JP2002214327A - Range finding device and object detection device - Google Patents

Range finding device and object detection device

Info

Publication number
JP2002214327A
JP2002214327A JP2001014800A JP2001014800A JP2002214327A JP 2002214327 A JP2002214327 A JP 2002214327A JP 2001014800 A JP2001014800 A JP 2001014800A JP 2001014800 A JP2001014800 A JP 2001014800A JP 2002214327 A JP2002214327 A JP 2002214327A
Authority
JP
Japan
Prior art keywords
light
light beam
measured
lens
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001014800A
Other languages
Japanese (ja)
Other versions
JP4878080B2 (en
Inventor
Shigeki Nakase
重樹 仲瀬
Shigeyuki Nakamura
重幸 中村
Takeshi Ota
剛 太田
Hiromi Shimano
弘己 嶋野
Hirotomo Totsuka
弘倫 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2001014800A priority Critical patent/JP4878080B2/en
Priority to PCT/JP2002/000471 priority patent/WO2002059641A1/en
Publication of JP2002214327A publication Critical patent/JP2002214327A/en
Application granted granted Critical
Publication of JP4878080B2 publication Critical patent/JP4878080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Traffic Control Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a range finding device and an object detection device capable of detecting light beams reflected from an object to be measured, and capable of high-precision range finding. SOLUTION: A projecting optical system 11 includes a light source 12 and a projecting lens (collimating lens) 13 serving as a light intensity correcting means. The light source 12 is a laser diode (LD) for outputting light beams corresponding to a drive signal input from a laser diode drive circuit (LD drive circuit) 33. The projecting lens 13 is for projecting the light beams output from the LD 12 toward the object T to be measured, and for correcting the intensity distribution of the light beams output from the LD 12; the intensity distribution of the light beams is corrected so that the light beams output from the LD 12 at a position a predetermined distance away from the projecting lens 13 have higher intensity at their peripheries than near their optical axes. The projecting lens 13 includes an aspherical lens portion and a cylindrical lens portion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被測定対象物体ま
での距離を測定する距離計測装置、及び距離計測装置を
用いた物体検知装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance measuring device for measuring a distance to an object to be measured, and an object detecting device using the distance measuring device.

【0002】[0002]

【従来の技術】従来、たとえばETC(Electronic Tol
l Collection System)における車両検知装置として、
外部に出射される照射光を発生させる光源(レーザダイ
オード等)を用いた照射光学系と、被測定対象物体から
の反射光を検出する受光素子等を用いた検出光学系とを
有して構成されて、受光の有無によって検出方向におけ
る被測定対象物体の有無を、また、照射光と反射光との
時間差・位相差などから被測定対象物体までの距離を検
出する距離計測装置が知られている。
2. Description of the Related Art Conventionally, for example, ETC (Electronic Tol
l Collection System)
An irradiation optical system that uses a light source (such as a laser diode) that generates irradiation light emitted to the outside, and a detection optical system that uses a light receiving element or the like that detects reflected light from an object to be measured A distance measuring device is known which detects the presence or absence of an object to be measured in a detection direction by the presence or absence of light reception, and detects the distance to the object to be measured from a time difference / phase difference between irradiation light and reflected light. I have.

【0003】たとえば、特開平7−253462号公報
には、レーザ光源から出射した光を送信する送信光学系
と、送信光学系から送信された光のうち、対象物から反
射し戻った光を受信し、受信信号を出力する受信手段
と、受信信号により対象物を検知する検知手段と、光の
送信タイミングと受信タイミングの差から対象物までの
往復時間を計測して対象物までの距離を演算する演算手
段とを具備した距離測定装置が開示されている。この特
開平7−253462号公報に開示された距離測定装置
にあっては、送信光学系が、並列する複数の主点を有し
て光の光束強度分布を平坦化するフライアイレンズを具
備しており、このフライアイレンズによりレーザ光源か
らの光は強度分布が平坦化されて送信され、対象物に対
して投射された光は測定光束の中央部のものであるか、
或いは周辺部のものであるかに拘わらず、強度が異なる
ことがなく、光源から出射する光の強度分布に基因する
誤差は減少して高精度の距離測定が可能となる。
For example, Japanese Patent Application Laid-Open No. 7-253462 discloses a transmission optical system for transmitting light emitted from a laser light source, and receiving light reflected from an object and returned from light transmitted from the transmission optical system. Receiving means for outputting a received signal, detecting means for detecting an object based on the received signal, and calculating a distance to the object by measuring a round trip time to the object based on a difference between a light transmission timing and a reception timing. There is disclosed a distance measuring device provided with a calculating means for performing the above. In the distance measuring device disclosed in Japanese Patent Application Laid-Open No. 7-253462, the transmission optical system includes a fly-eye lens having a plurality of main points arranged in parallel to flatten the light flux intensity distribution of light. The light from the laser light source is transmitted with the intensity distribution flattened by the fly-eye lens, and the light projected on the object is the one in the central part of the measurement light beam,
Alternatively, regardless of the peripheral portion, the intensity does not differ, the error due to the intensity distribution of the light emitted from the light source is reduced, and highly accurate distance measurement can be performed.

【0004】[0004]

【発明が解決しようとする課題】本発明者等の調査研究
の結果、特開平7−253462号公報に開示された距
離測定装置においては、以下のような問題点を有してい
ることが判明した。特開平7−253462号公報に開
示された距離測定装置では、送信光学系にフライアイレ
ンズが用いられている。しかしながら、レーザ光源の発
光強度分布はガウス分布(光軸付近が高く、周辺付近が
低い)をしていることから、フライアイレンズでは、ガ
ウス分布の発光強度を有する光束が細分化されるだけで
あり、光束全体の発光強度分布を平坦化することは困難
である。
As a result of investigation and research by the present inventors, it has been found that the distance measuring device disclosed in Japanese Patent Application Laid-Open No. 7-253462 has the following problems. did. In the distance measuring device disclosed in Japanese Patent Application Laid-Open No. 7-253462, a fly-eye lens is used for a transmission optical system. However, since the luminous intensity distribution of the laser light source has a Gaussian distribution (high near the optical axis and low near the periphery), the fly-eye lens only subdivides the luminous flux having the Gaussian luminous intensity. Therefore, it is difficult to flatten the emission intensity distribution of the entire light beam.

【0005】また、光束全体の発光強度分布が平坦化さ
れたとしても、光源から出射された光束の照射範囲に円
筒あるいは円柱形状の被測定対象物体の一部のみ侵入し
た状態では、被測定対象物体からの反射光束の反射光量
が少なくなり反射光束そのものの検出が困難となり、検
出精度及び確度が劣る惧れがある。円筒あるいは円柱形
状の被測定対象物体では、光反射面が曲面となる。この
ため、被測定対象物体の中央部に光束が照射されると、
照射された光束は正反射されて反射光束の光強度は高い
が、被測定対象物体の端部(周辺部)に光束が照射され
ると、端部は曲率が大きいため散乱が大きく反射光束の
光強度は激減する。更に、レーザ光源の発光強度分布
は、上述したようにガウス分布であることから、光束の
周辺部の光強度そのものも、光束の光軸付近の光強度に
比べて低くなっている。これらのことから、外側形状が
曲面である被測定対象物体の端部のみが光束の照射範囲
に侵入している状態では、反射光束の光強度が極めて低
く、検出が困難となる。
[0005] Even if the luminous intensity distribution of the entire light beam is flattened, if only a part of the cylindrical or columnar object to be measured enters the irradiation range of the light beam emitted from the light source, the object to be measured is The amount of reflected light from the object is reduced, making it difficult to detect the reflected light itself, which may result in poor detection accuracy and accuracy. In a cylindrical or columnar object to be measured, the light reflecting surface is a curved surface. For this reason, when a light beam is irradiated on the central part of the measured object,
The irradiated light beam is specularly reflected and the reflected light beam has a high light intensity. However, when the light beam is irradiated to the end (peripheral portion) of the object to be measured, the end portion has a large curvature due to a large curvature, so that the reflected light beam has a large scattering. The light intensity decreases dramatically. Further, since the light emission intensity distribution of the laser light source is a Gaussian distribution as described above, the light intensity itself at the periphery of the light beam is lower than the light intensity near the optical axis of the light beam. For these reasons, in a state where only the end of the measured object whose outer shape is a curved surface enters the irradiation range of the light beam, the light intensity of the reflected light beam is extremely low, and detection becomes difficult.

【0006】本発明は上述の点に鑑みてなされたもの
で、被測定対象物体からの反射光束を確実に検出するこ
とができ、高精度な距離計測が可能となる距離計測装置
及び物体検知装置を提供することを目的とする。
The present invention has been made in view of the above points, and a distance measuring apparatus and an object detecting apparatus capable of reliably detecting a reflected light beam from an object to be measured and performing highly accurate distance measurement. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明に係る距離計測装
置は、光源から出力された光束を被測定対象物体に向け
て照射するための投光光学系と、被測定対象物体により
反射された反射光束を検出する検出光学系とを備え、被
測定対象物体までの距離を測定する距離計測装置であっ
て、投光光学系は、所定の距離離れた位置において光束
の光軸付近の光強度よりも光束の周辺部の光強度を高く
する光強度補正手段を有していることを特徴としてい
る。
A distance measuring apparatus according to the present invention includes a light projecting optical system for irradiating a light beam output from a light source toward an object to be measured, and a light reflected by the object to be measured. A detection optical system for detecting the reflected light beam, and a distance measuring device for measuring a distance to the object to be measured, wherein the light projecting optical system has a light intensity near the optical axis of the light beam at a position separated by a predetermined distance. It is characterized by having light intensity correction means for increasing the light intensity at the peripheral portion of the light beam.

【0008】本発明に係る距離計測装置では、投光光学
系が光強度補正手段を有しているので、光源から出力さ
れ被測定対象物体に照射される光束の光強度分布は、光
束の周辺部の光強度が光束の光軸付近の光強度よりも高
い強度分布となる。これにより、円筒あるいは円柱形状
等の外側形状が曲面である被測定対象物体の端部に対し
て光束の周辺部の光が入射する場合、この被測定対象物
体の端部からの反射光束の光強度は、光源から出力され
る光束の光強度分布がガウス分布である、あるいは平坦
化されているものに比して、高くなる。したがって、外
側形状が曲面である被測定対象物体の端部のみが光束の
照射範囲に侵入している状態においても、被測定対象物
体からの反射光束の光強度が高くなり、この反射光束を
適切に検出することができる。この結果、本発明に係る
距離計測装置によれば、高精度な距離計測が可能とな
る。なお、外側形状が曲面である被測定対象物体の中央
部に対して光が入射するとこの光は略正反射するので、
たとえ光束の光軸付近の光(光束の周辺部よりも光強度
が低い)が被測定対象物体の中央部に入射するとして
も、反射光束の光強度は検出に必要相当な強度となる。
In the distance measuring device according to the present invention, since the light projecting optical system has the light intensity correcting means, the light intensity distribution of the light beam output from the light source and irradiated on the object to be measured has a light intensity distribution around the light beam. The light intensity distribution of the portion is higher than the light intensity near the optical axis of the light beam. Accordingly, when the light of the peripheral part of the light flux enters the end of the measured object whose outer shape such as a cylinder or a column is a curved surface, the light of the reflected light flux from the end of the measured object is The intensity is higher than the light intensity distribution of the light beam output from the light source is Gaussian distribution or flattened. Therefore, even in a state where only the end of the measured object whose outer shape is a curved surface enters the irradiation range of the light flux, the light intensity of the reflected light flux from the measured object increases, and this reflected light flux is appropriately adjusted. Can be detected. As a result, the distance measurement device according to the present invention enables highly accurate distance measurement. When light is incident on the central portion of the object to be measured whose outer shape is a curved surface, the light is substantially specularly reflected.
Even if light near the optical axis of the light beam (which has a lower light intensity than the peripheral portion of the light beam) enters the central portion of the object to be measured, the light intensity of the reflected light beam becomes an intensity necessary for detection.

【0009】また、光強度補正手段は、非球面レンズ部
分とシリンドリカルレンズ部分とを含んでいることが好
ましい。このように、光強度補正手段が非球面レンズ部
分とシリンドリカルレンズ部分とを含むことにより、光
源から出力された光束のうち光軸付近の光が光束の周辺
部に向けて広がることになる。これにより、所定の距離
離れた位置において光束の光軸付近の光強度よりも光束
の周辺部の光強度を高くし得る光強度補正手段を、非球
面レンズ部分とシリンドリカルレンズ部分との組み合わ
せという極めて簡易な構成にて実現することができる。
Further, it is preferable that the light intensity correcting means includes an aspheric lens part and a cylindrical lens part. Since the light intensity correcting means includes the aspherical lens portion and the cylindrical lens portion, light near the optical axis of the light beam output from the light source spreads toward the peripheral portion of the light beam. Accordingly, a light intensity correcting means capable of increasing the light intensity at the peripheral portion of the light beam at a position separated by a predetermined distance from the light intensity near the optical axis of the light beam is a combination of an aspherical lens portion and a cylindrical lens portion. It can be realized with a simple configuration.

【0010】そして、本発明に係る物体検知装置は、上
記の距離計測装置を備えた物体検知装置であって、投光
光学系が、光束の光軸と交差する方向に複数並設されて
いることを特徴としている。
An object detecting device according to the present invention is an object detecting device provided with the above distance measuring device, wherein a plurality of light projecting optical systems are arranged in a direction intersecting the optical axis of the light beam. It is characterized by:

【0011】本発明に係る物体検知装置では、外側形状
が曲面である被測定対象物体が、複数個並設された投光
光学系から出力される光束により構成される検知ゾーン
に侵入した場合においても、高精度な距離計測が可能と
なり、被測定対象物体の検知精度を向上することができ
る。
In the object detecting apparatus according to the present invention, when an object to be measured having a curved outer shape enters a detection zone constituted by light beams output from a plurality of light projecting optical systems arranged in parallel. Also, highly accurate distance measurement can be performed, and the detection accuracy of the measurement target object can be improved.

【0012】[0012]

【発明の実施の形態】以下、図面を参照しながら本発明
による距離測定装置の好適な実施形態について詳細に説
明する。なお、説明において、同一要素又は同一機能を
有する要素には、同一符号を用いることとし、重複する
説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a distance measuring apparatus according to the present invention will be described below in detail with reference to the drawings. In the description, the same elements or elements having the same functions will be denoted by the same reference symbols, without redundant description.

【0013】まず、図1に基づいて、本発明の実施形態
に係る距離測定装置の構成について説明する。図1は、
本実施形態に係る距離計測装置の構成を示すブロック図
である。距離計測装置1は、被測定対象物体Tに測定光
としての光束を照射するための投光光学系11と、この
被測定対象物体Tで反射した反射光束を検出するための
検出光学系21と、これら投光光学系11及び検出光学
系21に入出力する各種の電気信号を処理する信号処理
系31とから構成されている。
First, the configuration of a distance measuring device according to an embodiment of the present invention will be described with reference to FIG. FIG.
It is a block diagram showing the composition of the distance measuring device concerning this embodiment. The distance measuring device 1 includes a light projecting optical system 11 for irradiating a light beam as measurement light to the measured object T, a detection optical system 21 for detecting a reflected light beam reflected by the measured object T, And a signal processing system 31 for processing various electric signals input to and output from the light projecting optical system 11 and the detection optical system 21.

【0014】投光光学系11は、光源12と、光強度補
正手段としての投光レンズ(コリメートレンズ)13と
を有している。光源12は、レーザダイオード駆動回路
(LD駆動回路)33から入力された駆動信号に対応し
て、光束を発生、出力するレーザダイオード(LD)で
ある。光源(以下、LDと称する)12から出力された
光束の光強度分布はガウス分布(光束の光軸付近の光強
度が光束の周辺部の光強度より高い)となっている。投
光レンズ13は、LD12から出力された光束を被測定
対象物体Tに向けて出射すると共に、LD12から出力
された光束の光強度分布を補正するためのものであり、
投光レンズ13から所定の距離離れた位置において、L
D12から出力された光束の光軸付近の光強度よりも光
束の周辺部の光強度を高くする。本実施形態において
は、投光レンズ13は、この投光レンズ13から5m程
度離れた位置において、光束の光軸付近の光強度と光束
の周辺部の光強度との比が1:2程度となるように設計
されている
The light projecting optical system 11 has a light source 12 and a light projecting lens (collimating lens) 13 as light intensity correcting means. The light source 12 is a laser diode (LD) that generates and outputs a light beam in accordance with a drive signal input from a laser diode drive circuit (LD drive circuit) 33. The light intensity distribution of the light beam output from the light source (hereinafter, referred to as LD) 12 is a Gaussian distribution (the light intensity near the optical axis of the light beam is higher than the light intensity around the light beam). The light projecting lens 13 emits the light beam output from the LD 12 toward the object T to be measured, and corrects the light intensity distribution of the light beam output from the LD 12.
At a position away from the light projecting lens 13 by a predetermined distance, L
The light intensity at the periphery of the light beam is made higher than the light intensity near the optical axis of the light beam output from D12. In the present embodiment, the light projection lens 13 has a ratio of the light intensity near the optical axis of the light beam to the light intensity at the periphery of the light beam of about 1: 2 at a position about 5 m away from the light projection lens 13. Is designed to be

【0015】次に、図2に基づいて、投光レンズ13の
構成について説明する。図2は、投光レンズ13の一例
を示す図である。同図(a)は上面図、同図(b)は出
射側から見た図、同図(c)は下面図、同図(d)は出
射側から見た図である。投光レンズ13は、非球面レン
ズ部分14とシリンドリカルレンズ部分15とを含んで
おり、これらの非球面レンズ部分14とシリンドリカル
レンズ部分15とは一体形成されている。この投光レン
ズ13は、非球面レンズ部分14を投光レンズ13の入
射(LD12)側に位置させ、シリンドリカルレンズ部
分15を出射(被測定対象物体T)側に位置させた状態
で配設されている。シリンドリカルレンズ部分15は、
出射面がかまぼこ状に凹んでいる。なお、投光レンズ1
3は、シリンドリカルレンズ部分15を投光レンズ13
の入射側に位置させ、非球面レンズ部分14を出射側に
位置させた状態で配設させてもよい。
Next, the configuration of the light projecting lens 13 will be described with reference to FIG. FIG. 2 is a diagram illustrating an example of the light projecting lens 13. 2A is a top view, FIG. 2B is a view from the emission side, FIG. 2C is a bottom view, and FIG. 2D is a view from the emission side. The light projecting lens 13 includes an aspherical lens portion 14 and a cylindrical lens portion 15, and these aspherical lens portion 14 and cylindrical lens portion 15 are integrally formed. The light projecting lens 13 is disposed in a state where the aspherical lens portion 14 is located on the incident (LD12) side of the light projecting lens 13 and the cylindrical lens portion 15 is located on the emitting (measurement object T) side. ing. The cylindrical lens portion 15
The emission surface is concave in a semi-cylindrical shape. In addition, the floodlight lens 1
3 is a projection lens 13 which is a cylindrical lens portion 15.
May be disposed with the aspherical lens portion 14 positioned on the emission side.

【0016】LD12から出力された光束は、投光レン
ズ13に入射し、投光レンズ13の非球面レンズ部分1
4により平行光化される。平行光化された光束の幅は、
50mm程度に設定されている。そして、投光レンズ1
3のシリンドリカルレンズ部分15により、光束のうち
光軸付近の光が光束の周辺部に向けて広がることにな
る。これにより、LD12から出力された光束の光強度
分布が、図3に示されるように、ガウス分布から光束の
光軸付近の光強度よりも光束の周辺部の光強度を高くさ
れた光強度分布になる。
The light beam output from the LD 12 is incident on the light projecting lens 13 and the aspherical lens portion 1 of the light projecting lens 13
4 makes it parallel light. The width of the collimated light beam is
It is set to about 50 mm. And the floodlight lens 1
By the third cylindrical lens portion 15, light near the optical axis of the light beam spreads toward the peripheral portion of the light beam. As a result, as shown in FIG. 3, the light intensity distribution of the light beam output from the LD 12 is higher than the light intensity near the optical axis of the light beam from the Gaussian distribution. become.

【0017】投光レンズ13から出射した光束のビーム
形状は、図4に示されるように、光束の光軸Lに直交す
る面で見て、略矩形形状を呈している。また、図示のよ
うに、光束の光軸Lを通る互いに直交する2つの直線に
沿った光強度の分布は、いずれも光束の光軸L付近の光
強度よりも光束の周辺部の光強度が高い分布となってい
る。光束の光軸L付近の光強度と光束の周辺部の光強度
との比は、上述したように1:2程度となっている。
As shown in FIG. 4, the beam shape of the light beam emitted from the light projecting lens 13 has a substantially rectangular shape when viewed in a plane perpendicular to the optical axis L of the light beam. Further, as shown in the figure, the light intensity distribution along two straight lines passing through the optical axis L of the light beam and orthogonal to each other shows that the light intensity at the peripheral portion of the light beam is lower than the light intensity near the optical axis L of the light beam. It has a high distribution. The ratio of the light intensity near the optical axis L of the light beam to the light intensity at the peripheral portion of the light beam is about 1: 2 as described above.

【0018】図2に示された投光レンズ13を用いる代
わりに、図5及び図6に示されるような投光レンズ1
6,18を用いてもよい。図5及び図6は、図2と同様
に、投光レンズ16,18の一例を示す図である。同図
(a)は上面図、同図(b)は出射側から見た図、同図
(c)は下面図である。図5に示された投光レンズ16
は、図示のように、非球面レンズ部分14と円筒非球面
レンズ部分17とを含んでいる。この投光レンズ16
は、非球面レンズ部分14を投光レンズ13の入射側に
位置させ、円筒非球面レンズ部分17を出射側に位置さ
せた状態で配設される。また、図6に示された投光レン
ズ18は、非球面レンズ部分14と屋根型プリズム部分
19とを含んでいる。この投光レンズ13は、非球面レ
ンズ部分14を投光レンズ13の入射側に位置させ、屋
根型プリズム部分19を出射側に位置させた状態で配設
される。
Instead of using the light projecting lens 13 shown in FIG. 2, the light projecting lens 1 shown in FIGS.
6, 18 may be used. FIGS. 5 and 6 are views showing an example of the light projecting lenses 16 and 18 as in FIG. FIG. 2A is a top view, FIG. 2B is a view from the emission side, and FIG. 1C is a bottom view. Floodlight lens 16 shown in FIG.
Includes an aspheric lens portion 14 and a cylindrical aspheric lens portion 17 as shown. This floodlight lens 16
Is disposed with the aspherical lens portion 14 positioned on the incident side of the light projecting lens 13 and the cylindrical aspherical lens portion 17 positioned on the output side. The light projecting lens 18 shown in FIG. 6 includes an aspheric lens part 14 and a roof prism part 19. The light projecting lens 13 is disposed in a state where the aspheric lens part 14 is located on the incident side of the light projecting lens 13 and the roof type prism part 19 is located on the exit side.

【0019】再び、図1を参照する。検出光学系21
は、受光レンズ22と、光検出器23とを含んでいる。
受光レンズ22は、投光レンズ13を介して出射された
光束のうち被測定対象物体Tから反射し戻った反射光束
を光検出器23に入射させる。光検出器23は、入射し
た反射光束に対応して光電変換した受光信号を、増幅器
34に出力するフォトダイオード(PD)である。
Referring back to FIG. Detection optical system 21
Includes a light receiving lens 22 and a photodetector 23.
The light receiving lens 22 causes the reflected light flux reflected from the measurement target object T and returned from the light flux emitted through the light projecting lens 13 to enter the photodetector 23. The photodetector 23 is a photodiode (PD) that outputs a light-receiving signal, which has been photoelectrically converted according to the incident reflected light flux, to the amplifier 34.

【0020】信号処理系31は、パルス発生回路32
と、LD駆動回路33と、増幅器34と、コンパレータ
35と、クロック発生回路36と、時間差測定回路37
と、距離出力部38とを含んでいる。パルス発生回路3
2は、所定の周期のパルス信号を発生させ、LD駆動回
路33及び時間差測定回路37に出力するものである。
LD駆動回路33は、パルス発生回路32から入力され
るパルス信号が点灯トリガとなって動作し、駆動信号を
LD12に出力する。
The signal processing system 31 includes a pulse generation circuit 32
, An LD drive circuit 33, an amplifier 34, a comparator 35, a clock generation circuit 36, a time difference measurement circuit 37
And a distance output unit 38. Pulse generation circuit 3
Numeral 2 generates a pulse signal having a predetermined cycle and outputs the pulse signal to the LD drive circuit 33 and the time difference measurement circuit 37.
The LD drive circuit 33 operates with a pulse signal input from the pulse generation circuit 32 as a lighting trigger, and outputs a drive signal to the LD 12.

【0021】増幅器34は光検出器(以下、PDと称す
る)23から入力された受光信号を増幅するものであ
り、増幅された受光信号はアナログ出力信号としてコン
パレータ35に出力される。コンパレータ35は増幅器
34からのアナログ出力信号をディジタル矩形波の受光
パルス信号に変換するものであり、変換した受光信号を
時間差測定回路37に出力している。
The amplifier 34 amplifies the received light signal input from the photodetector (hereinafter referred to as PD) 23. The amplified received light signal is output to the comparator 35 as an analog output signal. The comparator 35 converts an analog output signal from the amplifier 34 into a digital rectangular wave light receiving pulse signal, and outputs the converted light receiving signal to the time difference measuring circuit 37.

【0022】時間差測定回路37は、パルス発生回路3
2からのパルス信号とコンパレータ35からの受光パル
ス信号とに基づいて、LD12からの光束の投光タイミ
ングとPD23での反射光束の受光(検出)タイミング
との時間差、すなわちLD12から出力された光束が被
測定対象物体Tにて反射し反射光束がPD23に入射す
るまでの時間(光束の往復飛翔時間)を測定する。時間
差測定回路37には、クロック発生回路36からのクロ
ック信号が入力されており、時間差測定回路37は、パ
ルス信号の入力タイミング(たとえば、パルス信号の立
ち上がりタイミング)から受光パルス信号の入力タイミ
ング(たとえば、受光パルス信号の立ち上がりタイミン
グ)までのクロック信号を計数し、計数されたクロック
信号の数にクロック信号の周期を乗算することにより、
上述した光束の往復飛翔時間を演算、測定する。
The time difference measuring circuit 37 includes a pulse generating circuit 3
Based on the pulse signal from the second and the light-receiving pulse signal from the comparator 35, the time difference between the light-projecting timing of the light beam from the LD 12 and the light-receiving (detection) timing of the reflected light beam at the PD 23, that is, the light beam output from the LD 12 The time until the reflected light flux is reflected by the measured object T and enters the PD 23 (the reciprocating flight time of the light flux) is measured. The clock signal from the clock generation circuit 36 is input to the time difference measurement circuit 37, and the time difference measurement circuit 37 changes the input timing of the pulse signal (for example, the rising timing of the pulse signal) to the input timing of the light receiving pulse signal (for example, By counting the clock signal up to the rising timing of the light receiving pulse signal) and multiplying the counted number of clock signals by the period of the clock signal,
The reciprocating flight time of the light beam is calculated and measured.

【0023】時間差測定回路37にて演算、測定された
光束の往復飛翔時間は、時間情報として距離出力部38
に出力される。距離出力部38は、時間差測定回路37
からの時間情報に基づいて距離計測装置1から被測定対
象物体Tまでの距離を演算し、距離情報として出力す
る。
The reciprocating flight time of the light beam calculated and measured by the time difference measuring circuit 37 is used as time information as a distance output unit 38.
Is output to The distance output unit 38 includes a time difference measurement circuit 37
The distance from the distance measuring device 1 to the object to be measured T is calculated based on the time information from, and is output as distance information.

【0024】このように、本実施形態に係る距離計測装
置1では、投光光学系11が投光レンズ13を有してい
るので、LD12から出力され被測定対象物体Tに照射
される光束の光強度分布は、光束の周辺部の光強度が光
束の光軸付近の光強度よりも高い強度分布となる。これ
により、たとえば図3に示されるように円筒あるいは円
柱形状等の外側形状が曲面である被測定対象物体Tの端
部に対して光束の周辺部の光が入射する場合、この被測
定対象物体Tの端部からの反射光束の光強度は、光源か
ら出力される光束の光強度分布がガウス分布である、あ
るいは平坦化されているものに比して、高くなる。した
がって、外側形状が曲面である被測定対象物体Tの端部
がわずかに光束の照射範囲(検知エリア)に侵入してい
る状態においても、被測定対象物体Tからの反射光束の
光強度が高くなり、PD23(検出光学系21)での反
射光束の検知に必要相当の受光光量が得られ、反射光束
をPD23(検出光学系21)にて適切に検出すること
ができる。この結果、本実施形態の距離計測装置1によ
れば、高精度な距離計測が可能となる。なお、外側形状
が曲面である被測定対象物体Tの中央部に対して光が入
射するとこの光は略正反射するので、たとえ光束の光軸
付近の光(光束の周辺部よりも光強度が低い)が被測定
対象物体Tの中央部に入射するとしても、反射光束の光
強度は検出に必要相当な強度となる。
As described above, in the distance measuring device 1 according to the present embodiment, since the light projecting optical system 11 has the light projecting lens 13, the light flux output from the LD 12 and radiated to the object T to be measured. The light intensity distribution is such that the light intensity at the periphery of the light beam is higher than the light intensity near the optical axis of the light beam. Accordingly, for example, as shown in FIG. 3, when light around the luminous flux is incident on the end of the measured object T having a curved outer surface such as a cylinder or a columnar shape, the measured object The light intensity of the light beam reflected from the end of T is higher than the light intensity distribution of the light beam output from the light source, which is Gaussian distribution or flattened. Therefore, the light intensity of the reflected light beam from the measured object T is high even when the end of the measured object T having a curved outer shape slightly enters the irradiation range (detection area) of the light beam. That is, an amount of received light necessary for detecting the reflected light beam at the PD 23 (detection optical system 21) is obtained, and the reflected light beam can be appropriately detected at the PD 23 (detection optical system 21). As a result, according to the distance measurement device 1 of the present embodiment, highly accurate distance measurement can be performed. When light is incident on the central portion of the object T to be measured having a curved outer surface, the light is substantially specularly reflected. Therefore, for example, light near the optical axis of the light flux (light intensity is higher than that of the peripheral portion of the light flux). (Low) is incident on the center of the object T to be measured, the light intensity of the reflected light flux is an intensity necessary for detection.

【0025】ところで、反射光束の光強度を高めるため
の手法として、LD12の出力を上げることが考えられ
る。LD12の出力を上げることにより、光束の光軸付
近のみならず周辺部の光強度も高められ、外側形状が曲
面である被測定対象物体Tの端部からの反射光束の光強
度も高くなる。このように、LD12の出力を上げるこ
とは、LD12寿命の劣化を早める原因になる。また、
レーザは、日本工業規格(JIS)にて、安全性に関し
て1、2、3A、3B、4といったクラスが定められて
おり、反射光束の検知に必要相当の受光光量を得るため
には、クラス3B程度のLD12を用いる必要があり、
安全性の面で問題が生じる。しかしながら、本実施形態
に係る距離計測装置1によれば、クラス1程度の出力の
LD12を用いた場合でも、反射光束をPD23(検出
光学系21)にて適切に検出することができるために、
LD12の早期劣化、安全性等に関する問題が生じるこ
とはない。また、LD12そのものの低コスト化、消費
電力低下に伴うランニングコストの低下等のコスト削減
が可能となる。
Incidentally, as a technique for increasing the light intensity of the reflected light beam, it is conceivable to increase the output of the LD 12. By increasing the output of the LD 12, the light intensity not only in the vicinity of the optical axis of the light beam but also in the peripheral portion is increased, and the light intensity of the light beam reflected from the end of the measured object T whose outer shape is a curved surface is also increased. As described above, increasing the output of the LD 12 causes the life of the LD 12 to be shortened. Also,
Lasers are classified into classes such as 1, 2, 3A, 3B and 4 in the Japanese Industrial Standards (JIS) for safety. In order to obtain a sufficient amount of received light necessary for detecting a reflected light beam, a class 3B is required. It is necessary to use about LD12,
Problems arise in terms of security. However, according to the distance measuring device 1 according to the present embodiment, even when the LD 12 having an output of about class 1 is used, the reflected light beam can be appropriately detected by the PD 23 (detection optical system 21).
There is no problem of early deterioration, safety, etc. of the LD 12. Further, it is possible to reduce costs such as a reduction in the cost of the LD 12 itself and a reduction in running cost due to a reduction in power consumption.

【0026】また、投光レンズ13は、非球面レンズ部
分14とシリンドリカルレンズ部分15とを含んでお
り、LD12から出力された光束のうち光軸付近の光が
光束の周辺部に向けて広がることになる。これにより、
所定の距離離れた位置において光束の光軸付近の光強度
よりも光束の周辺部の光強度を高くし得る投光レンズ1
3(光強度補正手段)を、非球面レンズ部分14とシリ
ンドリカルレンズ部分15との組み合わせという極めて
簡易な構成にて実現することができる。
The light projecting lens 13 includes an aspherical lens portion 14 and a cylindrical lens portion 15 so that light near the optical axis of the light beam output from the LD 12 spreads toward the peripheral portion of the light beam. become. This allows
A light projecting lens 1 capable of increasing the light intensity at the periphery of a light beam at a position separated by a predetermined distance from the light intensity near the optical axis of the light beam
3 (light intensity correction means) can be realized with an extremely simple configuration of a combination of the aspherical lens portion 14 and the cylindrical lens portion 15.

【0027】次に、図7及び図8に基づいて、上述した
距離計測装置1を用いた物体検知装置について説明す
る。図7は、本発明の実施形態に係る物体検知装置の構
成を示す概略斜視図であり、図8は、本実施形態に係る
物体検知装置において投光光学系から出力される光束の
光強度分布を示す説明図である。なお、図7に示された
物体検知装置は、ETC等に用いられる車両検知装置で
ある。
Next, an object detecting device using the above-described distance measuring device 1 will be described with reference to FIGS. FIG. 7 is a schematic perspective view illustrating a configuration of the object detection device according to the embodiment of the present invention, and FIG. 8 is a light intensity distribution of a light beam output from the light projecting optical system in the object detection device according to the embodiment. FIG. Note that the object detection device shown in FIG. 7 is a vehicle detection device used for ETC and the like.

【0028】車両検知装置(物体検知装置)41は、料
金所アイランド51の車両進入側に設置されており、距
離計測装置1が所定間隔(たとえば、40mmピッチ)
にて複数(たとえば、38ch)並設されている。距離
計測装置1は、図7に示されるように、距離計測装置1
の投光光学系11から出射される光束の光軸と交差(た
とえば、直交)する方向で、車両上下方向となる方向に
並設されている。車両検知装置41は、複数並設された
距離計測装置1から測定光としての光束をエリア的に照
射し、距離計測装置1に反射光束が入射することによ
り、光束の往復飛翔時間が測定され、この光束の往復飛
翔時間(時間情報)に基づいて車両が存在するか否かを
検知する。
The vehicle detecting device (object detecting device) 41 is installed on the vehicle entrance side of the tollgate island 51, and the distance measuring device 1 is arranged at a predetermined interval (for example, 40 mm pitch).
(For example, 38 channels). As shown in FIG. 7, the distance measuring device 1
Are arranged side by side in a direction intersecting (for example, orthogonally) with the optical axis of the light beam emitted from the light projecting optical system 11 in the vehicle vertical direction. The vehicle detecting device 41 irradiates a light beam as the measurement light from the plurality of the distance measuring devices 1 arranged side by side in an area, and the reflected light beam is incident on the distance measuring device 1, whereby the reciprocating flight time of the light beam is measured, Based on the reciprocating flight time (time information) of this light beam, it is detected whether or not a vehicle is present.

【0029】ところで、図7に示されるように、被測定
対象物体Tとなる車両が、たとえば、牽引車の場合に
は、牽引駆動車V1と牽引台車V2との間が牽引棒V3
で連結されている。このような牽引車は、通行料金の支
払いに関しては、通常、全体で一台分の車両として取り
扱われる。牽引棒V3としては、アルミニウム製あるい
は鉄製の円筒パイプ材(直径が40mm程度)が用いら
れることがある。
As shown in FIG. 7, when the vehicle to be measured T is, for example, a towing vehicle, a towing rod V3 is provided between the towing drive vehicle V1 and the towing vehicle V2.
Are connected by Such a tow vehicle is generally treated as one vehicle as a whole in terms of toll payment. As the tow bar V3, an aluminum or iron cylindrical pipe material (having a diameter of about 40 mm) may be used.

【0030】各距離計測装置1の投光光学系11から照
射される光束の光強度分布は、図8に示されるように、
夫々の光束の周辺部の光強度が光束の光軸付近の光強度
よりも高い強度分布となる。このため、牽引棒V3(円
筒パイプ材)の端部に光束が照射された場合、この牽引
棒V3の端部からの反射光束の光強度は、光源から出力
される光束の光強度分布がガウス分布である、あるいは
平坦化されている場合に比して、高くなる。したがっ
て、牽引棒V3の端部がわずかに距離計測装置1の検知
エリア(投光光学系11からの光束の照射範囲)に侵入
している状態においても、牽引棒V3からの反射光束の
光強度が高くなり、距離計測装置1での反射光束の検知
に必要相当の受光光量が得られ、反射光束を適切に検出
することができる。この結果、本実施形態の車両検知装
置41によれば、高精度な距離計測が可能となり、牽引
車を一台分の車両として正しく検知することができ、車
両の検知精度を向上することができる。
The light intensity distribution of the light beam emitted from the light projecting optical system 11 of each distance measuring device 1 is as shown in FIG.
The light intensity at the periphery of each light beam has an intensity distribution higher than the light intensity near the optical axis of the light beam. For this reason, when the light beam is applied to the end of the tow bar V3 (cylindrical pipe material), the light intensity of the light beam reflected from the end of the tow bar V3 is Gaussian. The distribution is higher than when the distribution is flattened. Therefore, even when the end of the tow bar V3 slightly enters the detection area of the distance measuring device 1 (the irradiation range of the light beam from the light projecting optical system 11), the light intensity of the reflected light beam from the tow bar V3. And the amount of received light necessary for detecting the reflected light beam by the distance measuring device 1 is obtained, and the reflected light beam can be appropriately detected. As a result, according to the vehicle detection device 41 of the present embodiment, highly accurate distance measurement can be performed, the towing vehicle can be correctly detected as one vehicle, and the detection accuracy of the vehicle can be improved. .

【0031】本発明は、前述した実施形態に限定される
ものではなく、投光レンズ13も、光束の光強度分布が
投光レンズ13から所定の距離離れた位置において光軸
付近の光強度よりも周辺部の光強度が高くされた光強度
分布となるものであれば、上述した構成のものに限られ
ない。なお、上述した「所定の距離」の値は、距離計測
装置1の検知範囲を考慮して適宜設定されることにな
る。
The present invention is not limited to the above-described embodiment, and the light projecting lens 13 may be arranged such that the light intensity distribution of the luminous flux is smaller than the light intensity near the optical axis at a position at a predetermined distance from the light projecting lens 13. The configuration is not limited to the above-described configuration as long as the light intensity distribution in the peripheral portion is increased. The value of the “predetermined distance” described above is appropriately set in consideration of the detection range of the distance measuring device 1.

【0032】また、本発明による距離計測装置は、上述
した車両検知装置以外の物体検知装置に適用することが
できる。そして、本発明による物体検知装置は、特に、
曲面部分を有する被測定対象物体の検知に好適である。
The distance measuring device according to the present invention can be applied to an object detecting device other than the above-described vehicle detecting device. And the object detection device according to the present invention
It is suitable for detecting an object to be measured having a curved surface portion.

【0033】本実施形態による距離計測装置は、投光光
学系から出射された光束が被測定対象物体にて反射して
戻り、反射光束が検出光学系にて検出されるまでの時間
に基づいて距離を計測するように構成しているが、これ
に限られることなく、投光光学系から出射された光束と
検出光学系にて検出された反射光束との位相差に基づい
て被測定対象物体までの距離を計測するように構成して
もよい。
The distance measuring device according to the present embodiment is based on the time from when the light beam emitted from the light projecting optical system is reflected by the object to be measured and returns until the reflected light beam is detected by the detection optical system. Although it is configured to measure the distance, the object to be measured is not limited to this, and based on the phase difference between the light beam emitted from the light projecting optical system and the reflected light beam detected by the detection optical system. It may be configured to measure the distance to.

【0034】[0034]

【発明の効果】以上、詳細に説明したとおり、本発明の
距離計測装置及び物体検知装置によれば、被測定対象物
体からの反射光束を確実に検出することができ、高精度
な距離計測が可能となる距離計測装置及び物体検知装置
を提供することができる。
As described above in detail, according to the distance measuring device and the object detecting device of the present invention, the reflected light beam from the object to be measured can be reliably detected, and a highly accurate distance measurement can be performed. It is possible to provide a distance measurement device and an object detection device that can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る距離計測装置の構成を
示すブロック図である。
FIG. 1 is a block diagram illustrating a configuration of a distance measuring device according to an embodiment of the present invention.

【図2】本発明の実施形態に係る距離計測装置に含まれ
る投光レンズの一例を示す図である。
FIG. 2 is a diagram illustrating an example of a light projecting lens included in the distance measuring device according to the embodiment of the present invention.

【図3】本発明の実施形態に係る距離計測装置において
投光光学系から出力される光束の光強度分布を示す説明
図である。
FIG. 3 is an explanatory diagram showing a light intensity distribution of a light beam output from a light projecting optical system in the distance measuring device according to the embodiment of the present invention.

【図4】本発明の実施形態に係る距離計測装置において
投光光学系から出力される光束の光強度分布を示す特性
図である。
FIG. 4 is a characteristic diagram illustrating a light intensity distribution of a light beam output from a light projecting optical system in the distance measuring device according to the embodiment of the present invention.

【図5】本発明の実施形態に係る距離計測装置に含まれ
る投光レンズの一例を示す図である。
FIG. 5 is a diagram showing an example of a light projecting lens included in the distance measuring device according to the embodiment of the present invention.

【図6】本発明の実施形態に係る距離計測装置に含まれ
る投光レンズの一例を示す図である。
FIG. 6 is a diagram showing an example of a light projecting lens included in the distance measuring device according to the embodiment of the present invention.

【図7】本発明の実施形態に係る物体検知装置の構成を
示す概略斜視図である。
FIG. 7 is a schematic perspective view illustrating a configuration of an object detection device according to an embodiment of the present invention.

【図8】本発明の実施形態に係る物体検知装置において
投光光学系から出力される光束の光強度分布を示す説明
図である。
FIG. 8 is an explanatory diagram showing a light intensity distribution of a light beam output from a light projecting optical system in the object detection device according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…距離計測装置、11…投光光学系、12…光源(L
D)、13…投光レンズ、14…非球面レンズ部分、1
5…シリンドリカルレンズ部分、21…検出光学系、2
3…光検出器(PD)、31…信号処理系、37…時間
差測定回路、38…距離出力部、41…車両検知装置、
T…被測定対象物体、V1…牽引駆動車、V2…牽引台
車、V3…牽引棒。
DESCRIPTION OF SYMBOLS 1 ... Distance measuring device, 11 ... Emission optical system, 12 ... Light source (L
D), 13: Projection lens, 14: Aspheric lens part, 1
5: cylindrical lens portion, 21: detection optical system, 2
DESCRIPTION OF SYMBOLS 3 ... Photodetector (PD), 31 ... Signal processing system, 37 ... Time difference measurement circuit, 38 ... Distance output part, 41 ... Vehicle detection device,
T: object to be measured, V1: towing drive vehicle, V2: towing truck, V3: towing rod.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 剛 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 (72)発明者 嶋野 弘己 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 (72)発明者 戸塚 弘倫 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 Fターム(参考) 2F112 AD01 BA07 CA20 DA06 DA32 EA05 FA03 FA14 GA05 5J084 AA02 AA05 AB01 AD01 BA04 BA06 BA13 BA36 BB04 BB07 BB10 CA03 DA01 DA07 DA08 EA01 FA01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Go Ohta, 1126-1, Nomachi, Hamamatsu City, Shizuoka Prefecture Inside Hamamatsu Photonics Co., Ltd. (72) Inventor Hiroki Shimano 1, 1261, Nomachi, Hamamatsu City, Shizuoka Prefecture (72) Inventor Hironori Totsuka 1126 No. 1-cho, Ichino-cho, Hamamatsu-shi, Shizuoka Prefecture F-term (reference) 2F112 AD01 BA07 CA20 DA06 DA32 EA05 FA03 FA14 GA05 5J084 AA02 AA05 AB01 AD01 BA04 BA06 BA13 BA36 BB04 BB07 BB10 CA03 DA01 DA07 DA08 EA01 FA01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光源から出力された光束を被測定対象物
体に向けて照射するための投光光学系と、前記被測定対
象物体により反射された反射光束を検出する検出光学系
とを備え、前記被測定対象物体までの距離を測定する距
離計測装置であって、 前記投光光学系は、所定の距離離れた位置において前記
光束の光軸付近の光強度よりも前記光束の周辺部の光強
度を高くする光強度補正手段を有していることを特徴と
する距離計測装置。
1. A light projection optical system for irradiating a light beam output from a light source toward an object to be measured, and a detection optical system for detecting a light beam reflected by the object to be measured, A distance measuring device that measures a distance to the object to be measured, wherein the light projecting optical system has a light at a peripheral portion of the light beam at a position separated by a predetermined distance from a light intensity near an optical axis of the light beam. A distance measuring device comprising light intensity correction means for increasing the intensity.
【請求項2】 前記光強度補正手段は、非球面レンズ部
分とシリンドリカルレンズ部分とを含んでいることを特
徴とする請求項1に記載の距離計測装置。
2. The distance measuring apparatus according to claim 1, wherein said light intensity correcting means includes an aspheric lens part and a cylindrical lens part.
【請求項3】 請求項1又は請求項2に記載の距離計測
装置を備えた物体検知装置であって、前記投光光学系
が、前記光束の光軸と交差する方向に複数並設されてい
ることを特徴とする物体検知装置。
3. An object detection device comprising the distance measuring device according to claim 1 or 2, wherein a plurality of the light projecting optical systems are arranged in a direction intersecting an optical axis of the light beam. An object detection device, characterized in that:
JP2001014800A 2001-01-23 2001-01-23 Object detection device Expired - Fee Related JP4878080B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001014800A JP4878080B2 (en) 2001-01-23 2001-01-23 Object detection device
PCT/JP2002/000471 WO2002059641A1 (en) 2001-01-23 2002-01-23 Distance measuring equipment and object detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001014800A JP4878080B2 (en) 2001-01-23 2001-01-23 Object detection device

Publications (2)

Publication Number Publication Date
JP2002214327A true JP2002214327A (en) 2002-07-31
JP4878080B2 JP4878080B2 (en) 2012-02-15

Family

ID=18881443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001014800A Expired - Fee Related JP4878080B2 (en) 2001-01-23 2001-01-23 Object detection device

Country Status (2)

Country Link
JP (1) JP4878080B2 (en)
WO (1) WO2002059641A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7428468B2 (en) 2001-06-15 2008-09-23 Sumitomo Osaka Cement Co., Ltd. Monitoring apparatus
WO2019171727A1 (en) * 2018-03-08 2019-09-12 パナソニックIpマネジメント株式会社 Laser radar

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04273210A (en) * 1991-02-28 1992-09-29 Nec Corp Laser beam shaping optical device
JPH05273492A (en) * 1992-03-25 1993-10-22 Rohm Co Ltd Semiconductor laser beam source
JPH0772311A (en) * 1993-09-06 1995-03-17 Kansei Corp Light transmitting lens of laser hrad
JPH07159519A (en) * 1993-12-08 1995-06-23 Kansei Corp Optical range finding apparatus
JPH07253462A (en) * 1994-03-14 1995-10-03 Nikon Corp Distance measuring instrument
JPH0875857A (en) * 1994-09-07 1996-03-22 Mazda Motor Corp Obstacle detecting device
JPH0962983A (en) * 1995-08-28 1997-03-07 Mitsubishi Heavy Ind Ltd Vehicle type discriminating device
US5706140A (en) * 1993-09-06 1998-01-06 Kansei Corp. Optical distance measuring equipment
JPH11142112A (en) * 1997-11-13 1999-05-28 Olympus Optical Co Ltd Distance measuring apparatus
JPH11160431A (en) * 1997-11-27 1999-06-18 Olympus Optical Co Ltd Range finder instrument
JPH11258544A (en) * 1998-03-09 1999-09-24 Fujitsu Ltd Light intensity transducing element, optical device, and optical disk device
EP0957376A2 (en) * 1998-05-13 1999-11-17 Olympus Optical Co., Ltd. Distance measuring apparatus
JP2000206448A (en) * 1999-01-13 2000-07-28 Hitachi Ltd Beam converting device and laser range-finding device using the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04273210A (en) * 1991-02-28 1992-09-29 Nec Corp Laser beam shaping optical device
JPH05273492A (en) * 1992-03-25 1993-10-22 Rohm Co Ltd Semiconductor laser beam source
US5706140A (en) * 1993-09-06 1998-01-06 Kansei Corp. Optical distance measuring equipment
JPH0772311A (en) * 1993-09-06 1995-03-17 Kansei Corp Light transmitting lens of laser hrad
JPH07159519A (en) * 1993-12-08 1995-06-23 Kansei Corp Optical range finding apparatus
JPH07253462A (en) * 1994-03-14 1995-10-03 Nikon Corp Distance measuring instrument
JPH0875857A (en) * 1994-09-07 1996-03-22 Mazda Motor Corp Obstacle detecting device
JPH0962983A (en) * 1995-08-28 1997-03-07 Mitsubishi Heavy Ind Ltd Vehicle type discriminating device
JPH11142112A (en) * 1997-11-13 1999-05-28 Olympus Optical Co Ltd Distance measuring apparatus
JPH11160431A (en) * 1997-11-27 1999-06-18 Olympus Optical Co Ltd Range finder instrument
JPH11258544A (en) * 1998-03-09 1999-09-24 Fujitsu Ltd Light intensity transducing element, optical device, and optical disk device
EP0957376A2 (en) * 1998-05-13 1999-11-17 Olympus Optical Co., Ltd. Distance measuring apparatus
JPH11325825A (en) * 1998-05-13 1999-11-26 Olympus Optical Co Ltd Distance measuring equipment
JP2000206448A (en) * 1999-01-13 2000-07-28 Hitachi Ltd Beam converting device and laser range-finding device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7428468B2 (en) 2001-06-15 2008-09-23 Sumitomo Osaka Cement Co., Ltd. Monitoring apparatus
WO2019171727A1 (en) * 2018-03-08 2019-09-12 パナソニックIpマネジメント株式会社 Laser radar
US11624809B2 (en) 2018-03-08 2023-04-11 Panasonic Intellectual Property Management Co., Ltd. Laser radar

Also Published As

Publication number Publication date
JP4878080B2 (en) 2012-02-15
WO2002059641A1 (en) 2002-08-01

Similar Documents

Publication Publication Date Title
US6897465B2 (en) System and method for determining a distance of an object using emitted light pulses
US7095490B2 (en) Electric distance meter
US6894767B2 (en) Light wave distance-measuring system
US20140071428A1 (en) Distance measurement apparatus
RU2008103708A (en) METHOD AND SYSTEM FOR IDENTIFICATION OF A MOVING OBJECT AND METHOD AND SYSTEM FOR CHECKING A MOVING OBJECT BY RADIATION IMAGE FORMATION
US20080024754A1 (en) Distance measurement instrument
JP2000111340A (en) Light communication device of surveying machine
US6717170B2 (en) Optoelectronic apparatus
JP5135131B2 (en) Light projecting unit and object detection device
US7764358B2 (en) Distance measuring system
JP7336695B2 (en) optical device
JP2002214327A (en) Range finding device and object detection device
US6859266B2 (en) Optical movement detecting device and transport system using the same
JP2018040748A (en) Laser range measuring device
KR102020038B1 (en) LiDAR sensor module
US6864964B2 (en) Optical distance measuring device
CN214795204U (en) Laser measuring system
JP7308432B2 (en) Moisture detector
JPH06281740A (en) Distance measuring instrument
JP3341255B2 (en) Light sensor
CN112923848A (en) Correlation type laser size measurement sensor
JPH08327738A (en) Distance measuring instrument
JPH07253461A (en) Distance measuring instrument
JPH07253462A (en) Distance measuring instrument
EP1258701B1 (en) A process for reading fractions of an interval between contiguous photo-sensitive elements in a linear optical sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4878080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees