 2010-01-06 Fujifilm Corporation Photosensitive composition and pattern forming method using same
EP2143711A1 (en) 2008-07-09 2010-01-13 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using same
EP2145931A1 (en) 2008-07-16 2010-01-20 Fujifilm Corporation Photo-curable composition, ink composition, and inkjet recording method using the ink composition
WO2010035894A1 (en) 2008-09-26 2010-04-01 Fujifilm Corporation Positive resist composition for immersion exposure and pattern forming method
WO2010067905A2 (en) 2008-12-12 2010-06-17 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the same
WO2010067898A2 (en) 2008-12-12 2010-06-17 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the composition
WO2010114107A1 (en) 2009-03-31 2010-10-07 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the same
EP2623568A1 (en) 2012-02-03 2013-08-07 Fujifilm Corporation Ink composition, image forming method, and printed matter using the same
EP2626392A1 (en) 2012-02-13 2013-08-14 Fujifilm Corporation Ink composition, image forming method, and printed article using the same

Similar Documents

Publication Publication Date Title
JP2002277862A (en) Liquid crystal light modulator and display device using the same
US5400156A (en) Liquid crystal electro-optical device wherein the scattering efficiency is improved in increasing the frequency of contact between the resin and the droplet
JP4260752B2 (en) Display element and display device
JP3060656B2 (en) Liquid crystal display device
JP3387098B2 (en) Polymer dispersed liquid crystal device
JPH09510300A (en) Electro-optical color device
US6737126B2 (en) Liquid crystal mixture and liquid crystal cell for LCDs and use of a dye with a dipole for a liquid crystal mixture
Büyüktanir et al. Flexible bistable smectic-A polymer dispersed liquid crystal display
JP3679869B2 (en) Liquid crystal microcapsule and liquid crystal display device using the same
US7499124B2 (en) Polymer dispersed liquid crystal device conditioned with a predetermined anchoring energy, a predetermined polymer concentration by weight percent and a predetermined cell gap to enhance phase separation and to make smaller and more uniform liquid crystal droplets
US20010035918A1 (en) Display device and an elecro-optical device using a colloidal liquid crystal composite
JP2006234885A (en) Manufacturing method of liquid crystal optical modulator, liquid crystal optical modulator and liquid crystal display
JP4220748B2 (en) Liquid crystal display element, method for manufacturing liquid crystal display element, and liquid crystal display device
JP4220810B2 (en) Method for manufacturing liquid crystal light modulation film, liquid crystal light modulation film, and liquid crystal light modulator
JP4832027B2 (en) Liquid crystal light modulator and liquid crystal display device using the same
JP3225932B2 (en) Manufacturing method of liquid crystal display element
US5619354A (en) Dispersion type electro-optical device and method for forming the same
JP5064369B2 (en) Display element
JP2881073B2 (en) Electric field birefringence control type liquid crystal device and manufacturing method thereof
JP2001209035A (en) Liquid crystal optical shutter
JP4252202B2 (en) Liquid crystal light modulator using ferroelectric liquid crystal and manufacturing method thereof
JP2000122043A (en) Liquid crystal optical modulator and its production
JP2775042B2 (en) Liquid crystal electro-optical device
JP4268391B2 (en) Manufacturing method of liquid crystal light modulation film
JP4641841B2 (en) Liquid crystal light modulator and liquid crystal display device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080825

A131 Notification of reasons for refusal

Effective date: 20080902

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

A131 Notification of reasons for refusal

Effective date: 20090623

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090814

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20090908

Free format text: JAPANESE INTERMEDIATE CODE: A02