JP2002272463A - Method for judging form of monobasic polymorphism - Google Patents

Method for judging form of monobasic polymorphism

Info

Publication number
JP2002272463A
JP2002272463A JP2001083704A JP2001083704A JP2002272463A JP 2002272463 A JP2002272463 A JP 2002272463A JP 2001083704 A JP2001083704 A JP 2001083704A JP 2001083704 A JP2001083704 A JP 2001083704A JP 2002272463 A JP2002272463 A JP 2002272463A
Authority
JP
Japan
Prior art keywords
nucleotide
polynucleotide
labeled
modified
primer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001083704A
Other languages
Japanese (ja)
Inventor
Kunio Hori
邦夫 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2001083704A priority Critical patent/JP2002272463A/en
Publication of JP2002272463A publication Critical patent/JP2002272463A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for simply judging the form of a monobasic substitution in a short time. SOLUTION: This method for judging the form of monobasic polymorphism comprises a process for preparing a polynucleotide which is a polynucleotide obtained by hybridizing a target polynucleotide having a monobasic polymorphism part at, n-position with a primer and in which a nucleotide located at 3' end of the primer is hybridized with a nucleotide at (n+1) position of the target polynucleotide, a process for carrying out an elongation reaction using a labeled modified nucleotide which is a modified nucleotide complementary to a nucleotide species, which exists at the polymorphism part and is to be detected, and modified to stop a further elongation reaction, a process for assaying a position change in a minute space of the labeling with time and a process for analyzing the assayed result of the previous process using a fluorescent correlation analysis method and determining whether the labeled nucleotide is taken in the polynucleotide or not to judge the form of a monobasic polymorphism.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一塩基多型の型を
判定する方法に関する。
[0001] The present invention relates to a method for determining the type of a single nucleotide polymorphism.

【0002】[0002]

【従来の技術】疾患感受性遺伝子や薬物反応に関する遺
伝子などを効率よく同定していくためには、信頼性の高
いマーカー(Genetic Landmark)が必
要であり、そのために制限酵素断片長多型(RFLP)
やVNTR(VariableNumber of T
andem Repeat)、マイクロサテライトマー
カー等のマーカーが使われてきた。しかし、各マーカー
ともその分布が偏っていたり、数が少ないため遺伝子領
域を数Mb程度に絞るのが限界であった。この点1塩基
変異に基づく多型である一塩基多型(Single N
ucleotide Polymorphism;以
下、SNPと称する)は、候補遺伝子の領域を30kb
程度まで絞ることが可能であるため、様々な手法が開発
されている。
2. Description of the Related Art In order to efficiently identify a disease susceptibility gene or a gene relating to a drug response, a highly reliable marker (Genetic Landmark) is required. Therefore, restriction fragment length polymorphism (RFLP) is required.
And VNTR (Variable Number of T)
Markers such as andem repeats and microsatellite markers have been used. However, since the distribution of each marker is uneven or the number of markers is small, it has been a limit to narrow down the gene region to about several Mb. In this respect, a single nucleotide polymorphism (Single N
nucleotide Polymorphism (hereinafter, referred to as SNP) has a region of a candidate gene of 30 kb.
Various techniques have been developed because they can be narrowed down to the extent.

【0003】このような1塩基多型を検出する方法とし
て、プライマー伸長によるものがある(米国特許第6,
013,431号)。本方法は、標的遺伝子を一本鎖に
した後、固相表面に、例えばビオチン−アビジン反応を
介して固相し、1塩基変異のある部分のすぐ隣の3’側
からある領域にわたって相補的となるようなプライマー
をハイブリダイズさせる。その後、蛍光色素等の標識を
付与した塩基アナログ(伸長反応が停止する、例えばd
dNTP)を共存させ、プライマーの3’側から1塩
基、変異に対応したものを伸長させる。その後、洗浄を
行い、標識からの信号を検出することにより、変異部分
の塩基配列を同定する。
As a method for detecting such a single nucleotide polymorphism, there is a method by primer extension (US Pat.
013,431). In this method, after a target gene is converted into a single strand, the target gene is solid-phased on a solid phase surface, for example, via a biotin-avidin reaction, and complemented over a region from the 3 ′ side immediately adjacent to a portion having a single base mutation. Is hybridized. Thereafter, a base analog labeled with a fluorescent dye or the like (extension reaction is stopped, for example, d
dNTP), and the base corresponding to the mutation is extended by one base from the 3 ′ side of the primer. Thereafter, washing is performed, and a signal from the label is detected to identify the nucleotide sequence of the mutated portion.

【0004】また、このプライマー伸長法を利用して、
マススペクトロスコピーによる検出を用いる方法も考案
されている。Tangらは、PROBE(Primer
Oligo Base Extension)と呼ば
れる方法を開発している(Proc.Natl.Aca
d.Sci.USA,96:10016−1002
0)。この方法は、SNP部位を含む100bp程度の
長さのDNAをPCRにより増幅し、脱塩により精製
し、5’末にピオチン化又はチオール化等の化学修飾を
行い、格子状にウェルを形成したシリコンチップに固定
する。固定、洗浄後、チップ上で3種類のdNTPと1
種類のddNTPを用いて、プライマー伸長反応を行
う。反応終了後、チップの洗浄を行い、TOF MAS
S用マトリックス溶液添加して試料の結晶化を行い、最
後のMALDI(Matrix Assisted L
aser Desorption Ionizatio
n)マススペクトロスコピーによって、伸長により伸長
した塩基種、すなわち1塩基変異部分の塩基種を同定す
るものである。これらのプライマー伸長反応は、プライ
マーの3’末端側直近の塩基を直接検出するものであ
り、1塩基の変異検出に有効な方法である。さらに、M
ALDI TOFによる方法は、塩基種のラベルが不要
であるという効果がある。しかし、これらの技術は、プ
ライマー伸長反応を行う上で標的核酸分子を何らかの固
相表面上に固相し、さらには固相した核酸分子とプライ
マーのハイブリダイゼーションおよび伸長反応を行うた
めに、その反応効率は著しく低下し、操作が煩雑である
等の問題点がある。
[0004] Further, using this primer extension method,
Methods using mass spectroscopy detection have also been devised. Tang et al., PROBE (Primer
A method called Oligo Base Extension has been developed (Proc. Natl. Aca).
d. Sci. USA, 96: 10016-1002.
0). In this method, a DNA having a length of about 100 bp including an SNP site was amplified by PCR, purified by desalting, and chemically modified at the 5 ′ end, such as biotinylation or thiolation, to form lattice-like wells. Fix to silicon chip. After fixation and washing, 3 types of dNTPs and 1
A primer extension reaction is performed using various kinds of ddNTPs. After the reaction, the chip is washed and the TOF MAS
The sample was crystallized by adding a matrix solution for S, and the final MALDI (Matrix Assisted L
asser Desorption Ionizatio
n) By mass spectroscopy, the base species extended by extension, that is, the base species of a single base mutation portion is identified. These primer extension reactions directly detect the base immediately adjacent to the 3′-terminal side of the primer, and are an effective method for detecting mutation of one base. Further, M
The method using the ALDI TOF has an effect that a label of a base type is unnecessary. However, in these techniques, in performing a primer extension reaction, a target nucleic acid molecule is immobilized on a solid phase surface, and further, the hybridization and extension reaction of the solid-phased nucleic acid molecule and the primer are performed. There is a problem that the efficiency is remarkably reduced and the operation is complicated.

【0005】[0005]

【発明が解決しようとする課題】本発明は、操作が簡便
で、一塩基置換の型を短時間で判定することができる方
法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method which is simple in operation and can determine the type of single nucleotide substitution in a short time.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、一塩基多型の型を判定する方法であっ
て、n位(nは1以上の整数)に一塩基多型部位を有す
る標的ポリヌクレオチドにプライマーがハイブリダイズ
してなるポリヌクレオチドであって、前記プライマーの
3’末端に位置するヌクレオチドが、前記標的ポリヌク
レオチドの(n+1)位のヌクレオチドと対合するよう
にハイブリダイズしているポリヌクレオチドを調製する
工程と;前記一塩基多型部位に存在し得るヌクレオチド
種のうち検出すべきヌクレオチド種と相補的な修飾ヌク
レオチドであって、追跡可能な標識で標識され、且つさ
らなる伸長反応が停止するように修飾された修飾ヌクレ
オチドを、前記工程で調製されたポリヌクレオチドと混
合し、伸長反応を実施する工程と;前記標識の微小空間
における位置変化を経時的に計測する工程と;蛍光相関
分析法を用いて前工程の計測結果を解析して、検出すべ
きヌクレオチドと相補的な標識ヌクレオチドが、前記伸
長反応工程において前記ポリヌクレオチドに取り込まれ
たか否かを決定することによって、一塩基多型の型を判
定する工程と;を備えた方法を提供する。
In order to solve the above-mentioned problems, the present invention provides a method for determining the type of a single nucleotide polymorphism, wherein the method comprises the step of n-position (n is an integer of 1 or more). A polynucleotide obtained by hybridizing a primer to a target polynucleotide having a site, wherein the nucleotide located at the 3 ′ end of the primer is hybridized with the nucleotide at the (n + 1) position of the target polynucleotide. Preparing a soybean polynucleotide; a modified nucleotide complementary to the nucleotide species to be detected among the nucleotide species that may be present at the single nucleotide polymorphism site, and labeled with a traceable label; The modified nucleotide modified to stop further extension reaction is mixed with the polynucleotide prepared in the above step, and the extension reaction is performed. Performing the step of measuring the change in position of the label in the micro space over time; analyzing the measurement result of the previous step using a fluorescence correlation analysis method, and a labeled nucleotide complementary to the nucleotide to be detected, Determining the type of the single nucleotide polymorphism by determining whether or not the polynucleotide has been incorporated into the polynucleotide in the extension reaction step.

【0007】本明細書において、「一塩基多型」とは、
一塩基変異に基づく遺伝的多型を意味する。
[0007] In the present specification, "single nucleotide polymorphism" refers to
Genetic polymorphism based on single nucleotide mutation is meant.

【0008】[0008]

【発明の実施の形態】本発明は、一塩基多型の型を判定
する方法を提供する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for determining the type of a single nucleotide polymorphism.

【0009】本明細書において、「一塩基多型の型を判
定する」とは、一塩基変異が生じている部位(一塩基多
型部位)に存在するヌクレオチドの種類を推定し、又は
決定することをいう。従って、本発明の方法を用いれ
ば、例えば、一塩基多型部位にアデニン、グアニン、又
はシトシンの何れかが存在することが知られているとき
に、当該部位のヌクレオチドをアデニンであると決定す
ること、又はアデニンでないと決定することができる。
In the present specification, “determining the type of a single nucleotide polymorphism” refers to estimating or determining the type of nucleotide present at a site where a single nucleotide mutation has occurred (a single nucleotide polymorphism site). That means. Therefore, using the method of the present invention, for example, when it is known that any of adenine, guanine, or cytosine is present at a single nucleotide polymorphism site, the nucleotide at that site is determined to be adenine. Or it is not adenine.

【0010】なお、一塩基多型部位を有する標的ポリヌ
クレオチドは、以下の実施例では一本鎖ポリヌクレオチ
ドを使用しているが、特に一本鎖に限定されず、例えば
二本鎖ポリヌクレオチドを使用してもよい。
The target polynucleotide having a single nucleotide polymorphism site is a single-stranded polynucleotide in the following examples, but is not limited to a single-stranded polynucleotide. For example, a double-stranded polynucleotide may be used. May be used.

【0011】以下、実施例によって、本発明をさらに詳
細に説明するが、以下の実施例は、いかなる意味におい
ても、本発明の範囲を限定することを意図したものでは
ない。
Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the scope of the present invention in any way.

【0012】[実施例1]本実施例では、図1を参照し
ながら、検出すべき一種類のヌクレオチド種と相補的な
標識された修飾ヌクレオチドを用いて、一塩基多型部位
に前記検出すべきヌクレオチド種が存在するか否かを判
定する方法について説明する。
Example 1 In this example, referring to FIG. 1, a single nucleotide polymorphism site is detected by using a labeled modified nucleotide complementary to one type of nucleotide to be detected. A method for determining whether or not a nucleotide species to be present exists will be described.

【0013】本実施例の方法を実施するには、まず、プ
ライマー12が、標的一本鎖ポリヌクレオチド11中の
一塩基多型部位13に隣接するようにハイブリダイズし
た部分的二本鎖ポリヌクレオチド14を調製する。
In order to carry out the method of the present embodiment, first, the primer 12 is hybridized so that the primer 12 is adjacent to the single nucleotide polymorphism site 13 in the target single-stranded polynucleotide 11. Prepare 14.

【0014】図1に示されているように、プライマー1
2の3’末端に存在するヌクレオチドは、一塩基多型部
位13に存在するヌクレオチド(図ではアデニン
(A))の3’側に隣接するヌクレオチドとハイブリダ
イズしている。
As shown in FIG.
The nucleotide present at the 3 ′ end of 2 is hybridized with the nucleotide adjacent to the 3 ′ side of the nucleotide (adenine (A) in the figure) existing at the single nucleotide polymorphism site 13.

【0015】部分的二本鎖ポリヌクレオチド14を調製
するには、典型的には、標的一本鎖ポリヌクレオチド1
1にプライマー12をハイブリダイズさせればよい。
To prepare the partially double-stranded polynucleotide 14, typically, the target single-stranded polynucleotide 1
1 may be hybridized with the primer 12.

【0016】部分的二本鎖ポリヌクレオチド14を調製
した後、一塩基多型部位に存在し得るヌクレオチド種の
うち検出すべきヌクレオチド種と相補的であり、且つ追
跡可能な標識で標識された修飾ヌクレオチド15を部分
的二本鎖ポリヌクレオチド3と混合する。図1では、標
識された修飾ヌクレオチド15の他に、標識されていな
い修飾ヌクレオチド16も示されているが、標識されて
いない修飾ヌクレオチド16は必ずしも加える必要はな
い。
After preparing the partially double-stranded polynucleotide 14, a modification that is complementary to the nucleotide species to be detected among the nucleotide species that may be present at the single nucleotide polymorphism site and that is labeled with a traceable label Nucleotide 15 is mixed with partially double-stranded polynucleotide 3. In FIG. 1, unlabeled modified nucleotides 16 are shown in addition to the labeled modified nucleotides 15, but the unlabeled modified nucleotides 16 need not always be added.

【0017】前記標識は、追跡可能であれば任意の標識
であり得るが、好ましい標識は、発光性の標識、とりわ
け蛍光標識であり得る。
The label can be any label that can be tracked, but the preferred label can be a luminescent label, especially a fluorescent label.

【0018】図1では、検出すべきヌクレオチド種がア
デニンである場合が例示されているので、標識された修
飾ヌクレオチドに含まれる核酸塩基はチミンとなってい
る。
FIG. 1 illustrates a case where the nucleotide species to be detected is adenine, so that the nucleobase contained in the labeled modified nucleotide is thymine.

【0019】標識された修飾ヌクレオチド15を加えた
後には、伸長反応を行う。伸長反応を行うには、酵素、
例えば、DNAポリメラーゼなどのポリメラーゼを使用
すればよい。
After the addition of the labeled modified nucleotide 15, an extension reaction is performed. To perform the extension reaction, an enzyme,
For example, a polymerase such as a DNA polymerase may be used.

【0020】標識された修飾ヌクレオチド15は、さら
なる伸長反応が停止するように修飾されている。「さら
なる伸長反応が停止するように修飾された」とは、核酸
の伸長反応において、修飾ヌクレオチド15自体はプラ
イマーに付加されてプライマーを伸長させるが、引き続
く伸長反応が起こらないように修飾されていることを意
味する。それ故、修飾ヌクレオチド15を用いれば、伸
長反応は、一塩基だけ伸長しただけで停止する。このよ
うな修飾ヌクレオチドは、核酸の塩基配列決定などの分
野で多用されているジデオキシヌクレオチドであり得る
が、これに限定されない。
The labeled modified nucleotide 15 is modified so that further extension reaction is stopped. "Modified to stop further extension reaction" means that in a nucleic acid extension reaction, modified nucleotide 15 itself is added to the primer to extend the primer, but is modified so that subsequent extension reaction does not occur. Means that. Therefore, when the modified nucleotide 15 is used, the extension reaction is stopped only by extension of one base. Such modified nucleotides can be, but are not limited to, dideoxynucleotides that are widely used in fields such as nucleic acid sequencing.

【0021】伸長反応は、一塩基だけ伸長して停止する
ので、標的一本鎖ヌクレオチド11の一塩基多型部位に
検出すべきヌクレオチド種が存在するときだけ、部分的
二本鎖ポリヌクレオチド14を構成するプライマー12
の3’末端に、標識された修飾ヌクレオチド15が付加
される。これに対して、標的一本鎖ヌクレオチド11の
一塩基多型部位に検出すべきヌクレオチド種が存在しな
いときには、部分的二本鎖ポリヌクレオチド14に標識
された修飾ヌクレオチド15は導入されない。図1の場
合、標的一本鎖ヌクレオチド11の中に検出すべきヌク
レオチドであるアデニンが含まれているので、標識され
たジデオキシチミジンが部分的二本鎖ポリヌクレオチド
14に導入された様子が示されている。
Since the extension reaction is extended by one base and then stopped, the partial double-stranded polynucleotide 14 is converted only when the nucleotide species to be detected is present at the single nucleotide polymorphism site of the target single-stranded nucleotide 11. Constituent primer 12
A labeled modified nucleotide 15 is added to the 3 ′ end of the compound. On the other hand, when there is no nucleotide species to be detected at the single nucleotide polymorphism site of the target single-stranded nucleotide 11, the modified nucleotide 15 labeled on the partially double-stranded polynucleotide 14 is not introduced. In the case of FIG. 1, since the target single-stranded nucleotide 11 contains adenine, which is a nucleotide to be detected, it is shown that the labeled dideoxythymidine was introduced into the partially double-stranded polynucleotide 14. ing.

【0022】伸長反応に続いて、部分的二本鎖ポリヌク
レオチド14に取り込まれた、又は取り込まれなかった
前記標識の微小空間における位置変化を経時的に計測す
る。
Subsequent to the extension reaction, the change in the position of the label in the micro space incorporated or not incorporated in the partially double-stranded polynucleotide 14 is measured over time.

【0023】本明細書において、「微小空間」とは、容
積が10−21L(1nm四方の立方体の体積に相当す
る)〜10−3L、典型的には10−18L〜10−9
L、最も典型的には10−15L〜10−12Lの空間
をいう。
In the present specification, the term “micro space” means a volume of 10 −21 L (corresponding to the volume of a 1 nm square cube) to 10 −3 L, typically 10 −18 L to 10 −9.
L, most typically refers to the space of 10 -15 L~10 -12 L.

【0024】微小空間の形状は、球状、円錐状、立方体
状、直方体状等任意の形状であり得る。
The shape of the minute space can be any shape such as a sphere, a cone, a cube, a rectangular parallelepiped, and the like.

【0025】このような微小空間における標識の位置変
化を計測するためには、典型的には、共焦点顕微鏡を使
用する。共焦点顕微鏡自体は、本分野で公知である。
In order to measure the change in the position of the marker in such a minute space, a confocal microscope is typically used. Confocal microscopes themselves are known in the art.

【0026】共焦点顕微鏡21を用いた検出は、図2に
示されているように、 1.レーザー発生装置22からレーザー光を励起光とし
て照射する; 2.フィルター23を通過させた後、レーザー光を集光
し、ダイクロイックミラー24によって試料中の一点に
レーザー光を照射する; 3.試料中の蛍光物質をレーザー光で励起して発光させ
る; 4.ピンホール25を通過させることにより、試料の焦
点中の蛍光物質から発せられた蛍光のみを光増倍管(P
MT)26で増幅する; 5.データ処理装置27により、増幅した蛍光を解析
し、表示装置28に結果を表示することによってなされ
る。
The detection using the confocal microscope 21 is performed as shown in FIG. 1. Irradiate laser light as excitation light from the laser generator 22; 2. After passing through the filter 23, the laser light is focused, and one point in the sample is irradiated with the laser light by the dichroic mirror 24; 3. Excite the fluorescent substance in the sample with laser light to emit light; By passing through the pinhole 25, only the fluorescence emitted from the fluorescent substance in the focal point of the sample is converted to a photomultiplier tube (P
MT) 26; This is performed by analyzing the amplified fluorescence by the data processing device 27 and displaying the result on the display device 28.

【0027】共焦点顕微鏡の光源としては、例えば、ア
ルゴンイオンレーザーを使用し得るが、蛍光物質の種類
に応じて、波長の異なるクリプトンアルゴンイオンレー
ザー、ヘリウムネオンレーザー、ヘリウムカドミニウム
レーザーも使用できる。
As a light source of the confocal microscope, for example, an argon ion laser can be used, but a krypton argon ion laser, a helium neon laser, and a helium cadmium laser having different wavelengths according to the kind of the fluorescent substance can also be used.

【0028】このような検出方法は、微小空間空間中に
存在する標識から発せられる蛍光のみを検出するので、
バックグラウンドが極めて少なく、通常の蛍光検出に比
べて著しく感度が高い。
Since such a detection method detects only the fluorescence emitted from the label existing in the minute space,
The background is extremely low and the sensitivity is significantly higher than that of ordinary fluorescence detection.

【0029】「標識の位置変化の経時的な計測」は、一
般的にはミリ秒〜分の単位、最も一般的には秒の単位で
行われ、極めて短時間で終了し得る。
"Measurement of changes in the position of a marker over time" is generally performed in milliseconds to minutes, most commonly in seconds, and can be completed in a very short time.

【0030】計測が終了したら、計測結果を解析して、
検出すべきヌクレオチドと相補的な標識ヌクレオチドが
標的ポリヌクレオチドに導入されたか否かを決定する。
After the measurement is completed, the measurement result is analyzed,
It is determined whether a labeled nucleotide complementary to the nucleotide to be detected has been introduced into the target polynucleotide.

【0031】計測結果の解析は、蛍光相関分析法によっ
て行うのが好ましい。ここで、「蛍光相関分析法」と
は、微小空間内に存在する平均数個(ある場合には一
個)の蛍光物質が発する蛍光の強度を一定時間測定した
後、ブラウン運動に由来する蛍光のゆらぎの自己相関関
数をとり、該関数の分析によって、蛍光物質に関する種
々のデータを取得する方法をいう。蛍光相関分析法(以
下FCS(fluorescence correla
tion spectrometry)という)自体は
公知であり、その詳細については、特表平11−502
608号などを参照されたい。
The analysis of the measurement results is preferably performed by a fluorescence correlation analysis method. Here, the “fluorescence correlation analysis method” refers to measuring the intensity of the fluorescent light emitted from an average number of fluorescent substances (one in some cases) existing in a minute space for a predetermined time, and then measuring the intensity of the fluorescent light derived from Brownian motion. It refers to a method of obtaining the autocorrelation function of fluctuation and acquiring various data on the fluorescent substance by analyzing the function. Fluorescence correlation analysis (hereinafter referred to as FCS (fluorescence correla)
itself, which is known in the art, and is described in detail in JP-A-11-502.
608, etc.

【0032】FCSを用いて、計測結果を解析するに
は、以下の操作を行う。
The following operation is performed to analyze the measurement result using the FCS.

【0033】 1.微小空間にレーザー光を照射する。 2.該微小空間中に存在する蛍光物質から発せられる蛍
光の強度を経時的に測定し、図3に示されているデータ
を取得する。 3.異なる2時点の蛍光強度I(t)とI(t+τ)の
積の期待値を計算し、自己相関関数G(τ)=<I
(t) I(t+τ)>を得る。 4.下式1:
[0033] 1. A small space is irradiated with a laser beam. 2. The intensity of the fluorescence emitted from the fluorescent substance existing in the minute space is measured with time, and the data shown in FIG. 3 is obtained. 3. The expected value of the product of the fluorescence intensity I (t) and I (t + τ) at two different time points is calculated, and the autocorrelation function G (τ) = <I
(T) I (t + τ)> is obtained. 4. Equation 1:

【数1】 (ここで、N:蛍光分子の平均数 τsmall=wo2/4small :サイズが小
さい核酸の並進拡散時間 τlarge=wo2/4large :サイズが大
きい核酸の並進拡散時間 y=繰り返し数が多い反復配列の割合 S=wo/zoである (なお、woは検出領域の径、2zoは領域長、D
smallとDlargeは、それぞれサイズが小さい
核酸及びサイズが大きい核酸の並進拡散定数である))
を用いて、3.で得た自己相関関数を解析する。
(Equation 1) (Where, N: average number of fluorescent molecules τ small = wo 2/4 D small : translational diffusion time of small-sized nucleic acid τ large = wo 2/4 D large : translational diffusion time of large -sized nucleic acid y = repetition S = wo / zo (where wo is the diameter of the detection region, 2zo is the region length, D
small and D large are the translational diffusion constants of small and large nucleic acids, respectively))
And 3. Analyze the autocorrelation function obtained in.

【0034】FCSによるデータ解析には、Evote
c BioSystems社から発売されているコンピ
ュータープログラム「FCS」を使用できる。前記工程
1〜4までの操作時間は、1つの試料当り10秒未満で
あり得る。
For data analysis by FCS, Evote
c A computer program “FCS” released from BioSystems can be used. The operating time for said steps 1-4 can be less than 10 seconds per sample.

【0035】このような分析の概念は、図3によって、
より明確となろう。すなわち、サイズが小さい場合には
ブラウン運動の速度が大きいので、I(t)の周波数が
大きい。これに対して、サイズが大きい場合にはブラウ
ン運動の速度が小さいので、I(t)の周波数が小さ
い。
The concept of such an analysis is shown in FIG.
Be clearer. That is, when the size is small, the speed of the Brownian motion is high, so that the frequency of I (t) is large. On the other hand, when the size is large, the speed of the Brownian motion is low, so that the frequency of I (t) is low.

【0036】従って、式(1)を用いれば、核酸のサイ
ズ、各核酸の割合を推定し得る。
Therefore, by using the equation (1), the size of the nucleic acid and the ratio of each nucleic acid can be estimated.

【0037】標的一本鎖ポリヌクレオチド11に標識さ
れた修飾ヌクレオチド15が取り込まれたときには、標
識のブラウン運動の速度は小さくなるのに対して、標的
一本鎖ポリヌクレオチドに修飾ヌクレオチド15が取り
込まれないときには、標識のブラウン運動の速度は大き
い。それ故、本発明の方法に蛍光相関分析法を適用する
ことにより、標的一本鎖ポリヌクレオチド中に修飾ヌク
レオチド15が取り込まれたか否かが分かる。
When the labeled modified nucleotide 15 is incorporated into the target single-stranded polynucleotide 11, the speed of the Brownian motion of the label decreases, whereas the modified nucleotide 15 is incorporated into the target single-stranded polynucleotide. Otherwise, the speed of the sign's Brownian motion is high. Therefore, by applying the fluorescence correlation analysis to the method of the present invention, it can be determined whether or not the modified nucleotide 15 has been incorporated into the target single-stranded polynucleotide.

【0038】図1のグラフのうち、曲線17は、標識さ
れたジデオキシチミジンが取り込まれなかった場合の自
己相関関数G(τ)の経時変化を示しており、曲線18
は、標識されたジデオキシチミジンが取り込まれた場合
の自己相関関数G(τ)の経時変化を示している。
In the graph of FIG. 1, a curve 17 shows a change with time of the autocorrelation function G (τ) when the labeled dideoxythymidine was not taken in, and a curve 18
Shows the change over time of the autocorrelation function G (τ) when labeled dideoxythymidine is incorporated.

【0039】グラフから明らかなように、標識されたジ
デオキシチミジンが取り込まれた場合と取り込まれなか
った場合とでは、曲線の形状が異なるので、蛍光相関分
析法を用いれば、標識されたジデオキシチミジンが取り
込まれたか否かを即時に決定することができる。
As is clear from the graph, the shape of the curve differs between the case where labeled dideoxythymidine was incorporated and the case where it was not incorporated. It can be determined immediately whether or not it has been captured.

【0040】実際の測定では、標的一本鎖ポリヌクレオ
チド11と標識された修飾ヌクレオチド15は、一対一
の割合で存在せずに、標識された修飾ヌクレオチド15
が標的一本鎖ポリヌクレオチド11よりも多いことが通
常である。そのため、曲線17と18の中間に、曲線1
9のような形状の曲線が得られる場合が多い。
In the actual measurement, the target single-stranded polynucleotide 11 and the labeled modified nucleotide 15 are not present in a one-to-one ratio, and the labeled modified nucleotide 15 is not present.
Is usually greater than the target single-stranded polynucleotide 11. Therefore, in the middle of curves 17 and 18, curve 1
In many cases, a curve having a shape like 9 is obtained.

【0041】標識された修飾ヌクレオチド15が標的一
本鎖ポリヌクレオチド11に比べて過剰であると、標的
一本鎖ポリヌクレオチド11に取り込まれた修飾ヌクレ
オチド15が極めて僅かとなる。このため、かかる場合
に得られる曲線は、曲線17と区別できず、修飾ヌクレ
オチド15が標的一本鎖ポリヌクレオチド11に取り込
まれなかったものと誤って判断されてしまうことにな
る。それ故、標的一本鎖ポリヌクレオチド11に取り込
まれなかった修飾ヌクレオチド15の量は、修飾ヌクレ
オチド15の全量の半分以下であることが望ましい。
If the labeled modified nucleotides 15 are in excess relative to the target single-stranded polynucleotide 11, the amount of the modified nucleotides 15 incorporated into the target single-stranded polynucleotide 11 will be extremely small. For this reason, the curve obtained in such a case cannot be distinguished from the curve 17, and it is erroneously determined that the modified nucleotide 15 has not been incorporated into the target single-stranded polynucleotide 11. Therefore, it is desirable that the amount of the modified nucleotide 15 not incorporated into the target single-stranded polynucleotide 11 be less than half of the total amount of the modified nucleotide 15.

【0042】一方、標識された修飾ヌクレオチド15の
量が少なすぎると、伸長反応の進行速度が極端に遅くな
ってしまうので、伸長反応が適切に進行し得る量の標識
された修飾ヌクレオチド15を使用することが好まし
い。
On the other hand, if the amount of the labeled modified nucleotides 15 is too small, the progress of the extension reaction will be extremely slow. Is preferred.

【0043】以上のように、本実施例の方法を用いれ
ば、一塩基多型部位に検出すべきヌクレオチド種が存在
するか否かを簡易且つ迅速に判定することができる。
As described above, by using the method of this embodiment, it is possible to easily and quickly determine whether or not a nucleotide species to be detected exists at a single nucleotide polymorphism site.

【0044】本実施例では、所定の部位が一塩基多型部
位であることが明らかとなっている場合を例にとって説
明を行ったが、本実施例の各工程は、ある部位が一塩基
多型部位であるか否かが不明な場合に、当該部位に一塩
基多型が存在するか否かを調べるためにも使用できる。
すなわち、本発明は、一本鎖標的ポリヌクレオチド中の
所定部位に一塩基多型が存在するか否かを調べる方法も
提供する。
In the present embodiment, the case where it is clear that the predetermined site is a single nucleotide polymorphism site has been described as an example. When it is unclear whether the site is a type site, it can also be used to check whether a single nucleotide polymorphism exists at the site.
That is, the present invention also provides a method for examining whether or not a single nucleotide polymorphism exists at a predetermined site in a single-stranded target polynucleotide.

【0045】所定の部位が一塩基多型部位であることが
不明な場合には、当該部位に存在することが知られてい
るヌクレオチド種とは異なるヌクレオチド種と相補的な
修飾ヌクレオチドを用いて伸長反応を実施すればよい。
当該部位に存在することが知られているヌクレオチド種
とは異なるヌクレオチド種と相補的な修飾ヌクレオチド
がプライマーに付加されれば、前記所定の部位が一塩基
多型部位であると推定される。
When it is not known that the predetermined site is a single nucleotide polymorphism site, the site is extended using a modified nucleotide complementary to a nucleotide species different from the nucleotide species known to be present at the site. The reaction may be performed.
If a modified nucleotide complementary to a nucleotide species different from the nucleotide species known to be present at the site is added to the primer, the predetermined site is presumed to be a single nucleotide polymorphism site.

【0046】[実施例2]本実施例では、図4を参照し
ながら、一塩基多型部位に存在し得る複数のヌクレオチ
ド種のうち、一塩基多型部位に何れのヌクレオチド種が
存在するかを決定する方法について説明する。
Example 2 In this example, referring to FIG. 4, which nucleotide species exists at the single nucleotide polymorphism site among a plurality of nucleotide species that can exist at the single nucleotide polymorphism site The method for determining is described.

【0047】本実施例の方法を実施するには、まず、プ
ライマー42が、標的一本鎖ポリヌクレオチド41中の
一塩基多型部位43に隣接するようにハイブリダイズし
た部分的二本鎖ポリヌクレオチド44を調製する。部分
的二本鎖ポリヌクレオチド43の調製方法は、実施例1
に記載したとおりである。
In order to carry out the method of the present embodiment, first, a partially double-stranded polynucleotide hybridized so that the primer 42 is adjacent to the single nucleotide polymorphism site 43 in the target single-stranded polynucleotide 41 Prepare 44. The method for preparing the partially double-stranded polynucleotide 43 is described in Example 1.
It is as described in.

【0048】図4の例では、一塩基多型部位43には、
アデニン(A)又はグアニン(G)が存在し得る。
In the example of FIG. 4, the single nucleotide polymorphism site 43 has
Adenine (A) or guanine (G) may be present.

【0049】部分的二本鎖ポリヌクレオチド44を調製
した後、一塩基多型部位に存在し得る各ヌクレオチド種
と相補的な標識ヌクレオチド45及び46を、部分的二
本鎖ポリヌクレオチド43と混合する。図4の例では、
標識ヌクレオチド45はジデオキシチミジンであり、標
識ヌクレオチド46は、ジデオキシグアノシンである。
両標識ヌクレオチドを区別するために、標識ヌクレオチ
ド45と標識ヌクレオチド46には異なる物質を標識す
ることが好ましい。
After preparing the partially double-stranded polynucleotide 44, the labeled nucleotides 45 and 46 complementary to each nucleotide species that may be present at the single nucleotide polymorphism site are mixed with the partially double-stranded polynucleotide 43. . In the example of FIG.
Labeled nucleotide 45 is dideoxythymidine and labeled nucleotide 46 is dideoxyguanosine.
In order to distinguish both labeled nucleotides, it is preferable to label the labeled nucleotide 45 and the labeled nucleotide 46 with different substances.

【0050】標的一本鎖ポリヌクレオチド41中の一塩
基多型部位43がアデニンであれば、プライマー42の
末端には標識ヌクレオチド45が付加される。標的一本
鎖ポリヌクレオチド41中の一塩基多型部位43がシト
シンであれば、プライマー42の末端には標識ヌクレオ
チド46が付加される。
If the single nucleotide polymorphism site 43 in the target single-stranded polynucleotide 41 is adenine, a labeled nucleotide 45 is added to the end of the primer 42. If the single nucleotide polymorphism site 43 in the target single-stranded polynucleotide 41 is cytosine, a labeled nucleotide 46 is added to the end of the primer 42.

【0051】伸長反応後に、標識ヌクレオチド中の標識
の微小空間における位置変化を経時的に計測する。計測
方法は、実施例1に記載したとおりであり、標識ヌクレ
オチドが取り込まれなかった場合には曲線47が得ら
れ、標識ヌクレオチドが取り込まれた場合には曲線48
が得られる。
After the extension reaction, the change in the position of the label in the labeled nucleotide in the micro space is measured with time. The measurement method is as described in Example 1. When no labeled nucleotide was incorporated, a curve 47 was obtained, and when a labeled nucleotide was incorporated, a curve 48 was obtained.
Is obtained.

【0052】計測後、蛍光相関分光法により計測結果を
解析する。各プライマーが異なる蛍光標識で修飾されて
いれば、測定の際に各蛍光標識に適したフィルター等を
用いることによって、何れのプライマーが標的ポリヌク
レオチドに結合したかを決定できる。蛍光相関分光法を
用いて、所定のプライマーが標的ポリヌクレオチドに結
合したか否かを決定する方法は、実施例1において前述
したとおりである。
After the measurement, the measurement result is analyzed by fluorescence correlation spectroscopy. If each primer is modified with a different fluorescent label, it is possible to determine which primer has bound to the target polynucleotide by using a filter or the like suitable for each fluorescent label during measurement. The method for determining whether or not a given primer has bound to a target polynucleotide using fluorescence correlation spectroscopy is as described above in Example 1.

【0053】複数種類のプライマーを用いる本実施例の
方法によれば、一塩基多型部位に存在するヌクレオチド
の種類を正確に決定することができる。
According to the method of this embodiment using a plurality of types of primers, the type of nucleotide present at the single nucleotide polymorphism site can be accurately determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の方法を示す模式図。FIG. 1 is a schematic view illustrating a method according to a first embodiment.

【図2】共焦点顕微鏡の構成を示す図。FIG. 2 is a diagram showing a configuration of a confocal microscope.

【図3】蛍光相関分光法の測定に用いるデータを示す
図。
FIG. 3 is a diagram showing data used for measurement of fluorescence correlation spectroscopy.

【図4】実施例2の方法を示す模式図。FIG. 4 is a schematic view illustrating a method according to a second embodiment.

【符号の説明】[Explanation of symbols]

11 標的一本鎖ポリヌクレオチド 12 プライマー 13 一塩基多型部位 14 部分的二本鎖ポリヌクレオチド 15 標識された修飾ヌクレオチド 16 修飾されていない修飾ヌクレオチド 17 曲線 18 曲線 19 曲線 21 共焦点顕微鏡 22 レーザー発生装置 23 フィルター 24 ダイクロイックミラー 25 ピンホール 26 光倍増管 27 データ処理装置 28 表示装置 41 標的一本鎖ポリヌクレオチド 42 プライマー 43 一塩基多型部位 44 部分的二本鎖ポリヌクレオチド 45 標識ヌクレオチド 46 標識ヌクレオチド 47 曲線 48 曲線 DESCRIPTION OF SYMBOLS 11 Target single-stranded polynucleotide 12 Primer 13 Single nucleotide polymorphism site 14 Partial double-stranded polynucleotide 15 Labeled modified nucleotide 16 Unmodified modified nucleotide 17 Curve 18 Curve 19 Curve 21 Confocal microscope 22 Laser generator 23 Filter 24 Dichroic Mirror 25 Pinhole 26 Photomultiplier Tube 27 Data Processor 28 Display 41 Target Single-Stranded Polynucleotide 42 Primer 43 Single Nucleotide Polymorphism Site 44 Partial Double-Stranded Polynucleotide 45 Labeled Nucleotide 46 Labeled Nucleotide 47 Curve 48 Curve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一塩基多型の型を判定する方法であっ
て、 n位(nは1以上の整数)に一塩基多型部位を有する標
的ポリヌクレオチドにプライマーがハイブリダイズして
なるポリヌクレオチドであって、前記プライマーの3’
末端に位置するヌクレオチドが、前記標的ポリヌクレオ
チドの(n+1)位のヌクレオチドと対合するようにハ
イブリダイズしているポリヌクレオチドを調製する工程
と;前記一塩基多型部位に存在し得るヌクレオチド種の
うち検出すべきヌクレオチド種と相補的な修飾ヌクレオ
チドであって、追跡可能な標識で標識され、且つさらな
る伸長反応が停止するように修飾された修飾ヌクレオチ
ドを、前記工程で調製されたポリヌクレオチドと混合
し、伸長反応を実施する工程と;前記標識の微小空間に
おける位置変化を経時的に計測する工程と;蛍光相関分
析法を用いて前工程の計測結果を解析して、検出すべき
ヌクレオチドと相補的な標識ヌクレオチドが、前記伸長
反応工程において前記ポリヌクレオチドに取り込まれた
か否かを決定することによって、一塩基多型の型を判定
する工程と;を備えた方法。
1. A method for determining the type of a single nucleotide polymorphism, comprising: a polynucleotide comprising a primer hybridized to a target polynucleotide having a single nucleotide polymorphism site at the n-th position (n is an integer of 1 or more). And 3 ′ of said primer
Preparing a polynucleotide that hybridizes such that the nucleotide located at the end is paired with the nucleotide at position (n + 1) of the target polynucleotide; and the type of nucleotide species that may be present at the single nucleotide polymorphism site. A modified nucleotide complementary to the nucleotide species to be detected, which is labeled with a traceable label and modified so that further extension reaction is stopped, is mixed with the polynucleotide prepared in the above step. Performing the extension reaction; measuring the position change of the label in the micro space over time; analyzing the measurement result of the previous step using a fluorescence correlation analysis method to complement the nucleotide to be detected. To determine whether or not a typical labeled nucleotide has been incorporated into the polynucleotide in the extension reaction step. By a step of determining a type of single nucleotide polymorphism; method provided with.
JP2001083704A 2001-03-22 2001-03-22 Method for judging form of monobasic polymorphism Withdrawn JP2002272463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001083704A JP2002272463A (en) 2001-03-22 2001-03-22 Method for judging form of monobasic polymorphism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001083704A JP2002272463A (en) 2001-03-22 2001-03-22 Method for judging form of monobasic polymorphism

Publications (1)

Publication Number Publication Date
JP2002272463A true JP2002272463A (en) 2002-09-24

Family

ID=18939487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001083704A Withdrawn JP2002272463A (en) 2001-03-22 2001-03-22 Method for judging form of monobasic polymorphism

Country Status (1)

Country Link
JP (1) JP2002272463A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075638A1 (en) * 2004-02-03 2005-08-18 National Institute For Materials Science Gene detection field-effect device and method of analyzing gene polymorphism therewith
US7888013B2 (en) * 2004-08-27 2011-02-15 National Institute For Materials Science Method of analyzing DNA sequence using field-effect device, and base sequence analyzer
US8247849B2 (en) 2010-06-30 2012-08-21 Life Technologies Corporation Two-transistor pixel array
US8263336B2 (en) 2009-05-29 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8264014B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8349167B2 (en) 2006-12-14 2013-01-08 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US8470164B2 (en) 2008-06-25 2013-06-25 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8552771B1 (en) 2012-05-29 2013-10-08 Life Technologies Corporation System for reducing noise in a chemical sensor array
US8653567B2 (en) 2010-07-03 2014-02-18 Life Technologies Corporation Chemically sensitive sensor with lightly doped drains
US8673627B2 (en) 2009-05-29 2014-03-18 Life Technologies Corporation Apparatus and methods for performing electrochemical reactions
US8685324B2 (en) 2010-09-24 2014-04-01 Life Technologies Corporation Matched pair transistor circuits
US8747748B2 (en) 2012-01-19 2014-06-10 Life Technologies Corporation Chemical sensor with conductive cup-shaped sensor surface
US8776573B2 (en) 2009-05-29 2014-07-15 Life Technologies Corporation Methods and apparatus for measuring analytes
US8821798B2 (en) 2012-01-19 2014-09-02 Life Technologies Corporation Titanium nitride as sensing layer for microwell structure
US8841217B1 (en) 2013-03-13 2014-09-23 Life Technologies Corporation Chemical sensor with protruded sensor surface
US8858782B2 (en) 2010-06-30 2014-10-14 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US8936763B2 (en) 2008-10-22 2015-01-20 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US8962366B2 (en) 2013-01-28 2015-02-24 Life Technologies Corporation Self-aligned well structures for low-noise chemical sensors
US8963216B2 (en) 2013-03-13 2015-02-24 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US9080968B2 (en) 2013-01-04 2015-07-14 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9109251B2 (en) 2004-06-25 2015-08-18 University Of Hawaii Ultrasensitive biosensors
US9116117B2 (en) 2013-03-15 2015-08-25 Life Technologies Corporation Chemical sensor with sidewall sensor surface
US9128044B2 (en) 2013-03-15 2015-09-08 Life Technologies Corporation Chemical sensors with consistent sensor surface areas
US9618475B2 (en) 2010-09-15 2017-04-11 Life Technologies Corporation Methods and apparatus for measuring analytes
US9671363B2 (en) 2013-03-15 2017-06-06 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US9823217B2 (en) 2013-03-15 2017-11-21 Life Technologies Corporation Chemical device with thin conductive element
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
US10100357B2 (en) 2013-05-09 2018-10-16 Life Technologies Corporation Windowed sequencing
US10379079B2 (en) 2014-12-18 2019-08-13 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US10451585B2 (en) 2009-05-29 2019-10-22 Life Technologies Corporation Methods and apparatus for measuring analytes
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US10605767B2 (en) 2014-12-18 2020-03-31 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
US11231451B2 (en) 2010-06-30 2022-01-25 Life Technologies Corporation Methods and apparatus for testing ISFET arrays
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays

Cited By (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7695907B2 (en) 2004-02-03 2010-04-13 National Institute For Materials Science Gene detection field-effect device and method of analyzing gene polymorphism therewith
WO2005075638A1 (en) * 2004-02-03 2005-08-18 National Institute For Materials Science Gene detection field-effect device and method of analyzing gene polymorphism therewith
US10563252B2 (en) 2004-06-25 2020-02-18 University Of Hawaii Ultrasensitive biosensors
US9109251B2 (en) 2004-06-25 2015-08-18 University Of Hawaii Ultrasensitive biosensors
US7888013B2 (en) * 2004-08-27 2011-02-15 National Institute For Materials Science Method of analyzing DNA sequence using field-effect device, and base sequence analyzer
US8502278B2 (en) 2006-12-14 2013-08-06 Life Technologies Corporation Chemically-sensitive sample and hold sensors
US8658017B2 (en) 2006-12-14 2014-02-25 Life Technologies Corporation Methods for operating an array of chemically-sensitive sensors
US8269261B2 (en) 2006-12-14 2012-09-18 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8293082B2 (en) 2006-12-14 2012-10-23 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8313639B2 (en) 2006-12-14 2012-11-20 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8313625B2 (en) 2006-12-14 2012-11-20 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8317999B2 (en) 2006-12-14 2012-11-27 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8349167B2 (en) 2006-12-14 2013-01-08 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US8415716B2 (en) 2006-12-14 2013-04-09 Life Technologies Corporation Chemically sensitive sensors with feedback circuits
US20220340965A1 (en) * 2006-12-14 2022-10-27 Life Technologies Corporation Methods and Apparatus for Measuring Analytes Using Large Scale FET Arrays
US8764969B2 (en) 2006-12-14 2014-07-01 Life Technologies Corporation Methods for operating chemically sensitive sensors with sample and hold capacitors
US11435314B2 (en) 2006-12-14 2022-09-06 Life Technologies Corporation Chemically-sensitive sensor array device
US8426898B2 (en) 2006-12-14 2013-04-23 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8426899B2 (en) 2006-12-14 2013-04-23 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8519448B2 (en) 2006-12-14 2013-08-27 Life Technologies Corporation Chemically-sensitive array with active and reference sensors
US9039888B2 (en) 2006-12-14 2015-05-26 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US8435395B2 (en) 2006-12-14 2013-05-07 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8441044B2 (en) 2006-12-14 2013-05-14 Life Technologies Corporation Methods for manufacturing low noise chemically-sensitive field effect transistors
US8445945B2 (en) 2006-12-14 2013-05-21 Life Technologies Corporation Low noise chemically-sensitive field effect transistors
US8450781B2 (en) 2006-12-14 2013-05-28 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US10816506B2 (en) 2006-12-14 2020-10-27 Life Technologies Corporation Method for measuring analytes using large scale chemfet arrays
US11732297B2 (en) * 2006-12-14 2023-08-22 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US10633699B2 (en) 2006-12-14 2020-04-28 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8492800B2 (en) 2006-12-14 2013-07-23 Life Technologies Corporation Chemically sensitive sensors with sample and hold capacitors
US8492799B2 (en) 2006-12-14 2013-07-23 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US8496802B2 (en) 2006-12-14 2013-07-30 Life Technologies Corporation Methods for operating chemically-sensitive sample and hold sensors
US8890216B2 (en) 2006-12-14 2014-11-18 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8766328B2 (en) 2006-12-14 2014-07-01 Life Technologies Corporation Chemically-sensitive sample and hold sensors
US8306757B2 (en) 2006-12-14 2012-11-06 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8742472B2 (en) 2006-12-14 2014-06-03 Life Technologies Corporation Chemically sensitive sensors with sample and hold capacitors
US8530941B2 (en) 2006-12-14 2013-09-10 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8535513B2 (en) 2006-12-14 2013-09-17 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8540866B2 (en) 2006-12-14 2013-09-24 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US8540865B2 (en) 2006-12-14 2013-09-24 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US8540867B2 (en) 2006-12-14 2013-09-24 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US8540868B2 (en) 2006-12-14 2013-09-24 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US10502708B2 (en) 2006-12-14 2019-12-10 Life Technologies Corporation Chemically-sensitive sensor array calibration circuitry
US8558288B2 (en) 2006-12-14 2013-10-15 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8575664B2 (en) 2006-12-14 2013-11-05 Life Technologies Corporation Chemically-sensitive sensor array calibration circuitry
US10415079B2 (en) 2006-12-14 2019-09-17 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US10203300B2 (en) 2006-12-14 2019-02-12 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9989489B2 (en) 2006-12-14 2018-06-05 Life Technnologies Corporation Methods for calibrating an array of chemically-sensitive sensors
US8264014B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9134269B2 (en) 2006-12-14 2015-09-15 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9951382B2 (en) 2006-12-14 2018-04-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8685230B2 (en) 2006-12-14 2014-04-01 Life Technologies Corporation Methods and apparatus for high-speed operation of a chemically-sensitive sensor array
US8692298B2 (en) 2006-12-14 2014-04-08 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US9269708B2 (en) 2006-12-14 2016-02-23 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9404920B2 (en) 2006-12-14 2016-08-02 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9194000B2 (en) 2008-06-25 2015-11-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8524057B2 (en) 2008-06-25 2013-09-03 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8470164B2 (en) 2008-06-25 2013-06-25 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9944981B2 (en) 2008-10-22 2018-04-17 Life Technologies Corporation Methods and apparatus for measuring analytes
US9964515B2 (en) 2008-10-22 2018-05-08 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US11137369B2 (en) 2008-10-22 2021-10-05 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US8936763B2 (en) 2008-10-22 2015-01-20 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US11448613B2 (en) 2008-10-22 2022-09-20 Life Technologies Corporation ChemFET sensor array including overlying array of wells
US11874250B2 (en) 2008-10-22 2024-01-16 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US8912580B2 (en) 2009-05-29 2014-12-16 Life Technologies Corporation Active chemically-sensitive sensors with in-sensor current sources
US8748947B2 (en) 2009-05-29 2014-06-10 Life Technologies Corporation Active chemically-sensitive sensors with reset switch
US11768171B2 (en) 2009-05-29 2023-09-26 Life Technologies Corporation Methods and apparatus for measuring analytes
US8263336B2 (en) 2009-05-29 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes
US11692964B2 (en) 2009-05-29 2023-07-04 Life Technologies Corporation Methods and apparatus for measuring analytes
US8822205B2 (en) 2009-05-29 2014-09-02 Life Technologies Corporation Active chemically-sensitive sensors with source follower amplifier
US10809226B2 (en) 2009-05-29 2020-10-20 Life Technologies Corporation Methods and apparatus for measuring analytes
US10718733B2 (en) 2009-05-29 2020-07-21 Life Technologies Corporation Methods and apparatus for measuring analytes
US8776573B2 (en) 2009-05-29 2014-07-15 Life Technologies Corporation Methods and apparatus for measuring analytes
US10451585B2 (en) 2009-05-29 2019-10-22 Life Technologies Corporation Methods and apparatus for measuring analytes
US8592154B2 (en) 2009-05-29 2013-11-26 Life Technologies Corporation Methods and apparatus for high speed operation of a chemically-sensitive sensor array
US8766327B2 (en) 2009-05-29 2014-07-01 Life Technologies Corporation Active chemically-sensitive sensors with in-sensor current sources
US8592153B1 (en) 2009-05-29 2013-11-26 Life Technologies Corporation Methods for manufacturing high capacitance microwell structures of chemically-sensitive sensors
US8673627B2 (en) 2009-05-29 2014-03-18 Life Technologies Corporation Apparatus and methods for performing electrochemical reactions
US8698212B2 (en) 2009-05-29 2014-04-15 Life Technologies Corporation Active chemically-sensitive sensors
US8994076B2 (en) 2009-05-29 2015-03-31 Life Technologies Corporation Chemically-sensitive field effect transistor based pixel array with protection diodes
US9927393B2 (en) 2009-05-29 2018-03-27 Life Technologies Corporation Methods and apparatus for measuring analytes
US8742469B2 (en) 2009-05-29 2014-06-03 Life Technologies Corporation Active chemically-sensitive sensors with correlated double sampling
US10641729B2 (en) 2010-06-30 2020-05-05 Life Technologies Corporation Column ADC
US8432150B2 (en) 2010-06-30 2013-04-30 Life Technologies Corporation Methods for operating an array column integrator
US8247849B2 (en) 2010-06-30 2012-08-21 Life Technologies Corporation Two-transistor pixel array
US10481123B2 (en) 2010-06-30 2019-11-19 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US8524487B2 (en) 2010-06-30 2013-09-03 Life Technologies Corporation One-transistor pixel array with cascoded column circuit
US9164070B2 (en) 2010-06-30 2015-10-20 Life Technologies Corporation Column adc
US8741680B2 (en) 2010-06-30 2014-06-03 Life Technologies Corporation Two-transistor pixel array
US9239313B2 (en) 2010-06-30 2016-01-19 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US8823380B2 (en) 2010-06-30 2014-09-02 Life Technologies Corporation Capacitive charge pump
US8742471B2 (en) 2010-06-30 2014-06-03 Life Technologies Corporation Chemical sensor array with leakage compensation circuit
US8731847B2 (en) 2010-06-30 2014-05-20 Life Technologies Corporation Array configuration and readout scheme
US8487790B2 (en) 2010-06-30 2013-07-16 Life Technologies Corporation Chemical detection circuit including a serializer circuit
US8415176B2 (en) 2010-06-30 2013-04-09 Life Technologies Corporation One-transistor pixel array
US8415177B2 (en) 2010-06-30 2013-04-09 Life Technologies Corporation Two-transistor pixel array
US8421437B2 (en) 2010-06-30 2013-04-16 Life Technologies Corporation Array column integrator
US8432149B2 (en) 2010-06-30 2013-04-30 Life Technologies Corporation Array column integrator
US8858782B2 (en) 2010-06-30 2014-10-14 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US8455927B2 (en) 2010-06-30 2013-06-04 Life Technologies Corporation One-transistor pixel array with cascoded column circuit
US8983783B2 (en) 2010-06-30 2015-03-17 Life Technologies Corporation Chemical detection device having multiple flow channels
US8772698B2 (en) 2010-06-30 2014-07-08 Life Technologies Corporation CCD-based multi-transistor active pixel sensor array
US11231451B2 (en) 2010-06-30 2022-01-25 Life Technologies Corporation Methods and apparatus for testing ISFET arrays
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
US8653567B2 (en) 2010-07-03 2014-02-18 Life Technologies Corporation Chemically sensitive sensor with lightly doped drains
US9960253B2 (en) 2010-07-03 2018-05-01 Life Technologies Corporation Chemically sensitive sensor with lightly doped drains
US9958415B2 (en) 2010-09-15 2018-05-01 Life Technologies Corporation ChemFET sensor including floating gate
US9958414B2 (en) 2010-09-15 2018-05-01 Life Technologies Corporation Apparatus for measuring analytes including chemical sensor array
US9618475B2 (en) 2010-09-15 2017-04-11 Life Technologies Corporation Methods and apparatus for measuring analytes
US9110015B2 (en) 2010-09-24 2015-08-18 Life Technologies Corporation Method and system for delta double sampling
US8796036B2 (en) 2010-09-24 2014-08-05 Life Technologies Corporation Method and system for delta double sampling
US8685324B2 (en) 2010-09-24 2014-04-01 Life Technologies Corporation Matched pair transistor circuits
US8912005B1 (en) 2010-09-24 2014-12-16 Life Technologies Corporation Method and system for delta double sampling
US10598723B2 (en) 2011-12-01 2020-03-24 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US10365321B2 (en) 2011-12-01 2019-07-30 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US8821798B2 (en) 2012-01-19 2014-09-02 Life Technologies Corporation Titanium nitride as sensing layer for microwell structure
US8747748B2 (en) 2012-01-19 2014-06-10 Life Technologies Corporation Chemical sensor with conductive cup-shaped sensor surface
US10404249B2 (en) 2012-05-29 2019-09-03 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9270264B2 (en) 2012-05-29 2016-02-23 Life Technologies Corporation System for reducing noise in a chemical sensor array
US8552771B1 (en) 2012-05-29 2013-10-08 Life Technologies Corporation System for reducing noise in a chemical sensor array
US8786331B2 (en) 2012-05-29 2014-07-22 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9985624B2 (en) 2012-05-29 2018-05-29 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9080968B2 (en) 2013-01-04 2015-07-14 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9852919B2 (en) 2013-01-04 2017-12-26 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US10436742B2 (en) 2013-01-08 2019-10-08 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US8962366B2 (en) 2013-01-28 2015-02-24 Life Technologies Corporation Self-aligned well structures for low-noise chemical sensors
US8841217B1 (en) 2013-03-13 2014-09-23 Life Technologies Corporation Chemical sensor with protruded sensor surface
US8963216B2 (en) 2013-03-13 2015-02-24 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US9995708B2 (en) 2013-03-13 2018-06-12 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US9823217B2 (en) 2013-03-15 2017-11-21 Life Technologies Corporation Chemical device with thin conductive element
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
US9116117B2 (en) 2013-03-15 2015-08-25 Life Technologies Corporation Chemical sensor with sidewall sensor surface
US9128044B2 (en) 2013-03-15 2015-09-08 Life Technologies Corporation Chemical sensors with consistent sensor surface areas
US10422767B2 (en) 2013-03-15 2019-09-24 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US9671363B2 (en) 2013-03-15 2017-06-06 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US10655175B2 (en) 2013-05-09 2020-05-19 Life Technologies Corporation Windowed sequencing
US10100357B2 (en) 2013-05-09 2018-10-16 Life Technologies Corporation Windowed sequencing
US11028438B2 (en) 2013-05-09 2021-06-08 Life Technologies Corporation Windowed sequencing
US10816504B2 (en) 2013-06-10 2020-10-27 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US11499938B2 (en) 2013-06-10 2022-11-15 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US11774401B2 (en) 2013-06-10 2023-10-03 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US10605767B2 (en) 2014-12-18 2020-03-31 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
US10379079B2 (en) 2014-12-18 2019-08-13 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US11536688B2 (en) 2014-12-18 2022-12-27 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
US10767224B2 (en) 2014-12-18 2020-09-08 Life Technologies Corporation High data rate integrated circuit with power management

Similar Documents

Publication Publication Date Title
JP2002272463A (en) Method for judging form of monobasic polymorphism
US7816079B2 (en) Method of DNA sequencing using cleavable tags
US8034567B2 (en) Quantification of gene expression
US8492094B2 (en) Methods for detection and quantification of analytes in complex mixtures
AU2002327202A1 (en) Methods for detection and quantification of analytes in complex mixtures
JP4110223B2 (en) Nucleotide assay in solution using PNA probes
US20030124592A1 (en) Methods for detecting genetic haplotypes by interaction with probes
JP2006333739A (en) Method for analyzing nucleic acid by monomolecular measurement
JP3752466B2 (en) Genetic testing method
US7223568B2 (en) Methods for determining nucleotide sequences of single nucleic acid molecules
JP3855492B2 (en) Mixed nucleic acid fragment analysis
JP2000228999A (en) Multi-genotype of population
JP3784162B2 (en) DNA fragment analysis
JP3910000B2 (en) Single base substitution detection method
JP4589480B2 (en) How to analyze repeat sequence polymorphisms
JP2009011230A (en) Method for analyzing base sequence by utilizing restricted extension of nucleotide
JP2001269198A (en) Method for determining type of polymorphic gene
JPH11164700A (en) Detection of dna
JP4310675B2 (en) Nucleotide polymorphism identification method
JP2002281965A (en) Method for detecting target nucleic acid molecule
JP4227139B2 (en) Biological sample analysis method, reaction solution, and analyzer
JP2003315329A (en) Method and apparatus for gene detection
JP2006105928A (en) Method for detecting condensation of dna
JPH06261795A (en) Process for detecting polynucleotides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090302