JP2002257632A - Optical wavelength measuring instrument and its method, program and recording medium with the program recorded thereon - Google Patents

Optical wavelength measuring instrument and its method, program and recording medium with the program recorded thereon

Info

Publication number
JP2002257632A
JP2002257632A JP2001062119A JP2001062119A JP2002257632A JP 2002257632 A JP2002257632 A JP 2002257632A JP 2001062119 A JP2001062119 A JP 2001062119A JP 2001062119 A JP2001062119 A JP 2001062119A JP 2002257632 A JP2002257632 A JP 2002257632A
Authority
JP
Japan
Prior art keywords
wavelength
light
variable wavelength
variable
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001062119A
Other languages
Japanese (ja)
Other versions
JP4842447B2 (en
Inventor
Tomotake Yamashita
友勇 山下
Motonori Imamura
元規 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP2001062119A priority Critical patent/JP4842447B2/en
Publication of JP2002257632A publication Critical patent/JP2002257632A/en
Application granted granted Critical
Publication of JP4842447B2 publication Critical patent/JP4842447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical wavelength measuring instrument that can specify the wavelength of a laser light even if the wavelength of the laser light is much swept. SOLUTION: The measuring instrument to measure the wavelength of a variable wavelength light of a variable wavelength light source 12 is provided with a reference optical device 40 where the relation between a group delay time and the wavelength of the wavelength tunable light is known, a measuring portion 32 to measure the group delay time of the reference optical device 40, a recording portion 34 of characteristic the reference optical device to record a correspondence of the group delay time of the reference optical device 40 to the wavelength of the wavelength tunable light transmitted the reference optical device 40, and a wavelength measuring portion 36 to measure the wavelength of the wavelength tunable light based on recorded contents in the recording portion 34 of the characteristics of the reference optical device 40 and the group delay time of the reference optical device 40, wherein the wavelength of the laser light can be specified even if the wavelength of the laser light is much swept, because the group delay time can be measured even if the wavelength of the laser light is much swept.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ光等を生成
する光源の波長測定に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a wavelength measurement of a light source for generating a laser beam or the like.

【0002】[0002]

【従来の技術】従来技術における光デバイスの波長分散
の測定システムは例えば特公平7−9386号公報のよ
うなものがあり、その構成を図16に示す。図16に示
す波長分散の測定システムによれば、測定用レーザ10
2が測定用レーザ光を生成し、レーザ光は発振器101
が生成する電気信号に基づき、外部変調器108によっ
て強度変調されて光デバイスである光ファイバ104に
入射される。光ファイバ104を透過した測定用レーザ
光は光受信器105により光電変換される。光受信器1
05により光電変換された電気信号と発振器101が生
成する電気信号との位相差が位相比較器106により測
定される。位相差からは光ファイバ104の群遅延時間
や波長分散を求めることができる。
2. Description of the Related Art A conventional system for measuring the chromatic dispersion of an optical device is disclosed, for example, in Japanese Patent Publication No. 7-9386, and its configuration is shown in FIG. According to the chromatic dispersion measurement system shown in FIG.
2 generates a measuring laser beam, and the laser beam is
Are intensity-modulated by an external modulator 108 based on the electric signal generated by the optical modulator 104 and are incident on an optical fiber 104 as an optical device. The measurement laser light transmitted through the optical fiber 104 is photoelectrically converted by the optical receiver 105. Optical receiver 1
The phase difference between the electric signal photoelectrically converted in step 05 and the electric signal generated by the oscillator 101 is measured by the phase comparator 106. From the phase difference, the group delay time and chromatic dispersion of the optical fiber 104 can be obtained.

【0003】上記のような測定を行うにあたっては、測
定用レーザ102が生成する測定用レーザ光の波長を掃
引し、しかも測定用レーザ光の波長を正確に測定する必
要がある。そのための方法は以下の通りである。まず、
測定用レーザ光の最初の波長を光波長計112で計測し
ておく。そして、モニタ用レーザ110の生成するモニ
タ用レーザ光の波長を、測定用レーザ光の最初の波長に
あわせる。そして、測定用レーザ光の波長を掃引する。
ここで、測定用レーザ光とモニタ用レーザ光とを光合成
器113で合成し、測定用レーザ光とモニタ用レーザ光
との周波数の差に基づくビート信号を得る。ビート信号
を光受信器105cで光電変換することにより中間周波
数信号を得て、スペクトラムアナライザ111にて観測
する。ビート信号をスペクトラムアナライザ111にて
観測するので、測定用レーザ光とモニタ用レーザ光との
周波数の差が測定できる。よって、測定用レーザ光の波
長の変化を測定できる。
In performing the above-described measurement, it is necessary to sweep the wavelength of the measurement laser beam generated by the measurement laser 102 and to accurately measure the wavelength of the measurement laser beam. The method for that is as follows. First,
The first wavelength of the measuring laser light is measured by the optical wavelength meter 112 in advance. Then, the wavelength of the monitoring laser light generated by the monitoring laser 110 is adjusted to the first wavelength of the measuring laser light. Then, the wavelength of the measuring laser light is swept.
Here, the laser beam for measurement and the laser beam for monitoring are combined by the optical synthesizer 113 to obtain a beat signal based on the frequency difference between the laser beam for measurement and the laser beam for monitoring. The beat signal is photoelectrically converted by the optical receiver 105c to obtain an intermediate frequency signal, which is observed by the spectrum analyzer 111. Since the beat signal is observed by the spectrum analyzer 111, the difference in frequency between the measuring laser light and the monitoring laser light can be measured. Therefore, a change in the wavelength of the measurement laser light can be measured.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、測定用
レーザ光を狭い波長範囲(例えば1.0nm以下)で波長掃
引する場合、一回で掃引できる波長範囲がスペクトラム
アナライザ111の測定可能帯域で制限を受ける。ま
た、測定用レーザの波長掃引の度に、モニタ用レーザ1
10の生成するモニタ用レーザ光の波長を、測定用レー
ザ光の最初の波長にあわせる必要があり、手間と測定時
間がかかる。また、モニタ用レーザ110が生成するレ
ーザ光の波長範囲が、測定用レーザ光の波長範囲と実質
的に同じでなければならず、モニタ用レーザ110が高
価になってしまう。
However, when the measurement laser light is swept in a narrow wavelength range (for example, 1.0 nm or less), the wavelength range that can be swept at one time is limited by the measurable band of the spectrum analyzer 111. . Each time the wavelength of the measurement laser is swept, the monitoring laser 1
It is necessary to match the wavelength of the monitoring laser light generated by 10 with the first wavelength of the measuring laser light, which takes time and labor. In addition, the wavelength range of the laser light generated by the monitoring laser 110 must be substantially the same as the wavelength range of the measurement laser light, which makes the monitoring laser 110 expensive.

【0005】上記のような問題が生じるのは、測定用レ
ーザ光の波長を大きく掃引したときでも測定用レーザ光
の波長を特定できるレーザ光波長測定装置がないからで
ある。
The above problem occurs because there is no laser beam wavelength measuring device capable of specifying the wavelength of the measuring laser beam even when the wavelength of the measuring laser beam is swept largely.

【0006】そこで、本発明は、レーザ光の波長を大き
く掃引しても、レーザ光の波長を特定できる光波長測定
装置等を提供することを課題とする。
Accordingly, an object of the present invention is to provide an optical wavelength measuring device or the like which can specify the wavelength of a laser beam even when the wavelength of the laser beam is swept largely.

【0007】[0007]

【課題を解決するための手段】請求項1に記載の発明
は、可変波長光源が生成する可変波長光の波長を測定す
る光波長測定装置であって、可変波長光が透過し、透過
した可変波長光の物理量と波長との関係が既知である参
照光デバイスと、参照光デバイスを透過した可変波長光
の物理量を測定する参照光測定手段と、を備えるように
構成される。
According to the present invention, there is provided an optical wavelength measuring apparatus for measuring the wavelength of a variable wavelength light generated by a variable wavelength light source, wherein the variable wavelength light is transmitted and the transmitted variable wavelength light is transmitted. The reference light device having a known relationship between the physical quantity of the wavelength light and the wavelength is provided, and reference light measuring means for measuring the physical quantity of the variable wavelength light transmitted through the reference light device.

【0008】上記のように構成された光波長測定装置に
よれば、参照光測定手段により参照光デバイスを透過し
た可変波長光の物理量が測定され、この物理量と可変波
長光の波長とが既知であることから、可変波長光の波長
が測定できる。この物理量を適宜選択することで、可変
波長光の波長を大きく掃引しても、波長が測定可能とな
る。
According to the optical wavelength measuring apparatus configured as described above, the physical quantity of the variable wavelength light transmitted through the reference light device is measured by the reference light measuring means, and the physical quantity and the wavelength of the variable wavelength light are known. Because of this, the wavelength of the variable wavelength light can be measured. By appropriately selecting this physical quantity, the wavelength can be measured even when the wavelength of the variable wavelength light is swept largely.

【0009】請求項2に記載の発明は、請求項1に記載
の発明であって、強度変調に使用する変調用周波数を与
える変調用信号を生成する変調用信号生成手段と、変調
用周波数で強度変調した可変波長光を参照光デバイスに
供給する光変調手段と、を備え、参照光測定手段は、参
照光デバイスを透過した可変波長光と変調用信号との位
相差を測定する、ものである。
According to a second aspect of the present invention, there is provided the first aspect of the present invention, wherein a modulation signal generating means for generating a modulation signal for providing a modulation frequency to be used for intensity modulation; Light modulation means for supplying intensity-modulated variable wavelength light to the reference light device, and the reference light measurement means measures the phase difference between the variable wavelength light transmitted through the reference light device and the modulation signal. is there.

【0010】請求項3に記載の発明は、請求項2に記載
の発明であって、位相差に基づき参照光デバイスの群遅
延時間を測定する群遅延時間測定手段と、参照光デバイ
スの群遅延時間と、参照光デバイスを透過した可変波長
光の波長との対応を記録する参照光デバイス特性記録手
段と、参照光デバイス特性記録手段の記録内容および参
照光デバイスの群遅延時間から可変波長光の波長を求め
る波長測定手段と、を備えるように構成される。
The invention according to claim 3 is the invention according to claim 2, wherein the group delay time measuring means for measuring the group delay time of the reference optical device based on the phase difference, and the group delay of the reference optical device Reference light device characteristic recording means for recording the correspondence between the time and the wavelength of the variable wavelength light transmitted through the reference light device, and the variable wavelength light based on the recorded contents of the reference light device characteristic recording means and the group delay time of the reference light device. Wavelength measuring means for determining a wavelength.

【0011】請求項4に記載の発明は、請求項2に記載
の発明であって、光変調手段は被測定デバイスにも変調
用周波数で強度変調した可変波長光を供給し、被測定デ
バイスを透過した可変波長光と変調用信号との位相差を
測定するDUT計測手段を備えるように構成される。
According to a fourth aspect of the present invention, in the second aspect of the present invention, the optical modulation means also supplies a variable wavelength light intensity-modulated at the modulation frequency to the device to be measured, and controls the device to be measured. It is configured to include a DUT measuring unit that measures a phase difference between the transmitted variable wavelength light and the modulation signal.

【0012】請求項5に記載の発明は、請求項2に記載
の発明であって、位相差に基づき参照光デバイスの群遅
延時間を測定する群遅延時間測定手段と、目標とする可
変波長光源の可変波長光の目標波長に基づき参照光デバ
イスの目標群遅延時間を計算する目標群遅延時間計算手
段と、群遅延時間と目標群遅延時間とを比較する遅延時
間比較手段と、を備えるように構成される。
A fifth aspect of the present invention is the invention of the second aspect, wherein the group delay time measuring means for measuring the group delay time of the reference optical device based on the phase difference, and a target variable wavelength light source A target group delay time calculating means for calculating a target group delay time of the reference optical device based on a target wavelength of the variable wavelength light, and a delay time comparing means for comparing the group delay time with the target group delay time. Be composed.

【0013】請求項6に記載の発明は、請求項3に記載
の発明であって、目標とする可変波長光源の可変波長光
の目標波長と波長測定手段の求めた可変波長光の波長と
を比較する波長比較手段、を備えるように構成される。
The invention according to claim 6 is the invention according to claim 3, wherein the target wavelength of the variable wavelength light of the target variable wavelength light source and the wavelength of the variable wavelength light obtained by the wavelength measuring means are determined. Wavelength comparing means for comparing.

【0014】請求項7に記載の発明は、請求項3に記載
の発明であって、波長測定手段の求めた可変波長光の波
長に基づき可変波長光源が生成する可変波長光の波長を
制御する波長制御手段と、可変波長光源が生成する可変
波長光を、可変波長光源と光変調手段との間から取り出
す光分波手段と、を備えるように構成される。
The invention according to claim 7 is the invention according to claim 3, wherein the wavelength of the variable wavelength light generated by the variable wavelength light source is controlled based on the wavelength of the variable wavelength light obtained by the wavelength measuring means. It is configured to include a wavelength control unit and an optical demultiplexing unit that extracts the variable wavelength light generated by the variable wavelength light source from between the variable wavelength light source and the light modulation unit.

【0015】請求項8に記載の発明は、請求項2ないし
7のいずれか一項に記載の発明であって、参照光デバイ
スは、分散補償ファイバ、分散補償ファイバブラッググ
レーティングおよびシングルモード光ファイバの内のい
ずれか一つである、ものである。
The invention according to claim 8 is the invention according to any one of claims 2 to 7, wherein the reference optical device is a dispersion compensating fiber, a dispersion compensating fiber Bragg grating and a single mode optical fiber. Is one of the

【0016】請求項9に記載の発明は、請求項1に記載
の発明であって、参照光測定手段は、参照光デバイスを
透過した可変波長光の振幅を測定する、ものである。
The ninth aspect of the present invention is the invention of the first aspect, wherein the reference light measuring means measures the amplitude of the variable wavelength light transmitted through the reference light device.

【0017】請求項10に記載の発明は、請求項9に記
載の発明であって、参照光デバイスを透過した可変波長
光の振幅と波長との対応を記録する参照光デバイス特性
記録手段と、参照光デバイス特性記録手段の記録内容お
よび可変波長光の振幅から可変波長光の波長を求める波
長測定手段と、を備えるように構成される。
A tenth aspect of the present invention is the invention of the ninth aspect, wherein the reference light device characteristic recording means for recording correspondence between the amplitude and the wavelength of the variable wavelength light transmitted through the reference light device; Wavelength measuring means for obtaining the wavelength of the variable wavelength light from the recorded content of the reference light device characteristic recording means and the amplitude of the variable wavelength light.

【0018】請求項11に記載の発明は、請求項9に記
載の発明であって、強度変調に使用する変調用周波数を
与える変調用信号を生成する変調用信号生成手段と、変
調用周波数で強度変調した可変波長光を被測定デバイス
に供給する光変調手段と、被測定デバイスを透過した可
変波長光と変調用信号との位相差を測定するDUT計測
手段を備えるように構成される。
An eleventh aspect of the present invention is the invention according to the ninth aspect, wherein a modulation signal generating means for generating a modulation signal for providing a modulation frequency to be used for intensity modulation; The device is configured to include an optical modulation unit that supplies the variable-wavelength light whose intensity has been modulated to the device to be measured, and a DUT measurement unit that measures the phase difference between the variable-wavelength light transmitted through the device to be measured and the modulation signal.

【0019】請求項12に記載の発明は、請求項9に記
載の発明であって、目標とする可変波長光源の可変波長
光の目標波長に基づき参照光デバイスを透過する可変波
長光の目標振幅を計算する目標振幅計算手段と、振幅と
目標振幅とを比較する振幅比較手段と、を備えるように
構成される。
According to a twelfth aspect of the present invention, in accordance with the ninth aspect of the present invention, the target amplitude of the variable wavelength light transmitted through the reference light device based on the target wavelength of the variable wavelength light of the target variable wavelength light source. , And amplitude comparing means for comparing the amplitude with the target amplitude.

【0020】請求項13に記載の発明は、請求項10に
記載の発明であって、目標とする可変波長光源の可変波
長光の目標波長と波長測定手段の求めた可変波長光の波
長とを比較する波長比較手段、を備えるように構成され
る。
The invention according to claim 13 is the invention according to claim 10, wherein the target wavelength of the variable wavelength light of the target variable wavelength light source and the wavelength of the variable wavelength light obtained by the wavelength measuring means are determined. Wavelength comparing means for comparing.

【0021】請求項14に記載の発明は、請求項10に
記載の発明であって、波長測定手段の求めた可変波長光
の波長に基づき可変波長光源の可変波長光の波長を制御
する波長制御手段と、可変波長光源の可変波長光を、可
変波長光源と光変調手段との間から取り出す光分波手段
と、を備えるように構成される。
According to a fourteenth aspect of the present invention, there is provided the wavelength control apparatus for controlling the wavelength of the variable wavelength light of the variable wavelength light source based on the wavelength of the variable wavelength light obtained by the wavelength measuring means. Means for extracting variable wavelength light from the variable wavelength light source from between the variable wavelength light source and the light modulation means.

【0022】請求項15に記載の発明は、請求項9ない
し14のいずれか一項に記載の発明であって、参照光デ
バイスは、12C2H213C2H2、H13C14N、アルゴン、キセ
ノンおよびクリプトンの内のいずれか一つである、もの
である。
A fifteenth aspect of the present invention is the invention according to any one of the ninth to fourteenth aspects, wherein the reference light device comprises: 12 C 2 H 2 , 13 C 2 H 2 , H 13 C 14 N, which is any one of argon, xenon and krypton.

【0023】請求項16に記載の発明は、可変波長光源
が生成する可変波長光の波長を測定する光波長測定装置
であって、可変波長光が透過し、透過した可変波長光の
物理量と波長との関係が既知である参照光デバイスと、
参照光デバイスを透過した可変波長光の物理量を測定す
る参照光測定手段と、物理量と、参照光デバイスを透過
した可変波長光の波長との対応を記録する参照光デバイ
ス特性記録手段と、参照光デバイス特性記録手段の記録
内容および測定された物理量から可変波長光の波長を求
める波長測定手段と、を備えるように構成される。
According to a sixteenth aspect of the present invention, there is provided an optical wavelength measuring apparatus for measuring the wavelength of the variable wavelength light generated by the variable wavelength light source, wherein the variable wavelength light is transmitted, and the physical quantity and the wavelength of the transmitted variable wavelength light. A reference light device having a known relationship with
Reference light measuring means for measuring the physical quantity of the variable wavelength light transmitted through the reference light device; reference light device characteristic recording means for recording the correspondence between the physical quantity and the wavelength of the variable wavelength light transmitted through the reference light device; Wavelength measuring means for obtaining the wavelength of the variable wavelength light from the recorded contents of the device characteristic recording means and the measured physical quantity.

【0024】請求項17に記載の発明は、可変波長光を
生成する可変波長光源と、可変波長光が透過し、透過し
た可変波長光の物理量と波長との関係が既知である参照
光デバイスと、参照光デバイスを透過した可変波長光の
物理量を測定する参照光測定手段と、を有する光波長測
定装置の可変波長光の波長を測定する光波長測定方法で
あって、物理量と、参照光デバイスを透過した可変波長
光の波長との対応を記録する参照光デバイス特性記録工
程と、参照光デバイス特性記録手段の記録内容および測
定された物理量から可変波長光の波長を求める波長測定
工程と、を備えた光波長測定方法である。
According to a seventeenth aspect of the present invention, there is provided a variable wavelength light source for generating a variable wavelength light, a reference light device through which the variable wavelength light is transmitted, and a relation between the physical quantity and the wavelength of the transmitted variable wavelength light is known. A reference light measuring means for measuring a physical quantity of the variable wavelength light transmitted through the reference light device; and a light wavelength measuring method for measuring the wavelength of the variable wavelength light of the optical wavelength measuring device, comprising: A reference light device characteristic recording step of recording the correspondence with the wavelength of the variable wavelength light transmitted through, and a wavelength measurement step of obtaining the wavelength of the variable wavelength light from the recorded contents of the reference light device characteristic recording means and the measured physical quantity. This is an optical wavelength measurement method provided.

【0025】請求項18に記載の発明は、可変波長光を
生成する可変波長光源と、可変波長光が透過し、透過し
た可変波長光の物理量と波長との関係が既知である参照
光デバイスと、参照光デバイスを透過した可変波長光の
物理量を測定する参照光測定手段と、を有する光波長測
定装置の可変波長光の波長を測定する光波長測定処理を
コンピュータに実行させるためのプログラムを記録した
コンピュータによって読み取り可能な記録媒体であっ
て、物理量と、参照光デバイスを透過した可変波長光の
波長との対応を記録する参照光デバイス特性記録処理
と、参照光デバイス特性記録手段の記録内容および測定
された物理量から可変波長光の波長を求める波長測定処
理と、をコンピュータに実行させるためのプログラムを
記録したコンピュータによって読み取り可能な記録媒体
である。
According to the present invention, there is provided a variable wavelength light source for generating a variable wavelength light, a reference light device through which the variable wavelength light is transmitted, and a relation between the physical quantity and the wavelength of the transmitted variable wavelength light is known. A reference light measuring means for measuring a physical quantity of the variable wavelength light transmitted through the reference light device, and a program for causing a computer to execute a light wavelength measurement process for measuring the wavelength of the variable wavelength light of the optical wavelength measurement device having the reference light recording device. A recording medium readable by a computer, comprising: a reference light device characteristic recording process for recording a correspondence between a physical quantity and a wavelength of the variable wavelength light transmitted through the reference light device; A computer that stores a program for causing a computer to execute a wavelength measurement process for obtaining the wavelength of the variable wavelength light from the measured physical quantity. Thus a recording medium which is readable.

【0026】請求項19に記載の発明は、可変波長光を
生成する可変波長光源と、可変波長光が透過し、透過し
た可変波長光の物理量と波長との関係が既知である参照
光デバイスと、参照光デバイスを透過した可変波長光の
物理量を測定する参照光測定手段と、を有する光波長測
定装置の可変波長光の波長を測定する光波長測定処理を
コンピュータに実行させるためのプログラムであって、
物理量と、参照光デバイスを透過した可変波長光の波長
との対応を記録する参照光デバイス特性記録処理と、参
照光デバイス特性記録手段の記録内容および測定された
物理量から可変波長光の波長を求める波長測定処理と、
をコンピュータに実行させるためのプログラムである。
According to a nineteenth aspect of the present invention, there is provided a variable wavelength light source for generating a variable wavelength light, a reference light device through which the variable wavelength light is transmitted, and a relation between the physical quantity and the wavelength of the transmitted variable wavelength light is known. A reference light measuring means for measuring the physical quantity of the variable wavelength light transmitted through the reference light device; and a program for causing a computer to execute an optical wavelength measurement process for measuring the wavelength of the variable wavelength light of the optical wavelength measurement device. hand,
A reference light device characteristic recording process for recording the correspondence between the physical quantity and the wavelength of the variable wavelength light transmitted through the reference light device, and the wavelength of the variable wavelength light is obtained from the recorded contents of the reference light device characteristic recording means and the measured physical quantity. Wavelength measurement processing,
Is a program for causing a computer to execute.

【0027】[0027]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0028】第一の実施形態 図1は、本発明の第一の実施形態にかかる光波長測定装
置の構成を示すブロック図である。本発明の実施形態に
かかる光波長測定装置は、可変波長光源12、変調用電
源14、光変調器16、光電変換器22、位相比較器2
4、群遅延時間測定部32、参照光デバイス特性記録部
34、波長測定部36、参照光デバイス40を備える。
なお、本発明の実施形態にかかる光波長測定装置は、可
変波長光源12の光波長を測定するためのものである。
First Embodiment FIG. 1 is a block diagram showing a configuration of an optical wavelength measuring device according to a first embodiment of the present invention. The optical wavelength measuring apparatus according to the embodiment of the present invention includes a variable wavelength light source 12, a modulation power source 14, an optical modulator 16, a photoelectric converter 22, and a phase comparator 2.
4, a group delay time measuring unit 32, a reference light device characteristic recording unit 34, a wavelength measuring unit 36, and a reference light device 40.
The optical wavelength measuring device according to the embodiment of the present invention is for measuring the optical wavelength of the variable wavelength light source 12.

【0029】可変波長光源12は、波長を変化させられ
る可変波長光を生成する。可変波長光源12によって、
可変波長光の波長を掃引することができる。変調用電源
14は、光変調器16に、可変波長光を変調すべき周波
数(変調用周波数)の変調用信号を与える。光変調器1
6は、可変波長光を変調用周波数で強度変調して、参照
光デバイス40に入射する。光変調器16は、リチウム
・ナイオベート(LN)を有することが一般的である
が、光の強度を変調できるものであれば、LNを含んで
いなくてもよい。
The variable wavelength light source 12 generates a variable wavelength light whose wavelength can be changed. By the variable wavelength light source 12,
The wavelength of the variable wavelength light can be swept. The modulation power supply 14 supplies the optical modulator 16 with a modulation signal having a frequency (modulation frequency) at which the variable wavelength light is to be modulated. Optical modulator 1
6 modulates the intensity of the variable wavelength light at the modulation frequency and enters the reference light device 40. The light modulator 16 generally has lithium niobate (LN), but may not include LN as long as the light intensity can be modulated.

【0030】参照光デバイス40は、光変調器16の出
力した光を透過する。また、光の波長と、参照光デバイ
ス40の群遅延時間との対応関係は既知である。参照光
デバイス40に入射する光の波長と、群遅延時間との対
応関係の一例を図2に示す。図2に示すように、波長が
増加すれば、群遅延時間が単調減少していく。そこで、
波長と群遅延時間とが一対一の対応である。また、群遅
延時間は波長掃引に対して連続である。一方、群遅延時
間は絶対値の測定はできず、差分すなわち相対値の測定
しかできない。よって、可変波長光の波長測定開始時の
参照光デバイス40の群遅延時間と、ある測定時におけ
る参照光デバイス40の群遅延時間との差分ΔGDを測
定すれば、可変波長光の波長測定開始時の可変波長光の
波長と、ある測定時における可変波長光の波長との差分
Δλを求めることができる。
The reference light device 40 transmits the light output from the light modulator 16. The correspondence between the wavelength of light and the group delay time of the reference light device 40 is known. FIG. 2 shows an example of the correspondence between the wavelength of light incident on the reference light device 40 and the group delay time. As shown in FIG. 2, as the wavelength increases, the group delay time monotonically decreases. Therefore,
The wavelength and the group delay time have a one-to-one correspondence. Also, the group delay time is continuous for the wavelength sweep. On the other hand, the absolute value of the group delay time cannot be measured, and only the difference, that is, the relative value can be measured. Therefore, if the difference ΔGD between the group delay time of the reference light device 40 at the start of the wavelength measurement of the variable wavelength light and the group delay time of the reference light device 40 at a certain measurement is measured, the difference ΔGD at the start of the wavelength measurement of the variable wavelength light The difference Δλ between the wavelength of the variable wavelength light and the wavelength of the variable wavelength light at the time of a certain measurement can be obtained.

【0031】なお、参照光デバイス40は、例えば分散
補償ファイバ(DCF)、分散補償ファイバブラッググ
レーティング(FBG)および長尺シングルモード光フ
ァイバである。また、参照光デバイス40は、分散値[p
s/nm]が大きいもの程よい。
The reference optical device 40 is, for example, a dispersion compensating fiber (DCF), a dispersion compensating fiber Bragg grating (FBG), or a long single mode optical fiber. Further, the reference light device 40 has a dispersion value [p
[s / nm] is better.

【0032】光電変換器22は、参照光デバイス40を
透過した光を電気信号に変換する。位相比較器24は、
光電変換器22の出力した電気信号と、変調用電源14
の出力した変調用信号との位相差を測定する。群遅延時
間測定部32は、位相比較器24の測定した位相差およ
び変調用信号の周波数に基づき参照光デバイス40の群
遅延時間を測定する。参照光デバイス特性記録部34
は、参照光デバイス40を透過した可変波長光の波長
と、参照光デバイス40の群遅延時間との対応関係を記
録している。なお、対応関係は図2に示すようなもので
あり、既知である。波長測定部36は、参照光デバイス
特性記録部34の記録内容と、参照光デバイス40の群
遅延時間とから、可変波長光の波長を測定する。
The photoelectric converter 22 converts the light transmitted through the reference light device 40 into an electric signal. The phase comparator 24
The electric signal output from the photoelectric converter 22 and the power supply for modulation 14
And measure the phase difference with the modulation signal output from. The group delay time measuring unit 32 measures the group delay time of the reference light device 40 based on the phase difference measured by the phase comparator 24 and the frequency of the modulation signal. Reference light device characteristic recording unit 34
Records the correspondence between the wavelength of the variable wavelength light transmitted through the reference light device 40 and the group delay time of the reference light device 40. Note that the correspondence is as shown in FIG. 2 and is known. The wavelength measuring unit 36 measures the wavelength of the variable wavelength light from the recorded contents of the reference light device characteristic recording unit 34 and the group delay time of the reference light device 40.

【0033】次に、本発明の第一の実施形態にかかる光
波長測定装置の動作を説明する。まず、可変波長光源1
2が可変波長光を生成する。次に、光変調器16が可変
波長光を変調用電源14の生成する変調用信号の周波数
で強度変調し、可変波長光が参照光デバイス40に入射
される。可変波長光は参照光デバイス40を透過し、光
電変換器22により光電変換される。そして、位相比較
器24により、光電変換器22の出力する電気信号と変
調用電源14の生成する変調用信号との位相差が計測さ
れる。この位相差に基づき、群遅延時間測定部32は、
参照光デバイス40の群遅延時間を測定する。波長測定
部36は、参照光デバイス特性記録部34の記録内容
(参照光デバイス40を透過した可変波長光の波長と、
参照光デバイス40の群遅延時間との対応関係)と、参
照光デバイス40の群遅延時間とから、可変波長光の波
長を測定する。
Next, the operation of the optical wavelength measuring device according to the first embodiment of the present invention will be described. First, the variable wavelength light source 1
2 generates tunable light. Next, the optical modulator 16 modulates the intensity of the variable wavelength light with the frequency of the modulation signal generated by the modulation power supply 14, and the variable wavelength light enters the reference optical device 40. The variable wavelength light transmits through the reference light device 40 and is photoelectrically converted by the photoelectric converter 22. The phase difference between the electric signal output from the photoelectric converter 22 and the modulation signal generated by the modulation power supply 14 is measured by the phase comparator 24. Based on this phase difference, the group delay time measurement unit 32
The group delay time of the reference light device 40 is measured. The wavelength measuring unit 36 records the content of the reference light device characteristic recording unit 34 (the wavelength of the variable wavelength light transmitted through the reference light device 40,
The wavelength of the variable wavelength light is measured from the relationship between the group delay time of the reference light device 40) and the group delay time of the reference light device 40.

【0034】本発明の第一の実施形態によれば、参照光
デバイス40の群遅延時間を測定することにより、可変
波長光源12が生成する可変波長光の波長を測定でき
る。参照光デバイス40の群遅延時間は、可変波長光の
波長を大きく掃引しても測定可能である。よって、可変
波長光の波長を大きく掃引しても、可変波長光の波長を
測定できる。
According to the first embodiment of the present invention, the wavelength of the variable wavelength light generated by the variable wavelength light source 12 can be measured by measuring the group delay time of the reference light device 40. The group delay time of the reference light device 40 can be measured even when the wavelength of the variable wavelength light is swept largely. Therefore, even if the wavelength of the variable wavelength light is greatly swept, the wavelength of the variable wavelength light can be measured.

【0035】第二の実施形態 第二の実施形態は、第一の実施形態にかかる光波長測定
装置をDUT(DeviceUnder Test:被測定デバイス)の
光特性測定装置に組み込んだものである。以下、第一の
実施形態と同様な部分は同じ番号を付して説明を省略す
る。
Second Embodiment In a second embodiment, the optical wavelength measuring device according to the first embodiment is incorporated in an optical characteristic measuring device of a DUT (Device Under Test). Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.

【0036】図3は、本発明の第二の実施形態にかかる
光波長測定装置の構成を示すブロック図である。第二の
実施形態にかかる光波長測定装置は、可変波長光源1
2、変調用電源14、光変調器16、光分波器18、光
電変換器22、位相比較器24、群遅延時間測定部3
2、参照光デバイス特性記録部34、波長測定部36、
参照光デバイス40、DUT50、光電変換器62、D
UT計測用位相比較部64を備える。
FIG. 3 is a block diagram showing a configuration of an optical wavelength measuring device according to a second embodiment of the present invention. The optical wavelength measuring device according to the second embodiment includes a variable wavelength light source 1
2. Modulation power supply 14, optical modulator 16, optical demultiplexer 18, photoelectric converter 22, phase comparator 24, group delay time measurement unit 3.
2. Reference light device characteristic recording unit 34, wavelength measuring unit 36,
Reference light device 40, DUT 50, photoelectric converter 62, D
A UT measurement phase comparison unit 64 is provided.

【0037】光分波器18は、光変調器16の出力を参
照光デバイス40およびDUT50に入射する。DUT
50は、群遅延時間および波長分散などを求める対象物
である。光電変換器62はDUT50を透過した可変波
長光を電気信号に変換する。DUT計測用位相比較部6
4は、光電変換器62の出力する電気信号と変調用電源
14の生成する変調用信号との位相差を測定する。この
位相差と変調用信号の周波数とに基づきDUT50の群
遅延時間が測定でき、DUT50の群遅延時間および可
変波長光の波長に基づきDUT50の波長分散が測定で
きる。
The optical demultiplexer 18 inputs the output of the optical modulator 16 to the reference optical device 40 and the DUT 50. DUT
Reference numeral 50 denotes an object for which a group delay time, chromatic dispersion, and the like are to be obtained. The photoelectric converter 62 converts the variable wavelength light transmitted through the DUT 50 into an electric signal. DUT measurement phase comparator 6
4 measures the phase difference between the electric signal output from the photoelectric converter 62 and the modulation signal generated by the modulation power supply 14. The group delay time of the DUT 50 can be measured based on the phase difference and the frequency of the modulation signal, and the chromatic dispersion of the DUT 50 can be measured based on the group delay time of the DUT 50 and the wavelength of the variable wavelength light.

【0038】次に、本発明の第二の実施形態にかかる光
波長測定装置の動作を説明する。まず、可変波長光源1
2が可変波長光を生成する。次に、光変調器16が可変
波長光を変調用電源14の生成する変調用信号の周波数
で強度変調する。光変調器16の出力した可変波長光
は、光分波器18により、参照光デバイス40およびD
UT50に入射される。
Next, the operation of the optical wavelength measuring device according to the second embodiment of the present invention will be described. First, the variable wavelength light source 1
2 generates tunable light. Next, the optical modulator 16 modulates the intensity of the variable wavelength light with the frequency of the modulation signal generated by the modulation power supply 14. The variable wavelength light output from the optical modulator 16 is converted by the optical demultiplexer 18 into a reference light device 40
The light enters the UT 50.

【0039】参照光デバイス40を透過した可変波長光
は、光電変換器22により光電変換される。そして、位
相比較器24により、光電変換器22の出力する電気信
号と変調用電源14の生成する変調用信号との位相差が
計測される。この位相差に基づき、群遅延時間測定部3
2は、参照光デバイス40の群遅延時間を測定する。波
長測定部36は、参照光デバイス特性記録部34の記録
内容(参照光デバイス40を透過した可変波長光の波長
と、参照光デバイス40の群遅延時間との対応関係)
と、参照光デバイス40の群遅延時間とから、可変波長
光の波長を測定する。
The variable wavelength light transmitted through the reference light device 40 is photoelectrically converted by the photoelectric converter 22. The phase difference between the electric signal output from the photoelectric converter 22 and the modulation signal generated by the modulation power supply 14 is measured by the phase comparator 24. Based on this phase difference, the group delay time measuring unit 3
2 measures the group delay time of the reference light device 40. The wavelength measuring unit 36 records the contents of the reference light device characteristic recording unit 34 (the correspondence between the wavelength of the variable wavelength light transmitted through the reference light device 40 and the group delay time of the reference light device 40).
And the group delay time of the reference light device 40, the wavelength of the variable wavelength light is measured.

【0040】DUT50を透過した可変波長光は、光電
変換器62により光電変換される。そして、DUT計測
用位相比較部64により、光電変換器62の出力する電
気信号と変調用電源14の生成する変調用信号との位相
差が計測される。この位相差と変調用信号の周波数とに
基づきDUT50の群遅延時間が測定でき、DUT50
の群遅延時間および波長測定部36の測定した可変波長
光の波長に基づきDUT50の波長分散が測定できる。
The variable wavelength light transmitted through the DUT 50 is photoelectrically converted by the photoelectric converter 62. Then, the DUT measurement phase comparator 64 measures the phase difference between the electric signal output from the photoelectric converter 62 and the modulation signal generated by the modulation power supply 14. The group delay time of the DUT 50 can be measured based on the phase difference and the frequency of the modulation signal.
The wavelength dispersion of the DUT 50 can be measured based on the group delay time and the wavelength of the variable wavelength light measured by the wavelength measuring unit 36.

【0041】第二の実施形態によれば、可変波長光源1
2の生成する可変波長光の波長を大きく掃引しても波長
を測定できる。そこで、波長の測定結果を利用して、D
UT50の波長分散等を測定できる。
According to the second embodiment, the variable wavelength light source 1
The wavelength can be measured even if the wavelength of the variable wavelength light generated by 2 is swept largely. Then, using the measurement result of the wavelength, D
The wavelength dispersion and the like of the UT 50 can be measured.

【0042】第三の実施形態 第三の実施形態は、第一の実施形態に、可変波長光源1
2の生成する可変波長光の波長が目標とする値になって
いるか否かを判断する機能を付加したものである。以
下、第一の実施形態と同様な部分は同じ番号を付して説
明を省略する。
Third Embodiment A third embodiment is different from the first embodiment in that the variable wavelength light source 1
2 has a function of determining whether or not the wavelength of the variable wavelength light generated by Step 2 is a target value. Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.

【0043】図4は、本発明の第三の実施形態にかかる
光波長測定装置の構成を示すブロック図である。第三の
実施形態にかかる光波長測定装置は、可変波長光源1
2、変調用電源14、光変調器16、光電変換器22、
位相比較器24、群遅延時間測定部32、参照光デバイ
ス特性記録部34、波長測定部36、参照光デバイス4
0、目標波長記録部72、目標群遅延時間計算部74、
群遅延時間比較部76、波長比較部78を備える。
FIG. 4 is a block diagram showing a configuration of an optical wavelength measuring device according to a third embodiment of the present invention. The optical wavelength measuring device according to the third embodiment includes a variable wavelength light source 1
2, power supply for modulation 14, optical modulator 16, photoelectric converter 22,
Phase comparator 24, group delay time measuring unit 32, reference light device characteristic recording unit 34, wavelength measuring unit 36, reference light device 4
0, target wavelength recording section 72, target group delay time calculation section 74,
A group delay time comparing section 76 and a wavelength comparing section 78 are provided.

【0044】目標波長記録部72は、可変波長光の目標
とする波長と、目標に到達する時間とを記録している。
目標波長記録部72の記録内容を図5に示す。目標波長
記録部72の記録内容は、図5(a)に示すように、測
定を開始してからの時間tと可変波長光の目標とする波
長λとの対応関係でもよい。なお、図5(a)中のλ0
は、測定開始時の可変波長光の目標とする波長である。
また、目標波長記録部72の記録内容は、図5(b)に
示すように、測定を開始してからの時間tと可変波長光
の目標とする波長の変位Δλとの対応関係でもよい。
The target wavelength recording section 72 records the target wavelength of the variable wavelength light and the time to reach the target.
FIG. 5 shows the recorded contents of the target wavelength recording section 72. As shown in FIG. 5A, the recorded content of the target wavelength recording unit 72 may be the correspondence between the time t from the start of the measurement and the target wavelength λ of the variable wavelength light. Note that λ0 in FIG.
Is the target wavelength of the variable wavelength light at the start of the measurement.
Further, the recorded content of the target wavelength recording section 72 may be a correspondence relationship between the time t from the start of the measurement and the target wavelength displacement Δλ of the variable wavelength light, as shown in FIG. 5B.

【0045】目標群遅延時間計算部74は、目標波長記
録部72の記録内容から、目標波長に対応する目標群遅
延時間を計算する。参照光デバイス40における、透過
光の波長と群遅延時間との関係は既知であるため、目標
波長に対応する目標群遅延時間も計算できる。目標群遅
延時間計算部74の計算結果は図6に示すようなものに
なる。ただし、図6(a)は図5(a)に対応し、図6
(b)は図5(b)に対応する。
The target group delay time calculating section 74 calculates a target group delay time corresponding to the target wavelength from the recorded contents of the target wavelength recording section 72. Since the relationship between the wavelength of the transmitted light and the group delay time in the reference light device 40 is known, the target group delay time corresponding to the target wavelength can also be calculated. The calculation result of the target group delay time calculation unit 74 is as shown in FIG. However, FIG. 6A corresponds to FIG.
(B) corresponds to FIG.

【0046】群遅延時間比較部76は、群遅延時間測定
部32の測定した参照光デバイス40の群遅延時間と、
目標群遅延時間計算部74の計算結果である目標群遅延
時間とを比較する。比較の結果、一致すれば、目標どお
りに波長を掃引できていることになる。比較の結果、一
致しなければ、目標どおりに波長を掃引できていないこ
とになる。例えば、図7に示すように、目標群遅延時間
は右下がりであり、群遅延時間が一定である場合は、目
標どおりに波長を掃引できていない。しかも、群遅延時
間が一定なので、波長の掃引が何らされていないことが
わかる。
The group delay time comparison unit 76 calculates the group delay time of the reference light device 40 measured by the group delay time measurement unit 32,
The target group delay time calculated by the target group delay time calculator 74 is compared with the target group delay time. If the comparison results in a match, the wavelength has been swept as intended. As a result of the comparison, if they do not match, it means that the wavelength has not been swept as intended. For example, as shown in FIG. 7, when the target group delay time is falling to the right and the group delay time is constant, the wavelength cannot be swept as intended. In addition, since the group delay time is constant, it can be seen that no wavelength sweep is performed.

【0047】波長比較部78は、波長測定部36が可変
波長光の波長を測定した測定結果と、目標波長記録部7
2の記録内容とを比較する。群遅延時間比較部76のよ
うに、群遅延時間と目標群遅延時間とを比較する他に
も、目標波長と実際の波長とを比較して目標値通り掃引
できているか否かを判定する方法もある。比較の結果、
一致すれば、目標どおりに波長を掃引できていることに
なる。比較の結果、一致しなければ、目標どおりに波長
を掃引できていないことになる。例えば、図8に示すよ
うに、目標波長は右上がりであり、測定された波長が一
定である場合は、目標どおりに波長を掃引できていな
い。しかも、波長の掃引が何らされていないことがわか
る。
The wavelength comparing section 78 compares the measurement result obtained by the wavelength measuring section 36 for measuring the wavelength of the variable wavelength light with the target wavelength recording section 7.
Compare the recorded contents of No. 2. In addition to comparing the group delay time with the target group delay time as in the group delay time comparison unit 76, a method of comparing the target wavelength with the actual wavelength to determine whether the sweep has been performed as the target value. There is also. As a result of the comparison,
If they match, the wavelength has been swept as intended. As a result of the comparison, if they do not match, it means that the wavelength has not been swept as intended. For example, as shown in FIG. 8, when the target wavelength is rising to the right and the measured wavelength is constant, the wavelength cannot be swept as intended. Moreover, it can be seen that no wavelength sweep is performed.

【0048】次に、本発明の第三の実施形態にかかる光
波長測定装置の動作を説明する。まず、可変波長光源1
2が可変波長光を生成する。次に、光変調器16が可変
波長光を変調用電源14の生成する変調用信号の周波数
で強度変調し、可変波長光が参照光デバイス40に入射
される。可変波長光は参照光デバイス40を透過し、光
電変換器22により光電変換される。そして、位相比較
器24により、光電変換器22の出力する電気信号と変
調用電源14の生成する変調用信号との位相差が計測さ
れる。この位相差に基づき、群遅延時間測定部32は、
参照光デバイス40の群遅延時間を測定する。波長測定
部36は、参照光デバイス特性記録部34の記録内容
(参照光デバイス40を透過した可変波長光の波長と、
参照光デバイス40の群遅延時間との対応関係)と、参
照光デバイス40の群遅延時間とから、可変波長光の波
長を測定する。
Next, the operation of the optical wavelength measuring device according to the third embodiment of the present invention will be described. First, the variable wavelength light source 1
2 generates tunable light. Next, the optical modulator 16 modulates the intensity of the variable wavelength light with the frequency of the modulation signal generated by the modulation power supply 14, and the variable wavelength light enters the reference optical device 40. The variable wavelength light transmits through the reference light device 40 and is photoelectrically converted by the photoelectric converter 22. The phase difference between the electric signal output from the photoelectric converter 22 and the modulation signal generated by the modulation power supply 14 is measured by the phase comparator 24. Based on this phase difference, the group delay time measurement unit 32
The group delay time of the reference light device 40 is measured. The wavelength measuring unit 36 records the content of the reference light device characteristic recording unit 34 (the wavelength of the variable wavelength light transmitted through the reference light device 40,
The wavelength of the variable wavelength light is measured from the relationship between the group delay time of the reference light device 40) and the group delay time of the reference light device 40.

【0049】また、目標群遅延時間計算部74は目標波
長記録部72の記録内容に基づき目標群遅延時間を計算
する。群遅延時間比較部76は、群遅延時間測定部32
の測定した参照光デバイス40の群遅延時間と、目標群
遅延時間計算部74の計算結果である目標群遅延時間と
を比較する。
The target group delay time calculating section 74 calculates the target group delay time based on the recorded contents of the target wavelength recording section 72. The group delay time comparison unit 76
Then, the measured group delay time of the reference light device 40 is compared with the target group delay time calculated by the target group delay time calculator 74.

【0050】さらに、波長比較部78は、波長測定部3
6が可変波長光の波長を測定した測定結果と、目標波長
記録部72の記録内容とを比較する。
Further, the wavelength comparing section 78 includes the wavelength measuring section 3
Reference numeral 6 compares the measurement result obtained by measuring the wavelength of the variable wavelength light with the recorded content of the target wavelength recording unit 72.

【0051】第三の実施形態によれば、可変波長光源1
2の生成する可変波長光の波長を大きく掃引しても波長
を測定できる。しかも、群遅延時間比較部76および波
長比較部78により、目標とする波長掃引が行われてい
るかを監視することができる。
According to the third embodiment, the variable wavelength light source 1
The wavelength can be measured even if the wavelength of the variable wavelength light generated by 2 is swept largely. In addition, the group delay time comparing section 76 and the wavelength comparing section 78 can monitor whether the target wavelength sweep is being performed.

【0052】第四の実施形態 第四の実施形態は、第一の実施形態における可変波長光
の光波長を波長制御部80で制御して、光分波器13に
より外部に取出すことで、光波長測定装置全体を、波長
を適切に制御できる光源として取り扱えるようにしたも
のである。以下、第一の実施形態と同様な部分は同じ番
号を付して説明を省略する。
Fourth Embodiment In the fourth embodiment, the optical wavelength of the variable wavelength light in the first embodiment is controlled by the wavelength control unit 80, and the light is extracted to the outside by the optical demultiplexer 13. The entire wavelength measuring apparatus can be handled as a light source capable of appropriately controlling the wavelength. Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.

【0053】図9は、本発明の第四の実施形態にかかる
光波長測定装置の構成を示すブロック図である。第四の
実施形態にかかる光波長測定装置は、可変波長光源1
2、光分波器13、変調用電源14、光変調器16、光
電変換器22、位相比較器24、群遅延時間測定部3
2、参照光デバイス特性記録部34、波長測定部36、
参照光デバイス40、波長制御部80を備える。
FIG. 9 is a block diagram showing a configuration of an optical wavelength measuring device according to the fourth embodiment of the present invention. The optical wavelength measurement device according to the fourth embodiment includes a variable wavelength light source 1
2, optical demultiplexer 13, modulation power supply 14, optical modulator 16, photoelectric converter 22, phase comparator 24, group delay time measuring unit 3
2. Reference light device characteristic recording unit 34, wavelength measuring unit 36,
A reference light device 40 and a wavelength controller 80 are provided.

【0054】光分波器13は、可変波長光源12と光変
調器16との間に配置され、可変波長光源12から出力
される光を外部に取出す。すなわち、光波長測定装置全
体を一つの光源とするものである。
The optical demultiplexer 13 is disposed between the variable wavelength light source 12 and the optical modulator 16, and takes out the light output from the variable wavelength light source 12 to the outside. That is, the entire light wavelength measuring device is used as one light source.

【0055】波長制御部80は、波長測定部36の測定
した波長に基づき、可変波長光源12の生成する可変波
長光の波長を目標波長にあわせるように可変波長光源1
2を制御する。波長制御部80の制御対象は、可変波長
光源12の構成により異なる。可変波長光源12がDF
Bレーザならば、波長制御部80は、可変波長光源12
の駆動電流および温度を制御する。可変波長光源12が
外部共振器レーザならば、波長制御部80は、可変波長
光源12の駆動電流、温度のみならず共振器長をも制御
する。なお、可変波長光源12が外部共振器レーザであ
る場合の、可変波長光源12の構成を図10に示す。可
変波長光源12は、レーザダイオード12a、ピエゾ素
子12b、グレーティング12cを有する。レーザダイ
オード12aとグレーティング12cとは共振器を構成
する。
The wavelength control unit 80 controls the variable wavelength light source 1 based on the wavelength measured by the wavelength measurement unit 36 so that the wavelength of the variable wavelength light generated by the variable wavelength light source 12 matches the target wavelength.
2 is controlled. The control target of the wavelength control unit 80 differs depending on the configuration of the variable wavelength light source 12. Variable wavelength light source 12 is DF
In the case of a B laser, the wavelength control unit 80
Control the drive current and temperature of the If the variable wavelength light source 12 is an external cavity laser, the wavelength control unit 80 controls not only the drive current and temperature of the variable wavelength light source 12 but also the resonator length. FIG. 10 shows the configuration of the variable wavelength light source 12 when the variable wavelength light source 12 is an external cavity laser. The variable wavelength light source 12 has a laser diode 12a, a piezo element 12b, and a grating 12c. The laser diode 12a and the grating 12c form a resonator.

【0056】なお、波長制御部80が、波長測定部36
の測定した波長に基づき、可変波長光源12の生成する
可変波長光の波長を目標波長にあわせるようにするため
の制御法は周知である。例えば、波長測定部36の測定
した波長と目標波長との差をとって、この差に比例して
駆動電流、温度、共振制御長を変位させてやるなどとい
った一般的なフィードバック制御を行ってもよい。
It should be noted that the wavelength control unit 80 is
A control method for adjusting the wavelength of the variable wavelength light generated by the variable wavelength light source 12 to the target wavelength based on the measured wavelength is well known. For example, it is also possible to take a difference between the wavelength measured by the wavelength measurement unit 36 and the target wavelength and perform general feedback control such as displacing the drive current, temperature, and resonance control length in proportion to the difference. Good.

【0057】次に、本発明の第四の実施形態にかかる光
波長測定装置の動作を説明する。まず、可変波長光源1
2が可変波長光を生成する。次に、光変調器16が可変
波長光を変調用電源14の生成する変調用信号の周波数
で強度変調し、可変波長光が参照光デバイス40に入射
される。可変波長光は参照光デバイス40を透過し、光
電変換器22により光電変換される。そして、位相比較
器24により、光電変換器22の出力する電気信号と変
調用電源14の生成する変調用信号との位相差が計測さ
れる。この位相差に基づき、群遅延時間測定部32は、
参照光デバイス40の群遅延時間を測定する。波長測定
部36は、参照光デバイス特性記録部34の記録内容
(参照光デバイス40を透過した可変波長光の波長と、
参照光デバイス40の群遅延時間との対応関係)と、参
照光デバイス40の群遅延時間とから、可変波長光の波
長を測定する。
Next, the operation of the optical wavelength measuring device according to the fourth embodiment of the present invention will be described. First, the variable wavelength light source 1
2 generates tunable light. Next, the optical modulator 16 modulates the intensity of the variable wavelength light with the frequency of the modulation signal generated by the modulation power supply 14, and the variable wavelength light enters the reference optical device 40. The variable wavelength light transmits through the reference light device 40 and is photoelectrically converted by the photoelectric converter 22. The phase difference between the electric signal output from the photoelectric converter 22 and the modulation signal generated by the modulation power supply 14 is measured by the phase comparator 24. Based on this phase difference, the group delay time measurement unit 32
The group delay time of the reference light device 40 is measured. The wavelength measuring unit 36 records the content of the reference light device characteristic recording unit 34 (the wavelength of the variable wavelength light transmitted through the reference light device 40,
The wavelength of the variable wavelength light is measured from the relationship between the group delay time of the reference light device 40) and the group delay time of the reference light device 40.

【0058】波長制御部80は、波長測定部36の測定
した波長に基づき、可変波長光源12の生成する可変波
長光の波長を目標波長にあわせるようにするために、可
変波長光源12を制御する。そして、可変波長光源12
の生成する可変波長光の波長が目標値に一致するように
なる。そこで、光分波器13から可変波長光源12の生
成する可変波長光が取出される。よって、光波長測定装
置全体が一つの光源となる。
The wavelength control unit 80 controls the variable wavelength light source 12 based on the wavelength measured by the wavelength measurement unit 36 in order to adjust the wavelength of the variable wavelength light generated by the variable wavelength light source 12 to the target wavelength. . And the variable wavelength light source 12
The wavelength of the variable wavelength light generated by the above becomes equal to the target value. Then, the variable wavelength light generated by the variable wavelength light source 12 is extracted from the optical demultiplexer 13. Therefore, the entire optical wavelength measurement device becomes one light source.

【0059】本発明の第四の実施形態によれば、参照光
デバイス40の群遅延時間を測定することにより、可変
波長光源12が生成する可変波長光の波長を測定でき
る。参照光デバイス40の群遅延時間は、可変波長光の
波長を大きく掃引しても測定可能である。よって、可変
波長光の波長を大きく掃引しても、可変波長光の波長を
測定できる。そこで、波長制御部80が波長の測定結果
を利用して、可変波長光源12を制御することで、可変
波長光源12の生成する可変波長光の波長を目標値にあ
わせることができる。さらに、波長を目標値にあわせた
可変波長光を光分波器13から取出すことで光波長測定
装置全体を一つの光源として取り扱える。
According to the fourth embodiment of the present invention, the wavelength of the variable wavelength light generated by the variable wavelength light source 12 can be measured by measuring the group delay time of the reference light device 40. The group delay time of the reference light device 40 can be measured even when the wavelength of the variable wavelength light is swept largely. Therefore, even if the wavelength of the variable wavelength light is greatly swept, the wavelength of the variable wavelength light can be measured. Therefore, the wavelength controller 80 controls the variable wavelength light source 12 using the measurement result of the wavelength, so that the wavelength of the variable wavelength light generated by the variable wavelength light source 12 can be adjusted to the target value. Furthermore, by taking out the variable wavelength light whose wavelength is adjusted to the target value from the optical demultiplexer 13, the entire optical wavelength measuring device can be handled as one light source.

【0060】第五の実施形態 図11は、本発明の第五の実施形態にかかる光波長測定
装置の構成を示すブロック図である。第五の実施形態に
かかる光波長測定装置は、可変波長光源12、変調用電
源14、光変調器16、光電変換器22、振幅測定部3
3、参照光デバイス特性記録部34、波長測定部36、
参照光デバイス40を備える。なお、本発明の実施形態
にかかる光波長測定装置は、可変波長光源12の光波長
を測定するためのものである。
Fifth Embodiment FIG. 11 is a block diagram showing a configuration of an optical wavelength measuring device according to a fifth embodiment of the present invention. The optical wavelength measurement device according to the fifth embodiment includes a variable wavelength light source 12, a modulation power supply 14, an optical modulator 16, a photoelectric converter 22, an amplitude measurement unit 3,
3, reference light device characteristic recording unit 34, wavelength measuring unit 36,
A reference light device 40 is provided. The optical wavelength measuring device according to the embodiment of the present invention is for measuring the optical wavelength of the variable wavelength light source 12.

【0061】可変波長光源12は、波長を変化させられ
る可変波長光を生成する。可変波長光源12によって、
可変波長光の波長を掃引することができる。変調用電源
14は、光変調器16に、可変波長光を変調すべき周波
数(変調用周波数)の変調用信号を与える。光変調器1
6は、可変波長光を変調用周波数で強度変調して、参照
光デバイス40に入射する。光変調器16は、リチウム
・ナイオベート(LN)を有することが一般的である
が、光の強度を変調できるものであれば、LNを含んで
いなくてもよい。
The variable wavelength light source 12 generates a variable wavelength light whose wavelength can be changed. By the variable wavelength light source 12,
The wavelength of the variable wavelength light can be swept. The modulation power supply 14 supplies the optical modulator 16 with a modulation signal having a frequency (modulation frequency) at which the variable wavelength light is to be modulated. Optical modulator 1
6 modulates the intensity of the variable wavelength light at the modulation frequency and enters the reference light device 40. The light modulator 16 generally has lithium niobate (LN), but may not include LN as long as the light intensity can be modulated.

【0062】参照光デバイス40は、光変調器16の出
力した光を透過する。また、光の波長と、参照光デバイ
ス40を透過後の光の振幅との対応関係は既知である。
参照光デバイス40に入射する光の波長と、透過後の光
の振幅(厳密には、透過後の光を光電変換した電気信号
と、変調用電源14の出力する電気信号との振幅比)と
の対応関係の一例を図12に示す。図12に示す例は、
参照光デバイス40としてアセチレン(12C2H2)を用い
た場合の例である。
The reference light device 40 transmits the light output from the light modulator 16. The correspondence between the wavelength of the light and the amplitude of the light after passing through the reference light device 40 is known.
The wavelength of the light incident on the reference light device 40 and the amplitude of the transmitted light (strictly speaking, the amplitude ratio between the electric signal obtained by photoelectrically converting the transmitted light and the electric signal output from the modulation power supply 14). FIG. 12 shows an example of the correspondence between the two. The example shown in FIG.
This is an example in which acetylene ( 12 C 2 H 2 ) is used as the reference light device 40.

【0063】図12に示すように、ある波長になると、
振幅が急激に減少する。よって、参照光デバイス40を
透過した光の振幅を計測すれば、可変波長光源12の光
波長を測定できる。なお、参照光デバイス40は、例え
12C2H213C2H2、H13C14N、アルゴン、キセノンおよ
びクリプトンである。
As shown in FIG. 12, when a certain wavelength is reached,
The amplitude decreases sharply. Therefore, if the amplitude of the light transmitted through the reference light device 40 is measured, the light wavelength of the variable wavelength light source 12 can be measured. The reference light device 40 is, for example, 12 C 2 H 2 , 13 C 2 H 2 , H 13 C 14 N, argon, xenon, and krypton.

【0064】光電変換器22は、参照光デバイス40を
透過した光を電気信号に変換する。振幅測定部33は、
参照光デバイス40を透過した光の振幅を測定する。す
なわち、光電変換器22が出力した電気信号の振幅と、
変調用電源14の出力する電気信号の振幅との振幅比を
測定する。参照光デバイス特性記録部34は、参照光デ
バイス40を透過した可変波長光の振幅と、波長との対
応関係を記録している。対応関係は図12に示すような
ものであり、既知である。波長測定部36は、参照光デ
バイス特性記録部34の記録内容と、参照光デバイス4
0を透過した光の振幅とから、可変波長光の波長を測定
する。
The photoelectric converter 22 converts the light transmitted through the reference light device 40 into an electric signal. The amplitude measurement unit 33
The amplitude of the light transmitted through the reference light device 40 is measured. That is, the amplitude of the electric signal output by the photoelectric converter 22 and
The amplitude ratio with the amplitude of the electric signal output from the modulation power supply 14 is measured. The reference light device characteristic recording unit 34 records the correspondence between the amplitude of the variable wavelength light transmitted through the reference light device 40 and the wavelength. The correspondence is as shown in FIG. 12 and is known. The wavelength measuring unit 36 stores the recorded contents of the reference light device characteristic recording unit 34 and the reference light device 4.
The wavelength of the variable wavelength light is measured from the amplitude of the light transmitted through 0.

【0065】次に、本発明の第五の実施形態にかかる光
波長測定装置の動作を説明する。まず、可変波長光源1
2が可変波長光を生成する。次に、光変調器16が可変
波長光を変調用電源14の生成する変調用信号の周波数
で強度変調し、可変波長光が参照光デバイス40を透過
し、光電変換器22により光電変換される。そして、振
幅測定部33は、光電変換器22が出力した電気信号の
振幅と、変調用電源14の出力する電気信号の振幅との
振幅比を測定する。波長測定部36は、参照光デバイス
特性記録部34の記録内容(参照光デバイス40を透過
した可変波長光の波長と、振幅との対応関係)と、参照
光デバイス40を透過した光の振幅とから、可変波長光
の波長を測定する。
Next, the operation of the optical wavelength measuring device according to the fifth embodiment of the present invention will be described. First, the variable wavelength light source 1
2 generates tunable light. Next, the optical modulator 16 intensity-modulates the variable wavelength light with the frequency of the modulation signal generated by the modulation power supply 14, and the variable wavelength light passes through the reference light device 40 and is photoelectrically converted by the photoelectric converter 22. . Then, the amplitude measuring unit 33 measures an amplitude ratio between the amplitude of the electric signal output from the photoelectric converter 22 and the amplitude of the electric signal output from the modulation power supply 14. The wavelength measuring unit 36 stores the recorded contents of the reference light device characteristic recording unit 34 (the correspondence between the wavelength of the variable wavelength light transmitted through the reference light device 40 and the amplitude), the amplitude of the light transmitted through the reference light device 40, and the like. Then, the wavelength of the variable wavelength light is measured.

【0066】本発明の第五の実施形態によれば、参照光
デバイス40を透過した光の振幅を測定することによ
り、可変波長光源12が生成する可変波長光の波長を測
定できる。参照光デバイス40を透過した光の振幅は、
可変波長光の波長を大きく掃引しても測定可能である。
よって、可変波長光の波長を大きく掃引しても、可変波
長光の波長を測定できる。
According to the fifth embodiment of the present invention, the wavelength of the variable wavelength light generated by the variable wavelength light source 12 can be measured by measuring the amplitude of the light transmitted through the reference light device 40. The amplitude of the light transmitted through the reference light device 40 is
Measurement is possible even when the wavelength of the variable wavelength light is greatly swept.
Therefore, even if the wavelength of the variable wavelength light is greatly swept, the wavelength of the variable wavelength light can be measured.

【0067】第六の実施形態 第六の実施形態は、第五の実施形態にかかる光波長測定
装置をDUT(DeviceUnder Test:被測定デバイス)の
光特性測定装置に組み込んだものである。以下、第一の
実施形態と同様な部分は同じ番号を付して説明を省略す
る。
Sixth Embodiment In a sixth embodiment, the optical wavelength measuring device according to the fifth embodiment is incorporated in an optical characteristic measuring device of a DUT (Device Under Test). Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.

【0068】図13は、本発明の第六の実施形態にかか
る光波長測定装置の構成を示すブロック図である。第六
の実施形態にかかる光波長測定装置は、可変波長光源1
2、変調用電源14、光変調器16、光分波器18、光
電変換器22、振幅測定部33、参照光デバイス特性記
録部34、波長測定部36、参照光デバイス40、DU
T50、光電変換器62、DUT計測用位相比較部64
を備える。
FIG. 13 is a block diagram showing the configuration of the optical wavelength measuring device according to the sixth embodiment of the present invention. The optical wavelength measuring device according to the sixth embodiment includes a variable wavelength light source 1
2. Modulation power supply 14, optical modulator 16, optical demultiplexer 18, photoelectric converter 22, amplitude measuring unit 33, reference optical device characteristic recording unit 34, wavelength measuring unit 36, reference optical device 40, DU
T50, photoelectric converter 62, DUT measurement phase comparator 64
Is provided.

【0069】変調用電源14は、光変調器16に、可変
波長光を変調すべき周波数(変調用周波数)の変調用信
号を与える。光変調器16は、可変波長光を変調用周波
数で強度変調して、光分波器18に入射する。光変調器
16は、リチウム・ナイオベート(LN)を有すること
が一般的であるが、光の強度を変調できるものであれ
ば、LNを含んでいなくてもよい。光分波器18は、可
変波長光源12の出力を参照光デバイス40およびDU
T50に入射する。DUT50は、群遅延時間および波
長分散などを求める対象物である。光電変換器62はD
UT50を透過した可変波長光を電気信号に変換する。
DUT計測用位相比較部64は、光電変換器62の出力
する電気信号と変調用電源14の生成する変調用信号と
の位相差を測定する。この位相差と変調用信号の周波数
とに基づきDUT50の群遅延時間が測定でき、DUT
50の群遅延時間および可変波長光の波長に基づきDU
T50の波長分散が測定できる。
The modulation power supply 14 supplies the optical modulator 16 with a modulation signal having a frequency (modulation frequency) at which the variable wavelength light is to be modulated. The optical modulator 16 modulates the intensity of the variable wavelength light at the modulation frequency and enters the optical demultiplexer 18. The light modulator 16 generally has lithium niobate (LN), but may not include LN as long as the light intensity can be modulated. The optical demultiplexer 18 outputs the output of the variable wavelength light source 12 to the reference optical device 40 and the DU
It is incident on T50. The DUT 50 is an object for which a group delay time, chromatic dispersion, and the like are to be obtained. The photoelectric converter 62 is D
The variable wavelength light transmitted through the UT 50 is converted into an electric signal.
The DUT measurement phase comparator 64 measures the phase difference between the electric signal output from the photoelectric converter 62 and the modulation signal generated by the modulation power supply 14. The group delay time of the DUT 50 can be measured based on the phase difference and the frequency of the modulation signal.
DU based on group delay time of 50 and wavelength of variable wavelength light
The chromatic dispersion of T50 can be measured.

【0070】次に、本発明の第六の実施形態にかかる光
波長測定装置の動作を説明する。まず、可変波長光源1
2が可変波長光を生成する。次に、可変波長光が光分波
器18により分波され、参照光デバイス40および光変
調器16に入射される。
Next, the operation of the optical wavelength measuring device according to the sixth embodiment of the present invention will be described. First, the variable wavelength light source 1
2 generates tunable light. Next, the variable wavelength light is demultiplexed by the optical demultiplexer 18 and is incident on the reference light device 40 and the optical modulator 16.

【0071】光変調器16が可変波長光を変調用電源1
4の生成する変調用信号の周波数で強度変調する。光変
調器16の出力した可変波長光は光分波器18を介して
DUT50に入射される。DUT50を透過した可変波
長光は、光電変換器62により光電変換される。DUT
計測用位相比較部64は、光電変換器62の出力する電
気信号と変調用電源14の生成する変調用信号との位相
差を測定する。この位相差と変調用信号の周波数とに基
づきDUT50の群遅延時間が測定でき、DUT50の
群遅延時間および可変波長光の波長に基づきDUT50
の波長分散が測定できる。
The optical modulator 16 converts the variable wavelength light into the power supply 1 for modulation.
4 is intensity-modulated at the frequency of the modulation signal generated. The variable wavelength light output from the optical modulator 16 is incident on the DUT 50 via the optical demultiplexer 18. The variable wavelength light transmitted through the DUT 50 is photoelectrically converted by the photoelectric converter 62. DUT
The measurement phase comparator 64 measures the phase difference between the electric signal output from the photoelectric converter 62 and the modulation signal generated by the modulation power supply 14. The group delay time of the DUT 50 can be measured based on the phase difference and the frequency of the modulation signal, and the DUT 50 can be measured based on the group delay time of the DUT 50 and the wavelength of the variable wavelength light.
Can be measured.

【0072】また、光分波器18を介して参照光デバイ
ス40を透過した可変波長光は、光電変換器22により
光電変換される。そして、振幅測定部33は、参照光デ
バイス40を透過した光の振幅(厳密には、透過後の光
を光電変換器22により光電変換した電気信号と、変調
用電源14の出力する電気信号との振幅比)を測定す
る。波長測定部36は、参照光デバイス特性記録部34
の記録内容(参照光デバイス40を透過した可変波長光
の波長と、振幅との対応関係)と、参照光デバイス40
を透過した光の振幅とから、可変波長光の波長を測定す
る。
The variable wavelength light transmitted through the reference light device 40 via the optical demultiplexer 18 is photoelectrically converted by the photoelectric converter 22. The amplitude measuring unit 33 determines the amplitude of the light transmitted through the reference light device 40 (strictly speaking, an electric signal obtained by photoelectrically converting the transmitted light by the photoelectric converter 22 and an electric signal output from the power supply 14 for modulation). Is measured). The wavelength measuring unit 36 includes a reference light device characteristic recording unit 34
(Correspondence relationship between the wavelength of the variable wavelength light transmitted through the reference light device 40 and the amplitude) of the reference light device 40
The wavelength of the tunable wavelength light is measured from the amplitude of the light transmitted through the.

【0073】第六の実施形態によれば、可変波長光源1
2の生成する可変波長光の波長を大きく掃引しても波長
を測定できる。そこで、波長の測定結果を利用して、D
UT50の波長分散等を測定できる。
According to the sixth embodiment, the variable wavelength light source 1
The wavelength can be measured even if the wavelength of the variable wavelength light generated by 2 is swept largely. Then, using the measurement result of the wavelength, D
The wavelength dispersion and the like of the UT 50 can be measured.

【0074】第七の実施形態 第七の実施形態は、第五の実施形態に、可変波長光源1
2の生成する可変波長光の波長が目標とする値になって
いるかを判断する機能を付加したものである。以下、第
五の実施形態と同様な部分は同じ番号を付して説明を省
略する。
Seventh Embodiment The seventh embodiment is different from the fifth embodiment in that the variable wavelength light source 1
2 is added with a function of determining whether the wavelength of the variable wavelength light generated by the second optical element 2 has a target value. Hereinafter, portions similar to those of the fifth embodiment are denoted by the same reference numerals, and description thereof is omitted.

【0075】図14は、本発明の第七の実施形態にかか
る光波長測定装置の構成を示すブロック図である。第七
の実施形態にかかる光波長測定装置は、可変波長光源1
2、変調用電源14、光変調器16、光電変換器22、
振幅測定部33、参照光デバイス特性記録部34、波長
測定部36、参照光デバイス40、目標波長記録部7
2、目標振幅計算部75、振幅比較部77、波長比較部
78を備える。
FIG. 14 is a block diagram showing the configuration of the optical wavelength measuring device according to the seventh embodiment of the present invention. The optical wavelength measurement device according to the seventh embodiment includes a variable wavelength light source 1
2, power supply for modulation 14, optical modulator 16, photoelectric converter 22,
Amplitude measurement unit 33, reference light device characteristic recording unit 34, wavelength measurement unit 36, reference light device 40, target wavelength recording unit 7
2. It includes a target amplitude calculator 75, an amplitude comparator 77, and a wavelength comparator 78.

【0076】目標波長記録部72は、可変波長光の目標
とする波長と、目標に到達する時間とを記録している。
目標波長記録部72の記録内容は、第三の実施形態と同
様であり、図5を参照して説明する。目標波長記録部7
2の記録内容は、図5(a)に示すように、測定を開始
してからの時間tと可変波長光の目標とする波長λとの
対応関係でもよい。なお、図5(a)中のλ0は、測定
開始時の可変波長光の目標とする波長である。また、目
標波長記録部72の記録内容は、図5(b)に示すよう
に、測定を開始してからの時間tと可変波長光の目標と
する波長の変位Δλとの対応関係でもよい。
The target wavelength recording section 72 records the target wavelength of the variable wavelength light and the time to reach the target.
The recorded contents of the target wavelength recording section 72 are the same as in the third embodiment, and will be described with reference to FIG. Target wavelength recording unit 7
As shown in FIG. 5A, the recorded content of No. 2 may be the correspondence between the time t from the start of the measurement and the target wavelength λ of the variable wavelength light. Note that λ0 in FIG. 5A is the target wavelength of the variable wavelength light at the start of the measurement. Further, the recorded content of the target wavelength recording section 72 may be a correspondence relationship between the time t from the start of the measurement and the target wavelength displacement Δλ of the variable wavelength light, as shown in FIG. 5B.

【0077】目標振幅計算部75は、目標波長記録部7
2の記録内容から、目標波長に対応する目標振幅を計算
する。参照光デバイス40における、透過光の波長と振
幅との関係は既知であるため、目標波長に対応する目標
振幅も計算できる。
The target amplitude calculating section 75 includes the target wavelength recording section 7.
The target amplitude corresponding to the target wavelength is calculated from the recorded contents of 2. Since the relationship between the wavelength and the amplitude of the transmitted light in the reference light device 40 is known, the target amplitude corresponding to the target wavelength can also be calculated.

【0078】振幅比較部77は、振幅計33の測定した
参照光デバイス40を透過した可変波長光の振幅と、目
標振幅計算部75の計算結果である目標振幅とを比較す
る。比較の結果、一致すれば、目標どおりに波長を掃引
できていることになる。比較の結果、一致しなければ、
目標どおりに波長を掃引できていないことになる。例え
ば、振幅計33の測定した振幅が一定の場合は、波長の
掃引が何らされていないことがわかる。
The amplitude comparing section 77 compares the amplitude of the variable wavelength light transmitted through the reference light device 40 measured by the amplitude meter 33 with the target amplitude which is the calculation result of the target amplitude calculating section 75. If the comparison results in a match, the wavelength has been swept as intended. If the comparison does not match,
This means that the wavelength has not been swept as intended. For example, when the amplitude measured by the amplitude meter 33 is constant, it can be understood that the wavelength is not swept.

【0079】波長比較部78は、波長測定部36が可変
波長光の波長を測定した測定結果と、目標波長記録部7
2の記録内容とを比較する。群遅延時間比較部76のよ
うに、群遅延時間と目標群遅延時間とを比較する他に
も、目標波長と実際の波長とを比較する方法もある。比
較の結果、一致すれば、目標どおりに波長を掃引できて
いることになる。比較の結果、一致しなければ、目標ど
おりに波長を掃引できていないことになる。例えば、図
8に示すように、目標波長は右上がりであり、測定され
た波長が一定である場合は、目標どおりに波長を掃引で
きていない。しかも、波長の掃引が何らされていないこ
とがわかる。
The wavelength comparing section 78 compares the measurement result obtained by the wavelength measuring section 36 for measuring the wavelength of the variable wavelength light with the target wavelength recording section 7.
Compare the recorded contents of No. 2. In addition to comparing the group delay time with the target group delay time as in the group delay time comparison unit 76, there is a method of comparing the target wavelength with the actual wavelength. If the comparison results in a match, the wavelength has been swept as intended. As a result of the comparison, if they do not match, it means that the wavelength has not been swept as intended. For example, as shown in FIG. 8, when the target wavelength is rising to the right and the measured wavelength is constant, the wavelength cannot be swept as intended. Moreover, it can be seen that no wavelength sweep is performed.

【0080】次に、本発明の第七の実施形態にかかる光
波長測定装置の動作を説明する。まず、可変波長光源1
2が可変波長光を生成する。次に、光変調器16が可変
波長光を変調用電源14の生成する変調用信号の周波数
で強度変調し、可変波長光が参照光デバイス40に入射
される。可変波長光は参照光デバイス40を透過し、光
電変換器22により光電変換される。そして、振幅測定
部33は、参照光デバイス40を透過した可変波長光の
振幅(厳密には、透過後の光を光電変換した電気信号
と、変調用電源14の出力する電気信号との振幅比)を
測定する。波長測定部36は、参照光デバイス特性記録
部34の記録内容(参照光デバイス40を透過した可変
波長光の波長と、振幅との対応関係)と、参照光デバイ
ス40を透過した可変波長光の振幅とから、可変波長光
の波長を測定する。
Next, the operation of the optical wavelength measuring device according to the seventh embodiment of the present invention will be described. First, the variable wavelength light source 1
2 generates tunable light. Next, the optical modulator 16 modulates the intensity of the variable wavelength light with the frequency of the modulation signal generated by the modulation power supply 14, and the variable wavelength light enters the reference optical device 40. The variable wavelength light transmits through the reference light device 40 and is photoelectrically converted by the photoelectric converter 22. The amplitude measuring unit 33 calculates the amplitude of the variable wavelength light transmitted through the reference light device 40 (strictly speaking, the amplitude ratio between the electric signal obtained by photoelectrically converting the transmitted light and the electric signal output from the modulation power supply 14). ) Is measured. The wavelength measuring section 36 records the contents of the reference light device characteristic recording section 34 (the correspondence between the wavelength of the variable wavelength light transmitted through the reference light device 40 and the amplitude) and the variable wavelength light transmitted through the reference light device 40. From the amplitude, the wavelength of the variable wavelength light is measured.

【0081】また、目標振幅計算部75は目標波長記録
部72の記録内容に基づき目標振幅を計算する。振幅比
較部77は、振幅計33の測定した参照光デバイス40
を透過した可変波長光の振幅と、目標振幅計算部75の
計算結果である目標振幅とを比較する。
The target amplitude calculator 75 calculates the target amplitude based on the recorded contents of the target wavelength recorder 72. The amplitude comparing unit 77 is configured to output the reference light device 40 measured by the amplitude meter 33.
Is compared with the target amplitude, which is the result of calculation by the target amplitude calculator 75.

【0082】さらに、波長比較部78は、波長測定部3
6が可変波長光の波長を測定した測定結果と、目標波長
記録部72の記録内容とを比較する。
Further, the wavelength comparing section 78 includes the wavelength measuring section 3
Reference numeral 6 compares the measurement result obtained by measuring the wavelength of the variable wavelength light with the recorded content of the target wavelength recording unit 72.

【0083】第七の実施形態によれば、可変波長光源1
2の生成する可変波長光の波長を大きく掃引しても波長
を測定できる。しかも、振幅比較部77および波長比較
部78により、目標とする波長掃引が行われているかを
監視することができる。
According to the seventh embodiment, the variable wavelength light source 1
The wavelength can be measured even if the wavelength of the variable wavelength light generated by 2 is swept largely. In addition, the amplitude comparison unit 77 and the wavelength comparison unit 78 can monitor whether the target wavelength sweep is being performed.

【0084】第八の実施形態 第八の実施形態は、第五の実施形態における可変波長光
の光波長を波長制御部80で制御して、光分波器13に
より外部に取出すことで、光波長測定装置を波長を適切
に制御できる光源として取り扱えるようにしたものであ
る。以下、第五の実施形態と同様な部分は同じ番号を付
して説明を省略する。
Eighth Embodiment In the eighth embodiment, the optical wavelength of the variable wavelength light in the fifth embodiment is controlled by the wavelength control unit 80 and extracted outside by the optical demultiplexer 13 so that the optical The wavelength measuring device can be handled as a light source capable of appropriately controlling the wavelength. Hereinafter, portions similar to those of the fifth embodiment are denoted by the same reference numerals, and description thereof is omitted.

【0085】図15は、本発明の第八の実施形態にかか
る光波長測定装置の構成を示すブロック図である。第八
の実施形態にかかる光波長測定装置は、可変波長光源1
2、光分波器13、変調用電源14、光変調器16、光
電変換器22、振幅測定部33、参照光デバイス特性記
録部34、波長測定部36、参照光デバイス40、波長
制御部80を備える。
FIG. 15 is a block diagram showing the configuration of an optical wavelength measuring device according to the eighth embodiment of the present invention. The optical wavelength measuring apparatus according to the eighth embodiment includes a variable wavelength light source 1
2, optical demultiplexer 13, modulation power supply 14, optical modulator 16, photoelectric converter 22, amplitude measuring unit 33, reference optical device characteristic recording unit 34, wavelength measuring unit 36, reference optical device 40, wavelength control unit 80 Is provided.

【0086】光分波器13は、可変波長光源12と光変
調器16との間に配置され、可変波長光源12から出力
される光を外部に取出す。すなわち、光波長測定装置全
体を一つの光源とするものである。
The optical demultiplexer 13 is disposed between the variable wavelength light source 12 and the optical modulator 16, and takes out the light output from the variable wavelength light source 12 to the outside. That is, the entire light wavelength measuring device is used as one light source.

【0087】波長制御部80は、波長測定部36の測定
した波長に基づき、可変波長光源12の生成する可変波
長光の波長を目標波長にあわせるように可変波長光源1
2を制御する。波長制御部80の制御対象は、可変波長
光源12の構成により異なる。可変波長光源12がDF
Bレーザならば、波長制御部80は、可変波長光源12
の駆動電流および温度を制御する。可変波長光源12が
外部共振器レーザならば、波長制御部80は、可変波長
光源12の駆動電流、温度のみならず共振器長をも制御
する。なお、可変波長光源12が外部共振器レーザであ
る場合の、可変波長光源12の構成を図10に示す。可
変波長光源12は、レーザダイオード12a、ピエゾ素
子12b、グレーティング12cを有する。レーザダイ
オード12aとグレーティング12cとは共振器を構成
する。
The wavelength control unit 80 controls the variable wavelength light source 1 based on the wavelength measured by the wavelength measurement unit 36 so that the wavelength of the variable wavelength light generated by the variable wavelength light source 12 matches the target wavelength.
2 is controlled. The control target of the wavelength control unit 80 differs depending on the configuration of the variable wavelength light source 12. Variable wavelength light source 12 is DF
In the case of a B laser, the wavelength control unit 80
Control the drive current and temperature of the If the variable wavelength light source 12 is an external cavity laser, the wavelength control unit 80 controls not only the drive current and temperature of the variable wavelength light source 12 but also the resonator length. FIG. 10 shows the configuration of the variable wavelength light source 12 when the variable wavelength light source 12 is an external cavity laser. The variable wavelength light source 12 has a laser diode 12a, a piezo element 12b, and a grating 12c. The laser diode 12a and the grating 12c form a resonator.

【0088】なお、波長制御部80が、波長測定部36
の測定した波長に基づき、可変波長光源12の生成する
可変波長光の波長を目標波長にあわせるようにするため
の制御法は周知である。例えば、波長測定部36の測定
した波長と目標波長との差をとって、この差に比例して
駆動電流、温度、共振制御長を変位させてやるなどとい
った一般的なフィードバック制御を行ってもよい。
It should be noted that the wavelength control unit 80 is
A control method for adjusting the wavelength of the variable wavelength light generated by the variable wavelength light source 12 to the target wavelength based on the measured wavelength is well known. For example, it is also possible to take a difference between the wavelength measured by the wavelength measurement unit 36 and the target wavelength and perform general feedback control such as displacing the drive current, temperature, and resonance control length in proportion to the difference. Good.

【0089】次に、本発明の第八の実施形態にかかる光
波長測定装置の動作を説明する。まず、可変波長光源1
2が可変波長光を生成する。光変調器16が可変波長光
を変調用電源14の生成する変調用信号の周波数で強度
変調し、可変波長光が参照光デバイス40を透過し、光
電変換器22により光電変換される。そして、振幅計3
3は、参照光デバイス40を透過した光の振幅(厳密に
は、透過後の光を光電変換器22により光電変換した電
気信号と、変調用電源14の出力する電気信号との振幅
比)を測定する。波長測定部36は、参照光デバイス特
性記録部34の記録内容(参照光デバイス40を透過し
た可変波長光の波長と、振幅との対応関係)と、参照光
デバイス40を透過した光の振幅とから、可変波長光の
波長を測定する。
Next, the operation of the optical wavelength measuring device according to the eighth embodiment of the present invention will be described. First, the variable wavelength light source 1
2 generates tunable light. The optical modulator 16 intensity-modulates the variable wavelength light at the frequency of the modulation signal generated by the modulation power supply 14, and the variable wavelength light passes through the reference light device 40 and is photoelectrically converted by the photoelectric converter 22. And amplitude meter 3
Reference numeral 3 denotes the amplitude of light transmitted through the reference light device 40 (strictly speaking, the amplitude ratio between the electric signal obtained by photoelectrically converting the transmitted light by the photoelectric converter 22 and the electric signal output from the modulation power supply 14). Measure. The wavelength measuring unit 36 stores the recorded contents of the reference light device characteristic recording unit 34 (the correspondence between the wavelength of the variable wavelength light transmitted through the reference light device 40 and the amplitude), the amplitude of the light transmitted through the reference light device 40, and the like. Then, the wavelength of the variable wavelength light is measured.

【0090】波長制御部80は、波長測定部36の測定
した波長に基づき、可変波長光源12の生成する可変波
長光の波長を目標波長にあわせるようにするために、可
変波長光源12を制御する。そして、可変波長光源12
の生成する可変波長光の波長が目標値に一致するように
なる。そこで、光分波器13から可変波長光源12の生
成する可変波長光が取出される。よって、光波長測定装
置全体が一つの光源となる。
The wavelength control unit 80 controls the variable wavelength light source 12 based on the wavelength measured by the wavelength measurement unit 36 in order to adjust the wavelength of the variable wavelength light generated by the variable wavelength light source 12 to the target wavelength. . And the variable wavelength light source 12
The wavelength of the variable wavelength light generated by the above becomes equal to the target value. Then, the variable wavelength light generated by the variable wavelength light source 12 is extracted from the optical demultiplexer 13. Therefore, the entire optical wavelength measurement device becomes one light source.

【0091】本発明の第八の実施形態によれば、参照光
デバイス40の群遅延時間を測定することにより、可変
波長光源12が生成する可変波長光の波長を測定でき
る。参照光デバイス40の群遅延時間は、可変波長光の
波長を大きく掃引しても測定可能である。よって、可変
波長光の波長を大きく掃引しても、可変波長光の波長を
測定できる。そこで、波長制御部80が波長の測定結果
を利用して、可変波長光源12を制御することで、可変
波長光源12の生成する可変波長光の波長を目標値にあ
わせることができる。さらに、波長を目標値にあわせた
可変波長光を光分波器13から取出すことで光波長測定
装置全体を一つの光源として取り扱える。
According to the eighth embodiment of the present invention, the wavelength of the variable wavelength light generated by the variable wavelength light source 12 can be measured by measuring the group delay time of the reference light device 40. The group delay time of the reference light device 40 can be measured even when the wavelength of the variable wavelength light is swept largely. Therefore, even if the wavelength of the variable wavelength light is greatly swept, the wavelength of the variable wavelength light can be measured. Therefore, the wavelength controller 80 controls the variable wavelength light source 12 using the measurement result of the wavelength, so that the wavelength of the variable wavelength light generated by the variable wavelength light source 12 can be adjusted to the target value. Further, by taking out the variable wavelength light whose wavelength is adjusted to the target value from the optical demultiplexer 13, the entire optical wavelength measuring device can be handled as one light source.

【0092】また、上記の実施形態は、以下のようにし
て実現できる。CPU、ハードディスク、メディア(フ
ロッピー(登録商標)ディスク、CD−ROMなど)読
み取り装置を備えたコンピュータのメディア読み取り装
置に、上記の各部分を実現するプログラムを記録したメ
ディアを読み取らせて、ハードディスクにインストール
する。このような方法でも、上記の機能を実現できる。
The above embodiment can be realized as follows. The CPU, hard disk, and media (floppy (registered trademark) disk, CD-ROM, etc.) having a reader for reading a medium having a program for realizing the above parts are read by a media reader of a computer equipped with the reader and installed on the hard disk. I do. Even with such a method, the above function can be realized.

【0093】[0093]

【発明の効果】本発明によれば、参照光測定手段により
参照光デバイスを透過した可変波長光の物理量が測定さ
れ、この物理量と可変波長光の波長とが既知であること
から、可変波長光の波長が測定できる。
According to the present invention, the physical quantity of the variable wavelength light transmitted through the reference light device is measured by the reference light measuring means, and since the physical quantity and the wavelength of the variable wavelength light are known, the variable wavelength light is measured. Can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施形態にかかる光波長測定装
置の構成を示すブロック図である。
FIG. 1 is a block diagram illustrating a configuration of an optical wavelength measurement device according to a first embodiment of the present invention.

【図2】参照光デバイス40に入射する光の波長と、群
遅延時間との対応関係の一例を示す図である。
FIG. 2 is a diagram illustrating an example of a correspondence relationship between a wavelength of light incident on a reference optical device 40 and a group delay time.

【図3】本発明の第二の実施形態にかかる光波長測定装
置の構成を示すブロック図である。
FIG. 3 is a block diagram illustrating a configuration of an optical wavelength measurement device according to a second embodiment of the present invention.

【図4】本発明の第三の実施形態にかかる光波長測定装
置の構成を示すブロック図である。
FIG. 4 is a block diagram showing a configuration of an optical wavelength measurement device according to a third embodiment of the present invention.

【図5】目標波長記録部72の記録内容を示す図であ
る。
FIG. 5 is a diagram showing recorded contents of a target wavelength recording unit 72.

【図6】目標群遅延時間計算部74の計算結果を示す図
である。
FIG. 6 is a diagram illustrating a calculation result of a target group delay time calculation unit 74;

【図7】群遅延時間と、目標群遅延時間との比較を示す
図である。
FIG. 7 is a diagram showing a comparison between a group delay time and a target group delay time.

【図8】波長と、目標波長との比較を示す図である。FIG. 8 is a diagram showing a comparison between a wavelength and a target wavelength.

【図9】本発明の第四の実施形態にかかる光波長測定装
置の構成を示すブロック図である。
FIG. 9 is a block diagram illustrating a configuration of an optical wavelength measurement device according to a fourth embodiment of the present invention.

【図10】可変波長光源12が外部共振器レーザである
場合の、可変波長光源12の構成を示すブロック図であ
る。
FIG. 10 is a block diagram showing a configuration of the variable wavelength light source 12 when the variable wavelength light source 12 is an external cavity laser.

【図11】本発明の第五の実施形態にかかる光波長測定
装置の構成を示すブロック図である。
FIG. 11 is a block diagram illustrating a configuration of an optical wavelength measurement device according to a fifth embodiment of the present invention.

【図12】参照光デバイス40に入射する光の波長と、
透過後の光の振幅との対応関係の一例を示す図である。
FIG. 12 shows a wavelength of light incident on a reference optical device 40,
FIG. 4 is a diagram illustrating an example of a correspondence relationship with the amplitude of transmitted light.

【図13】本発明の第六の実施形態にかかる光波長測定
装置の構成を示すブロック図である。
FIG. 13 is a block diagram illustrating a configuration of an optical wavelength measurement device according to a sixth embodiment of the present invention.

【図14】本発明の第七の実施形態にかかる光波長測定
装置の構成を示すブロック図である。
FIG. 14 is a block diagram illustrating a configuration of an optical wavelength measurement device according to a seventh embodiment of the present invention.

【図15】本発明の第八の実施形態にかかる光波長測定
装置の構成を示すブロック図である。
FIG. 15 is a block diagram showing a configuration of an optical wavelength measurement device according to an eighth embodiment of the present invention.

【図16】従来技術における光デバイスの波長分散の測
定システムの構成を示すブロック図である。
FIG. 16 is a block diagram showing a configuration of a chromatic dispersion measurement system of an optical device according to a conventional technique.

【符号の説明】[Explanation of symbols]

12 可変波長光源 14 変調用電源 16 光変調器 22 光電変換器 24 位相比較器 32 群遅延時間測定部 33 振幅計 34 参照光デバイス特性記録部 36 波長測定部 40 参照光デバイス Reference Signs List 12 variable wavelength light source 14 modulation power supply 16 optical modulator 22 photoelectric converter 24 phase comparator 32 group delay time measuring unit 33 amplitude meter 34 reference optical device characteristic recording unit 36 wavelength measuring unit 40 reference optical device

Claims (19)

【特許請求の範囲】[The claims] 【請求項1】可変波長光源が生成する可変波長光の波長
を測定する光波長測定装置であって、 前記可変波長光が透過し、透過した可変波長光の物理量
と波長との関係が既知である参照光デバイスと、 前記参照光デバイスを透過した前記可変波長光の物理量
を測定する参照光測定手段と、 を備えた光波長測定装置。
1. An optical wavelength measuring device for measuring the wavelength of variable wavelength light generated by a variable wavelength light source, wherein the variable wavelength light is transmitted, and the relationship between the physical quantity and the wavelength of the transmitted variable wavelength light is known. An optical wavelength measurement device comprising: a reference light device; and reference light measurement means for measuring a physical quantity of the variable wavelength light transmitted through the reference light device.
【請求項2】強度変調に使用する変調用周波数を与える
変調用信号を生成する変調用信号生成手段と、 前記変調用周波数で強度変調した前記可変波長光を前記
参照光デバイスに供給する光変調手段と、 を備え、 前記参照光測定手段は、前記参照光デバイスを透過した
前記可変波長光と前記変調用信号との位相差を測定す
る、 請求項1に記載の光波長測定装置。
2. A modulation signal generating means for generating a modulation signal for providing a modulation frequency used for intensity modulation, and an optical modulation for supplying the variable wavelength light intensity-modulated at the modulation frequency to the reference optical device. The optical wavelength measuring apparatus according to claim 1, further comprising: a reference light measuring unit that measures a phase difference between the variable wavelength light transmitted through the reference optical device and the modulation signal.
【請求項3】前記位相差に基づき前記参照光デバイスの
群遅延時間を測定する群遅延時間測定手段と、 前記参照光デバイスの群遅延時間と、前記参照光デバイ
スを透過した前記可変波長光の波長との対応を記録する
参照光デバイス特性記録手段と、 前記参照光デバイス特性記録手段の記録内容および前記
参照光デバイスの群遅延時間から前記可変波長光の波長
を求める波長測定手段と、 を備えた請求項2に記載の光波長測定装置。
3. A group delay time measuring means for measuring a group delay time of the reference light device based on the phase difference; a group delay time of the reference light device; and a group delay time of the variable wavelength light transmitted through the reference light device. Reference light device characteristic recording means for recording correspondence with a wavelength, and wavelength measuring means for determining the wavelength of the variable wavelength light from the recorded content of the reference light device characteristic recording means and the group delay time of the reference light device. The optical wavelength measuring device according to claim 2.
【請求項4】前記光変調手段は被測定デバイスにも前記
変調用周波数で強度変調した前記可変波長光を供給し、 前記被測定デバイスを透過した前記可変波長光と前記変
調用信号との位相差を測定するDUT計測手段を備え
た、 請求項2に記載の光波長測定装置。
4. The optical modulation means also supplies the device under test with the variable wavelength light intensity-modulated at the modulation frequency, and a position of the variable wavelength light transmitted through the device under test and the modulation signal. The optical wavelength measurement device according to claim 2, further comprising a DUT measurement unit that measures a phase difference.
【請求項5】前記位相差に基づき前記参照光デバイスの
群遅延時間を測定する群遅延時間測定手段と、 目標とする前記可変波長光源の可変波長光の目標波長に
基づき前記参照光デバイスの目標群遅延時間を計算する
目標群遅延時間計算手段と、 前記群遅延時間と前記目標群遅延時間とを比較する遅延
時間比較手段と、 を備えた請求項2に記載の光波長測定装置。
5. A group delay time measuring means for measuring a group delay time of the reference light device based on the phase difference, and a target of the reference light device based on a target wavelength of the variable wavelength light of the target variable wavelength light source. The optical wavelength measurement device according to claim 2, comprising: target group delay time calculating means for calculating a group delay time; and delay time comparing means for comparing the group delay time with the target group delay time.
【請求項6】目標とする前記可変波長光源の可変波長光
の目標波長と前記波長測定手段の求めた前記可変波長光
の波長とを比較する波長比較手段、 を備えた請求項3に記載の光波長測定装置。
6. The wavelength comparing means according to claim 3, further comprising: a wavelength comparing means for comparing a target wavelength of the variable wavelength light of said variable wavelength light source with a wavelength of said variable wavelength light obtained by said wavelength measuring means. Optical wavelength measurement device.
【請求項7】前記波長測定手段の求めた前記可変波長光
の波長に基づき前記可変波長光源が生成する可変波長光
の波長を制御する波長制御手段と、 前記可変波長光源が生成する可変波長光を、前記可変波
長光源と前記光変調手段との間から取り出す光分波手段
と、 を備えた請求項3に記載の光波長測定装置。
7. A wavelength control means for controlling the wavelength of the variable wavelength light generated by the variable wavelength light source based on the wavelength of the variable wavelength light obtained by the wavelength measurement means; and a variable wavelength light generated by the variable wavelength light source. The optical wavelength measuring device according to claim 3, further comprising: a light demultiplexing unit that extracts light from between the variable wavelength light source and the optical modulation unit.
【請求項8】前記参照光デバイスは、分散補償ファイ
バ、分散補償ファイバブラッググレーティングおよびシ
ングルモード光ファイバの内のいずれか一つである、請
求項2ないし7のいずれか一項に記載の光波長測定装
置。
8. The optical wavelength according to claim 2, wherein said reference optical device is any one of a dispersion compensating fiber, a dispersion compensating fiber Bragg grating, and a single mode optical fiber. measuring device.
【請求項9】前記参照光測定手段は、前記参照光デバイ
スを透過した前記可変波長光の振幅を測定する、請求項
1に記載の光波長測定装置。
9. The optical wavelength measuring apparatus according to claim 1, wherein said reference light measuring means measures the amplitude of said variable wavelength light transmitted through said reference light device.
【請求項10】前記参照光デバイスを透過した可変波長
光の振幅と波長との対応を記録する参照光デバイス特性
記録手段と、 前記参照光デバイス特性記録手段の記録内容および前記
可変波長光の振幅から前記可変波長光の波長を求める波
長測定手段と、 を備えた請求項9に記載の光波長測定装置。
10. A reference light device characteristic recording means for recording a correspondence between an amplitude and a wavelength of the variable wavelength light transmitted through the reference light device, a recording content of the reference light device characteristic recording means, and an amplitude of the variable wavelength light. The optical wavelength measuring apparatus according to claim 9, further comprising: a wavelength measuring unit that obtains a wavelength of the variable wavelength light from the following.
【請求項11】強度変調に使用する変調用周波数を与え
る変調用信号を生成する変調用信号生成手段と、 前記変調用周波数で強度変調した前記可変波長光を被測
定デバイスに供給する光変調手段と、 前記被測定デバイスを透過した前記可変波長光と前記変
調用信号との位相差を測定するDUT計測手段を備え
た、 請求項9に記載の光波長測定装置。
11. A modulation signal generating means for generating a modulation signal for providing a modulation frequency used for intensity modulation, and an optical modulation means for supplying the variable wavelength light intensity-modulated at the modulation frequency to a device under test. The optical wavelength measurement apparatus according to claim 9, further comprising: a DUT measurement unit configured to measure a phase difference between the variable wavelength light transmitted through the device to be measured and the modulation signal.
【請求項12】目標とする前記可変波長光源の可変波長
光の目標波長に基づき前記参照光デバイスを透過する可
変波長光の目標振幅を計算する目標振幅計算手段と、 前記振幅と前記目標振幅とを比較する振幅比較手段と、 を備えた請求項9に記載の光波長測定装置。
12. A target amplitude calculating means for calculating a target amplitude of the variable wavelength light transmitted through the reference light device based on a target wavelength of the variable wavelength light of the target variable wavelength light source; The optical wavelength measurement device according to claim 9, further comprising: an amplitude comparison unit that compares the two.
【請求項13】目標とする前記可変波長光源の可変波長
光の目標波長と前記波長測定手段の求めた前記可変波長
光の波長とを比較する波長比較手段、 を備えた請求項10に記載の光波長測定装置。
13. A wavelength comparing means according to claim 10, further comprising: a wavelength comparing means for comparing a target wavelength of said variable wavelength light of said variable wavelength light source with a wavelength of said variable wavelength light obtained by said wavelength measuring means. Optical wavelength measurement device.
【請求項14】前記波長測定手段の求めた前記可変波長
光の波長に基づき前記可変波長光源の可変波長光の波長
を制御する波長制御手段と、 前記可変波長光源の可変波長光を、前記可変波長光源と
前記光変調手段との間から取り出す光分波手段と、 を備えた請求項10に記載の光波長測定装置。
14. A wavelength control means for controlling the wavelength of the variable wavelength light of the variable wavelength light source based on the wavelength of the variable wavelength light obtained by the wavelength measuring means; The optical wavelength measuring device according to claim 10, further comprising: a light demultiplexing unit that extracts light between a wavelength light source and the light modulating unit.
【請求項15】前記参照光デバイスは、12C2H213C
2H2、H13C14N、アルゴン、キセノンおよびクリプトンの
内のいずれか一つである、請求項9ないし14のいずれ
か一項に記載の光波長測定装置。
15. The reference light device according to claim 12 , wherein said reference light device is 12 C 2 H 2 , 13 C
2 H 2, H 13 C 14 N, argon, any one of xenon and krypton, the light wavelength measuring apparatus according to any one of claims 9 to 14.
【請求項16】可変波長光源が生成する可変波長光の波
長を測定する光波長測定装置であって、 前記可変波長光が透過し、透過した可変波長光の物理量
と波長との関係が既知である参照光デバイスと、 前記参照光デバイスを透過した前記可変波長光の物理量
を測定する参照光測定手段と、 前記物理量と、前記参照光デバイスを透過した前記可変
波長光の波長との対応を記録する参照光デバイス特性記
録手段と、 前記参照光デバイス特性記録手段の記録内容および測定
された前記物理量から前記可変波長光の波長を求める波
長測定手段と、 を備えた光波長測定装置。
16. An optical wavelength measuring device for measuring the wavelength of variable wavelength light generated by a variable wavelength light source, wherein the variable wavelength light is transmitted, and the relationship between the physical quantity and the wavelength of the transmitted variable wavelength light is known. A reference light device; reference light measuring means for measuring a physical quantity of the variable wavelength light transmitted through the reference light device; and recording correspondence between the physical quantity and the wavelength of the variable wavelength light transmitted through the reference light device. An optical wavelength measuring apparatus comprising: a reference light device characteristic recording unit; and a wavelength measuring unit that determines the wavelength of the variable wavelength light from the recorded content of the reference light device characteristic recording unit and the measured physical quantity.
【請求項17】可変波長光を生成する可変波長光源と、 前記可変波長光が透過し、透過した可変波長光の物理量
と波長との関係が既知である参照光デバイスと、 前記参照光デバイスを透過した前記可変波長光の物理量
を測定する参照光測定手段と、 を有する光波長測定装置の前記可変波長光の波長を測定
する光波長測定方法であって、 前記物理量と、前記参照光デバイスを透過した前記可変
波長光の波長との対応を記録する参照光デバイス特性記
録工程と、 前記参照光デバイス特性記録手段の記録内容および測定
された前記物理量から前記可変波長光の波長を求める波
長測定工程と、 を備えた光波長測定方法。
17. A variable wavelength light source for generating a variable wavelength light, a reference light device through which the variable wavelength light is transmitted, and a relation between a physical quantity and a wavelength of the transmitted variable wavelength light is known, and Reference light measuring means for measuring the physical quantity of the transmitted variable wavelength light, and a light wavelength measuring method for measuring the wavelength of the variable wavelength light of the optical wavelength measuring device, comprising: the physical quantity and the reference light device. A reference light device characteristic recording step of recording the correspondence with the wavelength of the transmitted variable wavelength light; and a wavelength measuring step of obtaining the wavelength of the variable wavelength light from the recorded contents of the reference light device characteristic recording means and the measured physical quantity. And a light wavelength measuring method comprising:
【請求項18】可変波長光を生成する可変波長光源と、 前記可変波長光が透過し、透過した可変波長光の物理量
と波長との関係が既知である参照光デバイスと、 前記参照光デバイスを透過した前記可変波長光の物理量
を測定する参照光測定手段と、 を有する光波長測定装置の前記可変波長光の波長を測定
する光波長測定処理をコンピュータに実行させるための
プログラムを記録したコンピュータによって読み取り可
能な記録媒体であって、 前記物理量と、前記参照光デバイスを透過した前記可変
波長光の波長との対応を記録する参照光デバイス特性記
録処理と、 前記参照光デバイス特性記録手段の記録内容および測定
された前記物理量から前記可変波長光の波長を求める波
長測定処理と、 をコンピュータに実行させるためのプログラムを記録し
たコンピュータによって読み取り可能な記録媒体。
18. A variable wavelength light source for generating a variable wavelength light, a reference light device through which the variable wavelength light is transmitted, and a relation between a physical quantity and a wavelength of the transmitted variable wavelength light, and a reference light device, A reference light measuring means for measuring a physical quantity of the transmitted variable wavelength light, and a computer storing a program for causing a computer to execute a light wavelength measurement process for measuring the wavelength of the variable wavelength light of the optical wavelength measuring device having: A readable recording medium, comprising: a reference light device characteristic recording process for recording a correspondence between the physical quantity and the wavelength of the variable wavelength light transmitted through the reference light device; and a recording content of the reference light device characteristic recording unit. And a wavelength measurement process for determining the wavelength of the variable wavelength light from the measured physical quantity, and a program for causing a computer to execute Recording medium readable recording computer.
【請求項19】可変波長光を生成する可変波長光源と、 前記可変波長光が透過し、透過した可変波長光の物理量
と波長との関係が既知である参照光デバイスと、 前記参照光デバイスを透過した前記可変波長光の物理量
を測定する参照光測定手段と、 を有する光波長測定装置の前記可変波長光の波長を測定
する光波長測定処理をコンピュータに実行させるための
プログラムであって、 前記物理量と、前記参照光デバイスを透過した前記可変
波長光の波長との対応を記録する参照光デバイス特性記
録処理と、 前記参照光デバイス特性記録手段の記録内容および測定
された前記物理量から前記可変波長光の波長を求める波
長測定処理と、 をコンピュータに実行させるためのプログラム。
19. A variable wavelength light source for generating variable wavelength light, a reference light device through which the variable wavelength light is transmitted, and a relation between a physical quantity and a wavelength of the transmitted variable wavelength light is known, and Reference light measuring means for measuring a physical quantity of the transmitted variable wavelength light, and a program for causing a computer to execute an optical wavelength measurement process of measuring the wavelength of the variable wavelength light of the optical wavelength measurement device, comprising: A reference light device characteristic recording process for recording the correspondence between the physical quantity and the wavelength of the variable wavelength light transmitted through the reference light device; and the variable wavelength from the recorded contents of the reference light device characteristic recording means and the measured physical quantity. A wavelength measurement process for determining the wavelength of light, and a program for causing a computer to execute.
JP2001062119A 2001-03-06 2001-03-06 Optical wavelength measuring device, method, program, and recording medium recording the program Expired - Fee Related JP4842447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001062119A JP4842447B2 (en) 2001-03-06 2001-03-06 Optical wavelength measuring device, method, program, and recording medium recording the program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001062119A JP4842447B2 (en) 2001-03-06 2001-03-06 Optical wavelength measuring device, method, program, and recording medium recording the program

Publications (2)

Publication Number Publication Date
JP2002257632A true JP2002257632A (en) 2002-09-11
JP4842447B2 JP4842447B2 (en) 2011-12-21

Family

ID=18921309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001062119A Expired - Fee Related JP4842447B2 (en) 2001-03-06 2001-03-06 Optical wavelength measuring device, method, program, and recording medium recording the program

Country Status (1)

Country Link
JP (1) JP4842447B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103674287A (en) * 2013-12-16 2014-03-26 中国电子科技集团公司第四十一研究所 Laser wavelength monitoring device based on etalons

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01291141A (en) * 1988-05-18 1989-11-22 Kokusai Denshin Denwa Co Ltd <Kdd> System of measuring dispersion characteristic of optical fiber
JPH0319933A (en) * 1989-06-14 1991-01-29 Toyota Autom Loom Works Ltd Prevention of pattern deformation in electric dobby of weaving machine
JPH0391980A (en) * 1989-09-04 1991-04-17 Matsushita Electric Ind Co Ltd Wavelength tunable laser device
JPH05118922A (en) * 1991-10-24 1993-05-14 Advantest Corp Diffraction grating angle-wavelength characteristic measuring method for spectrometer
WO1994004894A1 (en) * 1992-08-25 1994-03-03 Kabushiki Kaisha Toshiba Optical wavelength measuring instrument
JPH0720004A (en) * 1993-07-06 1995-01-24 Kokusai Denshin Denwa Co Ltd <Kdd> Method and device for measuring dispersion of light wavelength
JPH11121854A (en) * 1997-10-16 1999-04-30 Ushio Sogo Gijutsu Kenkyusho:Kk Light source device
JP2000035376A (en) * 1998-04-21 2000-02-02 Hewlett Packard Co <Hp> Optical component tester
JP2000304655A (en) * 1999-04-22 2000-11-02 Kdd Corp Transmission characteristic measurement system
JP2002071512A (en) * 2000-09-05 2002-03-08 Nippon Telegr & Teleph Corp <Ntt> Measuring device of dependency on chromatic dispersion and loss wavelength

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01291141A (en) * 1988-05-18 1989-11-22 Kokusai Denshin Denwa Co Ltd <Kdd> System of measuring dispersion characteristic of optical fiber
JPH0319933A (en) * 1989-06-14 1991-01-29 Toyota Autom Loom Works Ltd Prevention of pattern deformation in electric dobby of weaving machine
JPH0391980A (en) * 1989-09-04 1991-04-17 Matsushita Electric Ind Co Ltd Wavelength tunable laser device
JPH05118922A (en) * 1991-10-24 1993-05-14 Advantest Corp Diffraction grating angle-wavelength characteristic measuring method for spectrometer
WO1994004894A1 (en) * 1992-08-25 1994-03-03 Kabushiki Kaisha Toshiba Optical wavelength measuring instrument
JPH0720004A (en) * 1993-07-06 1995-01-24 Kokusai Denshin Denwa Co Ltd <Kdd> Method and device for measuring dispersion of light wavelength
JPH11121854A (en) * 1997-10-16 1999-04-30 Ushio Sogo Gijutsu Kenkyusho:Kk Light source device
JP2000035376A (en) * 1998-04-21 2000-02-02 Hewlett Packard Co <Hp> Optical component tester
JP2000304655A (en) * 1999-04-22 2000-11-02 Kdd Corp Transmission characteristic measurement system
JP2002071512A (en) * 2000-09-05 2002-03-08 Nippon Telegr & Teleph Corp <Ntt> Measuring device of dependency on chromatic dispersion and loss wavelength

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103674287A (en) * 2013-12-16 2014-03-26 中国电子科技集团公司第四十一研究所 Laser wavelength monitoring device based on etalons

Also Published As

Publication number Publication date
JP4842447B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
CN103828146B (en) Generate that wavelength is continuous and system and method for scanning of defined wavelength versus both time from laser dynamic self-adapting
JP3131144B2 (en) Polarization mode dispersion measurement device
CA1195138A (en) Measuring chromatic dispersion of fibers
US4817100A (en) Monitoring and controlling source stability
JPH10339668A (en) Light wavemeter and light wavelength regulator
US8243369B2 (en) Wavelength monitored and stabilized source
CN108429123B (en) Laser pulse and spectrum generation using time talbot effect
US7068360B2 (en) Optical sampling waveform measuring apparatus
JP4414341B2 (en) Optical spectrum analyzer using Brillouin scattering and measurement method related thereto
US7649917B2 (en) Method and system for continuous sweeping of a tunable laser
JP2006337833A (en) Wavelength variable optical frequency comb generator
JP3996815B2 (en) Optical frequency synthesizer
CN111947803B (en) High-precision temperature measurement method based on weak measurement of pump light modulation dynamic range
GB2389902A (en) Fibre optic temperature and flow rate sensing
JP2002257632A (en) Optical wavelength measuring instrument and its method, program and recording medium with the program recorded thereon
US6587190B2 (en) System and method for measuring chromatic dispersion in optical fiber
KR20010053083A (en) An improved grating writing system
US20220236179A1 (en) Gas absorbance spectrum measurement device frequency locking method, and gas absorbance spectrum measurement method
JP2004061126A (en) Optical frequency measuring apparatus and measuring method
US6433865B1 (en) Apparatus and method for measuring optical characteristics and recording medium
JPH06331495A (en) Device and method for measuring zero dispersion wavelength
RU2805291C1 (en) Device for measuring the parameters of a fiber-optic resonator using a tunable source of optical radiation and compensation for the nonlinearity of frequency tuning
JPH02257026A (en) Laser frequency stability measuring instrument
JP2002228548A (en) Wavelength dispersion distribution measuring apparatus and measuring method
Dennis et al. Relative group delay measurements with 0.3 ps resolution: Toward 40 Gbit/s component metrology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees