JP2002223076A - Multilayer wiring board - Google Patents

Multilayer wiring board

Info

Publication number
JP2002223076A
JP2002223076A JP2001019144A JP2001019144A JP2002223076A JP 2002223076 A JP2002223076 A JP 2002223076A JP 2001019144 A JP2001019144 A JP 2001019144A JP 2001019144 A JP2001019144 A JP 2001019144A JP 2002223076 A JP2002223076 A JP 2002223076A
Authority
JP
Japan
Prior art keywords
substrate
resin
layer
wiring
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001019144A
Other languages
Japanese (ja)
Other versions
JP4778148B2 (en
Inventor
Koju Ogawa
幸樹 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2001019144A priority Critical patent/JP4778148B2/en
Publication of JP2002223076A publication Critical patent/JP2002223076A/en
Application granted granted Critical
Publication of JP4778148B2 publication Critical patent/JP4778148B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multilayer wiring board, with which an electric characteristic between an electronic component integrally included in a substrate and an IC chip or the like mounted on a first main surface, and the electronic component and the IC chip can be normally operated at high speed. SOLUTION: This multilayer wiring board 1 include a substrate 2 having insulating layers 3, 4, 5 and wiring layers 6, 7, which are alternately laminated, a front surface 4a and a rear surface 5a, a throughhole 8, which penetrates between the front surface 4a and the rear surface 5a of this substrate 2, a chip capacitor (electronic component) 10 filled in the throughhole 8 via an embedded resin 9, and built-up layers BU1, BU2, which are formed above the front and rear surfaces 4a, 5a of the substrate 2 and include resin insulating layers 18, 24, 19, 25 and wiring layers 22, 23. An electrode 11 of the chip capacitor 10 and the wiring layer 16 are connected in the front surface 4a (front surface 9c of the resin insulating layer 9). A solder bump (terminal) 28 protruded higher than a first main surface 26 is formed on the wiring layer 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板の貫通孔など
に埋込樹脂を介して電子部品を内臓する多層配線基板に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer wiring board in which electronic components are embedded in through holes and the like of a board via an embedded resin.

【0002】[0002]

【従来の技術】近年における配線基板の小型化および基
板内における配線の高密度化に対応するため、配線基板
の第1主面上にICチップなどの電子部品を搭載するだ
けでなく、基板の内部に電子部品を内蔵する多層配線基
板が提案されている。例えば図8に示す多層配線基板7
0は、絶縁性の基板(コア基板)71の表・裏面72,7
3の間を貫通する貫通孔76内に埋込樹脂77を介して
複数のチップ状電子部品78を内臓している。かかる電
子部品78は、図8に示すように、一対の側面から上・
下に突出する電極79a,79bをそれぞれ対称に複数
個有している。かかる電極79a,79bは、基板71
の表・裏面72,73に形成される配線層80,81と
個別に接続されている。
2. Description of the Related Art In order to cope with recent miniaturization of wiring boards and high-density wiring in the boards, not only electronic parts such as IC chips are mounted on a first main surface of the wiring board, but also the size of the board is reduced. There has been proposed a multilayer wiring board in which electronic components are built. For example, the multilayer wiring board 7 shown in FIG.
0 is the front and back surfaces 72 and 7 of the insulating substrate (core substrate) 71
A plurality of chip-shaped electronic components 78 are incorporated in a through hole 76 penetrating between the three through a buried resin 77. As shown in FIG. 8, such an electronic component 78 is
It has a plurality of electrodes 79a and 79b projecting downward symmetrically. The electrodes 79a and 79b are provided on the substrate 71.
Are individually connected to the wiring layers 80 and 81 formed on the front and back surfaces 72 and 73.

【0003】また、図8に示すように、基板71には、
その表・裏面72,73間を貫通する複数のスルーホー
ル74内にスルーホール導体75および充填樹脂75a
が個別に形成され、スルーホール導体75は、その上下
端で配線層80,81と個別に接続される。基板71の
表面72および配線層80の上には、樹脂絶縁層82,
88,94、配線層86,92、およびビア導体84,
90を含むビルドアップ層が形成されている。最上層の
絶縁層(ソルダーレジスト)94には、これを貫通し且つ
配線層92上から第1主面94aよりも高く突出するハ
ンダバンプ96が複数形成されている。かかるバンプ9
6は、図8に示すように、第1主面94aに実装される
ICチップ(半導体素子)98と端子と個別に接続され
る。
[0003] Further, as shown in FIG.
A through-hole conductor 75 and a filling resin 75a are provided in a plurality of through-holes 74 penetrating between the front and back surfaces 72 and 73.
Are individually formed, and the through-hole conductor 75 is individually connected to the wiring layers 80 and 81 at the upper and lower ends. On the surface 72 of the substrate 71 and the wiring layer 80, a resin insulating layer 82,
88, 94, wiring layers 86, 92, and via conductors 84,
90 are formed. In the uppermost insulating layer (solder resist) 94, a plurality of solder bumps 96 penetrating therethrough and protruding above the wiring layer 92 above the first main surface 94a are formed. Such bump 9
8, the IC chip (semiconductor element) 98 mounted on the first main surface 94a and terminals are individually connected as shown in FIG.

【0004】更に、図8に示すように、基板71の裏面
73および配線層81の下には、樹脂絶縁層83,8
9,95、配線層87,93、およびビア導体85,9
1を含むビルドアップ層が形成されている。最下層の絶
縁層(ソルダーレジスト)95には、第2主面95a側に
開口する複数の開口部97が形成され、配線層93から
延びて各開口部97内で露出する配線99は、表面にN
iおよびAuメッキが被覆され、当該配線基板70自体
を搭載する図示しないマザーボードなどとの接続用端子
として用いられる。
[0004] Further, as shown in FIG. 8, resin insulating layers 83, 8 are formed on the back surface 73 of the substrate 71 and under the wiring layer 81.
9, 95, wiring layers 87, 93, and via conductors 85, 9
1 is formed. The lowermost insulating layer (solder resist) 95 has a plurality of openings 97 formed on the second main surface 95a side, and the wirings 99 extending from the wiring layer 93 and exposed in the respective openings 97 are formed on the front surface. N
It is coated with i and Au plating and is used as a terminal for connection to a motherboard (not shown) on which the wiring board 70 itself is mounted.

【0005】[0005]

【発明が解決すべき課題】ところで、多層配線基板70
では、図8に示すように、基板71に内蔵した電子部品
78の電極79aと第1主面94aに実装されるICチ
ップ98との間には、配線層80,86,92、ビア導
体84,90、およびハンダバンプ96からなる長い導
通経路が介在している。このため、かかる導通経路にお
けるループインダクタンスが増加することにより、スイ
ッチングノイズやクロストークノイズが生じ易くなり、
電子部品78やICチップ98が誤動作を生じるおそれ
がある、という問題があった。本発明は、以上に説明し
た従来の技術における問題点を解決し、基板に内蔵する
電子部品と第1主面に実装されるICチップなどとの間
における電気的特性を高め、かかる電子部品やICチッ
プなどを正常で且つ高速度にて作動させ得る多層配線基
板を提供する、ことを課題とする。
The multilayer wiring board 70
8, between the electrode 79a of the electronic component 78 incorporated in the substrate 71 and the IC chip 98 mounted on the first main surface 94a, wiring layers 80, 86, 92 and via conductors 84 are provided. , 90 and solder bumps 96 are interposed. For this reason, by increasing the loop inductance in such a conduction path, switching noise and crosstalk noise are likely to occur,
There is a problem that the electronic component 78 and the IC chip 98 may malfunction. The present invention solves the above-described problems in the conventional technology, improves the electrical characteristics between an electronic component incorporated in a substrate and an IC chip mounted on a first main surface, and improves such an electronic component. It is an object of the present invention to provide a multilayer wiring board capable of operating an IC chip or the like normally and at a high speed.

【0006】[0006]

【課題を解決するための手段】本発明は、上記の課題を
解決するため、基板に内蔵する電子部品と実装されるI
Cチップなどとの間における導通経路を可及的に短くす
る、ことに着想して成されたものである。即ち、本発明
の多層配線基板は、絶縁層と配線層とを交互に積層し且
つ表面および裏面を有する基板と、この基板の表面と裏
面との間を(複数の絶縁層に跨がって)貫通する貫通孔、
あるいは表面または裏面に(複数の絶縁層に跨がるよう
にして)開口する凹部と、上記貫通孔または凹部に埋込
樹脂を介して内臓される電子部品と、上記基板の表面お
よび裏面の少なくとも一方の上方に形成され且つ樹脂絶
縁層と配線層とを含むビルドアップ層と、を備え、上記
電子部品の電極と上記ビルドアップ層の配線層とは、上
記基板の表面において接続されている、ことを特徴とす
る。また、前記基板の表面の上方における前記ビルドア
ップ層は、その配線層と当該ビルドアップ層の第1主面
に実装されるICチップなどの半導体素子とを接続する
端子を上記第1主面付近に有する、多層配線基板も本発
明に含まれる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides an electronic component mounted on a board and mounted on an electronic component.
The present invention has been made with an idea that a conduction path between the C chip and the like is made as short as possible. That is, the multilayer wiring board of the present invention has a structure in which insulating layers and wiring layers are alternately laminated and has a front surface and a back surface, and a region between the front surface and the back surface of the substrate (straddling a plurality of insulating layers). ) Through holes,
Alternatively, a concave portion that is opened on the front or back surface (to straddle a plurality of insulating layers), an electronic component incorporated through the embedded resin in the through hole or the concave portion, and at least the front and back surfaces of the substrate A build-up layer formed on one side and including a resin insulating layer and a wiring layer; and an electrode of the electronic component and a wiring layer of the build-up layer are connected on a surface of the substrate. It is characterized by the following. Further, the build-up layer above the surface of the substrate is provided with terminals for connecting a wiring layer and a semiconductor element such as an IC chip mounted on the first main surface of the build-up layer in the vicinity of the first main surface. The present invention also includes a multilayer wiring board having the above.

【0007】これらによれば、全体の厚みがほぼ同じで
且つ内部の配線層の層数が同一である場合、単一の基板
(コア基板)に電子部品を内蔵する前記図8に示した多層
配線基板70に比べ、電子部品の電極と第1主面に実装
されるICチップなどとの導通経路を可及的に短くでき
る。この結果、かかる導通経路におけるループインダク
タンスを低減できるため、スイッチングノイズやクロス
トークノイズを低減できるなどの電気的特性を高めるこ
とが可能となる。従って、内蔵した電子部品や実装され
るICチップなどを正常且つ高速度により動作させ得る
多層配線基板とすることができる。尚、本明細書におい
て、基板の表面とは、絶縁層または埋込樹脂の表面を指
し、基板の裏面とは、絶縁層または埋込樹脂の裏面を指
す。
According to these, when the overall thickness is substantially the same and the number of internal wiring layers is the same, a single substrate
The conduction path between the electrodes of the electronic component and the IC chip mounted on the first main surface can be made as short as possible, as compared with the multilayer wiring board 70 shown in FIG. . As a result, the loop inductance in such a conduction path can be reduced, so that electrical characteristics such as switching noise and crosstalk noise can be reduced. Therefore, it is possible to provide a multilayer wiring board that can operate the built-in electronic components and the mounted IC chip normally and at a high speed. In this specification, the surface of the substrate refers to the surface of the insulating layer or the embedded resin, and the back surface of the substrate refers to the back surface of the insulating layer or the embedded resin.

【0008】付言すれば、絶縁層と配線層とを交互に積
層し且つ表面および裏面を有する基板と、この基板の表
面と裏面との間を(複数の絶縁層に跨がって)貫通する貫
通孔、あるいは表面または裏面に(複数の絶縁層に跨が
るようにして)開口する凹部と、上記貫通孔または凹部
に埋込樹脂を介して内臓される電子部品と、上記基板の
表面および裏面の少なくとも一方の上方に形成され且つ
樹脂絶縁層と配線層とを含むビルドアップ層と、を備
え、上記電子部品の電極と上記ビルドアップ層の配線層
とは、上記基板における埋込樹脂の表面において接続さ
れている、多層配線基板を本発明に含めることも可能で
ある。また、前記基板は、絶縁層本体の表面および裏面
に配線層と絶縁層とを交互に積層している、多層配線基
板を本発明に含めることも可能である。上記絶縁層本体
は、いわゆるコア基板であり、かかる多層構造の基板を
用いることにより、配線の高密度化と内臓する電子部品
などの正常な動作とを図ることが可能となる。
[0008] In addition, an insulating layer and a wiring layer are alternately laminated, and a substrate having a front surface and a back surface, and penetrating (straddling a plurality of insulating layers) between the front surface and the back surface of the substrate. Through-holes, or recesses that open on the front or back surface (to straddle a plurality of insulating layers), electronic components built-in via the embedded resin in the through-holes or recesses, the surface of the substrate and A build-up layer formed above at least one of the back surfaces and including a resin insulating layer and a wiring layer, wherein the electrodes of the electronic component and the wiring layer of the build-up layer are formed of embedded resin in the substrate. It is also possible to include a multilayer wiring board connected at the surface in the present invention. In addition, the present invention can include a multilayer wiring board in which wiring layers and insulating layers are alternately laminated on the front and back surfaces of the insulating layer body. The insulating layer main body is a so-called core substrate, and by using such a multi-layer substrate, it is possible to increase the density of wiring and to perform normal operations of built-in electronic components and the like.

【0009】尚、貫通孔は、多層構造の基板に対しレー
ザ加工やドリル加工することにより形成される。一方、
凹部は、多層構造の基板を形成する絶縁層や配線層をエ
ンドミルを用いるルータ加工により形成したり、あるい
は予めルータ加工またはレーザ加工した絶縁層を別の絶
縁層や配線層と積層することによっても形成できる。尚
また、前記電子部品には、コンデンサ、インダクタ、抵
抗、フィルタなどの受動部品や、ローノイズアンプ(L
NA)、トランジスタ、半導体素子、FETなどの能動
部品、SAWフィルタ、LCフィルタ、アンテナスイッ
チモジュール、カプラ、ダイプレクサなどや、これらを
チップ状にしたものが含まれるがこれらに限らない。ま
た、これらのうちで異種の電子部品同士を同じ貫通孔や
凹部内に内蔵しても良い。更に、電子部品には、基板の
表面または裏面の一方にのみ電極を有する形態も含まれ
る。
The through hole is formed by laser processing or drilling a substrate having a multilayer structure. on the other hand,
The concave portion may be formed by forming an insulating layer or a wiring layer forming a substrate having a multilayer structure by router processing using an end mill, or by laminating an insulating layer previously processed by router or laser processing with another insulating layer or wiring layer. Can be formed. The electronic components include passive components such as capacitors, inductors, resistors, and filters, and low-noise amplifiers (L
NA), transistors, semiconductor elements, active components such as FETs, SAW filters, LC filters, antenna switch modules, couplers, diplexers, and the like, or chips of these, but are not limited thereto. Further, among them, different kinds of electronic components may be incorporated in the same through-hole or recess. Further, the electronic component includes a form having an electrode only on one of the front surface and the back surface of the substrate.

【0010】付言すれば、前記貫通孔または凹部は、平
面視でほぼ矩形状であり、その側壁間のコーナにアール
面または面取りが形成されている、配線基板を本発明に
含めることも可能である。これによる場合、前記貫通孔
または凹部の側壁同士間のコーナ部における基板と埋設
樹脂との密着性も向上し且つ安定させることができるの
で、かかるコーナ付近における隙間やクラックの発生を
確実に防止することができる。尚、凹部における側壁と
底面との間のコーナにも、アール面や面取りを形成して
も良い。
[0010] In addition, the present invention can include a wiring board in which the through hole or the concave portion is substantially rectangular in plan view, and a round surface or a chamfer is formed in a corner between side walls thereof. is there. In this case, the adhesion between the substrate and the buried resin in the corner portion between the side walls of the through hole or the concave portion can be improved and stabilized, so that the generation of a gap or a crack near the corner can be reliably prevented. be able to. In addition, a round surface or a chamfer may be formed at a corner between the side wall and the bottom surface in the concave portion.

【0011】尚更に、前記貫通孔の側壁または凹部の側
壁および底面には、予め有機化合物(カップリング剤)が
塗布されている、配線基板を本発明に含めることも可能
である。これによる場合も、基板と埋設樹脂との密着性
をより一層向上させることが可能となる。尚、かかる有
機化合物(カップリング剤)には、チタン系、アルミニウ
ム系、シラン系の何れかからなる有機系化合物、または
これら有機系化合物の混合物が含まれる。これらによ
り、基板と埋込樹脂との界面における両者の密着性と水
分不透過性とを一層確実にすることができる。上記混合
物には、チタン系とアルミニウム系、チタン系とシラン
系、アルミニウム系とシラン系、チタン系とアルミニウ
ム系とシラン系、チタン系と別のチタン系、アルミニウ
ム系と別のアルミニウム系、シラン系と別のシラン系、
あるいはこれらの3種以上の組合せによる種類などが含
まれる。
Further, the present invention can include a wiring substrate in which an organic compound (coupling agent) is applied in advance to the side wall of the through hole or the side wall and the bottom surface of the concave portion. Also in this case, it is possible to further improve the adhesion between the substrate and the embedded resin. The organic compound (coupling agent) includes a titanium-based, aluminum-based, or silane-based organic compound, or a mixture of these organic compounds. Thus, the adhesion between the substrate and the embedding resin at the interface between the substrate and the embedding resin can be further ensured. The above mixture includes titanium and aluminum, titanium and silane, aluminum and silane, titanium and aluminum and silane, titanium and another titanium, aluminum and another aluminum, and silane. And another silane system,
Alternatively, a type based on a combination of three or more of these is included.

【0012】[0012]

【発明の実施の形態】以下において本発明の実施に好適
な形態を図面と共に説明する。図1は、本発明の1形態
の多層配線基板1における主要部の断面を示す。多層配
線基板1は、図1に示すように、絶縁層3,4,5とこ
れらの間に位置する配線層6,7からなる基板2と、そ
の表面4a上および裏面5a下に形成した配線層16,
22,17,23、および樹脂絶縁層18,24,1
9,25からなるビルドアップ層BU1,BU2とを有
する。上記配線層16などの厚さは約15μm程度であ
り、樹脂絶縁層18などの厚さは約30μm程度であ
る。基板2は、平面視がほぼ正方形で且つ全体の厚みが
約0.8mmであり、ガラス布入りのエポキシ樹脂から
なる絶縁層(コア基板、絶縁層本体とも言う)3と、その
上下に積層したシリカフィラなどの無機フィラ入りのエ
ポキシ系樹脂からなる絶縁層4,5と、これらの間に位
置する銅製の配線層6,7とからなる多層構造を有す
る。
Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a cross section of a main part in a multilayer wiring board 1 according to one embodiment of the present invention. As shown in FIG. 1, the multilayer wiring board 1 includes a substrate 2 composed of insulating layers 3, 4, 5 and wiring layers 6, 7 located therebetween, and wirings formed on the front surface 4a and under the rear surface 5a. Layer 16,
22, 17, 23, and resin insulating layers 18, 24, 1
9 and 25, which are build-up layers BU1 and BU2. The thickness of the wiring layer 16 and the like is about 15 μm, and the thickness of the resin insulating layer 18 and the like is about 30 μm. The substrate 2 has a substantially square shape in plan view and an overall thickness of about 0.8 mm, and is laminated on an insulating layer (also referred to as a core substrate or an insulating layer body) 3 made of an epoxy resin containing glass cloth, and on the upper and lower sides thereof. It has a multilayer structure composed of insulating layers 4 and 5 made of epoxy resin containing inorganic filler such as silica filler and copper wiring layers 6 and 7 located between them.

【0013】また、基板2の中央部をドリル加工やレー
ザ加工することにより、図1に示すように、平面視がほ
ぼ正方形で一辺が12mmの貫通孔8が穿孔されてい
る。尚、貫通孔8の側壁の表面粗さは、中心線平均粗さ
Raで0.5〜5.0μmの範囲であって、十点平均粗
さRzで5.0〜30.0μmの範囲に入るようにすの
が望ましい。このため、ドリル加工などの後、貫通孔8
の側壁に対し必要に応じて過マンガン酸カリウムやクロ
ム酸による化学的粗化処理が施される。これにより、基
板2と後述する埋込樹脂9との密着性を高めることがで
きる。
Further, as shown in FIG. 1, a through hole 8 having a substantially square shape in plan view and a side of 12 mm is formed by drilling or laser processing the central portion of the substrate 2. The surface roughness of the side wall of the through hole 8 is in the range of 0.5 to 5.0 μm in center line average roughness Ra and in the range of 5.0 to 30.0 μm in ten point average roughness Rz. It is desirable to enter. Therefore, after drilling or the like, the through hole 8
If necessary, a chemical roughening treatment with potassium permanganate or chromic acid is performed on the side wall of the metal. Thereby, the adhesion between the substrate 2 and the embedding resin 9 described later can be improved.

【0014】尚また、貫通孔8の側壁に対して、更に有
機化合物(カップリング剤:チタン系、アルミニウム
系、シラン系の何れかからなる有機系化合物、またはこ
れら有機系化合物の混合物)を塗布しても良い。上記有
機化合物には、チタン系、アルミニウム系、シラン系の
何れかからなる有機系化合物、またはこれら有機系化合
物の混合物が含まれる。更に、かかる有機化合物の厚み
は、約0.5μm以下(但し0は含まず)にして被覆する
のが望ましい。厚さを0.5μm以下としたのは、これ
よりも厚くなると、表面にゼリー状の固まりが生じ、有
機系化合物による密着性や防水作用が低下するためであ
る。更に望ましくは、有機系化合物は、厚さ約0.2μ
m以下(但し0は含まず)の皮膜にして被覆するのが望ま
しい。これにより、表面にゼリー状の固まりが生じにく
くなり、より一層の密着性が得られるためである。かか
る有機系化合物は、貫通孔8の側壁や基板2の表・裏面
4a,5aと共に、貫通孔8に内臓されるチップコンデ
ンサ(電子部品)10の表面にも被覆されていても良い。
Further, an organic compound (coupling agent: an organic compound composed of any of titanium, aluminum and silane, or a mixture of these organic compounds) is further applied to the side wall of the through hole 8. You may. The organic compound includes an organic compound made of any of titanium, aluminum, and silane, or a mixture of these organic compounds. Further, it is desirable that the thickness of the organic compound is about 0.5 μm or less (however, 0 is not included) and the organic compound is coated. The reason why the thickness is set to 0.5 μm or less is that if the thickness is more than 0.5 μm, a jelly-like lump is formed on the surface, and the adhesion and the waterproofing effect of the organic compound are reduced. More preferably, the organic compound has a thickness of about 0.2 μm.
It is desirable that the film be covered with a film of m or less (excluding 0). Thereby, jelly-like lump hardly occurs on the surface, and further adhesiveness can be obtained. Such an organic compound may be coated on the surface of the chip capacitor (electronic component) 10 built in the through hole 8 together with the side wall of the through hole 8 and the front and back surfaces 4a and 5a of the substrate 2.

【0015】尚さらに、貫通孔8における側壁間のコー
ナには、面取りまたはアール面を形成しても良い。これ
により、チップコンデンサ10を埋設した埋込樹脂9を
脱泡処理後に加熱しても、貫通孔8のコーナに応力集中
が発生しにくくなり、かかる面取りまたはアール面を含
む各側壁の前記表面粗さと相まって、基板2と埋込樹脂
9との密着性を更に高められる。
Further, a chamfered or rounded surface may be formed at a corner between the side walls of the through hole 8. Accordingly, even if the embedded resin 9 in which the chip capacitor 10 is embedded is heated after the defoaming treatment, stress concentration is less likely to occur in the corner of the through hole 8, and the surface roughness of each side wall including the chamfer or the round surface is reduced. Together with this, the adhesion between the substrate 2 and the embedded resin 9 can be further enhanced.

【0016】また、基板2の貫通孔8内には、シリカフ
ィラなどの無機フィラを含むエポキシ系の埋込樹脂9を
介して、複数のチップコンデンサ(電子部品)10が内蔵
されている。かかる埋込樹脂9の体積熱膨張係数は、4
0ppm/℃以下、好ましくは30ppm/℃以下、よ
り好ましくは15ppm/℃以下であり、且つその下限
値としては10ppm/℃以上である。これにより、多
層配線基板1に内臓された電子部品10と配線基板1の
表面に実装されるICチップ(半導体素子)との熱膨張係
数の差に起因する応力集中を少なくすることが可能とな
り、クラックの発生防止に役立つ。尚、無機フィラとし
ては、特に制限しないが、結晶性シリカ、溶融シリカ、
アルミナ、または窒化ケイ素などが用いられる。
A plurality of chip capacitors (electronic components) 10 are built in the through holes 8 of the substrate 2 via an epoxy-based embedded resin 9 containing an inorganic filler such as silica filler. The volume expansion coefficient of the embedded resin 9 is 4
It is 0 ppm / ° C. or lower, preferably 30 ppm / ° C. or lower, more preferably 15 ppm / ° C. or lower, and its lower limit is 10 ppm / ° C. or higher. As a result, it is possible to reduce the stress concentration caused by the difference in the coefficient of thermal expansion between the electronic component 10 built in the multilayer wiring board 1 and the IC chip (semiconductor element) mounted on the surface of the wiring board 1, Helps prevent cracks. Incidentally, the inorganic filler is not particularly limited, but crystalline silica, fused silica,
Alumina, silicon nitride, or the like is used.

【0017】また、チップコンデンサ10は、両側面に
おいて上下端に突出し且つ基板2の表面4aまたは裏面
5aに位置する複数の電極11,12を対称に有する。
かかるチップコンデンサ10は、例えばチタン酸バリウ
ムを主成分とする誘電層と内部電極となるNi層とを交
互に積層したセラミックスコンデンサであり、3.2m
m×1.6mm×0.7mmのサイズを有する。図1に
示すように、貫通孔8の周囲には、所要のスペースを置
いて基板2の表・裏面4a,5a間を貫通する複数のス
ルーホール13が穿孔され、その内部に銅メッキからな
るスルーホール導体14およびシリカフィラを含む充填
樹脂15がそれぞれ形成されている。各スルーホール導
体14は、その中間で基板2の配線層6,7と接続され
ている。尚、充填樹脂15に替え、多量の金属粉末を含
む導電性樹脂、または金属粉末を含む非導電性樹脂を用
いても良い。
The chip capacitor 10 has a plurality of electrodes 11 and 12 symmetrically protruding from the upper and lower ends on both sides and located on the front surface 4a or the back surface 5a of the substrate 2.
The chip capacitor 10 is a ceramic capacitor in which, for example, a dielectric layer containing barium titanate as a main component and a Ni layer serving as an internal electrode are alternately laminated, and is 3.2 m in length.
It has a size of mx 1.6 mm x 0.7 mm. As shown in FIG. 1, a plurality of through-holes 13 are formed around the through-holes 8 so as to penetrate between the front and rear surfaces 4a and 5a of the substrate 2 with a required space, and the inside is made of copper plating. A through-hole conductor 14 and a filling resin 15 containing silica filler are formed respectively. Each of the through-hole conductors 14 is connected to the wiring layers 6 and 7 of the substrate 2 in the middle. Instead of the filling resin 15, a conductive resin containing a large amount of metal powder or a non-conductive resin containing metal powder may be used.

【0018】図1に示すように、基板2の表面4aと埋
込樹脂9の表面9cの上には、銅メッキからなる配線層
16と、シリカフィラを含むエポキシ樹脂からなる樹脂
絶縁層18とが形成されている。配線層16は、チップ
コンデンサ10の電極11およびスルーホール導体14
の上端と接続される。また、図1に示すように、絶縁層
18内の所定の位置には、複数のフィルドビア導体20
が形成され、これらのビア導体20の上端と絶縁層18
との上には配線層22が形成されている。尚、本実施形
態において、基板2の表面とは、絶縁層4の表面4aま
たは埋込樹脂9の表面9cを指す。
As shown in FIG. 1, a wiring layer 16 made of copper plating and a resin insulating layer 18 made of epoxy resin containing silica filler are provided on the surface 4a of the substrate 2 and the surface 9c of the embedded resin 9. Are formed. The wiring layer 16 includes the electrode 11 of the chip capacitor 10 and the through-hole conductor 14.
Is connected to the upper end of As shown in FIG. 1, a plurality of filled via conductors 20 are provided at predetermined positions in the insulating layer 18.
Are formed, and the upper ends of the via conductors 20 and the insulating layer 18 are formed.
The wiring layer 22 is formed on the substrate. In the present embodiment, the surface of the substrate 2 refers to the surface 4a of the insulating layer 4 or the surface 9c of the embedded resin 9.

【0019】配線層22の上には、ソルダーレジスト層
(絶縁層)24と、これを貫通し且つ第1主面26よりも
高く突出する複数のハンダバンプ(IC接続端子(Pb−
Sn系、Sn−Ag系、Sn−Sb系、Sn−Zn系な
ど))28とが形成される。以上の配線層16,22およ
び樹脂絶縁層18,24は、ビルドアップ層BU1を形
成する。また、上記ハンダバンプ28は、第1主面26
上に実装されるICチップ(半導体素子)29の底面に突
設された図示しない接続端子と個別に接続される。尚、
ICチップ29の接続端子およびハンダバンプ28の周
囲には、これらを埋設するようにICチップ29と第1
主面26との間に図示しないアンダーフィル材が充填さ
れる。
On the wiring layer 22, a solder resist layer
(Insulating layer) 24 and a plurality of solder bumps penetrating therethrough and projecting higher than the first main surface 26 (IC connection terminals (Pb−
Sn-based, Sn-Ag-based, Sn-Sb-based, Sn-Zn-based, etc.) 28 are formed. The wiring layers 16 and 22 and the resin insulating layers 18 and 24 form the build-up layer BU1. Further, the solder bumps 28 are connected to the first main surface 26.
It is individually connected to connection terminals (not shown) projecting from the bottom surface of an IC chip (semiconductor element) 29 mounted thereon. still,
Around the connection terminals of the IC chip 29 and the solder bumps 28, the IC chip 29 and the first
An underfill material (not shown) is filled between the main surface 26 and the main surface 26.

【0020】図1に示すように、基板2の裏面5aおよ
び埋込樹脂9の裏面9bの下にも銅メッキからなる配線
層17とシリカフィラ入りのエポキシ樹脂からなる樹脂
絶縁層19とが形成されている。配線層17は、チップ
コンデンサ10の電極12およびスルーホール導体14
の下端と接続されている。尚、本実施形態において、基
板2の裏面とは、絶縁層5の裏面5aまたは埋込樹脂9
の裏面9bを指す。また、樹脂絶縁層19の所定の位置
には、複数のフィルドビア導体21が形成され、かかる
ビア導体21の下端と絶縁層19の下には配線層23が
形成されている。配線層23の下には、ソルダーレジス
ト層(絶縁層)25が形成され、第2主面25a側に開口
する開口部25b内に露出する配線層23内の配線27
は、その表面にNiおよびAuメッキが被覆され、当該
配線基板1自体を搭載する図示しないプリント基板など
のマザーボードとの接続端子となる。以上の配線層1
7,23および樹脂絶縁層19,25は、ビルドアップ
層BU2を形成する。尚、基板2を挟んだ上下の配線層
16,17は、スルーホール導体14を介して導通する
共に、各チップコンデンサ10の電極11,12を介し
ても導通している。
As shown in FIG. 1, a wiring layer 17 made of copper plating and a resin insulating layer 19 made of epoxy resin containing silica filler are also formed under the back surface 5a of the substrate 2 and the back surface 9b of the embedded resin 9. Have been. The wiring layer 17 includes the electrode 12 and the through-hole conductor 14 of the chip capacitor 10.
Is connected to the lower end. In this embodiment, the back surface of the substrate 2 refers to the back surface 5 a of the insulating layer 5 or the embedded resin 9.
Back 9b. Further, a plurality of filled via conductors 21 are formed at predetermined positions of the resin insulating layer 19, and a wiring layer 23 is formed below the lower end of the via conductor 21 and under the insulating layer 19. Under the wiring layer 23, a solder resist layer (insulating layer) 25 is formed, and the wiring 27 in the wiring layer 23 exposed in the opening 25b opened to the second main surface 25a side.
Is coated with Ni and Au plating on its surface, and serves as a connection terminal to a motherboard such as a printed board (not shown) on which the wiring board 1 itself is mounted. The above wiring layer 1
The layers 7, 23 and the resin insulating layers 19, 25 form a build-up layer BU2. The upper and lower wiring layers 16 and 17 sandwiching the substrate 2 conduct through the through-hole conductors 14 and also conduct through the electrodes 11 and 12 of each chip capacitor 10.

【0021】以上のような多層配線基板1によれば、基
板2の貫通孔8に内蔵したチップコンデンサ10の電極
11と第1主面26に実装されるICチップ29との間
には、配線層16,22、ビア導体20、およびハンダ
バンプ28からなる比較的短い導通経路が介在してい
る。このため、全体の厚みがほぼ同じで且つ配線層の層
数が同一の場合、前記図8に示した従来の多層配線基板
70に比べて、多層配線基板1は、上記の各導通経路に
おけるループインダクタンスが低減する。この結果、ス
イッチングノイズやクロストークノイズが生じにくくな
るなどの電気的特性が高められるので、チップコンデン
サ10やICチップ29を正常且つ高速度により動作さ
せることができる。しかも、チップコンデンサ10を多
層構造の基板2に内臓したので、コア基板3を例えば5
00μm未満と薄肉化し且つ当該基板2に配線層6,7
を内臓したので、配線を高密度化し且つ全体を小型化す
る要求にも容易に対応することが可能となる。
According to the multilayer wiring board 1 described above, a wiring is provided between the electrode 11 of the chip capacitor 10 built in the through hole 8 of the board 2 and the IC chip 29 mounted on the first main surface 26. A relatively short conduction path consisting of the layers 16,22, via conductors 20, and solder bumps 28 is interposed. For this reason, when the overall thickness is substantially the same and the number of wiring layers is the same, the multilayer wiring board 1 has more loops than the conventional multilayer wiring board 70 shown in FIG. The inductance is reduced. As a result, the electrical characteristics such as the occurrence of switching noise and crosstalk noise are reduced, so that the chip capacitor 10 and the IC chip 29 can operate normally and at high speed. Moreover, since the chip capacitor 10 is incorporated in the multilayered substrate 2, the core substrate 3
The wiring layers 6 and 7 are thinned to less than
, It is possible to easily cope with the demand for increasing the density of wiring and reducing the size of the whole.

【0022】尚、基板2の絶縁層4,5には、配線層
6,16間または配線層7,17間を接続するビア導体
を形成しても良い。また、本実施形態において、ビア導
体はフィルドビア導体20などでなく、完全に導体で埋
まってないコンフォーマルビア導体とすることもでき
る。前記基板2の構造によれば、図1に示すように、ス
ルーホール導体14が絶縁層4,5を貫通するため、そ
の直上(図1で上側/下側)にビア導体20,21を形成
可能となるので、かかるスルーホール導体14の部分
(絶縁層4,5の貫通部分)にフィルドビア導体を形成し
て、スタックドビア(積み上げビア)構造とする必要がな
くなる。これにより、フィルドビア導体を絶縁層4,5
に形成する必要がなく、ビア形成のコストを低減するこ
ともできる。
The insulating layers 4 and 5 of the substrate 2 may be formed with via conductors for connecting between the wiring layers 6 and 16 or between the wiring layers 7 and 17. In the present embodiment, the via conductor is not limited to the filled via conductor 20 or the like, but may be a conformal via conductor that is not completely filled with the conductor. According to the structure of the substrate 2, as shown in FIG. 1, since the through-hole conductor 14 penetrates the insulating layers 4 and 5, the via conductors 20 and 21 are formed immediately above (upper / lower in FIG. 1). Since it becomes possible, the portion of the through-hole conductor 14
It is not necessary to form a filled via conductor in the (penetrating portions of the insulating layers 4 and 5) to form a stacked via (stacked via) structure. As a result, the filled via conductors are separated from the insulating layers 4 and 5.
It is not necessary to form the vias, and the cost of forming vias can be reduced.

【0023】図2乃至図5に基づいて、前記配線基板1
の主要な製造工程を説明する。図2(A)に示すように、
表・裏面に厚さ16μmの銅箔3a,3bを有する厚さ
0.45mmのガラスーエポキシ樹脂からなるコア基板
(絶縁層)3を用意する。次に、銅箔3a,3b上に所定
のパターンを有する図示しないエッチングレジストを形
成した後、エッチング(公知のサブトラクティブ法)を施
す。この結果、図2(B)に示すように、コア基板3の表
・裏面に所定パターンの配線層6,7が形成される。次
いで、コア基板3の表・裏面および配線層6,7を粗化
した後、これらの上に厚さ600μmで且つシリカフィ
ラ入りのエポキシ系樹脂のフィルムを熱圧着により貼り
付ける。この結果、図2(C)に示すように、コア基板3
の上下に絶縁層4,5が形成される。これにより、多層
構造の基板2が得られる。
Referring to FIG. 2 to FIG.
The main manufacturing steps will be described. As shown in FIG.
A core substrate made of glass-epoxy resin having a thickness of 0.45 mm and having copper foils 3 a and 3 b having a thickness of 16 μm on the front and back surfaces.
(Insulating layer) 3 is prepared. Next, after an etching resist (not shown) having a predetermined pattern is formed on the copper foils 3a and 3b, etching (a known subtractive method) is performed. As a result, wiring layers 6 and 7 having a predetermined pattern are formed on the front and back surfaces of the core substrate 3 as shown in FIG. Next, after the front and back surfaces of the core substrate 3 and the wiring layers 6 and 7 are roughened, an epoxy resin film having a thickness of 600 μm and containing silica filler is bonded thereon by thermocompression bonding. As a result, as shown in FIG.
The insulating layers 4 and 5 are formed above and below. Thereby, the substrate 2 having a multilayer structure is obtained.

【0024】更に、図2(C)に示すように、基板2の絶
縁層4側からレーザLs(本形態ではCOレーザ)を所
定の位置に照射する。この結果、図2(D)に示すよう
に、直径350μmの複数のスルーホール13が基板2
の表・裏面4a,5a間を貫通して形成される。次に、
各スルーホール13の内壁および絶縁層4,5の表・裏
面4a,5aに対して、無電解銅メッキおよび電解銅メ
ッキを施す。かかるメッキは、当該基板2を含む多数個
取り用のパネルにおける複数の製品単位(多層配線基板
1)に対して施される。この結果、図3(A)に示すよう
に、各スルーホール13の内壁に沿って厚さ18μmの
スルーホール導体14が形成されると共に、絶縁層4,
5の表・裏面4a,5aに銅メッキ層4b,5bが形成
される。更に、図3(B)に示すように、スルーホール導
体14の内側の中空部に充填樹脂15を充填する。
Further, as shown in FIG. 2C, a predetermined position is irradiated with a laser Ls (CO 2 laser in this embodiment) from the insulating layer 4 side of the substrate 2. As a result, as shown in FIG. 2D, a plurality of through holes 13 having a diameter of 350 μm were formed on the substrate 2.
Formed between the front and back surfaces 4a and 5a. next,
Electroless copper plating and electrolytic copper plating are applied to the inner wall of each through hole 13 and the front and back surfaces 4a and 5a of the insulating layers 4 and 5. Such plating is performed on a plurality of product units (multilayer wiring board 1) in a multi-panel panel including the board 2. As a result, as shown in FIG. 3A, a through-hole conductor 14 having a thickness of 18 μm is formed along the inner wall of each through-hole 13 and the insulating layers 4 and 4 are formed.
The copper plating layers 4b and 5b are formed on the front and back surfaces 4a and 5a of FIG. Further, as shown in FIG. 3B, a hollow resin inside the through-hole conductor 14 is filled with a filling resin 15.

【0025】更に、図3(C)に示すように、基板2の中
央部をドリル加工して、縦12mm×横12mmの貫通
孔8を穿設する。この際、貫通孔8における側壁間のコ
ーナに、面取りまたはアール面を同時に形成しても良
い。また、貫通孔8の側壁に対し、必要に応じて化学的
粗化処理を施すことにより、表面粗さが中心線平均粗さ
Raで0.5〜5.0μmの範囲で、且つ十点平均粗さ
Rzで5.0〜30.0μmの範囲に入るようにしても
良い。更に、かかる貫通孔8の側壁に対し有機化合物
(カップリング剤)を塗布しても良い。次に、図3(C)に
示すように、基板2を180°回転し、表・裏面4a,
5aを上下逆にした状態で、貫通孔8の表面4a側に、
当該基板2を含む多数個取り用のパネルにおける複数の
製品単位(多層配線基板1)に跨ってテープTを貼り付け
る。かかるテープTの粘着面は、貫通孔8側に向けられ
ている。
Further, as shown in FIG. 3C, a central portion of the substrate 2 is drilled to form a through hole 8 of 12 mm long × 12 mm wide. At this time, a chamfer or a round surface may be formed at the corner between the side walls of the through hole 8 at the same time. By subjecting the side wall of the through-hole 8 to a chemical roughening treatment as necessary, the surface roughness is in the range of 0.5 to 5.0 μm in center line average roughness Ra, and the ten-point average. The roughness Rz may be in the range of 5.0 to 30.0 μm. Further, an organic compound is applied to the side wall of the through hole 8.
(Coupling agent) may be applied. Next, as shown in FIG. 3C, the substrate 2 is rotated by 180 °, and the front and back surfaces 4a,
5a is turned upside down, and on the surface 4a side of the through hole 8,
The tape T is attached across a plurality of product units (multilayer wiring board 1) in the multi-cavity panel including the board 2. The adhesive surface of the tape T faces the through hole 8 side.

【0026】次いで、図4(A)に示すように、複数のチ
ップコンデンサ10を図示しないチップマウンタを用い
て貫通孔8内に挿入すると共に、各チップコンデンサ1
0の電極11をテープTの粘着面上における所定の位置
に接着する。図示のように、各チップコンデンサ10に
おける電極11,12の端面は、基板2の表・裏面4
a,5a付近に位置している。かかる状態で、図4(B)
に示すように、基板2の裏面5a側から貫通孔8内に、
エポキシ樹脂を主成分とする溶けた埋込樹脂9を充填し
た後、脱泡処理および約100℃に加熱して約60分保
持する硬化処理を施す。次いで、埋込樹脂9の盛り上が
った裏面9aを、例えばバフ研磨などにより平坦に整面
する。この結果、図4(C)に示すように、各チップコン
デンサ10の電極12が露出する平坦な裏面9bが形成
される。また、図示のように、テープTを剥離すると、
埋込樹脂9の表面9cには各チップコンデンサ10の電
極11がそれぞれ露出する。尚、表面9cも上記同様に
整面すると各電極11を確実に露出させ得る。
Next, as shown in FIG. 4A, a plurality of chip capacitors 10 are inserted into the through holes 8 using a chip mounter (not shown),
The zero electrode 11 is adhered to a predetermined position on the adhesive surface of the tape T. As shown, the end surfaces of the electrodes 11 and 12 of each chip capacitor 10 are
a, 5a. In this state, FIG.
As shown in the figure, from the back surface 5a side of the substrate 2 into the through hole 8,
After filling the melted embedding resin 9 containing an epoxy resin as a main component, a defoaming treatment and a curing treatment of heating to about 100 ° C. and holding for about 60 minutes are performed. Next, the raised back surface 9a of the embedded resin 9 is flattened by, for example, buffing. As a result, as shown in FIG. 4C, a flat back surface 9b from which the electrode 12 of each chip capacitor 10 is exposed is formed. Also, as shown, when the tape T is peeled off,
The electrode 11 of each chip capacitor 10 is exposed on the surface 9c of the embedded resin 9. If the surface 9c is also leveled in the same manner as described above, each electrode 11 can be reliably exposed.

【0027】更に、図5(A)に示すように、銅メッキ層
4b,5bおよび埋込樹脂9の表・裏面9b,9cに渉
って、銅メッキ層16a,17aを形成する。尚、図5
(A)では、基板2は再度180°回転され、表・裏面4
a,5aが逆になっている。次に、かかる銅メッキ層1
6a,17aの上に、所定パターンの図示しないエッチ
ングレジストを形成し、且つエッチングを施す。この結
果、図5(B)に示すように、基板2の表・裏面4a,5
a上に所定パターンの配線層16,17が形成される。
配線層16,17は、チップコンデンサ10の電極1
1,12と接続され、且つ各スルーホール導体8の上下
端とも接続される。同時に、スルーホール導体8の内側
の充填樹脂15は蓋メッキされると共に、埋込樹脂9の
表・裏面9c,9b(基板2の表・裏面)が露出する。
尚、図5(B)において、配線層16,17は、前記銅メ
ッキ層4b,5bのうちで残留した部分を含んでいる。
Further, as shown in FIG. 5A, copper plating layers 16a and 17a are formed across the copper plating layers 4b and 5b and the front and back surfaces 9b and 9c of the embedded resin 9. FIG.
In (A), the substrate 2 is again rotated by 180 °,
a and 5a are reversed. Next, the copper plating layer 1
An etching resist (not shown) having a predetermined pattern is formed on 6a and 17a and etched. As a result, as shown in FIG.
Wiring layers 16 and 17 having a predetermined pattern are formed on a.
The wiring layers 16 and 17 are the electrodes 1 of the chip capacitor 10.
1 and 12 and also to the upper and lower ends of each through-hole conductor 8. At the same time, the filling resin 15 inside the through-hole conductor 8 is lid-plated, and the front and back surfaces 9c and 9b of the embedded resin 9 (the front and back surfaces of the substrate 2) are exposed.
In FIG. 5B, the wiring layers 16 and 17 include the remaining portions of the copper plating layers 4b and 5b.

【0028】次いで、図5(C)に示すように、配線層1
6,17の上/下に、エポキシ樹脂のフィルムを熱圧着
により貼り付けて樹脂絶縁層18,19を形成する。か
かる絶縁層18,19における所定の位置には、フォト
リソグラフィ技術などにより底面に配線層16,17が
露出するビアホール20a,21aが形成され、且つこ
れらの内側に前記フィルドビア導体20,21が充填・
形成される。これ以降は、ビルドアップ層BU1,BU
2を形成する配線層22,23、および樹脂絶縁層2
4,25を、公知のビルドアップ工程(セミアディティ
ブ法、フルアディティブ法、サブトラクティブ法、フィ
ルム状樹脂材料のラミネートによる絶縁層の形成、フォ
トリソグラフィ技術など)により形成する。これによ
り、前記図1に示した多層配線基板1を得ることができ
る。
Next, as shown in FIG.
Resin insulating layers 18 and 19 are formed by attaching an epoxy resin film by thermocompression bonding on and under 6,17. Via holes 20a and 21a are formed at predetermined positions in the insulating layers 18 and 19 such that the wiring layers 16 and 17 are exposed on the bottom surface by photolithography or the like, and the filled via conductors 20 and 21 are filled inside the via holes 20a and 21a.
It is formed. After this, the build-up layers BU1, BU
Wiring layers 22 and 23 forming resin layer 2 and resin insulating layer 2
4 and 25 are formed by a known build-up process (semi-additive method, full-additive method, subtractive method, formation of an insulating layer by laminating a film-like resin material, photolithography technique, etc.). Thus, the multilayer wiring board 1 shown in FIG. 1 can be obtained.

【0029】図6は、異なる形態の多層配線基板30に
おける主要部の断面を示す。多層配線基板30は、図6
に示すように、絶縁層33,34,35とこれらの間に
位置する配線層36,37からなる基板32と、その表
面34a上および裏面35a下に形成した配線層46,
52,47,53、および樹脂絶縁層48,54,4
9,55とからなるビルドアップ層BU3,BU4とを
有する。基板32は、平面視がほぼ正方形で且つ全体の
厚み約0.8mmであり、ガラス布入りのエポキシ樹脂
からなるコア基板(絶縁層)33と、その上下に積層した
シリカフィラなどの無機フィラ入りのエポキシ系樹脂か
らなる絶縁層34,35と、これらの間に位置する銅製
の配線層36,37からなる多層構造を有する。尚、本
実施形態において、基板32の表面とは、絶縁層34の
表面34aまたは後述する埋込樹脂39の表面を指す。
FIG. 6 shows a cross section of a main part in a multilayer wiring board 30 of a different form. FIG.
As shown in FIG. 7, a substrate 32 composed of insulating layers 33, 34, 35 and wiring layers 36, 37 located therebetween, wiring layers 46 formed on the front surface 34a and under the rear surface 35a,
52, 47, 53, and resin insulation layers 48, 54, 4
9, 55, and build-up layers BU3 and BU4. The substrate 32 has a square shape in plan view and an overall thickness of about 0.8 mm, and includes a core substrate (insulating layer) 33 made of an epoxy resin containing a glass cloth and inorganic fillers such as silica fillers stacked on and under the core substrate 33. Has a multi-layered structure including insulating layers 34 and 35 made of epoxy resin and copper wiring layers 36 and 37 located therebetween. In the present embodiment, the surface of the substrate 32 refers to the surface 34a of the insulating layer 34 or the surface of an embedded resin 39 described later.

【0030】図6に示すように、基板32における絶縁
層33,34の中央付近には、基板32の表面34a側
に開口した凹部38が形成されている。凹部38は、平
面視がほぼ正方形で一辺が12mmのサイズであり、絶
縁層33,34をドリル加工した後、絶縁層35を圧着
するか、基板32の表面34a側からエンドミルによる
ルータ加工を、絶縁層33,34の合計厚さ分で行うこ
とにより形成される。尚、凹部38の側壁および底面
も、前記貫通孔8と同様の表面粗さにしたり、前記有機
化合物を被覆しても良く、そのコーナを面取りやアール
面としても良い。
As shown in FIG. 6, near the center of the insulating layers 33 and 34 in the substrate 32, a concave portion 38 is formed which is open toward the surface 34a of the substrate 32. The concave portion 38 is approximately square in plan view and has a size of 12 mm on a side. After the insulating layers 33 and 34 are drilled, the insulating layer 35 is crimped or a router process by an end mill from the surface 34a side of the substrate 32 is performed. It is formed by performing the process with the total thickness of the insulating layers 33 and 34. Incidentally, the side wall and the bottom surface of the concave portion 38 may have the same surface roughness as the through hole 8 or may be coated with the organic compound, and the corner thereof may be chamfered or rounded.

【0031】また、図6に示すように、凹部38には、
前記同様の埋込樹脂39を介して、複数のチップコンデ
ンサ(電子部品)40が内蔵されている。このコンデンサ
40は、両側面において上端側のみに突出し且つ基板3
2の表面34a、即ち埋込樹脂39の表面に位置する電
極41を対称に複数有する。かかるコンデンサ40も、
前記同様のセラミックスコンデンサである。更に、図6
に示すように、凹部38の周囲には、所要のスペースを
置いて基板32の表・裏面34a,35a間を貫通する
複数のスルーホール43が穿設され、その内側に銅製の
スルーホール導体44と充填樹脂45とが形成されてい
る。各スルーホール導体44は、その中間で配線層3
6,37と接続されている。
Further, as shown in FIG.
A plurality of chip capacitors (electronic components) 40 are built in via the same embedded resin 39 as described above. The capacitor 40 protrudes only at the upper end on both sides and
2, that is, a plurality of electrodes 41 symmetrically located on the surface 34 a of the embedded resin 39. Such a capacitor 40 also
This is a ceramic capacitor similar to the above. Further, FIG.
As shown in the figure, a plurality of through holes 43 penetrating between the front and back surfaces 34a and 35a of the substrate 32 are provided around the concave portion 38 with a required space, and a copper through hole conductor 44 is provided inside the through hole 43. And the filling resin 45 are formed. Each through-hole conductor 44 is located between
6 and 37.

【0032】図6に示すように、基板32の表面34a
上には、銅製の配線層46と、シリカフィラを含むエポ
キシ樹脂からなる樹脂絶縁層48とが形成され、配線層
46は、チップコンデンサ40の電極41およびスルー
ホール導体44の上端と接続される。また、図6に示す
ように、絶縁層48内の所定の位置には、複数のフィル
ドビア導体50が形成され、これらのビア導体50の上
端と絶縁層48との上には配線層52が形成されてい
る。この配線層52の上には、ソルダーレジスト層(絶
縁層)54と、これを貫通し且つ第1主面56よりも高
く突出する複数のハンダバンプ(端子)58とが形成され
る。以上の配線層46,52および樹脂絶縁層48,5
4は、ビルドアップ層BU3を形成する。上記ハンダバ
ンプ58は、第1主面56上に実装されるICチップ
(半導体素子)29の底面に突設された図示しない接続端
子と個別に接続される。尚、ICチップ29の接続端子
およびハンダバンプ58の周囲には、これらを埋設する
ようにICチップ29と第1主面56との間に図示しな
いアンダーフィル材が充填される。
As shown in FIG. 6, the surface 34a of the substrate 32
A wiring layer 46 made of copper and a resin insulating layer 48 made of epoxy resin containing silica filler are formed thereon, and the wiring layer 46 is connected to the electrode 41 of the chip capacitor 40 and the upper end of the through-hole conductor 44. . As shown in FIG. 6, a plurality of filled via conductors 50 are formed at predetermined positions in the insulating layer 48, and a wiring layer 52 is formed on the upper end of these via conductors 50 and on the insulating layer 48. Have been. On this wiring layer 52, a solder resist layer (insulating layer) 54 and a plurality of solder bumps (terminals) 58 penetrating therethrough and projecting higher than the first main surface 56 are formed. The above wiring layers 46 and 52 and resin insulating layers 48 and 5
4 forms the build-up layer BU3. The solder bump 58 is an IC chip mounted on the first main surface 56.
(Semiconductor element) It is individually connected to a connection terminal (not shown) protruding from the bottom surface of 29. The underfill material (not shown) between the IC chip 29 and the first main surface 56 is filled around the connection terminals of the IC chip 29 and the solder bumps 58 so as to bury them.

【0033】図6に示すように、基板32の裏面35a
下にも、銅製の配線層47とシリカフィラ入りのエポキ
シ樹脂からなる樹脂絶縁層49とが形成されている。配
線層47は、スルーホール導体44の下端と接続されて
いる。また、絶縁層49の所定の位置には、複数のフィ
ルドビア導体51が形成され、かかるビア導体51の下
端と絶縁層49の下には配線層53が形成されている。
配線層53の下には、ソルダーレジスト層(絶縁層)55
が形成され、第2主面55a側に開口する開口部57内
に露出する配線層53内の配線59は、その表面にNi
およびAuメッキが被覆され、当該配線基板30自体を
搭載する図示しないマザーボードとの接続端子となる。
以上の配線層47,53および樹脂絶縁層49,55
は、ビルドアップ層BU4を形成する。尚、基板32を
挟んだ上下の配線層46,47は、スルーホール導体4
4を介して導通し、チップコンデンサ40の電極41
は、配線層46およびスルーホール導体44を介して裏
面35aの配線層47,53と導通している。
As shown in FIG. 6, the back surface 35a of the substrate 32
Below, a copper wiring layer 47 and a resin insulating layer 49 made of epoxy resin containing silica filler are formed. The wiring layer 47 is connected to the lower end of the through-hole conductor 44. A plurality of filled via conductors 51 are formed at predetermined positions of the insulating layer 49, and a wiring layer 53 is formed below the lower end of the via conductor 51 and under the insulating layer 49.
Under the wiring layer 53, a solder resist layer (insulating layer) 55
Is formed, and the wiring 59 in the wiring layer 53 exposed in the opening 57 opening to the second main surface 55a side is formed by Ni
And Au plating, and serve as connection terminals to a motherboard (not shown) on which the wiring board 30 itself is mounted.
The above wiring layers 47 and 53 and resin insulating layers 49 and 55
Forms the build-up layer BU4. The upper and lower wiring layers 46 and 47 sandwiching the substrate 32 are connected to the through-hole conductor 4.
4 and the electrode 41 of the chip capacitor 40
Are electrically connected to the wiring layers 47 and 53 on the back surface 35a via the wiring layer 46 and the through-hole conductor 44.

【0034】以上のような配線基板30によれば、基板
32の凹部38に内蔵したチップコンデンサ40の電極
41と第1主面56に実装されるICチップ29との間
には、配線層46,52、ビア導体50、およびハンダ
バンプ58からなる比較的短い導通経路が介在してい
る。このため、前記図8の従来の多層配線基板70に比
べて、かかる導通経路におけるループインダクタンスが
低減する。この結果、スイッチングノイズやクロストー
クノイズが生じにくくなるなどの電気的特性が高められ
るので、チップコンデンサ40やICチップ29を正常
且つ高速度により動作させることができる。尚、基板3
2の前記絶縁層34,35には、配線層36,46間ま
たは配線層37,47間を接続するビア導体を形成して
も良い。
According to the wiring board 30 described above, the wiring layer 46 is provided between the electrode 41 of the chip capacitor 40 built in the recess 38 of the substrate 32 and the IC chip 29 mounted on the first main surface 56. , 52, via conductors 50, and solder bumps 58 are interposed. Therefore, the loop inductance in such a conduction path is reduced as compared with the conventional multilayer wiring board 70 of FIG. As a result, the electrical characteristics such as the occurrence of switching noise and crosstalk noise are reduced, so that the chip capacitor 40 and the IC chip 29 can operate normally and at high speed. In addition, the substrate 3
In the second insulating layers 34 and 35, via conductors may be formed to connect between the wiring layers 36 and 46 or between the wiring layers 37 and 47.

【0035】図7は、前記配線基板30の応用形態の多
層配線基板30aにおける主要部の断面を示す。かかる
配線基板30aは、図7に示すように、前記と同じ基板
32と、その表面34a上および裏面35a下に形成し
た配線層46,52,47,53、および樹脂絶縁層4
8,54,49,55とからなるビルドアップ層BU
3,BU4と、を有する。絶縁層33,34,35とこ
れらの間に位置する配線層36,37とからなる基板3
2には、図7に示すように、前記と同じ凹部38が形成
され、かかる凹部38には、前記同様の埋込樹脂39を
介して、複数のチップコンデンサ40aが内蔵されてい
る。チップコンデンサ40aは、その両側面において上
下端に突出し且つ基板32の表面34aまたは裏面35
aに位置する電極41,42を対称に複数有する。尚、
本実施形態において、基板32の表面とは、絶縁層34
の表面34aまたは埋込樹脂39の表面を指し、基板3
2の裏面とは、絶縁層34の裏面35aを指す。
FIG. 7 shows a cross section of a main part of a multilayer wiring board 30a in an application form of the wiring board 30. As shown in FIG. 7, the wiring substrate 30a includes the same substrate 32, wiring layers 46, 52, 47, and 53 formed on the front surface 34a and the rear surface 35a, and the resin insulating layer 4
Build-up layer BU consisting of 8, 54, 49 and 55
3 and BU4. Substrate 3 including insulating layers 33, 34, 35 and wiring layers 36, 37 located therebetween.
7, a recess 38 is formed in the same manner as described above, and a plurality of chip capacitors 40a are built in the recess 38 via the same embedded resin 39 as described above. The chip capacitor 40a projects from the upper and lower ends on both side surfaces thereof, and the front surface 34a or the rear surface 35 of the substrate 32.
It has a plurality of electrodes 41 and 42 symmetrically located at a. still,
In the present embodiment, the surface of the substrate 32 refers to the insulating layer 34
Surface 34a or the surface of the embedded resin 39,
The back surface of 2 indicates the back surface 35a of the insulating layer 34.

【0036】図7に示すように、凹部38の底面38a
には、基板32の絶縁層35を貫通する複数のスルーホ
ール導体60の上端に位置する配線層62が形成され、
上記コンデンサ40aの電極42と個別に接続されてい
る。各スルーホール導体60は、その下端で基板32の
裏面35aに形成される配線層47と接続されている。
尚、各スルーホール導体60の内側には、充填樹脂64
が形成されている。更に、図7に示すように、基板32
の表面34aの上方には、前記と同様に、配線層46,
52、樹脂絶縁層48,54、ビア導体50、およびハ
ンダバンプ(端子)58が形成され、且つ第1主面56に
はICチップ29が実装可能とされている。また、基板
32の裏面35aの下方にも、前記と同様に、配線層4
7,53、樹脂絶縁層49,55、ビア導体51、開口
部57、および接続端子用の配線59が形成されてい
る。
As shown in FIG.
A wiring layer 62 located at the upper end of a plurality of through-hole conductors 60 penetrating the insulating layer 35 of the substrate 32,
It is individually connected to the electrode 42 of the capacitor 40a. Each through-hole conductor 60 is connected at its lower end to a wiring layer 47 formed on the back surface 35 a of the substrate 32.
Note that a filling resin 64 is provided inside each through-hole conductor 60.
Are formed. Further, as shown in FIG.
Above the surface 34a of the wiring layer 46, as described above.
52, resin insulating layers 48 and 54, via conductors 50, and solder bumps (terminals) 58 are formed, and the IC chip 29 can be mounted on the first main surface 56. The wiring layer 4 is also provided below the back surface 35a of the substrate 32 in the same manner as described above.
7, 53, resin insulating layers 49 and 55, via conductors 51, openings 57, and wiring 59 for connection terminals are formed.

【0037】以上のような多層配線基板30aによれ
ば、基板32の凹部38に内蔵したチップコンデンサ4
0aの電極41と第1主面56に実装されるICチップ
29との間には、配線層46,52、ビア導体50、お
よびハンダバンプ58からなる比較的短い導通経路が介
在している。尚、チップコンデンサ40aの電極42
は、第2主面55a側のマザーボードとの間に、配線層
62,47,53、スルーホール導体60、およびビア
導体51からなる導通経路を有する。このため、前記図
8に示した従来の多層配線基板70に比べて、多層配線
基板30aでも、電極41とICチップ29との間の導
通経路におけるループインダクタンスが低減する。この
結果、スイッチングノイズやクロストークノイズが生じ
にくくなるなどの電気的特性が高められるので、チップ
コンデンサ40aやICチップ29を正常且つ高速度に
より動作させることができる。
According to the multilayer wiring board 30a as described above, the chip capacitor 4 built in the recess 38 of the board 32
A relatively short conduction path including the wiring layers 46 and 52, the via conductor 50, and the solder bump 58 is interposed between the electrode 41 of Oa and the IC chip 29 mounted on the first main surface 56. The electrode 42 of the chip capacitor 40a
Has a conduction path composed of wiring layers 62, 47, 53, through-hole conductors 60, and via conductors 51 between the motherboard on the second main surface 55 a side. For this reason, the loop inductance in the conduction path between the electrode 41 and the IC chip 29 is also reduced in the multilayer wiring board 30a as compared with the conventional multilayer wiring board 70 shown in FIG. As a result, the electrical characteristics such as the occurrence of switching noise and crosstalk noise are reduced, and the chip capacitor 40a and the IC chip 29 can be operated normally and at high speed.

【0038】本発明は、以上において説明した各形態に
限定されるものではない。前記基板2,32内のコア基
板(絶縁層)3,33の材質は、前記ガラス−エポキシ樹
脂系の複合材料の他、ビスマレイミド・トリアジン(B
T)樹脂、エポキシ樹脂、同様の耐熱性、機械強度、可
撓性、加工容易性などを有するガラス織布や、ガラス織
布などのガラス繊維とエポキシ樹脂、ポリイミド樹脂、
またはBT樹脂などの樹脂との複合材料であるガラス繊
維−樹脂系の複合材料を用いても良い。あるいは、ポリ
イミド繊維などの有機繊維と樹脂との複合材料や、連続
気孔を有するPTFEなど3次元網目構造のフッ素系樹
脂にエポキシ樹脂などの樹脂を含浸させた樹脂−樹脂系
の複合材料などを用いることも可能である。
The present invention is not limited to the embodiments described above. The material of the core substrates (insulating layers) 3 and 33 in the substrates 2 and 32 is bismaleimide triazine (B) in addition to the glass-epoxy resin composite material.
T) resin, epoxy resin, glass woven fabric having similar heat resistance, mechanical strength, flexibility, ease of processing, etc., glass fiber such as glass woven fabric and epoxy resin, polyimide resin,
Alternatively, a glass fiber-resin composite material which is a composite material with a resin such as a BT resin may be used. Alternatively, a composite material of an organic fiber and a resin such as a polyimide fiber, or a resin-resin composite material in which a resin such as an epoxy resin is impregnated with a fluororesin having a three-dimensional network structure such as PTFE having continuous pores is used. It is also possible.

【0039】また、前記貫通孔8や凹部38に内蔵する
電子部品は、1つのみでも良い。逆に、多数の基板2,
32を含む多数個取りの基板(パネル)内における製品単
位1個内に、複数の貫通孔8や凹部38を形成しても良
い。更に、複数のチップ状電子部品を互いの側面間で予
め接着したユニットとし、これを前記貫通孔8または凹
部38内に挿入し内蔵することもできる。また、チップ
状電子部品には、前記チップコンデンサ10などの他、
チップ状のインダクタ、抵抗、フィルタなどの受動部品
や、トランジスタ、半導体素子、FET、ローノイズア
ンプ(LNA)などの能動部品も含まれると共に、互いに
異種の電子部品同士を、基板2,32の同じ貫通孔8ま
たは凹部38内に併せて内蔵することも可能である。
Further, only one electronic component may be incorporated in the through hole 8 or the concave portion 38. Conversely, many substrates 2,
A plurality of through holes 8 and recesses 38 may be formed in one product unit in a multi-piece substrate (panel) including 32. Further, a unit in which a plurality of chip-shaped electronic components are bonded in advance between their side surfaces may be inserted into the through hole 8 or the concave portion 38 to be built therein. In addition, in addition to the chip capacitor 10 and the like, the chip-shaped electronic component
This includes passive components such as chip-shaped inductors, resistors, and filters, and active components such as transistors, semiconductor elements, FETs, and low-noise amplifiers (LNA). It is also possible to incorporate it inside the hole 8 or the recess 38.

【0040】更に、本発明の多層配線基板には、チップ
コンデンサ10などの電極がICチップ側のみで配線層
と接続している多層配線基板、即ちマザーボード側では
電極と配線層とが接続されていない形態の多層配線基板
も含まれる。また、前記配線層16,17、スルーホー
ル導体14などの材質は、前記Cuの他、Ag、Ni、
Ni−Au等にしても良く、あるいは、これら金属のメ
ッキ層を用いず、導電性樹脂を塗布するなどの方法によ
り形成しても良い。更に、前記樹脂絶縁層18,19な
どの材質は、前記エポキシ樹脂を主成分とするもののほ
か、同様の耐熱性、パターン成形性等を有するポリイミ
ド樹脂、BT樹脂、PPE樹脂、あるいは、連続気孔を
有するPTFEなど3次元網目構造のフッ素系樹脂にエ
ポキシ樹脂などの樹脂を含浸させた樹脂−樹脂系の複合
材料などを用いることもできる。尚、絶縁層の形成に
は、絶縁性の樹脂フィルムを熱圧着する方法のほか、液
状の樹脂をロールコータにより塗布する方法を用いるこ
ともできる。尚また、絶縁層に混入するガラス布または
ガラスフィラの組成は、Eガラス、Dガラス、Qガラ
ス、Sガラスの何れか、またはこれらのうちの2種類以
上を併用したものとしても良い。また、ビア導体は、前
記フィルドビア導体20などでなく、完全に導体で埋ま
ってないコンフォーマルビア導体とすることもできる。
Further, in the multilayer wiring board of the present invention, the electrodes such as the chip capacitor 10 are connected to the wiring layer only on the IC chip side, that is, the electrodes and the wiring layer are connected on the mother board side. A multi-layer wiring board having no form is also included. The materials of the wiring layers 16 and 17 and the through-hole conductors 14 are Ag, Ni,
It may be formed of Ni-Au or the like, or may be formed by a method such as applying a conductive resin without using the metal plating layer. Further, the material of the resin insulating layers 18 and 19 may be, for example, a polyimide resin, a BT resin, a PPE resin, or a continuous pore having the same heat resistance and pattern moldability, in addition to the epoxy resin as a main component. A resin-resin composite material in which a resin such as an epoxy resin is impregnated with a fluorine-based resin having a three-dimensional network structure such as PTFE can also be used. The insulating layer may be formed by a method of applying a liquid resin with a roll coater, in addition to a method of thermocompression bonding an insulating resin film. Further, the composition of the glass cloth or glass filler mixed into the insulating layer may be any one of E glass, D glass, Q glass, and S glass, or a combination of two or more of them. Also, the via conductor may be a conformal via conductor that is not completely filled with a conductor, instead of the filled via conductor 20 or the like.

【0041】[0041]

【発明の効果】以上において説明した本発明の多層配線
基板によれば、従来の多層配線基板に比べ、基板に内蔵
した電子部品の電極と第1主面に実装されるICチップ
などとの導通経路を可及的に短くできる。この結果、か
かる導通経路におけるループインダクタンスを低減でき
るため、スイッチングノイズやクロストークノイズを低
減できるなどの電気的特性を高めることが可能となる。
従って、内蔵した電子部品や実装されるICチップなど
を正常且つ高速度にて動作させることができる。
According to the multilayer wiring board of the present invention described above, the continuity between the electrodes of the electronic components incorporated in the substrate and the IC chip mounted on the first principal surface is higher than that of the conventional multilayer wiring board. The route can be as short as possible. As a result, the loop inductance in such a conduction path can be reduced, so that electrical characteristics such as switching noise and crosstalk noise can be reduced.
Therefore, the built-in electronic components and the mounted IC chip can be operated normally and at a high speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の多層配線基板の1形態における主要部
を示す断面図。
FIG. 1 is a sectional view showing a main part in one embodiment of a multilayer wiring board of the present invention.

【図2】(A)〜(D)は図1の多層配線基板の製造方法に
おける主な工程を示す概略図。
FIGS. 2A to 2D are schematic diagrams showing main steps in a method for manufacturing the multilayer wiring board of FIG. 1;

【図3】(A)〜(C)は図2(D)に続く主な製造工程を示
す概略図。
3 (A) to 3 (C) are schematic views showing main manufacturing steps following FIG. 2 (D).

【図4】(A)〜(C)は図3(C)に続く主な製造工程を示
す概略図。
4 (A) to 4 (C) are schematic views showing main manufacturing steps following FIG. 3 (C).

【図5】(A)〜(C)は図4(C)に続く主な製造工程を示
す概略図。
5 (A) to 5 (C) are schematic views showing main manufacturing steps following FIG. 4 (C).

【図6】本発明の異なる形態の多層配線基板における主
要部を示す断面図。
FIG. 6 is a sectional view showing a main part of a multilayer wiring board according to another embodiment of the present invention.

【図7】図6の多層配線基板の応用形態における主要部
を示す断面図。
FIG. 7 is a sectional view showing a main part in an application form of the multilayer wiring board of FIG. 6;

【図8】従来の多層配線基板における主要部を示す断面
図。
FIG. 8 is a cross-sectional view showing a main part of a conventional multilayer wiring board.

【符号の説明】[Explanation of symbols]

1,30,30a…………………………………多層配線
基板 2,32……………………………………………基板 3〜5,33〜35………………………………絶縁層 4a,9c,34a……………………………表面 5a,9b,35a……………………………裏面 6,7,16,17,22,23,36,37,46,47,5
2,53…配線層 8……………………………………………………貫通孔 9,39……………………………………………埋込樹脂 10,40,40a………………………………チップコ
ンデンサ(電子部品) 11,12,41,42…………………………電極 18,19,24,25,48,49,54,55…樹脂絶縁
層 26,56…………………………………………第1主面 28,58…………………………………………ハンダバ
ンプ(端子) 29…………………………………………………ICチッ
プ 38…………………………………………………凹部 BU1〜BU4……………………………………ビルドア
ップ層
1, 30, 30a ............ Multi-layer wiring board 2, 32 ... ...... Boards 3-5, 33-35 ... Insulating layer 4a, 9c, 34a ... Front surface 5a, 9b, 35a ... Back surface 6, 7 , 16,17,22,23,36,37,46,47,5
2,53 Wiring layer 8 ……………………………………… Through hole 9,39 ……………………………………………… Resin 10, 40, 40a ...... Chip capacitors (electronic parts) 11, 12, 41, 42 ...... Electrodes 18, 19, 24, 25 , 48, 49, 54, 55 ... resin insulating layer 26, 56 ... first primary surface 28, 58 ... 58 ……… Solder bumps (terminals) 29 ………………………………… IC chips 38 …………………………………………………………… Recesses BU1 to BU4 Build-up layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】絶縁層と配線層とを交互に積層し且つ表面
および裏面を有する基板と、 上記基板の表面と裏面との間を貫通する貫通孔、あるい
は表面または裏面に開口する凹部と、 上記貫通孔または凹部に埋込樹脂を介して内臓される電
子部品と、 上記基板の表面および裏面の少なくとも一方の上方に形
成され且つ樹脂絶縁層と配線層とを含むビルドアップ層
と、を備え、 上記電子部品の電極と上記ビルドアップ層の配線層と
は、上記基板の表面において接続されている、 ことを特徴とする多層配線基板。
A substrate having an insulating layer and a wiring layer alternately laminated and having a front surface and a back surface; a through hole penetrating between the front surface and the back surface of the substrate, or a concave portion opening on the front surface or the back surface; An electronic component embedded in the through hole or the recess via an embedded resin; and a build-up layer formed above at least one of the front surface and the back surface of the substrate and including a resin insulating layer and a wiring layer. The multilayer wiring board according to claim 1, wherein the electrodes of the electronic component and the wiring layer of the build-up layer are connected on a surface of the board.
【請求項2】前記基板の表面の上方における前記ビルド
アップ層は、その配線層と当該ビルドアップ層の第1主
面に実装されるICチップなどの半導体素子とを接続す
る端子を上記第1主面付近に有する、 ことを特徴とする請求項1に記載の多層配線基板。
2. The terminal for connecting a wiring layer and a semiconductor element such as an IC chip mounted on a first main surface of the build-up layer to the first layer above the surface of the substrate. The multilayer wiring board according to claim 1, wherein the multilayer wiring board is provided near a main surface.
JP2001019144A 2001-01-26 2001-01-26 Multilayer wiring board Expired - Lifetime JP4778148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001019144A JP4778148B2 (en) 2001-01-26 2001-01-26 Multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001019144A JP4778148B2 (en) 2001-01-26 2001-01-26 Multilayer wiring board

Publications (2)

Publication Number Publication Date
JP2002223076A true JP2002223076A (en) 2002-08-09
JP4778148B2 JP4778148B2 (en) 2011-09-21

Family

ID=18885076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001019144A Expired - Lifetime JP4778148B2 (en) 2001-01-26 2001-01-26 Multilayer wiring board

Country Status (1)

Country Link
JP (1) JP4778148B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296690A (en) * 2003-03-26 2004-10-21 Shinko Electric Ind Co Ltd Manufacturing method of multilayer circuit board with built-in semiconductor device
WO2005011343A2 (en) * 2003-07-24 2005-02-03 Motorola, Inc. Circuit board with embedded components and method of manufacture
JP2007258541A (en) * 2006-03-24 2007-10-04 Ngk Spark Plug Co Ltd Method of manufacturing wiring board
US7286366B2 (en) 2005-03-24 2007-10-23 Motorola, Inc. Multilayer circuit board with embedded components and method of manufacture
JPWO2007034629A1 (en) * 2005-09-20 2009-03-19 株式会社村田製作所 Manufacturing method of component built-in module and component built-in module
US7704548B2 (en) 2006-04-25 2010-04-27 Ngk Spark Plug Co., Ltd. Method for manufacturing wiring board
US7808799B2 (en) 2006-04-25 2010-10-05 Ngk Spark Plug Co., Ltd. Wiring board
JP2014131032A (en) * 2012-12-31 2014-07-10 Samsung Electro-Mechanics Co Ltd Electronic component-embedded substrate and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036867A (en) * 1989-06-05 1991-01-14 Mitsubishi Electric Corp Electrode structure of photovoltaic device, forming method, and apparatus for manufacture thereof
US5672546A (en) * 1995-12-04 1997-09-30 General Electric Company Semiconductor interconnect method and structure for high temperature applications
JP2000260902A (en) * 1999-03-05 2000-09-22 Ngk Spark Plug Co Ltd Wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036867A (en) * 1989-06-05 1991-01-14 Mitsubishi Electric Corp Electrode structure of photovoltaic device, forming method, and apparatus for manufacture thereof
US5672546A (en) * 1995-12-04 1997-09-30 General Electric Company Semiconductor interconnect method and structure for high temperature applications
JP2000260902A (en) * 1999-03-05 2000-09-22 Ngk Spark Plug Co Ltd Wiring board

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296690A (en) * 2003-03-26 2004-10-21 Shinko Electric Ind Co Ltd Manufacturing method of multilayer circuit board with built-in semiconductor device
WO2005011343A2 (en) * 2003-07-24 2005-02-03 Motorola, Inc. Circuit board with embedded components and method of manufacture
WO2005011343A3 (en) * 2003-07-24 2005-06-02 Motorola Inc Circuit board with embedded components and method of manufacture
US6928726B2 (en) * 2003-07-24 2005-08-16 Motorola, Inc. Circuit board with embedded components and method of manufacture
JP2006528839A (en) * 2003-07-24 2006-12-21 モトローラ・インコーポレイテッド Circuit board with embedded components and manufacturing method
US7286366B2 (en) 2005-03-24 2007-10-23 Motorola, Inc. Multilayer circuit board with embedded components and method of manufacture
EP1864558A1 (en) * 2005-03-24 2007-12-12 Motorola, Inc. Multilayer circuit board with embedded components and method of manufacture
JP2008533751A (en) * 2005-03-24 2008-08-21 モトローラ・インコーポレイテッド Multilayer circuit board with embedded component and manufacturing method
US7594318B2 (en) 2005-03-24 2009-09-29 Motorola, Inc. Multilayer circuit board with embedded components and method of manufacture
EP1864558A4 (en) * 2005-03-24 2009-11-18 Motorola Inc Multilayer circuit board with embedded components and method of manufacture
US7885081B2 (en) 2005-09-20 2011-02-08 Murata Manufacturing Co., Ltd. Component incorporating module
JPWO2007034629A1 (en) * 2005-09-20 2009-03-19 株式会社村田製作所 Manufacturing method of component built-in module and component built-in module
JP4766049B2 (en) * 2005-09-20 2011-09-07 株式会社村田製作所 Manufacturing method of component built-in module and component built-in module
JP2007258541A (en) * 2006-03-24 2007-10-04 Ngk Spark Plug Co Ltd Method of manufacturing wiring board
JP4648230B2 (en) * 2006-03-24 2011-03-09 日本特殊陶業株式会社 Wiring board manufacturing method
US7808799B2 (en) 2006-04-25 2010-10-05 Ngk Spark Plug Co., Ltd. Wiring board
US7704548B2 (en) 2006-04-25 2010-04-27 Ngk Spark Plug Co., Ltd. Method for manufacturing wiring board
TWI407870B (en) * 2006-04-25 2013-09-01 Ngk Spark Plug Co Method for manufacturing wiring board
JP2014131032A (en) * 2012-12-31 2014-07-10 Samsung Electro-Mechanics Co Ltd Electronic component-embedded substrate and method of manufacturing the same
US9313893B2 (en) 2012-12-31 2016-04-12 Samsung Electro-Mechanics Co., Ltd. Substrate having electronic component embedded therein and method of manufacturing the same

Also Published As

Publication number Publication date
JP4778148B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
US7102085B2 (en) Wiring substrate
US6577490B2 (en) Wiring board
US7548432B2 (en) Embedded capacitor structure
US9478343B2 (en) Printed wiring board
EP1868422B1 (en) Electronic component built-in substrate and method of manufacturing the same
JP2002151846A (en) Wiring substrate and method of manufacturing the same
US20100236822A1 (en) Wiring board and method for manufacturing the same
JP2002151847A (en) Wiring substrate and method of manufacturing the same
JP4778148B2 (en) Multilayer wiring board
JP2002290031A (en) Wiring board and its manufacturing method
JP3810296B2 (en) Wiring board
JPH0794868A (en) Multilayered wiring board and its manufacture
US11658142B2 (en) Connection arrangement, component carrier and method of forming a component carrier structure
JP4685978B2 (en) Wiring board
JP2001345559A (en) Wiring board and its manufacturing method
JP3945764B2 (en) Wiring board
JP2001313474A (en) Wiring board
JP4179407B2 (en) Wiring board
JP3727260B2 (en) Wiring board
JP2004241583A (en) Wiring board
JP2003229661A (en) Wiring board and its manufacturing method
JP2002084071A (en) Wiring board
JP2003046255A (en) Wiring board
JP2002118368A (en) Wiring substrate and manufacturing method thereof
JP3786894B2 (en) Wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110701

R150 Certificate of patent or registration of utility model

Ref document number: 4778148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term