JP2002224835A - Method of welding high toughness high tension steel having excellent weld heat influence zone toughness - Google Patents

Method of welding high toughness high tension steel having excellent weld heat influence zone toughness

Info

Publication number
JP2002224835A
JP2002224835A JP2001020984A JP2001020984A JP2002224835A JP 2002224835 A JP2002224835 A JP 2002224835A JP 2001020984 A JP2001020984 A JP 2001020984A JP 2001020984 A JP2001020984 A JP 2001020984A JP 2002224835 A JP2002224835 A JP 2002224835A
Authority
JP
Japan
Prior art keywords
toughness
welding
steel
less
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001020984A
Other languages
Japanese (ja)
Other versions
JP4948710B2 (en
Inventor
Toshihiko Koseki
敏彦 小関
Kazutoshi Ichikawa
和利 市川
Toshinaga Hasegawa
俊永 長谷川
Manabu Hoshino
学 星野
Naoki Saito
直樹 斎藤
Yoichi Tanaka
洋一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001020984A priority Critical patent/JP4948710B2/en
Publication of JP2002224835A publication Critical patent/JP2002224835A/en
Application granted granted Critical
Publication of JP4948710B2 publication Critical patent/JP4948710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of welding for high toughness high tension steel having excellent weld heat influence zone toughness. SOLUTION: The high tension steel which contains, by mass %, 0.01 to 0.15% C, 0.005 to 1% Si, 0.1 to 3% Mn, <=0.02% P, <=0.01% S, 0.001 to 0.1% Al, 1 to 5% Ni, 0.0002 to 0.005% B, 0.001 to 0.01% N further contains one or more kinds of 0.003 to 0.05% Ti, 0.005 to 0.5% Nb, 0.02 to 1% Ta, 0.1 to 2% Mo, 0.5 to 4% W, 0.05 to 1.5% Cu, 0.05 to 2% Cr and 0.01 to 0.5% V and consists of the balance Fe and inevitable impurities, is welded by TIG welding of <=3 kJ/mm heating and <=20 g/min in deposition rate, by which a structural material having the excellent weld heat influence zone toughness is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、引張強度が780
MPa 級以上で、靭性保証温度が−40℃以下の優れた低
温靭性が母材、溶接部ともに要求される構造物全般に供
される構造物用鋼の溶接方法に関するもので、例えば、
低温貯槽タンク、低温圧力容器、海洋構造物、船舶、橋
梁、ラインパイプ等の溶接構造物に適用することができ
る。また、鋼の形態は特に問わないが、構造部材として
用いられ、低温靭性が要求される鋼板、特に厚板、鋼管
素材において有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention
It is related to a method of welding structural steel provided to all structures requiring excellent low-temperature toughness of not less than -40 ° C or less in a toughness assurance temperature of not less than -40 ° C.
It can be applied to welded structures such as low-temperature storage tanks, low-temperature pressure vessels, marine structures, ships, bridges, line pipes, and the like. Although the form of the steel is not particularly limited, the steel is used as a structural member and is useful for a steel sheet, particularly a thick plate or a steel pipe material, which requires low-temperature toughness.

【0002】[0002]

【従来の技術】従来から、引張強度が780MPa 級以上
の高強度鋼においては、再加熱焼入れ・焼戻し処理によ
り製造されることが主流となっている。再加熱焼入れ・
焼戻し処理材において、靱性を確保するためには、焼入
れ組織を制御するとともに、加熱オーステナイト(γ)
粒径を微細化する必要があり、そのためには、再加熱焼
入れの加熱温度(焼入れ温度あるいはオーステナイト化
温度)を制限する必要がある。しかし、焼入れ温度を低
下させることは、強化に有効な元素の十分な固溶が望め
なくなり、そのための強度低下や未固溶炭化物による靱
性劣化等を招く恐れがあり、強度と靱性とをともに高め
ることは容易でない。
2. Description of the Related Art Conventionally, high-strength steels having a tensile strength of 780 MPa or more have been mainly produced by reheating quenching and tempering. Reheating and quenching
In order to ensure the toughness of the tempered material, it is necessary to control the quenched structure and to heat austenite (γ).
It is necessary to reduce the particle size, and for that purpose, it is necessary to limit the heating temperature (quenching temperature or austenitizing temperature) of the reheating quenching. However, lowering the quenching temperature makes it impossible to expect a sufficient solid solution of the element effective for strengthening, which may lead to a decrease in strength and a deterioration in toughness due to undissolved carbides, thereby increasing both strength and toughness. It is not easy.

【0003】また、再加熱焼入れ・焼戻し処理の場合、
特に厚手材においては、焼入れにおける表層と内部との
冷却速度の違いから、表層部と内部とで焼入れ組織が大
きく異なり、その結果として、材質も表層部と内部とで
大きく異なる問題もある。すなわち、表層部の組織を強
度・靱性面から最適な下部ベイナイト(BL)あるいは
下部ベイナイトとマルテンサイト(M)との混合組織と
なる化学組成とした場合には、冷却速度の小さい板厚中
心部の組織が靱性に好ましくない上部ベイナイト(B
U)となり、板厚中心部の強度・靱性確保が困難となる
一方、板厚中心部の組織改善のために合金元素を添加す
ると、冷却速度の大きい表層部の焼入性が過剰となり、
マルテンサイト単相組織となってしまうため、表層部の
靱性向上が不十分となってしまい、表層〜板厚中心部ま
での材質を安定的に向上させることが困難である。
In the case of reheating quenching and tempering,
Particularly, in the case of a thick material, the quenched structure is greatly different between the surface layer portion and the inside due to a difference in cooling rate between the surface layer and the inside during quenching. As a result, there is also a problem that the material is greatly different between the surface layer portion and the inside. In other words, when the structure of the surface layer is a chemical composition that makes the lower bainite (BL) or a mixed structure of lower bainite and martensite (M) optimal from the viewpoint of strength and toughness, the central part of the sheet thickness where the cooling rate is small The upper bainite (B
U), and it becomes difficult to secure the strength and toughness of the central portion of the sheet thickness. On the other hand, if an alloy element is added to improve the structure of the central portion of the sheet thickness, the hardenability of the surface layer having a large cooling rate becomes excessive,
Since it has a martensite single phase structure, the toughness of the surface layer is insufficiently improved, and it is difficult to stably improve the material from the surface layer to the center of the sheet thickness.

【0004】上記再加熱焼入れ・焼戻し処理における問
題点を克服する一つの方策として、加工熱処理を用いた
技術が開示されている。例えば、特公昭63−5890
6号公報においては、表層部の焼入性が過剰となるよう
な化学成分条件において、加工熱処理(直接焼入れ・焼
戻し)によって鋼板を製造するに際して、制御圧延によ
って表層部を伸長オーステナイト粒とすることで、マル
テンサイト単相組織となる表層部の靱性改善を図ってい
る。さらに、制御圧延温度を低温化し直接焼入れするこ
とによりさらに靭性改善が図られる可能性もある。
[0004] As one of the measures to overcome the problems in the reheating quenching / tempering treatment, a technique using a working heat treatment is disclosed. For example, Japanese Patent Publication No. 63-5890
No. 6, in the production of a steel sheet by thermomechanical treatment (direct quenching and tempering) under conditions of chemical components that make the surface layer harden excessively, the surface layer is made into elongated austenite grains by controlled rolling. Thus, the toughness of the surface layer portion having a martensite single phase structure is improved. Furthermore, there is a possibility that the toughness can be further improved by lowering the controlled rolling temperature and directly quenching.

【0005】このように、母材特性は熱間圧延や熱処理
の方法を工夫することによって強度・靭性をある程度調
整することは可能であるが、溶接構造物に用いる鋼材に
必要な溶接継手特性を母材並に確保するためには別途方
策が必要である。溶接継手の特性は、鋼材が溶接の熱影
響を受けた溶接熱影響部(HAZ)の特性に支配される
が、溶接金属と隣接する熱影響部(フュージョンライ
ン:FL)近傍では鋼材が非常な高温に晒されるため、
鋼材の製造工程で作り込まれた特性はほぼ完全に解消さ
れてしまう。それゆえ例えば、特開昭63−79921
号公報では、鋼材の成分を調整し、焼入性を示すパラメ
ータを適正化することによってHAZ組織中の上部ベイ
ナイトを抑制して、多層盛り溶接HAZの靭性を向上さ
せる方法が開示されている。しかし、この方法では、H
AZ靭性に最適な鋼材成分が必ずしも母材特性に最適と
は限らず、また、上記の加工熱処理による鋼材製造を更
に強化した場合に期待される合金元素の低減もHAZ靭
性確保のためには適わず、むしろその場合は母材靭性と
HAZ靭性の両立が難しくなる。したがって、母材最適
成分系でなお母材同等のHAZ特性が得られる溶接方法
が必要である。
As described above, the base metal properties can be adjusted to a certain degree in strength and toughness by devising a method of hot rolling or heat treatment. Separate measures are needed to secure the same level as the base metal. The properties of the welded joint are governed by the properties of the heat affected zone (HAZ) where the steel material has been affected by the heat of welding. However, the steel material is extremely near the heat affected zone (fusion line: FL) adjacent to the weld metal. Because it is exposed to high temperature,
The properties created in the steel manufacturing process are almost completely eliminated. Therefore, for example, JP-A-63-79921
In Japanese Patent Application Publication, a method is disclosed in which the upper bainite in the HAZ structure is suppressed by adjusting the components of the steel material and the parameters indicating the hardenability are adjusted, thereby improving the toughness of the multi-pass weld HAZ. However, in this method, H
The steel component optimal for AZ toughness is not always optimal for base metal properties, and the reduction of alloying elements expected when steel production by working heat treatment is further strengthened is also suitable for ensuring HAZ toughness. Rather, in that case, it becomes difficult to achieve both base metal toughness and HAZ toughness. Therefore, there is a need for a welding method capable of obtaining HAZ characteristics equivalent to the base material even with the base material optimum component system.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記の点に
鑑みなされたもので、引張強度が780MPa 級以上で、
靭性保証温度が−40℃以下の優れた低温靭性を母材、
HAZともに達成できる鋼材の溶接方法を提供すること
を課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has a tensile strength of at least 780 MPa class.
The base material has excellent low-temperature toughness with a toughness guarantee temperature of -40 ° C or less.
An object of the present invention is to provide a method for welding steel materials that can be achieved with both HAZ.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
解決のための手段を種々実験的に検討し、その結果、加
工熱処理により上記の母材特性を満足する鋼材が得られ
る化学成分範囲に対して、溶接において溶接法、溶接入
熱、さらに溶着量を適正化にすることにより、加工熱処
理により製造された母材同等のHAZ特性が得られるこ
とを詳細な検討から見出した。
Means for Solving the Problems The present inventors have studied various means for solving the above-mentioned problems experimentally, and as a result, have found that a chemical composition capable of obtaining a steel material which satisfies the above-mentioned base material characteristics by thermomechanical treatment. Through detailed examination, it was found that, by optimizing the welding method, the welding heat input, and the welding amount in the range, HAZ characteristics equivalent to those of the base material manufactured by thermomechanical treatment can be obtained.

【0008】すなわち、引張強度が780MPa 級以上の
高強度鋼のHAZにおいては、融点直下まで加熱される
フュージョンラインの靭性が最も低下するが、これは高
温まで加熱され粗大化したオーステナイトから冷却中に
粗大なベイナイトあるいはマルテンサイトが変態により
生成するためであり、これら粗大なベイナイトあるいは
マルテンサイトが破壊の際にそのまま粗大な脆性破壊の
破面単位を形成するからである。
That is, in the HAZ of a high-strength steel having a tensile strength of 780 MPa class or higher, the toughness of a fusion line heated to just below the melting point is reduced most, but this is caused by the fact that the austenite which has been heated to a high temperature and is coarsened is cooled. This is because coarse bainite or martensite is formed by the transformation, and the coarse bainite or martensite forms a coarse brittle fracture fracture surface unit at the time of fracture.

【0009】したがって、高強度鋼の場合は大入熱の1
パス溶接は用いられず多層の溶接が用いられるが、この
フュージョンラインの靭性が多層の熱サイクルによりど
のようになるかがHAZ靭性の鍵である。本発明者らは
様々な入熱レベルを想定し、多重の多様な熱サイクル下
でのフュージョンラインの靭性を詳細に検討した。その
結果、対象となる鋼材の融点をTL とした場合、TL
L −200℃の範囲に溶接の熱影響で加熱された領域
は、後続の多重加熱の中で少なくともAc3 +200℃
以上の再加熱を受けない限り、初期の粗い組織が残り靭
性が回復しないことを見出した。これは従来、特開昭6
3−79921号公報などでHAZ靭性改善法として示
されている鋼材成分の調整をした場合でも起こりうるた
め、HAZ靭性の根本的改善には鋼材成分のみならず、
溶接方法の最適化が不可欠であることを見出し、本発明
に至った。
Therefore, in the case of high-strength steel, a large heat input
Although multi-pass welding is used instead of pass welding, how the toughness of this fusion line is affected by multi-layer thermal cycling is the key to HAZ toughness. The present inventors have assumed various heat input levels and have studied in detail the toughness of the fusion line under multiple and varied thermal cycles. As a result, if the melting point of the steel to be set to T L, T L ~
The area heated by the thermal influence of the welding to the range of T L -200 ° C. is at least Ac 3 + 200 ° C. in the subsequent multiple heating.
It has been found that unless subjected to the above reheating, an initial coarse structure remains and toughness does not recover. This is the same as
Since it can occur even when the steel material component indicated as the HAZ toughness improvement method in 3-79921 and the like is adjusted, not only the steel material component but also the fundamental improvement of the HAZ toughness is required.
The inventors have found that the optimization of the welding method is indispensable, and have reached the present invention.

【0010】すなわち、本発明の要旨とするところは以
下の通りである。 (1)質量%で、C:0.01〜0.15%、Si:
0.005〜1%、Mn:0.1〜3%、P:0.02
%以下、S:0.01%以下、Al:0.001〜0.
1%、Ni:1〜5%、B:0.0002〜0.005
%、N:0.001〜0.01%を含有し、さらに、T
i:0.003〜0.05%、Nb:0.005〜0.
5%、Ta:0.02〜1%、Mo:0.1〜2%、
W:0.5〜4%の1種または2種以上を含有し、残部
Fe及び不可避不純物からなる高張力鋼を、入熱3kJ/m
m 以下、溶着量20g/min 以下なるTIG溶接で溶接す
ることを特徴とする溶接熱影響部靭性に優れた高靱性高
張力鋼の溶接方法。 (2)質量%で、C:0.01〜0.15%、Si:
0.005〜1%、Mn:0.1〜3%、P:0.02
%以下、S:0.01%以下、Al:0.001〜0.
1%、Ni:1〜5%、B:0.0002〜0.005
%、N:0.001〜0.01%を含有し、さらに、C
u:0.05〜1.5%、Cr:0.05〜2%、V:
0.01〜0.5%の1種または2種以上を含有し、残
部Fe及び不可避不純物からなる高張力鋼を、入熱3kJ
/mm 以下、溶着量20g/min 以下なるTIG溶接で溶接
することを特徴とする溶接熱影響部靭性に優れた高靱性
高張力鋼の溶接方法。 (3)質量%で、C:0.01〜0.15%、Si:
0.005〜1%、Mn:0.1〜3%、P:0.02
%以下、S:0.01%以下、Al:0.001〜0.
1%、Ni:1〜5%、B:0.0002〜0.005
%、N:0.001〜0.01%を含有し、さらに、T
i:0.003〜0.05%、Nb:0.005〜0.
5%、Ta:0.02〜1%、Mo:0.1〜2%、
W:0.5〜4%の1種または2種以上、および、C
u:0.05〜1.5%、Cr:0.05〜2%、V:
0.01〜0.5%の1種または2種以上を含有し、残
部Fe及び不可避不純物からなる高張力鋼を、入熱3kJ
/mm 以下、溶着量20g/min 以下なるTIG溶接で溶接
することを特徴とする溶接熱影響部靭性に優れた高靱性
高張力鋼の溶接方法。
That is, the gist of the present invention is as follows. (1) In mass%, C: 0.01 to 0.15%, Si:
0.005 to 1%, Mn: 0.1 to 3%, P: 0.02
%, S: 0.01% or less, Al: 0.001-0.
1%, Ni: 1 to 5%, B: 0.0002 to 0.005
%, N: 0.001 to 0.01%.
i: 0.003 to 0.05%, Nb: 0.005 to 0.
5%, Ta: 0.02 to 1%, Mo: 0.1 to 2%,
W: A high-strength steel containing 0.5% to 4% of one or more kinds, the balance being Fe and unavoidable impurities, was heated to a heat input of 3 kJ / m.
A method for welding high-strength and high-strength steel having excellent toughness in the heat affected zone, characterized by welding by TIG welding with a welding amount of 20 g / min or less. (2) In mass%, C: 0.01 to 0.15%, Si:
0.005 to 1%, Mn: 0.1 to 3%, P: 0.02
%, S: 0.01% or less, Al: 0.001-0.
1%, Ni: 1 to 5%, B: 0.0002 to 0.005
%, N: 0.001 to 0.01%.
u: 0.05 to 1.5%, Cr: 0.05 to 2%, V:
A high-tensile steel containing 0.01 to 0.5% of one or more kinds, and the balance consisting of Fe and unavoidable impurities, is heated to a heat input of 3 kJ.
A method for welding high-strength and high-strength steel having excellent heat-affected zone toughness, characterized in that welding is performed by TIG welding with a welding amount of 20 g / min or less. (3) In mass%, C: 0.01 to 0.15%, Si:
0.005 to 1%, Mn: 0.1 to 3%, P: 0.02
%, S: 0.01% or less, Al: 0.001-0.
1%, Ni: 1 to 5%, B: 0.0002 to 0.005
%, N: 0.001 to 0.01%.
i: 0.003 to 0.05%, Nb: 0.005 to 0.
5%, Ta: 0.02 to 1%, Mo: 0.1 to 2%,
W: one or more of 0.5 to 4%, and C
u: 0.05 to 1.5%, Cr: 0.05 to 2%, V:
A high-tensile steel containing 0.01 to 0.5% of one or more kinds, and the balance consisting of Fe and unavoidable impurities, is heated to a heat input of 3 kJ.
A method for welding high-strength and high-strength steel having excellent heat-affected zone toughness, characterized in that welding is performed by TIG welding with a welding amount of 20 g / min or less.

【0011】[0011]

【発明の実施の形態】以下、本発明について詳細に説明
する。先ず、本発明において、化学組成の限定理由を述
べる。Cは、鋼の強度を向上させる有効な成分として含
有するもので、0.01%未満では構造用鋼に必要な強
度の確保が困難であるが、0.15%を超える過剰の含
有は母材及び溶接部の靭性や耐溶接割れ性を低下させる
ので、0.01〜0.15%の範囲とした。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. First, the reasons for limiting the chemical composition in the present invention will be described. C is contained as an effective component for improving the strength of the steel. If it is less than 0.01%, it is difficult to secure the strength required for structural steel, but if it exceeds 0.15%, the excessive content exceeds 0.15%. Since the toughness and weld cracking resistance of the material and the welded portion are reduced, the content is set to 0.01 to 0.15%.

【0012】次に、Siは、脱酸元素として、また、母
材の強度確保に有効な元素であるが、0.005%未満
の含有では脱酸が不十分となり、また、強度確保に不利
である。逆に、1%を超える過剰の含有は粗大な酸化物
を形成して延性や靭性の劣化を招く。そこで、Siの範
囲は0.005〜1%とした。
Next, Si is an element effective as a deoxidizing element and for securing the strength of the base material. However, if the content is less than 0.005%, the deoxidation becomes insufficient and disadvantageous for securing the strength. It is. Conversely, an excessive content exceeding 1% forms a coarse oxide and causes deterioration of ductility and toughness. Therefore, the range of Si is set to 0.005 to 1%.

【0013】また、Mnは、母材の強度、靭性の確保に
必要な元素であり、最低限0.1%以上含有する必要が
あるが、過剰に含有すると硬質相の生成や粒界脆化等に
より母材靱性や溶接部の靭性や溶接割れ性などを劣化さ
せるため、材質上許容できる範囲で上限を3%とした。
Mn is an element necessary for securing the strength and toughness of the base material, and must be contained at least 0.1% or more. However, if it is contained excessively, hard phases are formed and grain boundary embrittlement occurs. For example, the base material toughness, the toughness of the welded portion, the weld cracking property, and the like are deteriorated due to the above factors.

【0014】P、Sは、不純物元素で、延性や靭性を劣
化させる元素であり、極力低減することが好ましいが、
材質劣化が大きくなく許容できる量として、Pの上限を
0.02%、Sの上限を0.01%に限定する。
P and S are impurity elements which deteriorate ductility and toughness, and are preferably reduced as much as possible.
The upper limit of P is limited to 0.02%, and the upper limit of S is limited to 0.01%, as the amount that the material deterioration does not significantly increase and is allowable.

【0015】Alは、脱酸やオーステナイト粒径の細粒
化等に有効な元素である。その効果を発揮するためには
0.001%以上含有する必要がある。一方、0.1%
を超えて過剰に含有すると、粗大な酸化物を形成して延
性を極端に劣化させるため、0.001〜0.1%の範
囲に限定する必要がある。
Al is an element effective for deoxidation, reduction of austenite grain size, and the like. In order to exhibit the effect, it is necessary to contain 0.001% or more. On the other hand, 0.1%
If it is contained in excess of more than 0.1%, a coarse oxide is formed and the ductility is extremely deteriorated, so it is necessary to limit the content to the range of 0.001 to 0.1%.

【0016】Niは、靱性確保のために最も有効な元素
であり、引張強度780MPa 以上の高強度鋼において靭
性の保証温度が−40℃及び更に低温になるようなケー
スも含めると少なくとも1%以上の含有させる必要があ
る。一方、Niは高価な合金元素であり、さらに含有量
が多くなると加工熱処理によって鋼材を製造する場合の
焼入れ性が過剰となるため、上限を5%とする。
Ni is the most effective element for securing toughness. In high-strength steels having a tensile strength of 780 MPa or more, at least 1% or more including a case where the guaranteed temperature of toughness is -40 ° C. or lower. Must be contained. On the other hand, Ni is an expensive alloy element, and if the content is further increased, the hardenability in the case of producing a steel material by thermomechanical treatment becomes excessive, so the upper limit is made 5%.

【0017】Bは、固溶状態でオーステナイト粒界に偏
析することで、微量で焼入れ性を高めることが可能な元
素であるが、粒界に偏析した状態では、オーステナイト
の再結晶抑制にも有効である。焼入性、再結晶抑制に効
果を発揮するためには0.0002%以上の添加が必要
である。一方、0.005%を超える過剰の添加では、
BNやFe23(C,B)6 等の粗大な析出物を生じて靱性
が劣化するため、0.0002〜0.005%に限定す
る。
B is an element capable of increasing the hardenability in a very small amount by segregating in the austenite grain boundary in a solid solution state. However, when segregated in the grain boundary, B is also effective in suppressing austenite recrystallization. It is. In order to exhibit the effect of hardenability and recrystallization suppression, it is necessary to add 0.0002% or more. On the other hand, in an excessive addition exceeding 0.005%,
Since coarse precipitates such as BN and Fe 23 (C, B) 6 are generated to deteriorate toughness, the content is limited to 0.0002 to 0.005%.

【0018】Nは、AlやTiと結びついてオーステナ
イト粒微細化に有効に働くため、微量であれば機械的性
質向上に寄与する。また、工業的に鋼中のNを完全に除
去することは不可能であり、必要以上に低減することは
製造工程に過大な負荷をかけるため好ましくない。その
ため、工業的に制御が可能で、製造工程への負荷が許容
できる範囲として下限を0.001%とする。過剰に含
有すると固溶Nが増加し、延性や靭性に悪影響を及ぼす
可能性があるため、許容できる範囲として上限を0.0
1%とする。
N is effective in refining austenite grains in combination with Al and Ti, so that a small amount of N contributes to improvement of mechanical properties. Further, it is impossible to industrially completely remove N in steel, and it is not preferable to reduce N more than necessary because an excessive load is applied to a manufacturing process. Therefore, the lower limit is set to 0.001% as a range in which industrial control is possible and load on the manufacturing process can be tolerated. If contained excessively, solute N increases, which may have an adverse effect on ductility and toughness.
1%.

【0019】さらに、本発明の組織要件を満足するため
には、加工熱処理におけるオーステナイトの再結晶抑制
に有効なTi,Nb,Ta,Mo,W、焼入れ性の制御
に有効なCu,Cr,Vのうち1種または2種以上をさ
らに含有させる必要がある。各々の元素の添加範囲は以
下のように限定する。
Furthermore, in order to satisfy the structural requirements of the present invention, Ti, Nb, Ta, Mo, W effective for suppressing austenite recrystallization during thermomechanical treatment, and Cu, Cr, V effective for controlling hardenability are required. It is necessary to further contain one or more of these. The range of addition of each element is limited as follows.

【0020】Tiは、析出強化により母材強度向上に寄
与するとともに、高温でも安定なTiNの形成により加
熱オーステナイト粒径微細化にも有効な元素であり、加
工熱処理を基本とする本発明においては必須の元素であ
る。効果を発揮するためには0.003%以上の含有が
必要である。一方、0.05%を超えると、粗大な析出
物・介在物を形成して靭性や延性を劣化させるため上限
を0.05%とする。
Ti is an element that contributes to the improvement of the base metal strength by precipitation strengthening and is also effective in reducing the austenite grain size by forming stable TiN even at a high temperature. It is an essential element. In order to exert the effect, the content of 0.003% or more is necessary. On the other hand, if it exceeds 0.05%, coarse precipitates and inclusions are formed to deteriorate toughness and ductility, so the upper limit is made 0.05%.

【0021】Nbは、オーステナイト相中に固溶及び析
出状態でオーステナイトの再結晶を抑制するために、ま
た、変態時あるいは焼戻し時にNb(C,N)を形成す
ることで強度の向上に有効な元素であるが、過剰の含有
では析出脆化により靭性が劣化する。従って、靭性の劣
化を招かずに効果を発揮できる範囲として、0.005
〜0.5%の範囲に限定する。
Nb is effective for suppressing the recrystallization of austenite in the form of solid solution and precipitation in the austenite phase, and improving the strength by forming Nb (C, N) during transformation or tempering. Although it is an element, if it is contained excessively, the toughness deteriorates due to precipitation embrittlement. Therefore, the effective range without deteriorating the toughness is 0.005.
Limited to the range of 0.5%.

【0022】Taも、Nbと同一の機構によりオーステ
ナイトの再結晶抑制、強化に有効な元素である。その効
果は質量%で比較してNbよりも若干弱く、効果を発揮
するためには0.02%以上の含有が必要である。一
方、1%を超えると析出脆化や粗大な析出物・介在物に
よる靭性劣化を生じるため上限を1%とする。
Ta is also an element effective for suppressing and strengthening austenite recrystallization by the same mechanism as Nb. The effect is slightly weaker than that of Nb in terms of mass%, and it is necessary to contain 0.02% or more to exhibit the effect. On the other hand, if it exceeds 1%, precipitation embrittlement and toughness deterioration due to coarse precipitates / inclusions occur, so the upper limit is made 1%.

【0023】Moは焼入れ性向上、強度向上、耐焼戻し
脆化、耐SR脆化に有効な元素でもあるが、Nbと類似
のオーステナイトの再結晶抑制に有効な元素である。そ
の効果を発揮するためには0.1%以上の添加が必要で
あり、一方、2%を超える添加では逆に靱性、溶接性が
劣化するため、0.1〜2%に限定する。
Mo is an element effective for improving hardenability, strength, tempering embrittlement resistance and SR embrittlement resistance, but is an element similar to Nb and effective for suppressing recrystallization of austenite. In order to exhibit the effect, it is necessary to add 0.1% or more. On the other hand, if it exceeds 2%, toughness and weldability are deteriorated.

【0024】Wも、Moと同様の効果を有する元素であ
る。その効果を発揮でき、かつ、質劣化を生じない範囲
として、0.5〜4%の範囲に限定する。
W is also an element having the same effect as Mo. The range in which the effect can be exhibited and the quality does not deteriorate is limited to the range of 0.5 to 4%.

【0025】Cuは、焼入れ性向上、固溶強化、析出強
化の効果を有するが、1.5%超では熱間加工性に問題
を生じる。したがって、効果を発揮し、かつ、熱間加工
性等の問題を生じない範囲として、本発明においては
0.05〜1.5%の範囲に限定する。
Cu has the effect of improving the hardenability, strengthening the solid solution, and strengthening the precipitation, but if it exceeds 1.5%, there is a problem in the hot workability. Therefore, in the present invention, the range in which the effect is exhibited and the problem such as hot workability does not occur is limited to the range of 0.05 to 1.5%.

【0026】Crは、焼入れ性向上、析出強化により母
材の強度向上に有効な元素であるが、明瞭な効果を生じ
るためには0.05%以上必要である。一方、2%を超
えて添加すると靭性及び溶接性が劣化する傾向を有する
ため、0.05〜2%の範囲とする。
Cr is an element effective for improving the strength of the base material by improving hardenability and precipitation strengthening. However, 0.05% or more is necessary to produce a clear effect. On the other hand, if added in excess of 2%, the toughness and weldability tend to deteriorate, so the content is made 0.05 to 2%.

【0027】Vは、焼入れ性向上とともにVNを形成し
て強度向上に有効な元素であるが、過剰の含有では析出
脆化により靭性が劣化する。従って、靭性の大きな劣化
を招かずに効果を発揮できる範囲として0.01〜0.
5%の範囲に限定する。
V is an element effective for improving the strength by forming VN together with the hardenability. However, when V is contained excessively, the toughness is deteriorated due to precipitation embrittlement. Therefore, the range in which the effect can be exerted without causing significant deterioration in toughness is set to 0.01 to 0.2.
Limit to 5% range.

【0028】このような成分限定の下、鋼材を加工熱処
理にて製造することにより、標記のような強度、靭性バ
ランスに優れた鋼材の製造が可能である。加工熱処理の
典型的なフローとしては、鋼片をAc3 変態点〜120
0℃に加熱し、開始温度が900℃以下、終了温度が6
50℃以上で、累積圧下率が30〜95%の熱間圧延を
行い、引き続き、600℃以上から開始し、500℃以
下で終了する冷却速度が1〜100℃/sの加速冷却を
行う。加熱後、未再結晶域圧延前に厚み、再結晶オース
テナイトの粒度を調整するための圧延を加えてもよく、
また、必要に応じて、加速冷却後、400℃以上、Ac
1 変態点未満の温度で焼き戻すこともできる。
By manufacturing a steel material by working heat treatment under such a limitation of components, it is possible to manufacture a steel material excellent in strength and toughness balance as indicated. Typical flow of thermomechanical processing, Ac 3 transformation point to 120 the slab
Heat to 0 ° C, start temperature is below 900 ° C, end temperature is 6
The hot rolling is performed at a temperature of 50 ° C. or higher and the cumulative draft is 30 to 95%, and then the cooling is performed at a cooling rate of 1 to 100 ° C./s, starting at 600 ° C. or higher and ending at 500 ° C. or lower. After heating, before rolling in the non-recrystallized region, thickness, rolling for adjusting the grain size of recrystallized austenite may be added,
Further, if necessary, after accelerated cooling, 400 ° C. or more, Ac
Tempering can also be performed at a temperature below one transformation point.

【0029】次に、このように成分調整して製造した母
材と同等のHAZ靭性を達成するために、本発明の基本
要件である溶接法、溶接入熱、溶着量の限定理由を説明
する。既に上述したごとく、引張強度が780MPa 級以
上の高強度鋼のHAZにおいては、融点直下まで加熱さ
れるフュージョンラインの靭性が最も低下するが、これ
は高温まで加熱され粗大化したオーステナイトから冷却
中に粗大なベイナイトあるいはマルテンサイトが変態に
より生成するためであり、これら粗大なベイナイトある
いはマルテンサイトが破壊の際に、そのまま粗大な脆性
破壊の破面単位を形成するからである。
Next, in order to achieve the same HAZ toughness as the base material manufactured by adjusting the components in this way, the reasons for limiting the welding method, welding heat input, and welding amount, which are the basic requirements of the present invention, will be described. . As already described above, in the HAZ of a high-strength steel having a tensile strength of 780 MPa or higher, the toughness of the fusion line heated to just below the melting point is reduced most, but this is caused by the fact that the HAZ is cooled from the austenite that has been heated to a high temperature and coarsened. This is because coarse bainite or martensite is formed by transformation, and these coarse bainite or martensite directly form a coarse brittle fracture fracture surface unit at the time of fracture.

【0030】本発明者らの詳細な検討の結果、この脆化
組織は、多層溶接中に後続の多重加熱サイクルによって
少なくともAc3 +200℃以上の再加熱を受けること
により靭性が回復することが知見された。従来、高強度
鋼の多層溶接では後続パスによるテンパー、すなわち4
00℃〜Ac1 再加熱によって先行パスの靭性が回復す
るとの知見があったが、これは焼入れ性の高い成分系、
すなわち、鋼材製造を再加熱焼入れ・焼戻し処理で行っ
たケースで有効であり、本発明の対象とする加工熱処理
で製造を行った鋼には当てあまらない。
As a result of detailed studies by the present inventors, it has been found that this embrittlement structure is restored in toughness by being subjected to reheating of at least Ac 3 + 200 ° C. or more by a subsequent multiple heating cycle during multi-layer welding. Was done. Conventionally, in multi-pass welding of high-strength steel, a subsequent pass temper,
It was found that the toughness of the preceding pass was restored by reheating at 00 ° C. to Ac 1 , but this was due to the fact that the component system having high hardenability
That is, it is effective in the case where the steel material is manufactured by the reheating quenching / tempering treatment, and does not apply to the steel manufactured by the thermomechanical heat treatment targeted by the present invention.

【0031】すなわち、加工熱処理による高強度鋼製造
の特徴は、焼入れ性が従来の高強度鋼よりも低くても強
度と高靭性を両立できる点にあり、これにより合金元素
の低減や再加熱・再焼入れなどの工程を省略できるメリ
ットが生じるが、他方、このために溶接HAZ組織は完
全焼入れ組織よりむしろベイナイトを主体とした組織と
なるため、多層溶接において後続パスでテンパー域に再
熱してもその効果が低いためである。したがって、この
場合のHAZ靭性回復手段としては、従来知見とは異な
る後続の溶接パスによる再熱温度の制御が必須となる。
That is, the feature of the production of high-strength steel by thermomechanical treatment is that even if the hardenability is lower than that of the conventional high-strength steel, both high strength and high toughness can be achieved. There is an advantage that steps such as re-quenching can be omitted, but on the other hand, the welding HAZ structure is a structure mainly composed of bainite rather than a completely quenched structure. This is because the effect is low. Therefore, as the HAZ toughness recovery means in this case, it is essential to control the reheat temperature by the subsequent welding pass different from the conventional knowledge.

【0032】このような知見のもと、実用で用いられる
TIG溶接、MIG溶接、サブマージ(SAW)溶接、
被覆アーク溶接、CO2 (MAG)溶接の各溶接法につ
いて、種々の溶接条件にて検討した。その結果、TIG
溶接によってTL 〜TL −200℃の範囲に加熱される
フュージョンライン近傍の組織は、他の溶接法と比較し
て多重熱サイクルを受けやすく、特に、入熱を3kJ/mm
以下、溶着量を20g/min 以下にすることにより、TL
〜TL −200℃の範囲に加熱されるフュージョンライ
ン近傍の組織は、ほぼ全域、後続のパスによってAc3
+200℃以上に再加熱することを見出した。
Based on such knowledge, TIG welding, MIG welding, submerge (SAW) welding,
Each welding method of covered arc welding and CO 2 (MAG) welding was examined under various welding conditions. As a result, TIG
T L ~T L -200 ℃ range of fusion line vicinity to be heated to the tissue of the welding susceptible to multiple thermal cycles in comparison with other welding methods, in particular, the heat input 3 kJ / mm
Hereinafter, the T L is set by setting the welding amount to 20 g / min or less.
~ T L- The tissue near the fusion line heated to the range of -200 ° C is almost entirely Ac 3 by the subsequent pass.
It was found that it was reheated to + 200 ° C. or higher.

【0033】そして、それ以上に入熱を増加するとTL
〜TL −200℃の範囲に加熱される領域が拡大すると
ともにこの領域のγ粒成長も著しくなり、後続のパスに
よる再加熱効果が不十分になること、また、溶着量を増
した場合はTL 〜TL −200℃の範囲に加熱される領
域が後続のパスによってAc3 +200℃以上に再加熱
される割合が著しく減少することも判明した。
When the heat input is further increased, T L
When the region heated to the range of TL to -200 ° C is expanded, the γ-grain growth in this region becomes remarkable, and the reheating effect by the subsequent pass becomes insufficient. it was also found that the proportion of area to be heated in the range of T L ~T L -200 ℃ is reheated to Ac 3 + 200 ° C. or higher by subsequent passes is considerably reduced.

【0034】これより、標記鋼材を溶接する場合に母材
同等のHAZ靭性を得るためには、入熱3kJ/mm 以下、
溶着量20g/min 以下なるTIG溶接で溶接することが
極めて重要であるとの結論に至った。なお、その他の溶
接法では溶け込み形状が相対的に深く、入熱が低い場合
は後続パスによりAc3 +200℃以上に再加熱される
割合が著しく減少し、高い場合には後続パスでAc3
200℃以上に再加熱される割合は増すものの同時に再
度TL 〜TL −200℃の範囲に加熱される領域も生じ
るため、結局、靭性の低下する領域が残留し、母材同等
のHAZ靭性回復までには至らない。
From the above, in order to obtain the same HAZ toughness as the base metal when welding the indicated steel, the heat input should be 3 kJ / mm or less.
It was concluded that it was extremely important to perform welding by TIG welding with a welding amount of 20 g / min or less. The other is a relatively deep shape penetration in the welding method, if heat input is low rate to be reheated is remarkably reduced to Ac 3 + 200 ° C. or higher by a subsequent pass, when high Ac subsequent pass 3 +
Since reheated fraction is also occur area to be heated again to T L range through T L -200 ° C. simultaneously but increased to 200 ° C. or higher, after all, the area to decrease the toughness remains, the base material equivalent HAZ toughness It does not reach recovery.

【0035】[0035]

【実施例】以上が本発明の要件についての説明である
が、さらに、実施例に基づいて本発明の効果を示す。表
1に示す化学組成の供試鋼4種を用いて、表2に示す溶
接法と溶接条件で溶接継手を作成し、フュージョンライ
ンのHAZ靭性を評価した。鋼A、B、Cは本発明成分
範囲の780MPa 鋼、鋼Dは同950MPa 鋼であり、鋼
E、Fは本発明成分範囲外の780MPa 鋼である。供試
鋼はいずれも実機にて240mm厚のスラブを1100℃
に加熱し、50mm厚まで粗圧延後、750〜800℃に
て25mm厚まで仕上げ圧延し、その後水冷して作製した
ものである。母材はいずれも所定の強度を満たしてお
り、また、靭性も所定のレベルを達成していることを予
め確認した。
The above has been a description of the requirements of the present invention. The effects of the present invention will be further shown based on examples. Using four test steels having the chemical compositions shown in Table 1, welded joints were prepared according to the welding methods and welding conditions shown in Table 2, and the HAZ toughness of the fusion line was evaluated. Steels A, B and C are 780 MPa steels within the range of the present invention, steel D is 950 MPa steel, and steels E and F are 780 MPa steels outside the range of the present invention. All the test steels were 240mm thick slabs at 1100 ℃
And rough-rolled to a thickness of 50 mm, finish-rolled to a thickness of 25 mm at 750 to 800 ° C., and then water-cooled. It was previously confirmed that all the base materials satisfied a predetermined strength and also achieved a predetermined level of toughness.

【0036】この鋼板にレ型(角度45°)の開先を加
工し、ルートギャップ3mmで多層溶接により溶接を行っ
た。溶接法はTIG溶接、MIG溶接、SAW溶接を用
いた。溶接材料およびSAW溶接におけるフラックスは
いずれも市販の780MPa 用の溶接材料を用いた。溶接
ワイヤ系はTIG溶接が1.6mm、MIG溶接が2.4
mm、SAW溶接が3.2mmである。また、シールドガス
はTIG溶接では純Ar、MIG溶接ではAr+2%O
2 を用いた。レ型溶接部の垂直なフュージョンラインに
おける靭性評価をシャルピー試験にて行い、試験温度と
脆性破面率の関係から延性−脆性遷移温度( vTrs)を
求めて評価した。
A bevel (angle 45 °) groove was machined on this steel sheet, and welding was performed by multi-layer welding with a root gap of 3 mm. The welding method used was TIG welding, MIG welding, or SAW welding. As the welding material and the flux in SAW welding, a commercially available welding material for 780 MPa was used. 1.6mm for TIG welding, 2.4 for MIG welding
mm, and 3.2 mm for SAW welding. The shielding gas is pure Ar for TIG welding and Ar + 2% O for MIG welding.
2 was used. The toughness was evaluated by a Charpy test on the vertical fusion line of the wrench-welded portion, and the ductility-brittle transition temperature (vTrs) was determined from the relationship between the test temperature and the brittle fracture rate.

【0037】表2から、#1〜#4の本発明の鋼材と溶
接条件の組み合わせでは、優れたHAZ靭性が得られて
いるのに対し、鋼は本発明範囲ながら溶接入熱や溶着量
が本発明範囲外の#5〜#10は靭性が低い。鋼成分が
本発明外の#11〜#14は溶接入熱、ワイヤ溶着量が
本発明内にあっても本発明には及ばず、溶接入熱や溶着
量が本発明範囲外では更に靭性は低下する。これより、
加工熱処理によって製造した強度・靭性に優れる鋼板の
溶接に本発明の効果は明らかである。
As can be seen from Table 2, excellent HAZ toughness was obtained with the combinations of the steel materials of the present invention # 1 to # 4 and the welding conditions, whereas the steel had low welding heat input and welding amount within the range of the present invention. # 5 to # 10 outside the range of the present invention have low toughness. Steel components # 11 to # 14 outside the present invention do not fall under the present invention even if the welding heat input and wire welding amount are within the present invention, and the toughness is further deteriorated when the welding heat input and the welding amount are outside the range of the present invention. descend. Than this,
The effect of the present invention is evident in welding steel sheets having excellent strength and toughness produced by thermomechanical treatment.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【発明の効果】本発明により、引張強度が780MPa 級
以上で、母材、HAZの靭性保証温度が−40℃以下の
優れた低温靭性を有する鋼の製造が可能となる。さらに
は、母材、溶接部の靱性保証温度が−100℃以下の鋼
や母材の脆性き裂伝播停止特性が必要とされる鋼にも適
用可能である。その結果、低温貯槽タンク、低温圧力容
器、海洋構造物、船舶、橋梁、ラインパイプ等に安全性
に極めて優れた構造材料を提供することが可能となり、
産業上の効果は極めて大きいといえる。
According to the present invention, it is possible to produce a steel having an excellent low-temperature toughness having a tensile strength of 780 MPa or higher and a toughness assurance temperature of the base material and HAZ of -40 ° C. or less. Furthermore, the present invention can be applied to steel having a toughness assurance temperature of -100 ° C. or lower for a base material and a welded portion, and steel requiring a brittle crack propagation stopping property of the base material. As a result, it is possible to provide extremely safe structural materials for low-temperature storage tanks, low-temperature pressure vessels, marine structures, ships, bridges, line pipes, etc.
The industrial effect is extremely large.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 俊永 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 (72)発明者 星野 学 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 (72)発明者 斎藤 直樹 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 (72)発明者 田中 洋一 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 Fターム(参考) 4E001 AA03 BB07 CA02 DD02 EA02 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshinaga Hasegawa 1 Oshinozu, Oita-shi, Oita Pref. Inside Nippon Steel Corporation Oita Works (72) Inventor Manabu Hoshino 5-3 Tokai-cho, Tokai-shi, Aichi Prefecture New Japan Nagoya Steel Works, Ltd. (72) Naoki Saito, Inventor 5-3 Tokai-cho, Tokai City, Aichi Prefecture Nippon Steel Corporation, Nagoya Works, (72) Yoichi Tanaka 5, Tokai-cho, Tokai City, Aichi Prefecture -3 F-term in Nippon Steel Corporation Nagoya Works (reference) 4E001 AA03 BB07 CA02 DD02 EA02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C :0.01〜0.15%、 Si:0.005〜1%、 Mn:0.1〜3%、 P :0.02%以下、 S :0.01%以下、 Al:0.001〜0.1%、 Ni:1〜5%、 B :0.0002〜0.005%、 N :0.001〜0.01%を含有し、さらに、 Ti:0.003〜0.05%、 Nb:0.005〜0.5%、 Ta:0.02〜1%、 Mo:0.1〜2%、 W :0.5〜4%の1種または2種以上を含有し、残
部Fe及び不可避不純物からなる高張力鋼を、入熱3kJ
/mm 以下、溶着量20g/min 以下でTIG溶接にて溶接
することを特徴とする溶接熱影響部靭性に優れた高靱性
高張力鋼の溶接方法。
1. Mass%: C: 0.01 to 0.15%, Si: 0.005 to 1%, Mn: 0.1 to 3%, P: 0.02% or less, S: 0. 01% or less, Al: 0.001 to 0.1%, Ni: 1 to 5%, B: 0.0002 to 0.005%, N: 0.001 to 0.01%, and further Ti : 0.003 to 0.05%, Nb: 0.005 to 0.5%, Ta: 0.02 to 1%, Mo: 0.1 to 2%, W: 0.5 to 4% Or high-strength steel containing two or more types and the balance of Fe and unavoidable impurities
A method for welding a high toughness and high tensile strength steel having excellent toughness in a heat affected zone, characterized by welding by TIG welding at a welding rate of 20 g / min or less.
【請求項2】 質量%で、 C :0.01〜0.15%、 Si:0.005〜1%、 Mn:0.1〜3%、 P :0.02%以下、 S :0.01%以下、 Al:0.001〜0.1%、 Ni:1〜5%、 B :0.0002〜0.005%、 N :0.001〜0.01%を含有し、さらに、 Cu:0.05〜1.5%、 Cr:0.05〜2%、 V :0.01〜0.5%の1種または2種以上を含有
し、残部Fe及び不可避不純物からなる高張力鋼を、入
熱3kJ/mm 以下、溶着量20g/min 以下でTIG溶接に
て溶接することを特徴とする溶接熱影響部靭性に優れた
高靱性高張力鋼の溶接方法。
2. In mass%, C: 0.01 to 0.15%, Si: 0.005 to 1%, Mn: 0.1 to 3%, P: 0.02% or less, S: 0. 01% or less, Al: 0.001 to 0.1%, Ni: 1 to 5%, B: 0.0002 to 0.005%, N: 0.001 to 0.01%, and further Cu : High-strength steel containing one or more of 0.05 to 1.5%, Cr: 0.05 to 2%, V: 0.01 to 0.5%, the balance being Fe and unavoidable impurities Welding of high toughness and high strength steel excellent in the heat affected zone toughness, characterized in that TIG welding is performed at a heat input of 3 kJ / mm or less and a welding amount of 20 g / min or less.
【請求項3】 質量%で、 C :0.01〜0.15%、 Si:0.005〜1%、 Mn:0.1〜3%、 P :0.02%以下、 S :0.01%以下、 Al:0.001〜0.1%、 Ni:1〜5%、 B :0.0002〜0.005%、 N :0.001〜0.01%を含有し、さらに、 Ti:0.003〜0.05%、 Nb:0.005〜0.5%、 Ta:0.02〜1%、 Mo:0.1〜2%、 W :0.5〜4%の1種または2種以上、および、 Cu:0.05〜1.5%、 Cr:0.05〜2%、 V :0.01〜0.5%の1種または2種以上を含有
し、残部Fe及び不可避不純物からなる高張力鋼を、入
熱3kJ/mm 以下、溶着量20g/min 以下でTIG溶接に
て溶接することを特徴とする溶接熱影響部靭性に優れた
高靱性高張力鋼の溶接方法。
3. In mass%, C: 0.01 to 0.15%, Si: 0.005 to 1%, Mn: 0.1 to 3%, P: 0.02% or less, S: 0. 01% or less, Al: 0.001 to 0.1%, Ni: 1 to 5%, B: 0.0002 to 0.005%, N: 0.001 to 0.01%, and further Ti : 0.003 to 0.05%, Nb: 0.005 to 0.5%, Ta: 0.02 to 1%, Mo: 0.1 to 2%, W: 0.5 to 4% Or one or more of Cu: 0.05 to 1.5%, Cr: 0.05 to 2%, V: 0.01 to 0.5%, and the balance Fe High toughness, high toughness with excellent toughness in the heat affected zone, characterized by welding TIG welding of high tensile steel consisting of unavoidable impurities and heat input of 3 kJ / mm or less and welding amount of 20 g / min or less. Welding method for power steel.
JP2001020984A 2001-01-30 2001-01-30 Welding method of high-tensile thick plate Expired - Fee Related JP4948710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001020984A JP4948710B2 (en) 2001-01-30 2001-01-30 Welding method of high-tensile thick plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001020984A JP4948710B2 (en) 2001-01-30 2001-01-30 Welding method of high-tensile thick plate

Publications (2)

Publication Number Publication Date
JP2002224835A true JP2002224835A (en) 2002-08-13
JP4948710B2 JP4948710B2 (en) 2012-06-06

Family

ID=18886609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001020984A Expired - Fee Related JP4948710B2 (en) 2001-01-30 2001-01-30 Welding method of high-tensile thick plate

Country Status (1)

Country Link
JP (1) JP4948710B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012213803A (en) * 2011-03-31 2012-11-08 Jfe Steel Corp Gas-shielded arc welding method
JP2012213801A (en) * 2011-03-31 2012-11-08 Jfe Steel Corp Gas-shielded arc welding method
CN102896394A (en) * 2012-09-29 2013-01-30 郑州市嵩阳煤机制造有限公司 Welding method of medium-carbon alloy high-tensile structural steel
JP2013151742A (en) * 2011-12-28 2013-08-08 Jfe Steel Corp High toughness and high tensile strength steel and method for producing the same
CN103272851A (en) * 2013-05-20 2013-09-04 浙江朋诚科技有限公司 High-speed mill roller box
CN115121918A (en) * 2022-08-24 2022-09-30 中国科学院金属研究所 Welding method for reducing delta-ferrite harmful phase in martensitic heat-resistant steel weld joint with 12% of Cr in nuclear reactor core

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106400003B (en) * 2016-10-09 2018-08-31 青岛理工大学 The coating of titanium nitride/copper titanium intermetallic compound enhancing for red copper surface

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012213803A (en) * 2011-03-31 2012-11-08 Jfe Steel Corp Gas-shielded arc welding method
JP2012213801A (en) * 2011-03-31 2012-11-08 Jfe Steel Corp Gas-shielded arc welding method
JP2013151742A (en) * 2011-12-28 2013-08-08 Jfe Steel Corp High toughness and high tensile strength steel and method for producing the same
CN102896394A (en) * 2012-09-29 2013-01-30 郑州市嵩阳煤机制造有限公司 Welding method of medium-carbon alloy high-tensile structural steel
CN103272851A (en) * 2013-05-20 2013-09-04 浙江朋诚科技有限公司 High-speed mill roller box
CN115121918A (en) * 2022-08-24 2022-09-30 中国科学院金属研究所 Welding method for reducing delta-ferrite harmful phase in martensitic heat-resistant steel weld joint with 12% of Cr in nuclear reactor core
CN115121918B (en) * 2022-08-24 2022-12-13 中国科学院金属研究所 Welding method for reducing content of delta-ferrite harmful phase in weld joint of martensite refractory steel with 12% of Cr in nuclear reactor core

Also Published As

Publication number Publication date
JP4948710B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4445161B2 (en) Manufacturing method of thick steel plate with excellent fatigue strength
JP5509923B2 (en) Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding
JP5202862B2 (en) High-strength welded steel pipe with weld metal having excellent cold cracking resistance and method for producing the same
JP2001123245A (en) High toughness and high tensile strength steel excellent in weld zone toughness and producing method therefor
JP5217385B2 (en) Steel sheet for high toughness line pipe and method for producing the same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP5509685B2 (en) Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method
JP5630322B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
JP7236540B2 (en) Steel material excellent in toughness of welded heat affected zone and method for producing the same
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JP4418391B2 (en) High tensile strength steel sheet having yield strength of 650 MPa or more with small acoustic anisotropy and method for producing the same
JP4341395B2 (en) High strength steel and weld metal for high heat input welding
JP4948710B2 (en) Welding method of high-tensile thick plate
JP3487262B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP2688312B2 (en) High strength and high toughness steel plate
JP4374104B2 (en) Joints and structures made of ultra-fine steel with excellent brittle crack propagation stopping characteristics
JP2002339037A (en) High tensile strength steel having excellent low temperature joint toughness and ssc resistance, and production method therefor
JP4566146B2 (en) High tensile welded joint with excellent joint toughness and method for producing the same
JP3336877B2 (en) Method for manufacturing thick high strength steel sheet with excellent brittle fracture arrestability and weldability
JPH08253821A (en) Production of welded joint having excellent fatigue strength
JP2011153366A (en) Method for manufacturing high-tensile-strength steel sheet to be laser-welded or laser/arc hybrid-welded having tensile strength of 1,100 mpa or more
JPH07278653A (en) Production of steel excellent in cold toughness on welding heat affected zone
JP3541746B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JP5458923B2 (en) Welded joint with excellent brittle fracture resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4948710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees