JP2002243813A - Arithmetic unit for computing deterioration of capacity of secondary battery - Google Patents

Arithmetic unit for computing deterioration of capacity of secondary battery

Info

Publication number
JP2002243813A
JP2002243813A JP2001040555A JP2001040555A JP2002243813A JP 2002243813 A JP2002243813 A JP 2002243813A JP 2001040555 A JP2001040555 A JP 2001040555A JP 2001040555 A JP2001040555 A JP 2001040555A JP 2002243813 A JP2002243813 A JP 2002243813A
Authority
JP
Japan
Prior art keywords
battery capacity
battery
discharge current
deterioration
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001040555A
Other languages
Japanese (ja)
Inventor
Norihiko Hirata
典彦 枚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001040555A priority Critical patent/JP2002243813A/en
Publication of JP2002243813A publication Critical patent/JP2002243813A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an arithmetic unit for computing the deterioration of capacity of second battery that does not require any test, etc., for acquiring correlative data. SOLUTION: The battery capacity computing section 603 of this arithmetic unit calculates a change ΔSOC in the charged state of a secondary battery from the integration starting time to the integration ending time of the discharge current Id of the battery, based on the open-circuit voltage E1 at the integration starting time, the open-circuit voltage E2 at the integration ending time, and the correlation between the open-circuit voltages E1 and E2 and the charged state of the battery. In addition, the computing section 603 calculates the deteriorated-time capacity C of the battery based on an integrated discharge current value ΔAh calculated based on the discharge current Id by means of an integrated value computing section 601 and the change ΔSOC. Moreover, the deterioration rate computing section 605 of the arithmetic unit calculates the capacity deterioration rate 5 of the battery based on the calculated deterioration-time capacity C and initial capacity CO of the battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池の劣化を
演算する電池容量劣化演算装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery capacity deterioration calculating device for calculating deterioration of a secondary battery.

【0002】[0002]

【従来の技術】二次電池の特性の一つとして、経時劣化
により電池容量が低下することがあげられる。すなわ
ち、劣化した二次電池の電池容量は、初期(新品時)の
電池容量よりも小さくなる。そのため、このような特性
を有する二次電池をハイブリッド車両に搭載した場合に
は、電池容量の劣化に応じた適切な制御を行うために、
電池容量劣化を何らかの方法で求める必要がある。
2. Description of the Related Art One of the characteristics of a secondary battery is that the battery capacity decreases due to aging. That is, the battery capacity of the deteriorated secondary battery is smaller than the initial (new) battery capacity. Therefore, when a secondary battery having such characteristics is mounted on a hybrid vehicle, in order to perform appropriate control according to the deterioration of the battery capacity,
It is necessary to determine the battery capacity deterioration by some method.

【0003】従来、ハイブリッド車両において二次電池
の電池容量の劣化を算出する際には、実際に試験を行っ
て電池の内部抵抗劣化と容量劣化との相関を予め求め、
この相関をテーブルとして備えておく。そして、走行時
の充放電データから得られる内部抵抗劣化と前記相関テ
ーブルとを用いて、電池の容量劣化を算出するようにし
ていた。
Conventionally, when calculating the deterioration of the battery capacity of a secondary battery in a hybrid vehicle, a correlation between the internal resistance deterioration and the capacity deterioration of the battery is obtained in advance by actually performing a test.
This correlation is prepared as a table. Then, the capacity deterioration of the battery is calculated using the internal resistance deterioration obtained from the charge / discharge data during traveling and the correlation table.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た電池容量劣化演算方法では、容量劣化演算データであ
る相関テーブルを得るために予め走行等による試験が必
要となる。また、この相関は電池の構成材料によって異
なり、電池の種別毎に試験を行わなければならず、工数
がかかる。従って、この試験を行うために、製造コスト
が高くなってしまうといった問題があった。
However, in the above-described battery capacity deterioration calculation method, a test such as running is required in advance to obtain a correlation table which is capacity deterioration calculation data. Further, this correlation differs depending on the constituent materials of the battery, and a test must be performed for each type of battery, which requires a lot of man-hours. Therefore, there is a problem that the production cost is increased to perform this test.

【0005】本発明の目的は、相関データ取得のための
試験等を不要とすることで、製造コストを低減すること
のできる電池容量劣化演算装置を提供することにある。
[0005] It is an object of the present invention to provide a battery capacity deterioration calculating device which can reduce a manufacturing cost by eliminating a test or the like for obtaining correlation data.

【0006】[0006]

【課題を解決するための手段】発明の実施の形態を示す
図1、図2、図6および図7に対応付けて説明する。 (1)図1および図2に対応付けて説明すると、請求項
1の発明による電池容量劣化演算装置6は、二次電池4
の放電電流Idを検出する電流センサ8と、二次電池4
の開放電圧Eを検出する電圧センサ7と、電流センサ8
により検出された放電電流Idに基づいて放電電流積算
値ΔAhを算出する放電電流積算部601と、(a)放
電電流積算開始時の開放電圧E1、(b)放電電流積算終
了時の開放電圧E2および(c)二次電池4の開放電圧E
と充電状態との相関関係に基づいて、放電電流積算開始
から放電電流積算終了までの充電状態の変化ΔSOCを算
出する充電状態演算部603と、充電状態の変化ΔSOC
および放電電流積算値ΔAhに基づいて劣化時電池容量
Cを算出する電池容量演算部603と、劣化時電池容量
Cと予め記憶された二次電池4の初期電池容量C0とに基
づいて、二次電池4の電池容量劣化βを算出する劣化演
算部605とを備えて上述の目的を達成する。 (2)図1,図2および図6に対応付けて説明すると、
請求項2の発明は、請求項1に記載の電池容量劣化演算
装置6において、放電電流値Idが、二次電池4の放電
率容量がほぼ一定となる放電電流範囲内(0≦Id≦
X)であるときに放電電流積算値ΔAhの演算を開始す
るようにしたものである。 (3)図2,図6および図7に対応付けて説明すると、
請求項3の発明は、請求項2に記載の電池容量劣化演算
装置6において、放電電流積算値ΔAhが所定値ΔAh
0以上で、かつ、充電状態の変化ΔSOCが所定変化量Y
以上となるまで放電電流積算を行うようにしたものであ
る。 (4)図2に対応付けて説明すると、請求項4の発明
は、請求項1乃至請求項3のいずれかに記載の電池容量
劣化演算装置6において、二次電池4の電池温度を検出
する温度センサ9と、電池容量演算部603で算出され
た劣化時電池容量Cを初期電池容量C0と同一温度条件の
電池容量α・Cに補正する温度補正演算部604とを設
け、温度補正演算部604で補正された電池容量α・C
と初期電池容量C0とに基づいて電池容量劣化βを算出す
るようにしたものである。
An embodiment of the present invention will be described with reference to FIGS. 1, 2, 6 and 7. FIG. (1) Explaining in connection with FIG. 1 and FIG. 2, the battery capacity deterioration calculating device 6 according to the first embodiment of the present invention
Current sensor 8 for detecting the discharge current Id of the secondary battery 4
Voltage sensor 7 for detecting the open-circuit voltage E of the
A discharge current integrating section 601 for calculating a discharge current integrated value ΔAh based on the discharge current Id detected by the above (a), an open voltage E1 at the start of discharge current integration, and (b) an open voltage E2 at the end of discharge current integration. And (c) the open circuit voltage E of the secondary battery 4
A state-of-charge calculator 603 for calculating a change in state of charge ΔSOC from the start of discharge current integration to the end of discharge current integration based on the correlation between the state of charge and the state of charge;
And a battery capacity calculating unit 603 for calculating the battery capacity C at the time of deterioration based on the discharge current integrated value ΔAh, and the secondary battery capacity C0 based on the battery capacity C at the time of deterioration and the initial battery capacity C0 of the secondary battery 4 stored in advance. The above-described object is achieved by including a deterioration calculation unit 605 for calculating the battery capacity deterioration β of the battery 4. (2) When described in association with FIG. 1, FIG. 2 and FIG.
According to a second aspect of the present invention, in the battery capacity deterioration calculating device 6 according to the first aspect, the discharge current value Id is within a discharge current range where the discharge rate capacity of the secondary battery 4 is substantially constant (0 ≦ Id ≦
X), the calculation of the integrated discharge current value ΔAh is started. (3) Explaining in association with FIG. 2, FIG. 6 and FIG.
According to a third aspect of the present invention, in the battery capacity deterioration calculating device 6 according to the second aspect, the discharge current integrated value ΔAh is a predetermined value ΔAh
0 or more, and the change in the state of charge ΔSOC is a predetermined change amount Y
Until the above, the discharge current integration is performed. (4) Explaining in connection with FIG. 2, the invention of claim 4 detects the battery temperature of the secondary battery 4 in the battery capacity deterioration calculating device 6 according to any one of claims 1 to 3. A temperature sensor 9 and a temperature correction calculator 604 for correcting the deteriorated battery capacity C calculated by the battery capacity calculator 603 to a battery capacity α · C under the same temperature condition as the initial battery capacity C0; Battery capacity α · C corrected in 604
The battery capacity deterioration β is calculated based on the initial battery capacity C0.

【0007】なお、上記課題を解決するための手段の項
では、本発明を分かり易くするために発明の実施の形態
の図を用いたが、これにより本発明が発明の実施の形態
に限定されるものではない。
[0007] In the section of the means for solving the above problems, the drawings of the embodiments of the present invention are used to make the present invention easy to understand, but the present invention is not limited to the embodiments of the present invention. Not something.

【0008】[0008]

【発明の効果】(1)請求項1の発明によれば、劣化時
電池容量は放電時の放電電流積算値と充電状態の変化と
により算出され、さらに、充電状態の変化は開放電圧と
充電状態との相関関係および放電時の開放電圧により算
出される。開放電圧と充電状態との相関関係は、二次電
池の劣化の度合いが変化しても変化することがないた
め、劣化した二次電池であっても、電池初期時の相関関
係さえ分かっていればその相関関係を用いて充電状態を
求めることができる。その結果、従来の内部抵抗劣化と
容量劣化との相関テーブルを予め試験等により求めてお
く必要が無く、この相関テーブルを求める工数や時間を
削減でき、従って、製造コストを低減することができ
る。 (2)請求項2の発明によれば、請求項1の発明の効果
に加えて、放電率容量がほぼ一定となる放電電流範囲内
で放電電流積算値の演算を開始することにより、劣化時
電池容量の演算精度の向上、すなわち、電池容量劣化の
演算精度の向上を図ることができる。 (3)請求項3の発明によれば、放電電流積算値が所定
値以上で、かつ、充電状態の変化が所定変化量以上とな
るまで放電電流積算を行うことにより、さらに電池容量
劣化の演算精度の向上を図ることができる。 (4)請求項4の発明によれば、電池容量演算部で算出
された劣化時電池容量を初期電池容量と同一温度条件の
電池容量に補正し、その補正された電池容量と初期電池
容量とに基づいて電池容量劣化を算出するようにしたの
で、さらに電池容量劣化の演算精度の向上を図ることが
できる。
(1) According to the first aspect of the present invention, the battery capacity at the time of deterioration is calculated from the integrated value of the discharge current at the time of discharging and the change of the state of charge. It is calculated from the correlation with the state and the open circuit voltage at the time of discharge. Since the correlation between the open-circuit voltage and the state of charge does not change even if the degree of deterioration of the secondary battery changes, even for a deteriorated secondary battery, even the correlation at the initial stage of the battery is known. For example, the state of charge can be obtained using the correlation. As a result, there is no need to obtain a conventional correlation table between the internal resistance deterioration and the capacity deterioration by a test or the like in advance, and the man-hour and time for obtaining the correlation table can be reduced, and therefore, the manufacturing cost can be reduced. (2) According to the invention of claim 2, in addition to the effect of the invention of claim 1, by starting the calculation of the discharge current integrated value within the discharge current range where the discharge rate capacity becomes substantially constant, The calculation accuracy of the battery capacity, that is, the calculation accuracy of the battery capacity deterioration can be improved. (3) According to the third aspect of the invention, the discharge current integration is performed until the integrated discharge current value is equal to or more than the predetermined value and the change in the state of charge is equal to or more than the predetermined change amount, thereby further calculating the battery capacity deterioration. Accuracy can be improved. (4) According to the invention of claim 4, the battery capacity at the time of deterioration calculated by the battery capacity calculation unit is corrected to a battery capacity under the same temperature condition as the initial battery capacity, and the corrected battery capacity and the initial battery capacity are corrected. Since the battery capacity deterioration is calculated based on the following equation, the calculation accuracy of the battery capacity deterioration can be further improved.

【0009】[0009]

【発明の実施の形態】以下、図1〜図7を参照して本発
明の実施の形態を説明する。図1は本発明による電池容
量劣化演算装置を備えるハイブリッド電気自動車(HE
V)を示す図であり、パラレルHEVの駆動系の概略構
成を示す図である。エンジン1の主軸には、電動モータ
2の回転子が直結されている。エンジン1および/また
はモータ2の駆動力は、図示しない駆動系を介して車軸
に伝達される。インバータ3は二次電池で構成されたバ
ッテリー4からの直流電力を交流電力に変換してモータ
2に供給するとともに、後述する発電モード時にはモー
タ2からの交流電力を直流電力に変換してバッテリー4
へ供給する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a hybrid electric vehicle (HE) equipped with a battery capacity deterioration calculating device according to the present invention.
FIG. 5D is a diagram showing a schematic configuration of a drive system of the parallel HEV. The rotor of the electric motor 2 is directly connected to the main shaft of the engine 1. The driving force of the engine 1 and / or the motor 2 is transmitted to the axle via a drive system (not shown). The inverter 3 converts the DC power from the battery 4 composed of a secondary battery into AC power and supplies the AC power to the motor 2, and converts the AC power from the motor 2 into DC power in the power generation mode described later to convert the DC power into DC power.
Supply to

【0010】バッテリー4は複数の単セルから構成さ
れ、各セルのセル電圧はセルコントローラ5により検出
され、その検出値はバッテリーコントローラ6へと出力
される。単セルには、例えば、リチウムイオン電池等が
用いられる。バッテリーコントローラ6には、セルコン
トローラ5から送られたセル電圧値、電圧センサ7で検
出されるバッテリー4の総電圧値、電流センサ8で検出
される充放電電流値および温度センサ9で検出されるバ
ッテリー4の温度値が入力される。マイクロコンピュー
タとその周辺部品から構成されるバッテリーコントロー
ラ6は、これらの値に基づいてバッテリー4の充放電制
御を行うとともに、後述するプログラムに従ってバッテ
リー4の電池容量劣化を検出する。
The battery 4 is composed of a plurality of single cells. The cell voltage of each cell is detected by a cell controller 5 and the detected value is output to a battery controller 6. For example, a lithium ion battery or the like is used for the single cell. In the battery controller 6, the cell voltage value sent from the cell controller 5, the total voltage value of the battery 4 detected by the voltage sensor 7, the charge / discharge current value detected by the current sensor 8, and the temperature detected by the temperature sensor 9. The temperature value of the battery 4 is input. The battery controller 6 composed of the microcomputer and its peripheral parts controls the charging and discharging of the battery 4 based on these values, and detects the deterioration of the battery capacity of the battery 4 according to a program described later.

【0011】パラレルHEVにおけるモータ2の運転モ
ードには、車軸を駆動する駆動モードとバッテリー4を
充電する発電モードとがある。車両の駆動時、すなわち
加速時,平坦路走行時や登坂時等に、モータ2へ電力を
供給するバッテリー4が充分な充電状態にある場合に
は、モータ2を駆動モードで運転してエンジン1とモー
タ2の両方の両駆動力により走行する。ただし、バッテ
リー4の充電状態が低い場合にはモータ2を発電モード
で運転して、エンジン1の駆動力により走行を行うとと
もにモータ2の回転子を回転し、モータ2による発電を
行ってバッテリー4を充電する。
The operation modes of the motor 2 in the parallel HEV include a drive mode for driving the axle and a power generation mode for charging the battery 4. When the battery 4 for supplying electric power to the motor 2 is in a sufficiently charged state when the vehicle is driven, that is, when accelerating, traveling on a flat road, climbing a hill, or the like, the motor 2 is operated in the drive mode and the engine 1 is driven. The vehicle runs with both driving forces of the motor and the motor 2. However, when the state of charge of the battery 4 is low, the motor 2 is operated in the power generation mode, the vehicle is driven by the driving force of the engine 1, the rotor of the motor 2 is rotated, and the power is generated by the motor 2. Charge.

【0012】一方、車両の制動時、すなわち減速時や降
坂時などには、駆動系を介した車輪の回転力によってエ
ンジン1およびモータ2が駆動される。このとき、モー
タ2を発電モードで運転し、回生エネルギーを吸収して
バッテリー4を充電する。
On the other hand, when the vehicle is braked, that is, when the vehicle decelerates or descends a slope, the engine 1 and the motor 2 are driven by the rotational force of the wheels via the drive system. At this time, the motor 2 is operated in the power generation mode, and the battery 4 is charged by absorbing regenerative energy.

【0013】図2は、電池容量劣化演算装置であるバッ
テリーコントローラ6の機能ブロック図を示したもので
ある。バッテリーコントローラ6はバッテリー制御のた
めの各種演算を行う演算部60と、それらの演算結果に
基づいてバッテリー4やインバータ3を制御する制御部
61とを有している。演算部60は積算値演算部60
1、開放電圧演算部602、電池容量演算部603、温
度補正演算部604および劣化率演算部605を有して
いる。
FIG. 2 is a functional block diagram of a battery controller 6 which is a battery capacity deterioration calculating device. The battery controller 6 includes a calculation unit 60 that performs various calculations for battery control, and a control unit 61 that controls the battery 4 and the inverter 3 based on the calculation results. The calculation unit 60 is an integrated value calculation unit 60
1, an open-circuit voltage calculator 602, a battery capacity calculator 603, a temperature correction calculator 604, and a deterioration rate calculator 605.

【0014】記憶部62には、バッテリー4(図1参
照)の初期電池容量C0や、開放電圧と充電状態(state
of charge、以下ではSOCと記す)との相関関係を表す開
放電圧−SOC相関マップなどの制御パラメータが予め記
憶されているとともに、後述する各演算部の演算結果が
それぞれ記憶される。SOCはパーセンテージで表示さ
れ、バッテリー4が満充電状態のときがSOC=100%
であり、放電とともにSOCは減少する。
The storage unit 62 stores an initial battery capacity C0 of the battery 4 (see FIG. 1), an open circuit voltage and a charging state (state).
A control parameter such as an open-circuit voltage-SOC correlation map indicating a correlation with a charge of charge (hereinafter, referred to as SOC) is stored in advance, and a calculation result of each calculation unit described later is stored. SOC is displayed as a percentage, and when battery 4 is fully charged, SOC = 100%
And the SOC decreases with the discharge.

【0015】積算値演算部601では、電流センサ8に
より検出される放電電流値Idから放電電流積算値ΔA
h=ΣId・Δtを演算する。Δtは、放電電流値Id
の検出間隔である。開放電圧演算部602では、車両走
行時の電流値Iおよび電圧値Vを電流センサ8および電
圧センサ7によりサンプリングし、そのサンプリングデ
ータから得られるIV特性に基づいてバッテリー4の開
放電圧を算出する。
The integrated value calculating section 601 calculates the integrated discharge current value ΔA from the discharge current value Id detected by the current sensor 8.
Calculate h = ΣId · Δt. Δt is the discharge current value Id
Is the detection interval. The open-circuit voltage calculation unit 602 samples the current value I and the voltage value V when the vehicle is traveling by the current sensor 8 and the voltage sensor 7 and calculates the open-circuit voltage of the battery 4 based on the IV characteristics obtained from the sampled data.

【0016】図3はサンプリングデータの一例を示す図
であり、「×」マークがサンプリングデータを表してい
る。L1は放電電流積算開始時の開放電圧E1を算出する際
のサンプリングデータから得られるIV特性直線であ
り、L2は放電電流積算終了時の開放電圧E2を算出する際
のサンプリングデータから得られるIV特性直線であ
る。直線L1およびL2と電圧軸とが交わる点の電圧値が、
それぞれ積算開始時の開放電圧E1および積算終了時の開
放電圧E2である。
FIG. 3 is a diagram showing an example of the sampling data, in which "x" marks represent the sampling data. L1 is an IV characteristic line obtained from sampling data when calculating open circuit voltage E1 at the start of discharge current integration, and L2 is an IV characteristic obtained from sampling data when calculating open circuit voltage E2 at the end of discharge current integration. It is a straight line. The voltage value at the point where the straight lines L1 and L2 intersect the voltage axis is
An open voltage E1 at the start of integration and an open voltage E2 at the end of integration, respectively.

【0017】電池容量演算部603は、電流積算開始時
の開放電圧E1および積算終了時の開放電圧E2に対応する
SOC1(%)およびSOC2(%)を、記憶部62に記憶され
ている開放電圧−SOC相関マップから読み込む。図4は
開放電圧とSOCとの相関の一例を示す図であり、縦軸はS
OC(%)を表し、横軸は開放電圧(V)を表す。
The battery capacity calculator 603 corresponds to the open circuit voltage E1 at the start of current integration and the open circuit voltage E2 at the end of current integration.
SOC1 (%) and SOC2 (%) are read from the open circuit voltage-SOC correlation map stored in the storage unit 62. FIG. 4 is a diagram showing an example of the correlation between the open circuit voltage and the SOC, and the vertical axis represents S
OC (%) is shown, and the horizontal axis shows open-circuit voltage (V).

【0018】図4に示す開放電圧とSOCとの相関関係
は、バッテリー4の温度や劣化の度合いが変化しても変
化することがない。そのため、バッテリー4が劣化して
いても、初期電池の相関関係さえ分かっていればその相
関関係を用いてSOCを求めることができる。すなわち、
バッテリー4の劣化に依存することなく、開放電圧がE1
のときの電池状態はSOC1であり、開放電圧がE2のときの
電池状態はSOC2である。記憶部62にはこのような相関
関係に関するマップが記憶されている。
The correlation between the open-circuit voltage and the SOC shown in FIG. 4 does not change even if the temperature or the degree of deterioration of the battery 4 changes. Therefore, even if the battery 4 is deteriorated, the SOC can be obtained using the correlation as long as the correlation between the initial batteries is known. That is,
The open circuit voltage is E1 without depending on the deterioration of the battery 4.
In this case, the battery state is SOC1, and when the open circuit voltage is E2, the battery state is SOC2. The storage unit 62 stores a map relating to such a correlation.

【0019】電池容量演算部603では、積算値演算部
601で算出された放電電流積算値ΔAhと積算前後の
SOCの変化であるΔSOC=SOC1−SOC2とに基づいて、バッ
テリー4の電池容量Cが算出される。ここで、電池容量
C(Ah)とΔSOC(%)との積は、SOCがΔSOCだけ変
化する間の放電電流積算値ΔAhに等しいので、電池容
量Cは次式(1)を用いて算出される。
The battery capacity calculator 603 calculates the integrated discharge current value ΔAh calculated by the integrated value calculator 601 before and after the integration.
The battery capacity C of the battery 4 is calculated based on the SOC change ΔSOC = SOC1−SOC2. Here, since the product of the battery capacity C (Ah) and ΔSOC (%) is equal to the discharge current integrated value ΔAh while the SOC changes by ΔSOC, the battery capacity C is calculated using the following equation (1). You.

【数1】C=100×(ΔAh/ΔSOC) …(1)## EQU1 ## C = 100 × (ΔAh / ΔSOC) (1)

【0020】温度補正演算部604では、電池容量演算
部603で算出された電池容量を基準温度T0(例えば、
T0=25℃)における電池容量C(T0)への温度補正が行
われる。温度補正係数をαとすると、補正後の電池容量
C(T0)はC(T0)=α・Cと表される。図5は、放電率容
量(すなわち、放電電流値と電池容量との関係)を異な
る電池温度(10℃、20℃、40℃)について示した
ものである。図5に示す例では、電池温度が20℃のと
きの電池容量が3(Ah)であって、電池温度が40℃に
上昇すると電池容量は3.2(Ah)になり、電池温度が
10℃に低下すると電池容量は2(Ah)になる。
In the temperature correction calculating section 604, the battery capacity calculated in the battery capacity calculating section 603 is used as the reference temperature T0 (for example,
(T0 = 25 ° C.), the temperature is corrected to the battery capacity C (T0). If the temperature correction coefficient is α, the corrected battery capacity C (T0) is expressed as C (T0) = α · C. FIG. 5 shows the discharge rate capacity (that is, the relationship between the discharge current value and the battery capacity) for different battery temperatures (10 ° C., 20 ° C., and 40 ° C.). In the example shown in FIG. 5, when the battery temperature is 20 ° C., the battery capacity is 3 (Ah), and when the battery temperature rises to 40 ° C., the battery capacity becomes 3.2 (Ah), and the battery temperature becomes 10 (Ah). When the temperature drops to ° C., the battery capacity becomes 2 (Ah).

【0021】ところで、記憶部62に記憶されているバ
ッテリー4の初期電池容量C0は基準温度T0における電池
容量であるため、温度補正前の電池容量Cを用いて後述
する電池容量劣化率βを計算すると、電池温度の違いに
よる演算誤差が生じてしまう。そこで、本実施の形態で
は、式(1)で算出された電池容量Cを温度補正係数α
で補正し、その補正された電池容量α・Cを用いて電池
容量劣化率βを算出することにより演算精度の向上を図
っている。
Since the initial battery capacity C0 of the battery 4 stored in the storage unit 62 is the battery capacity at the reference temperature T0, a battery capacity deterioration rate β to be described later is calculated using the battery capacity C before temperature correction. Then, a calculation error due to a difference in battery temperature occurs. Therefore, in the present embodiment, the battery capacity C calculated by the equation (1) is calculated using the temperature correction coefficient α
The calculation accuracy is improved by calculating the battery capacity deterioration rate β using the corrected battery capacity α · C.

【0022】劣化率演算部605では、温度補正された
電池容量α・Cと初期電池容量C0とに基づいて、次式
(2)により電池容量劣化率β(%)が算出される。さ
らに、式(2)に式(1)のCを代入して式(3)が得
られる。
The deterioration rate calculating section 605 calculates the battery capacity deterioration rate β (%) by the following equation (2) based on the temperature-corrected battery capacity α · C and the initial battery capacity C0. Further, equation (3) is obtained by substituting C of equation (1) into equation (2).

【数2】 β=100−(α×C/C0)×100 …(2) β=100−α×{100×(ΔAh/ΔSOC)}×100/C0…(3)Β = 100− (α × C / C0) × 100 (2) β = 100−α × {100 × (ΔAh / ΔSOC)} × 100 / C0 (3)

【0023】図6および図7は、演算部60で実行され
る電池容量劣化率算出プログラムの処理手順を示すフロ
ーチャートである。車両のイグニッションスイッチがオ
ンされると、電池容量劣化率算出プログラムが起動さ
れ、図6および図7に示す一連の処理が所定間隔で、例
えば、所定時間毎にまたは所定走行距離毎に実行され
る。図6のステップS1では、記憶部62に記憶されて
いる電流積算値ΔAhをゼロにリセットする。ステップ
S2では、電流積算開始時の開放電圧E1が開放電圧演算
部602から読み込まれ、電池容量演算部603に入力
される。
FIGS. 6 and 7 are flowcharts showing the processing procedure of the battery capacity deterioration rate calculation program executed by the arithmetic unit 60. When the ignition switch of the vehicle is turned on, the battery capacity deterioration rate calculation program is started, and a series of processes shown in FIGS. 6 and 7 are executed at predetermined intervals, for example, at predetermined time intervals or at predetermined traveling distances. . In step S1 of FIG. 6, the integrated current value ΔAh stored in the storage unit 62 is reset to zero. In step S2, the open-circuit voltage E1 at the start of current integration is read from the open-circuit voltage calculator 602 and input to the battery capacity calculator 603.

【0024】次いで、ステップS3で電流センサ8によ
り放電電流値Idを検出したならば、ステップS4にお
いて放電電流値Idが所定条件0≦Id≦Xを満たすか
否か判定する。図5に示したように、電池容量は放電時
の電流値の大小により変化し、大きな電流値で放電した
場合の電池容量は小さな電流値で放電した場合より小さ
くなる。そのため、積算時の放電電流値が大きいと電池
容量に放電電流の影響が出てしまうので、ほぼ一定の電
池容量が得られる所定電流値X(A)より小さな放電電
流値のときに積算を行い、演算精度の向上を図るように
した。すなわち、ステップS4では、放電状態(0≦I
d)で、かつ、電流値Idが容量変化の影響をほとんど
受けないX(A)以下の場合にのみステップS5へ進
み、その他の場合にはステップS1へ戻る。
Next, if the discharge current value Id is detected by the current sensor 8 in step S3, it is determined in step S4 whether the discharge current value Id satisfies a predetermined condition 0 ≦ Id ≦ X. As shown in FIG. 5, the battery capacity changes depending on the magnitude of the current value at the time of discharging, and the battery capacity when discharged at a large current value becomes smaller than when discharged at a small current value. Therefore, if the discharge current value at the time of integration is large, the discharge current has an effect on the battery capacity. Therefore, integration is performed when the discharge current value is smaller than a predetermined current value X (A) at which a substantially constant battery capacity can be obtained. , To improve the calculation accuracy. That is, in step S4, the discharge state (0 ≦ I
Only if d) and the current value Id is less than or equal to X (A), which is hardly affected by the change in capacitance, the process proceeds to step S5; otherwise, the process returns to step S1.

【0025】ステップS5では、ステップS2で読み込
んだ開放電圧E1に対応する電池状態SOC1を、記憶部62
に記憶されている相関マップから電池容量演算部603
へ読み込む。ステップS6では、読み込まれたSOC1が4
0%≦SOC1≦60%か否かを判定し、YESと判定され
るとステップS7へ進み、NOと判定されるとステップ
S1へ戻る。本実施の形態では、バッテリー4のSOCが
30%以下となったら充電を開始し、SOCが70%とな
ったときに充電を終了するように制御している。そこ
で、ステップS6では、電池容量劣化率の演算最中に充
電が開始されないように、SOC1の範囲を40%≦SOC1≦
60%に制限している。
In step S5, the battery state SOC1 corresponding to the open circuit voltage E1 read in step S2 is stored in the storage unit 62.
From the correlation map stored in the storage unit 603
Read to In step S6, the read SOC1 is 4
It is determined whether 0% ≦ SOC1 ≦ 60%. If YES is determined, the process proceeds to step S7. If NO is determined, the process returns to step S1. In the present embodiment, control is performed so that charging starts when the SOC of the battery 4 becomes 30% or less, and ends when the SOC becomes 70%. Therefore, in step S6, the range of SOC1 is set to 40% ≦ SOC1 ≦ so that charging is not started during the calculation of the battery capacity deterioration rate.
It is limited to 60%.

【0026】続くステップS7からステップS12まで
は放電電流積算に関するステップであり、ステップS7
〜S12までの一連の処理をインターバル時間Δtで繰
り返し実行する。ステップS7では、積算値演算部60
1により放電電流積算値が演算され、その結果が記憶部
62に記憶される。すなわち、放電電流検出値Idとイ
ンターバル時間Δtとの積を算出し、その積Id・Δt
と記憶部62から読み込んだ放電電流積算値ΔAhとの
和(Id・Δt+ΔAh)を新たな放電電流積算値ΔA
hとして記憶部62に記憶する。
The following steps S7 to S12 are steps relating to discharge current integration.
A series of processes from S12 to S12 are repeatedly executed at the interval time Δt. In step S7, the integrated value calculation unit 60
The discharge current integrated value is calculated by 1 and the result is stored in the storage unit 62. That is, the product of the discharge current detection value Id and the interval time Δt is calculated, and the product Id · Δt
(Id · Δt + ΔAh) of the discharge current integrated value ΔAh read from the storage unit 62 and a new discharge current integrated value ΔA
h is stored in the storage unit 62.

【0027】次いで、ステップS8で電流センサ8によ
り放電電流値Idを検出したならば、ステップS9にお
いて放電電流値Idが所定条件0≦Id≦Xを満たすか
否か判定する。ステップS9でYESと判定されるとス
テップS10へ進み、NOと判定されると放電電流積算
を中断してステップS1へ戻る。ステップS10では、
開放電圧E2が開放電圧演算部602から読み込まれ、電
池容量演算部603に入力される。ステップS11で
は、ステップS10で読み込んだ開放電圧E2に対応する
電池状態SOC2を、記憶部62に記憶されている相関マッ
プから電池容量演算部603へ読み込む。
Next, if the discharge current value Id is detected by the current sensor 8 in step S8, it is determined in step S9 whether the discharge current value Id satisfies a predetermined condition 0 ≦ Id ≦ X. If YES is determined in step S9, the process proceeds to step S10. If NO is determined, the integration of the discharge current is interrupted and the process returns to step S1. In step S10,
The open-circuit voltage E2 is read from the open-circuit voltage calculator 602 and is input to the battery capacity calculator 603. In step S11, the battery state SOC2 corresponding to the open circuit voltage E2 read in step S10 is read from the correlation map stored in the storage unit 62 to the battery capacity calculation unit 603.

【0028】ステップS12では、積算開始時のSOC1と
ステップS11で得られたSOC2との差の絶対値|SOC1−
SOC2|が所定値Y(%)以上か否かを判定する。ここで
は、放電電流積算時のSOCの変化が小さ過ぎると演算精
度が悪くなるので、精度向上のためにSOCの変化が所定
値Y以上となるまで積算を実行させるようにした。すな
わち、ステップS12でNOと判定されるとステップS
7へ戻り、YESと判定されると図7のステップS13
へと進む。所定値Yは、例えば、20%のように設定さ
れる。
In step S12, the absolute value | SOC1− of the difference between SOC1 at the start of integration and SOC2 obtained in step S11.
It is determined whether SOC2 | is equal to or greater than a predetermined value Y (%). Here, if the change in the SOC at the time of integrating the discharge current is too small, the calculation accuracy deteriorates. Therefore, in order to improve the accuracy, the integration is performed until the change in the SOC becomes equal to or more than the predetermined value Y. That is, if NO is determined in step S12, step S
7, and if YES is determined, step S13 in FIG.
Proceed to. The predetermined value Y is set, for example, to 20%.

【0029】なお、ステップS6からステップS7へと
進んだときには、ステップS7ではステップS3で検出
された放電電流値Idを用いて放電電流積算を行った
が、ステップS12からステップS7へと戻った場合に
は、前回のステップS8で検出された放電電流値Idを
用いて放電電流積算が行われる。すなわち、ステップS
8で検出された放電電流値Idとインターバル時間Δt
との積を算出し、前回の放電電流積算により算出された
積算値を記憶部62から呼び出して算出した積との和を
求め、その和を新たな放電電流積算値ΔAhとして記憶
部62に記憶する。
When the process proceeds from step S6 to step S7, the discharge current integration is performed using the discharge current value Id detected in step S3 in step S7, but the process returns from step S12 to step S7. , The discharge current integration is performed using the discharge current value Id detected in the previous step S8. That is, step S
8 and the interval time Δt detected in step 8
Is calculated from the storage unit 62 to obtain the sum of the product calculated by the previous discharge current integration from the storage unit 62, and the sum is stored in the storage unit 62 as a new discharge current integration value ΔAh. I do.

【0030】ステップS13では、得られた放電電流積
算値ΔAhが所定値ΔAh0以上か否かを判定する。こ
れは、放電電流積算値ΔAhが電池容量演算精度が悪く
ならない程度に大きいか否かを判定するものであり、ス
テップS12の処理と同様に演算精度向上のために設け
たものである。所定値ΔAh0は、例えば、0.4(A
h)のようにに設定される。ステップS13でYESと
判定されるとステップS14へ進み、NOと判定される
とステップS1へ戻る。ステップS14では、ステップ
S7で算出された放電電流積算値ΔAhと積算前後のSO
Cの変化であるΔSOCとから、前述した式(1)を用いて
バッテリー4の現在の電池容量Cが算出される。
In step S13, it is determined whether or not the obtained discharge current integrated value ΔAh is equal to or greater than a predetermined value ΔAh0. This is for determining whether or not the discharge current integrated value ΔAh is large enough to prevent the battery capacity calculation accuracy from deteriorating, and is provided for improving the calculation accuracy as in the process of step S12. The predetermined value ΔAh0 is, for example, 0.4 (A
h). If YES is determined in step S13, the process proceeds to step S14, and if NO is determined, the process returns to step S1. In step S14, the discharge current integrated value ΔAh calculated in step S7 is compared with the SO before and after the integration.
The current battery capacity C of the battery 4 is calculated from ΔSOC, which is the change in C, using the above-described equation (1).

【0031】次いで、ステップS15では、温度センサ
9によりバッテリー4の電池温度Tを検出する。ステッ
プS16では、検出された電池温度Tに基づいて電池容
量Cを補正係数αで温度補正し、補正電池容量α・Cを
算出する。ステップS17では、ステップS16で算出
された補正電池容量α・Cと記憶部62に予め記憶され
ている初期電池容量C0とに基づいて、前述した式(2)
または式(3)により電池容量劣化率β(%)が算出さ
れる。
Next, in step S15, the battery temperature T of the battery 4 is detected by the temperature sensor 9. In step S16, the battery capacity C is temperature-corrected by the correction coefficient α based on the detected battery temperature T, and the corrected battery capacity α · C is calculated. In step S17, based on the corrected battery capacity α · C calculated in step S16 and the initial battery capacity C0 previously stored in the storage unit 62, the above-described equation (2) is used.
Alternatively, the battery capacity deterioration rate β (%) is calculated by equation (3).

【0032】以上説明したように、本実施の形態では、
開放電圧とSOCとの相関関係が、バッテリー4の温度や
劣化の程度に依らず変化しないことを利用し、開放電圧
−SOC相関を用いて車両走行時の開放電圧の変化からSOC
の変化ΔSOCを算出するようにした。そして、SOCがΔSO
Cだけ変化する間の放電電流積算値ΔAhを算出し、式
(3)に示すように放電電流積算値ΔAhとΔSOCとに
より電池容量劣化率βを求めるようにした。そのため、
本発明では、従来行っていた内部抵抗劣化と容量劣化と
の相関関係を求めるための走行試験等を不要とすること
ができる。また、バッテリー4を構成する二次電池の種
別に応じて、各種別の初期電池容量C0および相関マップ
を記憶部62に予め記憶させておくことにより、各種の
二次電池に対応することができる。
As described above, in the present embodiment,
Utilizing that the correlation between the open-circuit voltage and the SOC does not change regardless of the temperature or the degree of deterioration of the battery 4, the open-circuit voltage-SOC correlation is used to calculate the SOC from the change in the open-circuit voltage during vehicle running.
The change ΔSOC was calculated. And SOC is ΔSO
The discharge current integrated value ΔAh during the change by C is calculated, and the battery capacity deterioration rate β is obtained from the discharge current integrated value ΔAh and ΔSOC as shown in Expression (3). for that reason,
According to the present invention, a running test or the like for obtaining a correlation between the internal resistance deterioration and the capacity deterioration, which has been conventionally performed, can be omitted. In addition, by storing the initial battery capacity C0 and the correlation map for each type in advance in the storage unit 62 in accordance with the type of the secondary battery constituting the battery 4, it is possible to support various types of secondary batteries. .

【0033】上述した実施の形態では、パラレルHEV
に搭載される駆動用バッテリーを例に説明したが、本発
明はこれに限らず種々の二次電池の電池容量劣化演算装
置に適用することができる。また、開放電圧E1,E2の算
出方法としては、上述した充放電時に得られるIV特性
から推定する方法に限らず、種々の方法で算出される開
放電圧を用いても良いし、無負荷時に実測して得られる
開放電圧を用いても良い。
In the above-described embodiment, the parallel HEV
However, the present invention is not limited to this and can be applied to various battery capacity deterioration calculating devices for secondary batteries. The method of calculating the open-circuit voltages E1 and E2 is not limited to the above-described method of estimating from the IV characteristics obtained at the time of charge and discharge. The open circuit voltage obtained by the above may be used.

【0034】以上説明した実施の形態と特許請求の範囲
の要素との対応において、電池容量Cは劣化時電池容量
を、バッテリー4は二次電池を、バッテリーコントロー
ラ6は電池容量劣化演算装置を、積算値演算部601は
放電電流積算部を、電池容量演算部603は充電状態演
算部を、電池容量劣化率βは電池容量劣化をそれぞれ構
成する。
In the correspondence between the embodiment described above and the elements of the claims, the battery capacity C is the battery capacity at the time of deterioration, the battery 4 is the secondary battery, the battery controller 6 is the battery capacity deterioration calculating device, The integrated value calculating section 601 constitutes a discharge current integrating section, the battery capacity calculating section 603 constitutes a charge state computing section, and the battery capacity deterioration rate β constitutes battery capacity deterioration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による電池容量劣化演算装置を備えるハ
イブリッド電気自動車(HEV)を示す図であり、パラ
レルHEVの駆動系の概略構成を示す図である。
FIG. 1 is a diagram showing a hybrid electric vehicle (HEV) including a battery capacity deterioration calculation device according to the present invention, and is a diagram showing a schematic configuration of a drive system of a parallel HEV.

【図2】電池容量劣化演算装置としての機能を有するバ
ッテリーコントローラの、機能ブロック図である。
FIG. 2 is a functional block diagram of a battery controller having a function as a battery capacity deterioration calculation device.

【図3】サンプリングデータの一例を示す図である。FIG. 3 is a diagram illustrating an example of sampling data.

【図4】開放電圧とSOCとの相関の一例を示す図であ
る。
FIG. 4 is a diagram illustrating an example of a correlation between an open circuit voltage and SOC.

【図5】放電電流値と電池容量との関係を示す図であ
る。
FIG. 5 is a diagram showing a relationship between a discharge current value and a battery capacity.

【図6】演算部60で実行される電池容量劣化率算出プ
ログラムの処理手順を示すフローチャートである。
FIG. 6 is a flowchart illustrating a processing procedure of a battery capacity deterioration rate calculation program executed by a calculation unit 60;

【図7】図6に続く処理を示すフローチャートである。FIG. 7 is a flowchart showing processing subsequent to FIG. 6;

【符号の説明】[Explanation of symbols]

1 エンジン 2 モータ 3 インバータ 4 バッテリー 5 セルコントローラ 6 バッテリーコントローラ 7 電圧センサ 8 電流センサ 9 温度センサ 60 演算部 61 制御部 62 記憶部 601 積算値演算部 602 開放電圧演算部 603 電池容量演算部 604 温度補正演算部 605 劣化率演算部 Reference Signs List 1 engine 2 motor 3 inverter 4 battery 5 cell controller 6 battery controller 7 voltage sensor 8 current sensor 9 temperature sensor 60 calculation unit 61 control unit 62 storage unit 601 integrated value calculation unit 602 open voltage calculation unit 603 battery capacity calculation unit 604 temperature correction Calculation part 605 Deterioration rate calculation part

フロントページの続き Fターム(参考) 2G016 CA03 CB01 CB11 CB12 CB21 CB22 CC01 CC03 CC04 CC07 CC13 CC24 CC27 CF06 5G003 AA07 BA01 DA07 EA08 FA06 GB06 GC05 5H030 AA03 AA04 AA09 AS08 BB10 FF22 FF41 FF42 FF43 FF44 FF46 Continued on the front page F-term (reference) 2G016 CA03 CB01 CB11 CB12 CB21 CB22 CC01 CC03 CC04 CC07 CC13 CC24 CC27 CF06 5G003 AA07 BA01 DA07 EA08 FA06 GB06 GC05 5H030 AA03 AA04 AA09 AS08 BB10 FF22 FF41 FF42 FF43 FF43 FF43 FF44 FF42 FF43 FF42

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 二次電池の放電電流を検出する電流セン
サと、 前記二次電池の開放電圧を検出する電圧センサと、 前記電流センサにより検出された放電電流に基づいて放
電電流積算値を算出する放電電流積算部と、 (a)放電電流積算開始時の開放電圧、(b)放電電流
積算終了時の開放電圧および(c)前記二次電池の開放
電圧と充電状態との相関関係に基づいて、放電電流積算
開始から放電電流積算終了までの充電状態の変化を算出
する充電状態演算部と、 前記充電状態の変化および前記放電電流積算値に基づい
て劣化時電池容量を算出する電池容量演算部と、 前記劣化時電池容量と予め記憶された二次電池の初期電
池容量とに基づいて、前記二次電池の電池容量劣化を算
出する劣化演算部とを備えたことを特徴とする電池容量
劣化演算装置。
1. A current sensor for detecting a discharge current of a secondary battery, a voltage sensor for detecting an open voltage of the secondary battery, and a discharge current integrated value is calculated based on the discharge current detected by the current sensor. And (c) an open voltage at the start of discharge current integration, (b) an open voltage at the end of discharge current integration, and (c) a correlation between the open voltage of the secondary battery and the state of charge. A charge state calculation unit that calculates a change in state of charge from the start of discharge current integration to the end of discharge current integration; and a battery capacity calculation that calculates a battery capacity during deterioration based on the change in charge state and the integrated value of discharge current. And a deterioration calculator for calculating the battery capacity deterioration of the secondary battery based on the battery capacity at the time of deterioration and the initial battery capacity of the secondary battery stored in advance. Degradation Apparatus.
【請求項2】 請求項1に記載の電池容量劣化演算装置
において、 前記放電電流積算部は、放電電流値が、前記二次電池の
放電率容量がほぼ一定となる放電電流範囲内であるとき
に前記放電電流積算値の演算を開始することを特徴とす
る電池容量劣化演算装置。
2. The battery capacity deterioration calculating device according to claim 1, wherein the discharge current integrating unit is configured to control when the discharge current value is within a discharge current range in which a discharge rate capacity of the secondary battery is substantially constant. Calculating the discharge current integrated value.
【請求項3】 請求項2に記載の電池容量劣化演算装置
において、 前記放電電流積算部は、前記放電電流積算値が所定値以
上で、かつ、前記充電状態の変化が所定変化量以上とな
るまで放電電流積算を行うことを特徴とする電池容量劣
化演算装置。
3. The battery capacity deterioration calculating device according to claim 2, wherein the discharge current integrating unit is configured such that the discharge current integrated value is equal to or greater than a predetermined value and the change in the state of charge is equal to or greater than a predetermined change amount. A battery capacity deterioration calculation device characterized by performing a discharge current integration up to this point.
【請求項4】 請求項1乃至請求項3のいずれかに記載
の電池容量劣化演算装置において、 前記二次電池の電池温度を検出する温度センサと、前記
電池容量演算部で算出された劣化時電池容量を前記初期
電池容量と同一温度条件の電池容量に補正する温度補正
演算部とを設け、前記温度補正演算部で補正された電池
容量と前記初期電池容量とに基づいて前記電池容量劣化
を算出するようにしたことを特徴とする電池容量劣化演
算装置。
4. The battery capacity deterioration calculation device according to claim 1, wherein a temperature sensor for detecting a battery temperature of the secondary battery, and a battery capacity deterioration calculation unit that calculates a battery capacity when the battery capacity is deteriorated. A temperature correction calculating unit for correcting the battery capacity to a battery capacity under the same temperature condition as the initial battery capacity, wherein the battery capacity deterioration is corrected based on the battery capacity corrected by the temperature correction calculating unit and the initial battery capacity. A battery capacity deterioration calculation device, wherein the calculation is performed.
JP2001040555A 2001-02-16 2001-02-16 Arithmetic unit for computing deterioration of capacity of secondary battery Pending JP2002243813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001040555A JP2002243813A (en) 2001-02-16 2001-02-16 Arithmetic unit for computing deterioration of capacity of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001040555A JP2002243813A (en) 2001-02-16 2001-02-16 Arithmetic unit for computing deterioration of capacity of secondary battery

Publications (1)

Publication Number Publication Date
JP2002243813A true JP2002243813A (en) 2002-08-28

Family

ID=18903141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001040555A Pending JP2002243813A (en) 2001-02-16 2001-02-16 Arithmetic unit for computing deterioration of capacity of secondary battery

Country Status (1)

Country Link
JP (1) JP2002243813A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083970A (en) * 2003-09-10 2005-03-31 Nippon Soken Inc State sensing device and state detection method of secondary battery
EP1632781A1 (en) * 2004-09-02 2006-03-08 Delphi Technologies, Inc. Method and apparatus for battery capacity detection
JP2006172783A (en) * 2004-12-14 2006-06-29 Auto Network Gijutsu Kenkyusho:Kk Battery state management device
US7317299B2 (en) 2005-11-18 2008-01-08 Hyundai Motor Company Method of calculating aging factor of battery for hybrid vehicle
JP2008042960A (en) * 2006-08-01 2008-02-21 Toyota Motor Corp Charge/discharge controller of secondary battery and hybrid vehicle mounting it
KR100824905B1 (en) * 2006-08-24 2008-04-23 삼성에스디아이 주식회사 Hybrid battery and full charge capacity calculation method thereof
WO2008095315A1 (en) * 2007-02-09 2008-08-14 Advanced Lithium Power Inc. Battery management system
JP2009070800A (en) * 2007-08-22 2009-04-02 Auto Network Gijutsu Kenkyusho:Kk Vehicular power supply device
WO2009063688A1 (en) * 2007-11-13 2009-05-22 Toyota Jidosha Kabushiki Kaisha Secondary battery control device and method
JP2010238585A (en) * 2009-03-31 2010-10-21 Nec Corp Mobile communication equipment, mobile communication equipment control method, and program
JP2011061955A (en) * 2009-09-09 2011-03-24 Nissan Motor Co Ltd Device for adjusting capacity of battery pack
JP2011072157A (en) * 2009-09-28 2011-04-07 Nissan Motor Co Ltd Capacity adjusting device for assembled battery
US7932699B2 (en) 2006-12-11 2011-04-26 Hyundai Motor Company Method of controlling battery charge level of hybrid electric vehicle
WO2011090020A1 (en) * 2010-01-19 2011-07-28 株式会社Gsユアサ Device for measuring state of charge of secondary battery and method for measuring state of charge of secondary battery
WO2011128756A1 (en) * 2010-04-13 2011-10-20 Toyota Jidosha Kabushiki Kaisha Degradation determination device and degradation determination method for lithium ion secondary battery
US20120004799A1 (en) * 2010-06-30 2012-01-05 Reizo Maeda Soc correctable power supply device for hybrid car
CN102407784A (en) * 2010-09-22 2012-04-11 通用汽车环球科技运作有限责任公司 Method and apparatus for estimating soc of battery
US8234087B2 (en) 2007-07-30 2012-07-31 Mitsumi Electric Co., Ltd. Apparatus and method for detecting a status of a secondary battery connected to a load
WO2012101678A1 (en) * 2011-01-27 2012-08-02 トヨタ自動車株式会社 Control method and control device for electrical storage device
KR101211789B1 (en) 2006-04-24 2012-12-12 삼성에스디아이 주식회사 Degradation correction method of battery cell
US8378638B2 (en) 2007-07-30 2013-02-19 Mitsumi Electric Co., Ltd. Battery status detecting method and battery status detecting apparatus
WO2013029826A1 (en) * 2011-08-30 2013-03-07 Hilti Aktiengesellschaft Diagnosis method and diagnosis apparatus for determining a current capacity of a battery cell in a handheld machine tool
DE102012010487A1 (en) 2012-05-26 2013-11-28 Audi Ag Method and device for evaluating a state of aging of a battery
DE102012010486A1 (en) 2012-05-26 2013-11-28 Audi Ag Method and device for evaluating a state of aging of a battery
WO2014083856A1 (en) * 2012-11-30 2014-06-05 三洋電機株式会社 Battery management device, power supply, and soc estimation method
WO2014132403A1 (en) 2013-02-28 2014-09-04 日立オートモティブシステムズ株式会社 Device for assessing extent of degradation in secondary cell
EP2775313A1 (en) * 2013-03-06 2014-09-10 IFP Energies nouvelles Method of determining the residual capacity of a battery
WO2015033665A1 (en) 2013-09-06 2015-03-12 日産自動車株式会社 Secondary battery control device and control method
CN104813179A (en) * 2012-11-30 2015-07-29 株式会社杰士汤浅国际 Device for estimating post-deterioration functionality of storage element, method for estimating post-deterioration functionality, and storage system
CN107132479A (en) * 2016-02-29 2017-09-05 通用汽车环球科技运作有限责任公司 System and method for for monitoring battery deterioration
KR101837453B1 (en) 2010-12-29 2018-03-12 한국과학기술원 Computations method and appartus for secondary battery remaining capacity
JP2018146372A (en) * 2017-03-06 2018-09-20 古河電気工業株式会社 Method and device for determining deterioration of battery
US10502794B2 (en) 2018-03-05 2019-12-10 Lg Chem, Ltd. Method and system for predicting the time required for low voltage expression of a secondary battery, and aging method of the secondary battery using the same
JP2020024935A (en) * 2019-10-24 2020-02-13 株式会社Gsユアサ Power storage system and computer program
CN114019401A (en) * 2021-11-09 2022-02-08 重庆金康赛力斯新能源汽车设计院有限公司 SOC-OCV curve updating method and apparatus

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083970A (en) * 2003-09-10 2005-03-31 Nippon Soken Inc State sensing device and state detection method of secondary battery
JP4649101B2 (en) * 2003-09-10 2011-03-09 株式会社日本自動車部品総合研究所 Secondary battery status detection device and status detection method
EP1632781A1 (en) * 2004-09-02 2006-03-08 Delphi Technologies, Inc. Method and apparatus for battery capacity detection
JP2006172783A (en) * 2004-12-14 2006-06-29 Auto Network Gijutsu Kenkyusho:Kk Battery state management device
US7317299B2 (en) 2005-11-18 2008-01-08 Hyundai Motor Company Method of calculating aging factor of battery for hybrid vehicle
KR101211789B1 (en) 2006-04-24 2012-12-12 삼성에스디아이 주식회사 Degradation correction method of battery cell
US8336651B2 (en) 2006-08-01 2012-12-25 Toyota Jidosha Kabushiki Kaisha Charge/discharge control device for secondary battery and hybrid vehicle using the same
JP2008042960A (en) * 2006-08-01 2008-02-21 Toyota Motor Corp Charge/discharge controller of secondary battery and hybrid vehicle mounting it
KR100824905B1 (en) * 2006-08-24 2008-04-23 삼성에스디아이 주식회사 Hybrid battery and full charge capacity calculation method thereof
US7737660B2 (en) 2006-08-24 2010-06-15 Samsung Sdi Co., Ltd. Hybrid battery and full charge capacity calculation method thereof
US7932699B2 (en) 2006-12-11 2011-04-26 Hyundai Motor Company Method of controlling battery charge level of hybrid electric vehicle
US7977918B2 (en) 2006-12-11 2011-07-12 Hyundai Motor Company Method of controlling battery charge level of hybrid electric vehicle
WO2008095315A1 (en) * 2007-02-09 2008-08-14 Advanced Lithium Power Inc. Battery management system
US8378638B2 (en) 2007-07-30 2013-02-19 Mitsumi Electric Co., Ltd. Battery status detecting method and battery status detecting apparatus
US8234087B2 (en) 2007-07-30 2012-07-31 Mitsumi Electric Co., Ltd. Apparatus and method for detecting a status of a secondary battery connected to a load
JP2009070800A (en) * 2007-08-22 2009-04-02 Auto Network Gijutsu Kenkyusho:Kk Vehicular power supply device
WO2009063688A1 (en) * 2007-11-13 2009-05-22 Toyota Jidosha Kabushiki Kaisha Secondary battery control device and method
JP2009123435A (en) * 2007-11-13 2009-06-04 Toyota Motor Corp Device and method of controlling secondary battery
JP4494453B2 (en) * 2007-11-13 2010-06-30 トヨタ自動車株式会社 Secondary battery control device and control method
JP2010238585A (en) * 2009-03-31 2010-10-21 Nec Corp Mobile communication equipment, mobile communication equipment control method, and program
JP2011061955A (en) * 2009-09-09 2011-03-24 Nissan Motor Co Ltd Device for adjusting capacity of battery pack
JP2011072157A (en) * 2009-09-28 2011-04-07 Nissan Motor Co Ltd Capacity adjusting device for assembled battery
JPWO2011090020A1 (en) * 2010-01-19 2013-05-23 株式会社Gsユアサ Secondary battery charge state measuring device and secondary battery charge state measuring method
CN102695961A (en) * 2010-01-19 2012-09-26 株式会社杰士汤浅国际 Device for measuring state of charge of secondary battery and method for measuring state of charge of secondary battery
KR101750739B1 (en) * 2010-01-19 2017-06-27 가부시키가이샤 지에스 유아사 Device for measuring state of charge of secondary battery and method for measuring state of charge of secondary battery
WO2011090020A1 (en) * 2010-01-19 2011-07-28 株式会社Gsユアサ Device for measuring state of charge of secondary battery and method for measuring state of charge of secondary battery
US9263773B2 (en) 2010-01-19 2016-02-16 Gs Yuasa International Ltd. Secondary battery state of charge determination apparatus, and method of determining state of charge of secondary battery
CN105277899A (en) * 2010-01-19 2016-01-27 株式会社杰士汤浅国际 Device for measuring state of charge of secondary battery and method for measuring state of charge of secondary battery
EP2527855A4 (en) * 2010-01-19 2015-09-30 Gs Yuasa Int Ltd Device for measuring state of charge of secondary battery and method for measuring state of charge of secondary battery
WO2011128756A1 (en) * 2010-04-13 2011-10-20 Toyota Jidosha Kabushiki Kaisha Degradation determination device and degradation determination method for lithium ion secondary battery
US9121911B2 (en) 2010-04-13 2015-09-01 Toyota Jidosha Kabushiki Kaisha Degradation determination device and degradation determination method for lithium ion secondary battery
US20120004799A1 (en) * 2010-06-30 2012-01-05 Reizo Maeda Soc correctable power supply device for hybrid car
CN102407784A (en) * 2010-09-22 2012-04-11 通用汽车环球科技运作有限责任公司 Method and apparatus for estimating soc of battery
KR101837453B1 (en) 2010-12-29 2018-03-12 한국과학기술원 Computations method and appartus for secondary battery remaining capacity
CN103339788B (en) * 2011-01-27 2016-02-10 丰田自动车株式会社 The control device of electrical storage device and control method
JP5321757B2 (en) * 2011-01-27 2013-10-23 トヨタ自動車株式会社 Storage device control device and control method
WO2012101678A1 (en) * 2011-01-27 2012-08-02 トヨタ自動車株式会社 Control method and control device for electrical storage device
US8854010B2 (en) 2011-01-27 2014-10-07 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for electric storage apparatus
CN103339788A (en) * 2011-01-27 2013-10-02 丰田自动车株式会社 Control method and control device for electrical storage device
WO2013029826A1 (en) * 2011-08-30 2013-03-07 Hilti Aktiengesellschaft Diagnosis method and diagnosis apparatus for determining a current capacity of a battery cell in a handheld machine tool
DE102012010486B4 (en) 2012-05-26 2019-01-03 Audi Ag Method and device for determining the actual capacity of a battery
DE102012010487B4 (en) 2012-05-26 2019-01-03 Audi Ag Method and device for determining the actual capacity of a battery
US9400313B2 (en) 2012-05-26 2016-07-26 Audi Ag Method and device for determining the actual capacity of a battery
WO2013178330A1 (en) 2012-05-26 2013-12-05 Audi Ag Method and device for determining the actual capacity of a battery
WO2013178329A1 (en) 2012-05-26 2013-12-05 Audi Ag Method and device for determining the actual capacity of a battery
DE102012010486A1 (en) 2012-05-26 2013-11-28 Audi Ag Method and device for evaluating a state of aging of a battery
DE102012010487A1 (en) 2012-05-26 2013-11-28 Audi Ag Method and device for evaluating a state of aging of a battery
JPWO2014083856A1 (en) * 2012-11-30 2017-01-05 三洋電機株式会社 Battery management device, power supply device, and SOC estimation method
CN104813179A (en) * 2012-11-30 2015-07-29 株式会社杰士汤浅国际 Device for estimating post-deterioration functionality of storage element, method for estimating post-deterioration functionality, and storage system
CN104813179B (en) * 2012-11-30 2017-01-18 株式会社杰士汤浅国际 Device for estimating post-deterioration functionality of storage element, method for estimating post-deterioration functionality, storage system, and integrated circuit
CN107102264A (en) * 2012-11-30 2017-08-29 株式会社杰士汤浅国际 Performance estimation device and method, accumulating system after the deterioration of charge storage element
WO2014083856A1 (en) * 2012-11-30 2014-06-05 三洋電機株式会社 Battery management device, power supply, and soc estimation method
WO2014132403A1 (en) 2013-02-28 2014-09-04 日立オートモティブシステムズ株式会社 Device for assessing extent of degradation in secondary cell
FR3003038A1 (en) * 2013-03-06 2014-09-12 IFP Energies Nouvelles METHOD FOR DETERMINING THE RESIDUAL CAPACITY OF A BATTERY
CN104035035A (en) * 2013-03-06 2014-09-10 Ifp新能源公司 Method of determining the residual capacity of a battery
EP2775313A1 (en) * 2013-03-06 2014-09-10 IFP Energies nouvelles Method of determining the residual capacity of a battery
WO2015033665A1 (en) 2013-09-06 2015-03-12 日産自動車株式会社 Secondary battery control device and control method
CN107132479A (en) * 2016-02-29 2017-09-05 通用汽车环球科技运作有限责任公司 System and method for for monitoring battery deterioration
CN107132479B (en) * 2016-02-29 2020-01-17 通用汽车环球科技运作有限责任公司 System and method for monitoring battery degradation
JP2018146372A (en) * 2017-03-06 2018-09-20 古河電気工業株式会社 Method and device for determining deterioration of battery
US10502794B2 (en) 2018-03-05 2019-12-10 Lg Chem, Ltd. Method and system for predicting the time required for low voltage expression of a secondary battery, and aging method of the secondary battery using the same
JP2020024935A (en) * 2019-10-24 2020-02-13 株式会社Gsユアサ Power storage system and computer program
CN114019401A (en) * 2021-11-09 2022-02-08 重庆金康赛力斯新能源汽车设计院有限公司 SOC-OCV curve updating method and apparatus
CN114019401B (en) * 2021-11-09 2024-05-14 重庆金康赛力斯新能源汽车设计院有限公司 SOC-OCV curve updating method and equipment

Similar Documents

Publication Publication Date Title
JP2002243813A (en) Arithmetic unit for computing deterioration of capacity of secondary battery
CN110549876B (en) Energy output control method and device and hydrogen fuel hybrid electric vehicle
US7355411B2 (en) Method and apparatus for estimating state of charge of secondary battery
EP2101183B1 (en) Control device for power storage device mounted on a vehicle
JP3395694B2 (en) Calculation method for battery capacity deterioration of secondary battery
CN103079897B (en) Control device for vehicle and control method for vehicle
JP3864590B2 (en) Battery charge state detection device
JP3543662B2 (en) SOC calculation method for secondary battery for electric vehicle
WO2016140148A1 (en) Battery control device and vehicle system
US20120112754A1 (en) Apparatus quantifying state-of-charge of vehicle-mounted rechargeable battery
JP2000150003A (en) Method and device for charged amount calculation for hybrid vehicle
JP2004014205A (en) Detection system of battery abnormality and degradation
US8947051B2 (en) Storage capacity management system
JP2001004721A (en) Residual capacity measuring instrument for battery with fully-charged voltage correcting function
US11750006B2 (en) Estimation system and estimation method
US20070170892A1 (en) Method and apparatus for estimating remaining capacity of electric storage
JP2018155706A (en) Device for estimating degradation state of secondary battery, battery system having the same, and electric vehicle
JP2012237665A (en) Battery state estimation device
JP5040731B2 (en) Battery remaining capacity display device
US11180051B2 (en) Display apparatus and vehicle including the same
JP2003068370A (en) Detector of charged state of battery
US20230314525A1 (en) Battery state measurement method
JP3750412B2 (en) In-vehicle battery control system
JP3692192B2 (en) Battery remaining capacity detector
JP2004325263A (en) Self-discharge amount detection device of battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050726