JP2002235133A - beta TYPE TITANIUM ALLOY - Google Patents

beta TYPE TITANIUM ALLOY

Info

Publication number
JP2002235133A
JP2002235133A JP2001032460A JP2001032460A JP2002235133A JP 2002235133 A JP2002235133 A JP 2002235133A JP 2001032460 A JP2001032460 A JP 2001032460A JP 2001032460 A JP2001032460 A JP 2001032460A JP 2002235133 A JP2002235133 A JP 2002235133A
Authority
JP
Japan
Prior art keywords
alloy
titanium alloy
type titanium
mass
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001032460A
Other languages
Japanese (ja)
Inventor
Akihiro Suzuki
昭弘 鈴木
Koichiro Inoue
幸一郎 井上
Toshiharu Noda
俊治 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001032460A priority Critical patent/JP2002235133A/en
Publication of JP2002235133A publication Critical patent/JP2002235133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an inexpensive β type titanium alloy which has high strength by the addition of inexpensive alloy elements. SOLUTION: The titanium alloy has a composition containing, by mass, 2 to 12% Cr, <=8.8% Fe, <=7% Ni and <=6% Al, and in which the value of [Fe]+0.6[Cr]+0.4[Ni] is also 6 to 10%, and the balance Ti with inevitable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車エンジン用
コンロッド、バルブ、ばね、航空機エンジン用ブレー
ド、ディスク等の軽量、高強度を必要とする各種部材、
あるいは釣り具、ゴルフクラブ等のレジャー用品、車椅
子等の医療福祉機器等の各種構造部材に適した強度、靱
延性および耐摩耗性に優れた経済的なβ型チタン合金に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various members requiring light weight and high strength, such as connecting rods for automobile engines, valves, springs, blades for aircraft engines, disks, and the like.
Also, the present invention relates to an economical β-type titanium alloy excellent in strength, toughness and ductility, and abrasion resistance suitable for various structural members such as fishing gear, leisure articles such as golf clubs, and medical and welfare equipment such as wheelchairs.

【0002】[0002]

【従来の技術】チタン合金は、軽量・高強度であること
から航空機エンジン用コンプレッサのブレード、ディス
ク用の材料として用いられていたが、近年、自動車用エ
ンジンの高出力化、燃費改善の要求が高まるに伴い、コ
ンロッド、エンジンバルブ、バルブスプリング等の軽量
化を目的にチタン合金の使用が進められるようになっ
た。また、釣り具、ゴルフクラブなどのレジャー用品に
ついても、軽量・高強度、および耐食性に優れたチタン
合金の利用が大いに増大している。これらの部材はいず
れも強靭性が要求されるので、これらに用いる材料とし
ては高強度が得やすいβ型チタン合金が有利である。
2. Description of the Related Art Titanium alloys have been used as materials for blades and disks of aircraft engine compressors because of their light weight and high strength. In recent years, however, there has been a demand for higher output and improved fuel economy of automobile engines. With the increase, the use of titanium alloys has been promoted to reduce the weight of connecting rods, engine valves, valve springs, and the like. In addition, for leisure goods such as fishing gear and golf clubs, the use of titanium alloys having excellent lightweight and high strength and excellent corrosion resistance has been greatly increased. Since all of these members are required toughness, a β-type titanium alloy which is easy to obtain high strength is advantageous as a material used for these members.

【0003】従来、β型チタン合金としては、Ti−1
5V−3Al−3Cr−3Sn、Ti−3Al−8V−
6Cr−4Mo−4Sn、Ti−13V−11Cr−3
Al、Ti−15Mo−5Zr−3Al、Ti−29N
b−13Ta−−4.6Zr等が開発されている。
Conventionally, as a β-type titanium alloy, Ti-1
5V-3Al-3Cr-3Sn, Ti-3Al-8V-
6Cr-4Mo-4Sn, Ti-13V-11Cr-3
Al, Ti-15Mo-5Zr-3Al, Ti-29N
b-13Ta--4.6Zr and the like have been developed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ごとき従来のβ型チタン合金は、いずれもV、Mo、N
b、Taといった全率固溶形のβ安定化元素を多量に含
んでいるので高価であり、その用途が制限されるという
問題があった。本発明は、安価な合金元素の添加によっ
て、高強度を有する低廉なβ型チタン合金を提供するこ
とを目的とする。
However, the conventional β-type titanium alloys as described above all use V, Mo, N
Since it contains a large amount of the β-stabilizing element in the form of solid solution such as b and Ta, it is expensive and its use is limited. An object of the present invention is to provide an inexpensive β-type titanium alloy having high strength by adding an inexpensive alloy element.

【0005】[0005]

【課題を解決するための手段】上記問題を解決するため
に、本発明のβ型チタン合金は、V、Mo、Nb、Ta
といった高価な元素を含まずにβ相を安定化させる方法
として、安価なCr,Fe、Niといった共析形のβ安
定化元素を用い、これらを適量組み合わせることで、従
来β相の安定化のために省略することのできなかった
V、Moなどの添加を省略し合金の低廉化を図ったもの
である。すなわち、本発明のβ型チタン合金は、 (1)質量%で、Cr:2〜12%、Fe:8.8%以
下を含み、かつ、含有するFeの質量%を〔Fe〕、含
有するCrの質量%を〔Cr〕として〔Fe〕+0.6
〔Cr〕の値が6〜10%であり、残部Tiおよび不可
避的不純物からなることを特徴とする。 (2)質量%で、Cr:2〜12%、Fe:8.8%以
下、Ni:7%以下を含み、かつ、含有するFeの質量
%を〔Fe〕、含有するCrの質量%を〔Cr〕、含有
するNiの質量%を〔Ni〕として〔Fe〕+0.6
〔Cr〕+0.4〔Ni〕の値が6〜10%であり、残
部Tiおよび不可避的不純物からなることを特徴とす
る。 (3)上記(1)または(2)のいずれか一項に記載す
る要件に加えて、さらに、Al:6%以下を含むことを
特徴とする。
In order to solve the above problems, a β-type titanium alloy of the present invention comprises V, Mo, Nb, Ta
As a method of stabilizing the β phase without including such expensive elements, inexpensive eutectoid β-stabilizing elements such as Cr, Fe, and Ni are used, and by combining them in an appropriate amount, the stabilization of the conventional β-phase can be achieved. Therefore, the addition of V, Mo, etc., which could not be omitted, was omitted to reduce the cost of the alloy. That is, the β-type titanium alloy of the present invention contains (1) mass% of Cr: 2 to 12% and Fe: 8.8% or less, and also contains [Fe], which is the mass% of the contained Fe. [Fe] +0.6, where the mass% of Cr is [Cr]
It is characterized in that the value of [Cr] is 6 to 10%, and the balance consists of Ti and unavoidable impurities. (2) By mass%, it contains Cr: 2 to 12%, Fe: 8.8% or less, Ni: 7% or less, and the mass% of the contained Fe is [Fe] and the mass% of the contained Cr is [Fe]. [Cr], [Fe] +0.6
The value of [Cr] +0.4 [Ni] is 6 to 10%, and the balance is made up of Ti and unavoidable impurities. (3) In addition to the requirements described in any one of the above (1) and (2), the composition further includes Al: 6% or less.

【0006】[0006]

【発明の実施の形態】以下、本発明のβ型チタン合金に
おいて化学成分の含有率を限定する理由について説明す
る。本発明のチタン合金において、Fe、Cr、Ni
は、合金を強度の高いβ相とするために添加する。Fe
は、Cr、Niに比べて安価な元素であり、Fe含有量
の増加に伴ってチタン合金の強度は上昇するが、Feの
単独添加によって強度上昇したβチタン合金は延性に乏
しく、強度−延性のバランスに劣る。そこで、本発明の
チタン合金においては、上記の欠点を補うため適量のC
rを添加する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the content of chemical components in the β-type titanium alloy of the present invention will be described below. In the titanium alloy of the present invention, Fe, Cr, Ni
Is added to make the alloy into a β phase having high strength. Fe
Is an element that is inexpensive compared to Cr and Ni, and the strength of the titanium alloy increases with an increase in the Fe content. However, the β-titanium alloy whose strength has been increased by the single addition of Fe has poor ductility, and the strength-ductility is low. Poor balance. Therefore, in the titanium alloy of the present invention, an appropriate amount of C
Add r.

【0007】すなわち、Crは、Tiをβ相化する効果
を有するとともに合金の延性を高める効果を有する比較
的安価な元素であり、本発明のβ型チタン合金の構成に
必須の元素として含有率2〜12%の範囲で添加する。
Cr含有率2%未満では延性向上の効果が十分でないの
で、Cr含有率の下限を2%とする。
That is, Cr is a relatively inexpensive element that has the effect of turning Ti into the β phase and also has the effect of increasing the ductility of the alloy, and its content as an essential element in the structure of the β-type titanium alloy of the present invention. Add in the range of 2-12%.
If the Cr content is less than 2%, the effect of improving ductility is not sufficient, so the lower limit of the Cr content is set to 2%.

【0008】β相をある程度安定化し、良好な強度−延
性バランスを得るためには、上記のようにCr含有率を
2%以上とし、かつ、〔Fe〕+0.6〔Cr〕の値を
6%以上とする必要がある。ここに〔Fe〕、〔Cr〕
はそれぞれFe、Crの含有率(質量%)とする。ま
た、Cr:12%、Fe:8.8%を超えるか、または
〔Fe〕+0.6〔Cr〕の値が10%を超えると、熱
処理の際に、脆化要因となる金属間化合物(TiC
2、TiFe等)が形成されやすくなり、合金の強度
−延性バランスが低下するので、それぞれの含有率の上
限を、Crについては12%、Feについては8.8%
とし、また、〔Fe〕+0.6〔Cr〕については10
%とする。
In order to stabilize the β phase to some extent and obtain a good strength-ductility balance, as described above, the Cr content should be 2% or more, and the value of [Fe] +0.6 [Cr] should be 6%. % Or more. Where [Fe], [Cr]
Is the content (% by mass) of Fe and Cr, respectively. On the other hand, if the content of Cr exceeds 12% and the content of Fe exceeds 8.8%, or the value of [Fe] +0.6 [Cr] exceeds 10%, the intermetallic compound which causes embrittlement during heat treatment ( TiC
r 2 , TiFe, etc.) are easily formed and the strength-ductility balance of the alloy is reduced. Therefore, the upper limit of each content is set to 12% for Cr and 8.8% for Fe.
And [Fe] +0.6 [Cr] is 10
%.

【0009】Niは、Fe、Crと同様にβ相を安定化
する比較的安価な元素であって、本発明の合金において
は、Fe、Crの一部に置換して添加することができ
る。Niを含む本発明の合金においては、β相をある程
度安定化し、良好な強度−延性バランスを得るために
は、上記のようにCr含有率を2%以上とし、かつ、
〔Fe〕+0.6〔Cr〕+0.4〔Ni〕の値を6%
以上とする必要がある。しかし、Niを過剰に含有する
と、熱処理の際に、脆化要因となる金属間化合物(Ti
Ni2 )が形成されやすくなり、合金の強度−延性バラ
ンスが低下するので、Ni含有率については7%、ま
た、〔Fe〕+0.6〔Cr〕+0.4〔Ni〕につい
ては10%を上限とする。
Ni is a relatively inexpensive element that stabilizes the β phase similarly to Fe and Cr. In the alloy of the present invention, Ni can be added by substituting a part of Fe and Cr. In the alloy of the present invention containing Ni, in order to stabilize the β phase to some extent and obtain a good strength-ductility balance, the Cr content is set to 2% or more as described above, and
[Fe] +0.6 [Cr] +0.4 [Ni] is 6%
It is necessary to do above. However, if Ni is excessively contained, an intermetallic compound (Ti
Ni 2 ) is easily formed, and the strength-ductility balance of the alloy is reduced. Therefore, the Ni content is 7%, and the [Fe] +0.6 [Cr] +0.4 [Ni] is 10%. Upper limit.

【0010】本発明のβ型チタン合金は、βトランザス
以上の温度に加熱したのち急冷することにより均一なβ
相とし、優れた強度と延性を有するものとすることがで
きるが、さらに、350〜600℃、好ましくは400
〜500℃で時効処理を施すことにより合金の硬さを増
して耐摩耗性を向上することができる。Alは、合金の
時効処理時に生じるα相を強化する元素として添加する
が、過剰に添加すると金属間化合物Ti3Alを析出し
て合金を脆化するので、含有率の上限を6%とする。
The β-type titanium alloy of the present invention is heated to a temperature equal to or higher than β transus and then rapidly cooled to obtain a uniform β-type titanium alloy.
Phase, and can have excellent strength and ductility.
By performing aging treatment at a temperature of up to 500 ° C., the hardness of the alloy can be increased and the wear resistance can be improved. Al is added as an element that strengthens the α phase generated during the aging treatment of the alloy, but if added excessively, it precipitates the intermetallic compound Ti 3 Al and embrittles the alloy, so the upper limit of the content is set to 6%. .

【0011】[0011]

【実施例】純度99.8%のスポンジチタン、純度9
9.9%の純鉄、純度99.3%の純クロム、低炭素フ
ェロクロム2号、純度99.9%の純Ni、SUS30
4鋼屑を原材料として、プラズマスカル炉を用いて、質
量約6kg、直径100mmのチタン合金インゴットを
溶製した。また、比較材として、公知のTi−6Al−
4V合金およびTi−15V−3Al−3Cr−3Sn
合金を溶製した。得られたインゴットの化学組成を表1
に示す。前記インゴットを950℃に加熱し、熱間鍛造
によって直径20mmの丸棒とした。該丸棒に表1に示
す熱処理を加えて試験材とした。ここに、実施例3、実
施例8および実施例12は固溶化処理後時効処理を施し
たものであり、その他の試験材は固溶化処理のみを施し
たものである。
Example: 99.8% pure titanium sponge, purity 9
9.9% pure iron, 99.3% pure chromium, low carbon ferrochrome No. 2, 99.9% pure Ni, SUS30
Using a steel scrap as a raw material, a titanium alloy ingot having a mass of about 6 kg and a diameter of 100 mm was melted using a plasma skull furnace. In addition, as a comparative material, a known Ti-6Al-
4V alloy and Ti-15V-3Al-3Cr-3Sn
The alloy was melted. Table 1 shows the chemical composition of the obtained ingot.
Shown in The ingot was heated to 950 ° C. and formed into a round bar having a diameter of 20 mm by hot forging. The round bar was subjected to the heat treatment shown in Table 1 to obtain a test material. Here, in Examples 3, 8 and 12, the aging treatment was performed after the solution treatment, and the other test materials were subjected to only the solution treatment.

【0012】[0012]

【表1】 [Table 1]

【0013】前記試験材から機械加工によってASTM
E8に規定される3号引張試験片(直径6.25m
m、標点距離25mm)およびピン・オン・ディスク摩
耗試験片(直径7.98mm、長さ19mm)を製作し
た。引張試験は、インストロン型引張試験機を用いてク
ロスヘッド速度を5×10 -5m/sで行い、引張強さと
破断絞りを測定した。
[0013] ASTM is machined from the test material.
 No. 3 tensile test piece specified in E8 (diameter 6.25 m
m, gauge length 25 mm) and pin-on-disk wear
Wear test specimens (diameter 7.98mm, length 19mm)
Was. The tensile test was performed using an Instron type tensile tester.
5 x 10 loss head speed -Fivem / s, tensile strength and
The breaking draw was measured.

【0014】摩耗試験は、ピン・オン・ディスク摩耗試
験機を用い、硬さHRC61としたSUS440C鋼の
ディスク平面に前記ピン・オン・ディスク摩耗試験片の
端面を負荷荷重10kgfで押付け、潤滑油なし、滑り
速度1m/sで滑り距離400mとして行い、摩耗減量
を測定した。
The abrasion test was performed by using a pin-on-disk abrasion tester and pressing the end surface of the pin-on-disk abrasion test piece against a flat surface of SUS440C steel having hardness HRC61 at a load of 10 kgf without lubricating oil. The sliding speed was 1 m / s and the sliding distance was 400 m, and the wear loss was measured.

【0015】上記の各試験結果を表2に示す。図1は、
本発明のTi−Fe−Cr系合金(第1発明)、Ti−
Fe−Cr−Ni系合金(第2発明)、Ti−Fe−C
r(−Ni)−Al系合金(第3発明)、比較例に層別
して引張強さと破断絞りとの関係を示したものである。
Table 2 shows the results of the above tests. FIG.
Ti-Fe-Cr alloy of the present invention (first invention), Ti-
Fe-Cr-Ni alloy (second invention), Ti-Fe-C
It is a diagram showing the relationship between tensile strength and breaking reduction for each layer of an r (-Ni) -Al alloy (third invention) and a comparative example.

【0016】[0016]

【表2】 [Table 2]

【0017】表2および図1から判るように、本発明の
実施例は、公知のTi−6Al−4V合金(比較例
1)、Ti−15V−3Al−3Cr−3Sn合金(比
較例2)、Feのみの添加によって強化したTi−Fe
合金(比較例3)およびCrのみの添加によって強化し
たTi−Cr合金(比較例4)と同等の破断絞り値であ
るならば比較例よりも引張強さが大きく、同等の引張強
さならば比較例よりも破断絞りが大きい。すなわち、本
発明の実施例は、比較例に較べて強度−延性バランスに
優れているといえる。
As can be seen from Table 2 and FIG. 1, the examples of the present invention include the known Ti-6Al-4V alloy (Comparative Example 1), Ti-15V-3Al-3Cr-3Sn alloy (Comparative Example 2), Ti-Fe strengthened by addition of Fe only
The tensile strength is higher than that of the comparative example if the breaking reduction value is equivalent to that of the alloy (Comparative Example 3) and the Ti—Cr alloy reinforced by adding only Cr (Comparative Example 4). Breaking draw is larger than that of the comparative example. That is, it can be said that the examples of the present invention are superior in the strength-ductility balance as compared with the comparative examples.

【0018】固溶化処理後時効処理を施した実施例3、
実施例8および実施例12は、それぞれ時効処理を施さ
ない実施例2、実施例7および実施例11に較べて著し
く引張強さが向上している。そして時効処理を施した各
実施例においても強度−延性バランスは比較材に較べて
良好である。さらに、表2から判るように、本発明の実
施例は、比較例に較べて摩耗減量が少なく、特に事項処
理を施した実施例3、実施例8および実施例12につい
ては優れた耐摩耗性を有することを確認した。
Example 3 in which aging treatment was performed after the solution treatment,
In Examples 8 and 12, the tensile strength is remarkably improved as compared with Examples 2, 7 and 11, respectively, in which the aging treatment is not performed. Also in each of the examples subjected to the aging treatment, the strength-ductility balance is better than the comparative material. Furthermore, as can be seen from Table 2, the examples of the present invention have less wear loss than the comparative examples, and particularly, the examples 3, 8 and 12 which have been subjected to the item treatment have excellent wear resistance. Was confirmed.

【0019】[0019]

【発明の効果】以上に説明したように、本発明のβ型チ
タン合金によれば、従来のβ型チタン合金のようにV、
Mo、Nb、Taといった高価な合金元素を含むことな
く、Fe、Cr、Ni、Alといった比較的安価な合金
元素を添加することによって高強度を有する低廉なβ型
チタン合金を提供することができる。しかも、前記合金
元素の添加にあたっては、フェロクロムやステンレス鋼
屑などの安価な合金原料を用いて行うことができるので
チタン合金の用途拡大に有利であり、本発明の経済効果
は一層大きいといえる。
As described above, according to the β-type titanium alloy of the present invention, V,
An inexpensive β-type titanium alloy having high strength can be provided by adding relatively inexpensive alloy elements such as Fe, Cr, Ni, and Al without including expensive alloy elements such as Mo, Nb, and Ta. . In addition, the addition of the alloy element can be performed using inexpensive alloy raw materials such as ferrochrome and stainless steel scrap, which is advantageous for expanding the use of titanium alloys, and the economic effect of the present invention can be said to be even greater.

【図面の簡単な説明】[Brief description of the drawings]

【図1】引張強さと破断伸びとの関係を示す相関図であ
る。
FIG. 1 is a correlation diagram showing the relationship between tensile strength and elongation at break.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、Cr:2〜12%、Fe:
8.8%以下を含み、かつ、含有するFeの質量%を
〔Fe〕、含有するCrの質量%を〔Cr〕として〔F
e〕+0.6〔Cr〕の値が6〜10%であり、残部T
iおよび不可避的不純物からなることを特徴とするβ型
チタン合金。
1. The method according to claim 1, wherein in mass%, Cr: 2 to 12%, Fe:
8.8% or less, the mass% of Fe contained is [Fe], and the mass% of Cr contained is [Cr] [F
e] +0.6 [Cr] is 6 to 10%, and the balance T
A β-type titanium alloy comprising i and unavoidable impurities.
【請求項2】 質量%で、Cr:2〜12%、Fe:
8.8%以下、Ni:7%以下を含み、かつ、含有する
Feの質量%を〔Fe〕、含有するCrの質量%を〔C
r〕、含有するNiの質量%を〔Ni〕として〔Fe〕
+0.6〔Cr〕+0.4〔Ni〕の値が6〜10%で
あり、残部Tiおよび不可避的不純物からなることを特
徴とするβ型チタン合金。
2. In mass%, Cr: 2 to 12%, Fe:
8.8% or less, Ni: 7% or less, and the contained mass% of Fe is [Fe], and the contained mass% of Cr is [C
r], the mass% of the contained Ni is [Ni] and [Fe]
A β-type titanium alloy, wherein the value of +0.6 [Cr] +0.4 [Ni] is 6 to 10% and the balance is Ti and unavoidable impurities.
【請求項3】 上記化学成分に加えて、さらに、Al:
6%以下を含むことを特徴とする請求項1または2のい
ずれか一項記載のβ型チタン合金。
3. In addition to the above chemical components, Al:
The β-type titanium alloy according to claim 1, wherein the β-type titanium alloy contains 6% or less.
JP2001032460A 2001-02-08 2001-02-08 beta TYPE TITANIUM ALLOY Pending JP2002235133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001032460A JP2002235133A (en) 2001-02-08 2001-02-08 beta TYPE TITANIUM ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001032460A JP2002235133A (en) 2001-02-08 2001-02-08 beta TYPE TITANIUM ALLOY

Publications (1)

Publication Number Publication Date
JP2002235133A true JP2002235133A (en) 2002-08-23

Family

ID=18896387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001032460A Pending JP2002235133A (en) 2001-02-08 2001-02-08 beta TYPE TITANIUM ALLOY

Country Status (1)

Country Link
JP (1) JP2002235133A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060821A (en) * 2003-07-25 2005-03-10 Daido Steel Co Ltd beta TYPE TITANIUM ALLOY, AND COMPONENT MADE OF beta TYPE TITANIUM ALLOY
JP2006200008A (en) * 2005-01-21 2006-08-03 Daido Steel Co Ltd beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY
WO2008050892A1 (en) 2006-10-26 2008-05-02 Nippon Steel Corporation Beta titanium alloy
JP2009270163A (en) * 2008-05-08 2009-11-19 Daido Steel Co Ltd Titanium alloy
CN105838910A (en) * 2016-05-31 2016-08-10 沈阳中核舰航特材科技有限公司 Manufacturing method of antibacterial titanium alloy for bio-medical treatment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361341A (en) * 1989-07-28 1991-03-18 Amano Masuo High strength titanium alloy having excellent workability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361341A (en) * 1989-07-28 1991-03-18 Amano Masuo High strength titanium alloy having excellent workability

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060821A (en) * 2003-07-25 2005-03-10 Daido Steel Co Ltd beta TYPE TITANIUM ALLOY, AND COMPONENT MADE OF beta TYPE TITANIUM ALLOY
JP4581425B2 (en) * 2003-07-25 2010-11-17 大同特殊鋼株式会社 β-type titanium alloy and parts made of β-type titanium alloy
JP2006200008A (en) * 2005-01-21 2006-08-03 Daido Steel Co Ltd beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY
WO2008050892A1 (en) 2006-10-26 2008-05-02 Nippon Steel Corporation Beta titanium alloy
US9816158B2 (en) 2006-10-26 2017-11-14 Nippon Steel & Sumitomo Metal Corporation β-type titanium alloy
US9822431B2 (en) 2006-10-26 2017-11-21 Nippon Steel & Sumitomo Metal Corporation β-type titanium alloy
US10125411B2 (en) 2006-10-26 2018-11-13 Nippon Steel & Sumitomo Metal Corporation β-type titanium alloy
JP2009270163A (en) * 2008-05-08 2009-11-19 Daido Steel Co Ltd Titanium alloy
CN105838910A (en) * 2016-05-31 2016-08-10 沈阳中核舰航特材科技有限公司 Manufacturing method of antibacterial titanium alloy for bio-medical treatment

Similar Documents

Publication Publication Date Title
CA2442068C (en) Ultra-high-strength precipitation-hardenable stainless steel and elongated strip made therefrom
JP6104164B2 (en) High strength and ductile alpha / beta titanium alloy
CA2485122C (en) Alpha-beta ti-al-v-mo-fe alloy
US7507306B2 (en) Precipitation-strengthened nickel-iron-chromium alloy and process therefor
JP2543982B2 (en) Titanium-aluminum alloy modified with manganese and niobium
US20090074606A1 (en) Low density titanium alloy, golf club head, and process for prouducing low density titanium alloy part
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
JP3308090B2 (en) Fe-based super heat-resistant alloy
JPH0730419B2 (en) Chromium and silicon modified .GAMMA.-titanium-aluminum alloys and methods for their production
CN108456805A (en) A kind of beta titanium alloy and its manufacturing method for being implanted into bone
JP4581425B2 (en) β-type titanium alloy and parts made of β-type titanium alloy
JPS61147834A (en) Corrosion-resistant high-strength ni alloy
JP2002235133A (en) beta TYPE TITANIUM ALLOY
JPS61250138A (en) Titanium alloy excelling in cold workability
JP2001152268A (en) High strength titanium alloy
JPH05255780A (en) High strength titanium alloy having uniform and fine structure
US5417779A (en) High ductility processing for alpha-two titanium materials
JP2006200008A (en) beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY
JP2000503068A (en) Aluminum-manganese-silicon-nitrogen austenitic stainless acid-resistant steel
JPH02129331A (en) Beta-type titanium alloy having excellent cold workability
JP2005154850A (en) High strength beta-type titanium alloy
JP2001115221A (en) HIGH STRENGTH Ti ALLOY AND ITS MANUFACTURING METHOD
JP2004269982A (en) High-strength low-alloyed titanium alloy and its production method
JPH08134615A (en) Production of high strength titanium alloy excellent in characteristic of balance of mechanical property
JP4102224B2 (en) High strength, high ductility β-type titanium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A977 Report on retrieval

Effective date: 20100622

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101021