JP2002206867A - Recycle method for fireproof material - Google Patents

Recycle method for fireproof material

Info

Publication number
JP2002206867A
JP2002206867A JP2001001272A JP2001001272A JP2002206867A JP 2002206867 A JP2002206867 A JP 2002206867A JP 2001001272 A JP2001001272 A JP 2001001272A JP 2001001272 A JP2001001272 A JP 2001001272A JP 2002206867 A JP2002206867 A JP 2002206867A
Authority
JP
Japan
Prior art keywords
refractory
refractories
fine powder
magnetic
crushed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001001272A
Other languages
Japanese (ja)
Other versions
JP3645818B2 (en
Inventor
Yasuo Fujii
康雄 藤井
Taijiro Matsui
泰次郎 松井
Hiroshi Imagawa
浩志 今川
Koji Tsutsui
康志 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001001272A priority Critical patent/JP3645818B2/en
Publication of JP2002206867A publication Critical patent/JP2002206867A/en
Application granted granted Critical
Publication of JP3645818B2 publication Critical patent/JP3645818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a recycle method for fireproof materials in which a large amount of fireproof materials can be inexpensively treated and the fireproof materials as waste can be eliminated. SOLUTION: The used fireproof materials are primarily crushed by a crusher. The crushed fireproof materials are magnetically selected by an electromagnetic separator to sort and recover nonmagnetic coarse particles. The magnetic fireproof materials are secondarily crushed by the crusher to obtain powdered fireproof materials. A fireproof material 18 including carbon is added to the powdered fireproof materials to perform a reduction treatment 20. Then, the powdered fireproof materials after the reduction treatment 20 are magnetically selected again by the electromagnetic separator to recover the nonmagnetic powdered fireproof materials.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、製鉄工場等で使用
した耐火物を回収してリサイクルする耐火物のリサイク
ル方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractory recycling method for recovering and recycling a refractory used in a steel mill or the like.

【0002】[0002]

【従来の技術】従来、製鉄工場等では、転炉や電気炉等
の精錬炉及び取鍋、樋等の付帯設備に、耐火煉瓦あるい
は不定形耐火物等の耐火物を内張りしており、これ等の
耐火物は、溶鋼やスラグ等による溶損によって損耗し、
残存厚みが薄くなった時点で新しい耐火物に張り替えら
れている。この張り替えによって発生する使用後の耐火
物は、その表面に地金が付着したり、内部に地金や酸化
鉄、スラグ等が浸潤しているため、再使用の障害となり
その殆どが廃棄されている。しかし、近年これ等耐火物
の廃棄場所に制約があること、廃棄するための回収や運
搬費等から処理コストが高くなる等の問題がある。この
対策として、特開平8−188475号公報に記載され
ているように、製鋼工場で使用したポーラスプラグや取
鍋の内張り耐火物の比較的良好なものを回収し、この耐
火物のうち、地金やスラグ等と接触して変質した部分を
除去し、これを破砕して粒度を調整したものに、新しい
粉末の耐火成分を配合して再使用することが行われてい
る。
2. Description of the Related Art Conventionally, refractories such as refractory bricks or irregular-shaped refractories are lined in refining furnaces such as converters and electric furnaces and auxiliary equipment such as ladle and gutter in steel mills. And other refractories are worn by molten steel or slag, etc.
When the remaining thickness became thin, it was replaced with a new refractory. The refractory after use generated by this re-placing has bare metal adhering to its surface or metal, iron oxide, slag, etc. infiltrating the inside, so it becomes an obstacle to reuse and most of it is discarded. I have. However, in recent years, there are problems such as restrictions on the disposal place of these refractories and an increase in processing costs due to collection and transportation costs for disposal. As a countermeasure, as described in Japanese Patent Application Laid-Open No. Hei 8-188475, relatively good refractory linings of porous plugs and ladles used in steelmaking plants are collected, and among these refractories, ground refractories are used. It has been practiced to remove a deteriorated portion by contacting with gold, slag, or the like, crush it, adjust its particle size, mix a refractory component of a new powder, and reuse it.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開平
8−188475号公報に記載された方法では、使用済
の耐火物の中から地金やスラグ等と接触した変質部の少
ない物を選択して回収する必要があり、回収作業や分別
管理に手間を要し、回収の対象となる耐火物が、ポーラ
スプラグや取鍋、タンディッシュ等の特殊な内張り耐火
物に制限される。しかも、廃棄された耐火物は地金やス
ラグ等と接触して変質した部分を一個毎に境界を見極め
ながら除去する必要があり、変質部分の除去に手間を要
し、製鉄工場で大量に発生する耐火物を処理することが
困難である。更に、耐火物の変質部分を取除くため、再
利用できる耐火物の部分が少なくなると共に、耐火物の
廃棄を少なくすることができない。このように、従来行
われている耐火物の再利用の方法では、処理コストが高
く、且つ大量処理が不可能であり、しかも、廃棄物とな
る耐火物を最小にすることが困難であるという問題があ
る。
However, according to the method described in Japanese Patent Application Laid-Open No. Hei 8-188475, the refractory used is selected from among the refractories having less deteriorated portions in contact with metal or slag. It is necessary to collect the refractory, which requires time and labor for collection work and separation management, and the refractory to be collected is limited to a special lining refractory such as a porous plug, a ladle, and a tundish. Furthermore, it is necessary to remove discarded refractories in contact with ingots, slag, etc., while changing the quality of each piece while determining the boundaries of each piece. It is difficult to treat refractories. Further, since the deteriorated portion of the refractory is removed, the portion of the refractory that can be reused is reduced, and the disposal of the refractory cannot be reduced. As described above, according to the conventional method of refractory recycling, the processing cost is high, mass treatment is impossible, and it is difficult to minimize the refractory as waste. There's a problem.

【0004】本発明はかかる事情に鑑みてなされたもの
で、安価な処理コストで、大量処理を可能にし、廃棄物
となる耐火物を最小にすることのできる耐火物のリサイ
クル方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a refractory recycling method capable of mass processing at low processing cost and minimizing refractory waste. With the goal.

【0005】[0005]

【課題を解決するための手段】前記目的に沿う本発明の
耐火物のリサイクル方法は、使用後の耐火物を破砕機で
一次破砕し、この破砕された耐火物を磁力選別機により
磁選して非磁性の粗粒を分別して回収し、磁性を有する
耐火物を破砕機で二次破砕して微粉耐火物を得て、該微
粉耐火物に炭素含有耐火物を加えて還元処理をした後
に、還元処理後の微粉耐火物を再度磁力選別機で磁選し
て非磁性の微粉耐火物を回収する。この方法により、地
金の付着あるいは溶鋼やスラグの浸潤した変質部を含め
て処理するので、大量の処理が可能となり、しかも、再
利用する耐火物を多くでき、廃棄する耐火物を減少する
ことができる。更に、微粉耐火物に含まれる変質部を炭
素含有耐火物の炭素を活用して還元処理し、変質部の酸
化鉄を鉄に還元して磁選することにより、磁選の選別効
率を高めて微粉に含まれる不純物を低減させることがで
きる。
According to the present invention, there is provided a method of recycling a refractory according to the present invention, wherein the refractory after use is primarily crushed by a crusher, and the crushed refractory is magnetically separated by a magnetic separator. The non-magnetic coarse particles are separated and collected, and the refractory having magnetism is secondarily crushed with a crusher to obtain a fine powder refractory, and after the carbon-containing refractory is added to the fine powder refractory, a reduction treatment is performed. The refractory fine powder after the reduction treatment is again magnetically separated by a magnetic separator to collect the nonmagnetic fine powder refractory. By this method, it is possible to process a large amount of the refractory because it is processed including the deteriorated part where the metal is attached or the molten steel or slag is infiltrated. Can be. In addition, the deteriorated part contained in the fine powder refractory is reduced by utilizing the carbon of the carbon-containing refractory, and the iron oxide in the deteriorated part is reduced to iron and magnetically separated. The contained impurities can be reduced.

【0006】ここで、前記非磁性の粗粒の粒径は5〜1
00mmにしている。このように、廃棄耐火物を所定の
大きさに一次破砕して磁選することにより、耐火物の良
質部と変質部の分離が良好になり、地金付着や変質部の
無い良質の粗骨材を得ることができる。粗粒の粒径が5
mm未満になると、変質部が良質の粗骨材に混入する割
合が増加して製品の品質が低下すると共に、粗骨材とし
ての耐溶損や耐スポーリング等が低下する。一方、粗粒
の粒径が100mmを超えると、変質部の分離効率が悪
くなったり、変質部を含まない良質部分が少なくなって
回収される粗粒が減少する。しかも、耐火物の原料とし
て使用した際に、耐火物の粗粒の分布にバラツキが発生
して不定形耐火物の耐溶損、耐磨耗、強度等の品質が低
下する。
The non-magnetic coarse particles have a particle size of 5 to 1
00 mm. In this way, the primary refractory waste is refractory to a predetermined size and subjected to magnetic separation, so that the separation between the good quality part and the deteriorated part of the refractory becomes good, and the good quality coarse aggregate without the adhesion of metal and the deteriorated part is obtained. Can be obtained. 5 coarse particles
If the diameter is less than mm, the proportion of the deteriorated portion mixed into the high-quality coarse aggregate is increased, and the quality of the product is reduced, and the erosion resistance, spalling resistance, etc. of the coarse aggregate are reduced. On the other hand, when the particle size of the coarse particles exceeds 100 mm, the separation efficiency of the deteriorated portion is deteriorated, and the high-quality portion not containing the deteriorated portion is reduced, so that the collected coarse particles are reduced. In addition, when used as a raw material for a refractory, the distribution of coarse particles of the refractory varies, and the quality of the amorphous refractory, such as erosion resistance, abrasion resistance, and strength, is reduced.

【0007】更に、前記非磁性の微粉耐火物の粒径は5
mm未満にすることが好ましい。これにより、還元処理
を行った際に、微粉耐火物に含まれる酸化鉄の還元を促
進させることができ、更に、磁選による選別効率を向上
させることができる。微粉耐火物の粒径が5mm以上で
は、微粉耐火物中に未還元の酸化鉄が残存し、微粉耐火
物の品質が低下たり、酸化鉄の還元に時間を要し、経済
的でない。従って、微粉耐火物の大きさは、更に、10
0μm以上、4mm未満にすると、含まれる酸化鉄が十
分に還元されて磁選の効率を高めるので、好ましい結果
が得られる。
[0007] Further, the particle size of the nonmagnetic fine powder refractory is 5
mm. Thereby, when the reduction treatment is performed, the reduction of the iron oxide contained in the fine powder refractory can be promoted, and the sorting efficiency by magnetic separation can be improved. When the particle size of the fine powder refractory is 5 mm or more, unreduced iron oxide remains in the fine powder refractory, the quality of the fine powder refractory deteriorates, and it takes time to reduce the iron oxide, which is not economical. Therefore, the size of the fine powder refractory is further increased by 10
When the thickness is 0 μm or more and less than 4 mm, the iron oxide contained therein is sufficiently reduced and the efficiency of magnetic separation is increased, so that preferable results are obtained.

【0008】また、前記炭素含有耐火物は、製鉄所内で
発生する炭素含有耐火物を用いると良い。これにより、
黒鉛やSi−C、Mg−C、Si−C−Al23 、A
2 3 −C等の炭素を含むノズル、あるいは転炉の内
張り煉瓦、不定形耐火物等の耐火物(炭素含有耐火物)
を使用するので、還元剤が節減でき、同時に炭素含有耐
火物中に含まれるMgOやAl23 等の有効成分を微
粉耐火物に回収することができる。
[0008] Further, the carbon-containing refractory is prepared in an ironworks.
It is preferable to use a carbon-containing refractory generated. This allows
Graphite, Si-C, Mg-C, Si-C-AlTwo OThree , A
lTwo O Three -Nozzle containing carbon such as C or inside the converter
Refractories such as bricks and irregular refractories (carbon-containing refractories)
, Reducing the use of reducing agent and at the same time
MgO and Al contained in fireTwo OThree Etc.
It can be recovered as powder refractories.

【0009】更に、前記非磁性の微粉耐火物を吹き付け
補修材に使用することが好ましい。再破砕を行わないで
吹き付け用の耐火物として使用することができ、吹き付
け時に施工体への付着性を良好にできる。
Further, it is preferable to use the nonmagnetic fine powder refractory as a spray repair material. It can be used as a refractory for spraying without re-crushing, and can have good adhesion to a construction body during spraying.

【0010】また、前記非磁性の微粉耐火物を溶融し、
固化させた後、破砕して骨材に使用することもできる。
これにより、高融点の組成物と低融点の組成物とが分離
して固化するため、破砕した際に、高純度の組成物の粗
粒を製造できる。
Further, the non-magnetic fine powder refractory is melted,
After solidifying, it can be crushed and used for aggregate.
This separates and solidifies the high melting point composition and the low melting point composition, so that when crushed, coarse particles of the high purity composition can be produced.

【0011】[0011]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。ここで、図1は本発明の一実施の形
態に係る耐火物のリサイクル方法の処理フロー図であ
る。製鉄工場(製鉄所)で使用される転炉や電気炉等の
精錬炉及び取鍋、樋等の付帯設備等に内張りした耐火物
は、溶鋼やスラグ等によって溶損及び磨耗し、その残存
厚みが薄くなった時点で張り替えが行われる。この張り
替えによって、発生した廃棄耐火物は、その表面に地金
が付着したり、地金やスラグ等と接触して変質した部分
が存在し、再使用(リサイクル)を阻害している。本発
明者等は、この変質部が存在する廃棄耐火物の処理につ
いて鋭意研究を重ねた結果、まず、使用後の耐火物を粗
いサイズに破砕して磁選することにより、変質部の存在
しない良質耐火物のかなりの量を分離できること、更
に、変質部を含む廃棄耐火物は、細粒にし、この細粒に
炭素含有耐火物を混合して還元処理を行ってから磁選す
ることにより、高純度の耐火物の分離回収が可能にな
り、廃棄耐火物の殆どをリサイクルできることを知見
し、本発明の完成に至った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. Here, FIG. 1 is a processing flowchart of a refractory recycling method according to one embodiment of the present invention. Refractories lining refining furnaces such as converters and electric furnaces and auxiliary equipment such as ladles and gutters used in steel mills (steel mills) are eroded and worn by molten steel and slag, and the remaining thickness When is thinned, replacement is performed. As a result of the replacement, the refractory waste generated has a part that is adhered to the surface of the refractory material or has a portion that has been deteriorated by contact with the metal or slag, thereby hindering reuse (recycling). The present inventors have conducted intensive studies on the treatment of waste refractories in which the deteriorated portion exists, and as a result, first, the used refractory is crushed to a coarse size and subjected to magnetic separation to obtain a high quality material having no deteriorated portion. A considerable amount of refractories can be separated.Furthermore, discarded refractories containing altered parts are refined into fine particles, carbon-containing refractories are mixed with these fine particles, reduction treatment is performed, and magnetic separation is performed to achieve high purity. It has been found that the refractory can be separated and recovered, and that most of the refractory waste can be recycled, and the present invention has been completed.

【0012】以下、本発明の一実施の形態に係る耐火物
のリサイクル方法について詳細に説明する。なお、図1
に示す番号は、理解を容易にするために以下で説明する
各処理工程及び各耐火物に対応させて付したものであ
る。図1に示すように、使用済み耐火物(使用後の耐火
物)は、用途、主成分、炭素含有量等によって、アルミ
ナ系、マグネシア系等、ジルコン系、マグネシア・カー
ボン系、炭素・シリカ系等の廃棄耐火物に分別され、廃
棄耐火物として、1〜300トンの量が回収される(使
用済み耐火物の回収10)。回収された廃棄耐火物は、
その含有された主成分が同じ系統のものを集めて、一般
に用いられているジョウクラッシャー(破砕機の一例)
を用いた一次破砕処理11によって、地金やスラグ等と
接触した変質部を境にして割れ易い特性を利用して破砕
し、100mm以下の粒にすることにより、変質部が残
存するものと、良質なものとに分離される。この破砕さ
れた廃棄耐火物は、変質部の残存するものが磁性を有す
る特性を利用して、磁力選別機により磁選処理12を行
って、非磁性の廃棄耐火物と磁性の廃棄耐火物とに選別
される。選別された非磁性の廃棄耐火物は、篩いを用い
て分級13され、5〜100mmの粒径の粗粒を取り出
す。この粗粒は、プレキャストブロック等の不定形耐火
物の粗骨材14として使用される。また、5〜100m
mの粒径の粗粒の中から、10〜20mmの粒径のもの
を一部取り出した後、更に、篩いを用いて5〜100m
mの粗粒を分級13することによって、5mm以上、1
0mm未満のサイズ(粒径)のものを取り出し、この両
方を混合したものを不定形耐火物の流し込みの一例であ
る圧入流し込み用の圧入充填材16として使用してもよ
い。
Hereinafter, a method for recycling a refractory according to an embodiment of the present invention will be described in detail. FIG.
Are given in correspondence with each processing step and each refractory described below in order to facilitate understanding. As shown in FIG. 1, used refractories (refractories after use) are alumina-based, magnesia-based, zircon-based, magnesia-carbon-based, and carbon-silica-based depending on the application, main component, carbon content, and the like. And the like, and 1 to 300 tons are collected as waste refractories (recovery of used refractories 10). The recovered waste refractories are
Commonly used jaw crushers (an example of a crusher) are collected from the same system with the same main components.
By the primary crushing treatment 11 using, the crushed using the property that is easy to break around the deteriorated part in contact with the ingot, slag, etc., to form particles of 100 mm or less, It is separated into high quality ones. The crushed waste refractory is subjected to a magnetic separation process 12 by a magnetic separator, utilizing the property that the remaining portion of the altered portion has magnetism, to be converted into a non-magnetic waste refractory and a magnetic waste refractory. Be sorted out. The selected non-magnetic waste refractories are classified 13 using a sieve, and coarse particles having a particle size of 5 to 100 mm are taken out. The coarse particles are used as coarse aggregates 14 of irregular-shaped refractories such as precast blocks. In addition, 5-100m
m of the coarse particles having a particle size of 10 to 20 mm, a part of the coarse particles is taken out, and then further screened for 5 to 100 m using a sieve.
Classification 13 of coarse particles of m
A material having a size (particle size) of less than 0 mm may be taken out, and a mixture of both may be used as a press-fit filler 16 for press-fitting, which is an example of pouring an amorphous refractory.

【0013】次に、二次破砕17で、磁性を有する廃棄
耐火物(磁性耐火物15)を、破砕機の一例であるイン
パクトクラッシャーを用いて5mm未満の微粉に粉砕す
る。この微粉砕によって、廃棄耐火物の変質部を細かく
破断し、変質部を含む微粉と良質の耐火物の微粉に破断
分離される。しかし、変質部を含む微粉と良質の耐火物
の微粉とが混合した状態の微粉は、変質部を含む微粉の
磁性が弱いため、磁選にかけた際に、混合状態の微粉か
ら変質部を含む微粉を容易に取り出すことができない。
一方、製鉄工程で発生する浸漬ノズルや転炉の内張り煉
瓦等の炭素含有廃棄耐火物(炭素含有耐火物18)は、
炭素(C)を5〜30重量%を含有しており、この炭素
を利用することにより、耐火物の微粉に含まれる変質部
の酸化鉄(Fe23 )を鉄(Fe)に還元することが
できるので、炭素による還元反応が良好になるようにイ
ンパクトクラッシャー等を用いた破砕処理19によって
5mm未満の微粉に粉砕される。
Next, in secondary crushing 17, the waste refractory having magnetic properties (magnetic refractory 15) is crushed into fine powder of less than 5 mm using an impact crusher which is an example of a crusher. By this pulverization, the deteriorated portion of the refractory waste is finely broken, and the fine powder containing the deteriorated portion and the fine powder of high-quality refractory are broken and separated. However, when the fine powder containing the altered part and the fine refractory fine powder are mixed, the fine powder containing the altered part is weak in magnetism. Cannot be easily taken out.
On the other hand, carbon-containing waste refractories (carbon-containing refractories 18) such as immersion nozzles and converter lining bricks generated in the iron making process are:
It contains 5 to 30% by weight of carbon (C), and by using this carbon, iron oxide (Fe 2 O 3 ) in the altered part contained in the fine powder of the refractory is reduced to iron (Fe). Therefore, the powder is pulverized into fine powder of less than 5 mm by a crushing process 19 using an impact crusher or the like so that the reduction reaction by carbon becomes favorable.

【0014】従って、いずれも5mm未満に粉砕された
磁性を有する廃棄耐火物すなわち微粉耐火物と炭素含有
廃棄耐火物とをロータリーキルンに装入して混合し、ロ
ータリーキルンに布設したバーナから還元性の火炎をロ
ータリーキルン内に吹き込んで、ロータリーキルン内を
900〜1200℃に加熱する。そして、微粉耐火物に
含まれる酸化鉄(Fe23 )を下式の反応により還元
処理20を行う。Fe23 +3C=2Fe+3CO↑
この還元処理20によって、微粉耐火物中の酸化鉄は、
還元されて鉄になるため、変質部を含む微粉耐火物の磁
性が強くなり、その後に磁力選別機によって行う磁選処
理21により、鉄を含まない非磁性の微粉耐火物と磁性
の微粉耐火物の選別が可能になり、良品質の回収微粉
(非磁性の微粉耐火物)22を得ることができる。
Therefore, waste refractory having magnetism, which is pulverized to less than 5 mm, that is, fine powder refractory and carbon-containing waste refractory are charged into a rotary kiln and mixed, and a reducing flame is supplied from a burner installed in the rotary kiln. Is blown into the rotary kiln, and the inside of the rotary kiln is heated to 900 to 1200 ° C. Then, a reduction treatment 20 is performed on iron oxide (Fe 2 O 3 ) contained in the fine powder refractory by the following reaction. Fe 2 O 3 + 3C = 2Fe + 3CO ↑
By this reduction treatment 20, the iron oxide in the fine powder refractory becomes
Since it is reduced to iron, the magnetism of the fine powder refractory including the altered part becomes strong, and the magnetic separation process 21 performed by the magnetic force separator thereafter causes the nonmagnetic fine powder refractory not containing iron and the magnetic fine powder refractory to be reduced. Sorting is possible, and high-quality recovered fine powder (non-magnetic fine powder refractory) 22 can be obtained.

【0015】回収微粉22は、その一部が吹き付け用補
修材23として使用され、残りの回収微粉22は、電気
炉あるいは誘導加熱炉等を用いて、1600〜2500
℃に加熱して溶解処理24され、更に、冷却固化されて
塊に製造される。この塊を破砕処理25によって、5〜
100mmのサイズに破砕し、前述したプレキャストブ
ロック等の不定形耐火物の骨材を製造する。この破砕処
理25で発生した5〜100mmの一部を篩にかけて、
5〜20mmのサイズのものを取り出して圧入充填材に
用いられる。破砕処理25によって生じる5mm未満の
非磁性の微粉耐火物は、吹き付け用補修材として再使用
される。更に、回収された磁性の微粉耐火物は、鉄やス
ラグ等を多量に含有しているため、埋め立て等に廃棄処
理26される。この耐火物のリサイクルによって、廃棄
耐火物の大量処理と処理費用の低減が可能になる。しか
も、廃棄耐火物からアルミナ、マグネシア、ジルコン等
を主成分とする有効な原料を回収でき、廃棄する耐火物
を最小限にすることが可能になるため、埋め立て等の環
境上の問題を回避することができる。
A part of the collected fine powder 22 is used as a repair material 23 for spraying, and the remaining collected fine powder 22 is used for 1600 to 2500 using an electric furnace or an induction heating furnace.
The mixture is heated to 0 ° C., subjected to a dissolution treatment 24, and further cooled and solidified to produce a lump. This mass is crushed 25 to
It is crushed to a size of 100 mm to produce an aggregate of irregular-shaped refractory such as the above-mentioned precast block. A part of 5 to 100 mm generated in the crushing process 25 is sieved,
The one having a size of 5 to 20 mm is taken out and used as a press-fit filler. The non-magnetic fine powder refractory of less than 5 mm generated by the crushing process 25 is reused as a spray repair material. Further, since the collected magnetic fine powder refractories contain a large amount of iron, slag, and the like, they are disposed of by landfilling or the like. Recycling of this refractory makes it possible to process a large amount of waste refractory and reduce the cost of disposal. In addition, effective raw materials mainly composed of alumina, magnesia, zircon, etc. can be recovered from the refractory waste, and the refractory to be discarded can be minimized, thereby avoiding environmental problems such as landfill. be able to.

【0016】[0016]

【実施例】次に、本発明に係る耐火物のリサイクル方法
を適用した実施例について説明する。溶鋼の搬送に使用
した取鍋に内張りされ、張り替え時に発生したAl2
3 を70重量%含むアルミナ系の廃棄耐火物20トンを
回収し、この廃棄耐火物をジョウクラッシャーを用いて
100mm以下に破砕した。この廃棄耐火物を3500
ガウスの磁石を用いて磁選処理を行った。その結果、地
金、酸化鉄、スラグ等の付着や浸透した変質部の全く無
い10〜40mmの良質の粗骨材7トンを得ることがで
き、プレキャストブロックの骨材として使用した。この
プレキャストブロックは、強度及び耐食性が良好であっ
た。更に、5mm以上、10mm未満の粒径の耐火物を
2トン及び粗骨材のうちの5〜20mmの一部である1
トンを合わせて、圧入充填材として使用したが、流し込
みによる充填状態及び施工体そのものを良好にできた。
Next, an embodiment to which the refractory recycling method according to the present invention is applied will be described. Al 2 O that was lined up on the ladle used to transport molten steel
20 tons of alumina-based waste refractory containing 70% by weight of 3 was recovered, and the waste refractory was crushed to 100 mm or less using a jaw crusher. 3500
Magnetic separation was performed using a Gaussian magnet. As a result, it was possible to obtain 7 tons of high quality coarse aggregate of 10 to 40 mm without any adhesion of ingots, iron oxide, slag, and the like, and a permeated part, which was used as an aggregate of the precast block. This precast block had good strength and corrosion resistance. Furthermore, 2 tons of refractory having a particle size of 5 mm or more and less than 10 mm and 1 of 5 to 20 mm of the coarse aggregate 1
The tons were combined and used as a press-fit filler, but the filling state by pouring and the construction itself could be improved.

【0017】また、磁性を有する廃棄耐火物として分離
された10トンをインパクトクラッシャーを用いて二次
破砕処理し、5mm未満の微粉耐火物に破砕した。同時
に、アルミナ・グラファイトを主成分とし、炭素を20
重量%含有した浸漬ノズルの廃棄耐火物1トンをインパ
クトクラッシャーを用いて5mm未満のサイズに破砕処
理し、この両方をロータリーキルンに装入して混合し、
還元性の火炎のバーナでロータリーキルン内を1100
℃に加熱し、微粉耐火物の変質部に含まれる酸化鉄を還
元した。還元処理を行った後の微粉耐火物を磁選処理
し、Al23 を70重量%を含む良品質の非磁性の微
粉耐火物8トンを分離回収することができた。良品質の
非磁性の微粉耐火物は、2トンを吹き付け用補修材とし
て使用することができ、残りの非磁性の微粉耐火物は、
電気炉を用いて溶解処理し、これを冷却してから10〜
40mmに破砕処理し、骨材を製造し、その骨材をプレ
キャストブロックの骨材に使用した。その結果、廃棄耐
火物である炭素含有耐火物を変質部の還元処理に活用で
き、処理コストの低減と廃棄する耐火物の量を最小にで
きた。
Further, 10 tons of magnetically separated waste refractories were subjected to secondary crushing treatment using an impact crusher, and crushed into fine powder refractories of less than 5 mm. At the same time, the main component is alumina-graphite,
1 ton of the waste refractory of the immersion nozzle containing weight% is crushed using an impact crusher to a size of less than 5 mm, and both are charged into a rotary kiln and mixed,
1100 in rotary kiln with reducing flame burner
C. to reduce the iron oxide contained in the altered part of the refractory powder. The fine refractory after the reduction treatment was subjected to a magnetic separation treatment, and 8 tons of high-quality nonmagnetic fine refractory containing 70% by weight of Al 2 O 3 could be separated and recovered. Good quality non-magnetic fine powder refractories can use 2 tons as a repair material for spraying, and the remaining non-magnetic fine powder refractories are
Dissolution treatment using an electric furnace, and after cooling,
It was crushed to 40 mm to produce an aggregate, and the aggregate was used as an aggregate of a precast block. As a result, carbon-containing refractories, which are waste refractories, can be used for the reduction treatment of the deteriorated part, thereby reducing the processing cost and minimizing the amount of refractories to be disposed.

【0018】以上、本発明の実施の形態を説明したが、
本発明は、上記した形態に限定されるものでなく、要旨
を逸脱しない条件の変更等は全て本発明の適用範囲であ
る。例えば、変質部の酸化鉄を還元する際に、炭素含有
耐火物のかわりに製鉄工場で発生するコークス粉、又は
COガス等の還元ガスを用いることができる。更に、還
元処理は、ロータリーキルンの他に、流動床を備えた還
元装置や電気炉等を用いることができる。
The embodiment of the present invention has been described above.
The present invention is not limited to the above-described embodiment, and all changes in conditions that do not depart from the gist are within the scope of the present invention. For example, when reducing the iron oxide in the altered part, a reducing gas such as a coke powder or a CO gas generated in an iron mill can be used instead of the carbon-containing refractory. Furthermore, in the reduction treatment, a reduction device having a fluidized bed, an electric furnace, or the like can be used in addition to the rotary kiln.

【0019】[0019]

【発明の効果】請求項1〜6記載の耐火物のリサイクル
方法は、使用後の耐火物を破砕機で一次破砕し、この破
砕された耐火物を磁力選別機により磁選して非磁性の粗
粒を分別して回収し、磁性を有する耐火物を破砕機で二
次破砕して微粉耐火物を得て、微粉耐火物に炭素含有耐
火物を加えて還元処理をした後に、還元処理後の微粉耐
火物を再度磁力選別機で磁選して非磁性の微粉耐火物を
回収するので、処理コストを低減し、廃棄耐火物の大量
処理が可能になり、耐火物として有効な粗粒や微粉を回
収して、廃棄物となる耐火物を最小にすることができ
る。
According to the method for recycling refractories according to claims 1 to 6, the refractories after use are firstly crushed by a crusher, and the crushed refractories are magnetically separated by a magnetic separator to obtain a non-magnetic coarse material. The particles are separated and collected, and the refractory having magnetic properties is secondarily crushed by a crusher to obtain a fine powder refractory.After the carbon-containing refractory is added to the fine powder refractory and subjected to a reduction treatment, the fine powder after the reduction treatment is obtained. The refractory is re-magnetically separated by a magnetic separator to collect non-magnetic fine powder refractories, thereby reducing processing costs, enabling large-scale disposal of waste refractories, and collecting coarse particles and fine powder that are effective as refractories. As a result, the amount of refractory waste can be minimized.

【0020】特に、請求項2記載の耐火物のリサイクル
方法は、非磁性の粗粒の粒径を5〜100mmにしてい
るので、粗粒をそのままプレキャストブロック等の不定
形耐火物の骨材に使用することができ、不定形耐火物の
製造コストの低減が可能になり、しかも、不定形耐火物
の耐溶損、耐磨耗、強度等の品質を向上させることがで
きる。
In particular, in the refractory recycling method according to the second aspect, since the non-magnetic coarse particles have a particle size of 5 to 100 mm, the coarse particles can be used as they are as aggregates for irregular-shaped refractories such as precast blocks. The refractory can be used, the production cost of the refractory can be reduced, and the quality of the refractory such as erosion resistance, abrasion resistance and strength can be improved.

【0021】請求項3記載の耐火物のリサイクル方法
は、非磁性の微粉耐火物の粒径を5mm未満にしている
ので、変質部の分離が良好になり、回収された微粉の耐
火物の品質も高めることができる。
According to the method for recycling refractories according to the third aspect, since the particle size of the nonmagnetic fine powder refractories is less than 5 mm, the separation of the deteriorated portion becomes good, and the quality of the collected fine powder refractories is improved. Can also be increased.

【0022】請求項4記載の耐火物のリサイクル方法
は、炭素含有耐火物は、製鉄所内で発生する炭素含有耐
火物を用いるので、新たな還元剤を必要とせず、処理コ
ストをより安価にすることができ、炭素含有耐火物に含
まれる有効成分を活用することができ、廃棄する耐火物
を少なくすることができる。
According to the method for recycling refractories according to claim 4, since the carbon-containing refractories used are carbon-containing refractories generated in a steelworks, a new reducing agent is not required and the processing cost is reduced. Therefore, the effective components contained in the carbon-containing refractory can be utilized, and the amount of discarded refractory can be reduced.

【0023】請求項5記載の耐火物のリサイクル方法
は、非磁性の微粉耐火物を吹き付け補修材に使用するの
で、再破砕を行うことなく吹き付け用の耐火物として使
用することができ、施工時の耐火物コストを低減するこ
とができる。
In the method for refractory recycling according to the fifth aspect of the present invention, the non-magnetic fine powdered refractory is used as a repair material by spraying, so that it can be used as a refractory for spraying without recrushing. Can reduce the cost of refractories.

【0024】請求項6記載の耐火物のリサイクル方法
は、非磁性の微粉耐火物を溶融し、固化させた後破砕し
て骨材に使用するので、高純度の骨材を製造してプレキ
ャストブロック等の不定形耐火物の骨材に使用すること
ができ、不定形耐火物の耐溶損、耐磨耗、強度等の品質
を安定して向上させることができる。
In the method for recycling refractories according to the present invention, a non-magnetic fine powder refractory is melted, solidified and then crushed and used as an aggregate. And the like, and the quality of the amorphous refractory such as erosion resistance, abrasion resistance and strength can be stably improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る耐火物のリサイク
ル方法の処理フロー図である。
FIG. 1 is a process flowchart of a refractory recycling method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10:使用済み耐火物の回収、11:一次破砕処理、1
2:磁選処理、13:分級、14:粗骨材、15:磁性
耐火物、16:圧入充填材、17:二次破砕処理、1
8:炭素含有耐火物、19:破砕処理、20:還元処
理、21:磁選処理、22:回収微粉、23:吹き付け
用補修材、24:溶解処理、25:破砕処理、26:廃
棄処理
10: Collection of used refractories, 11: Primary crushing treatment, 1
2: magnetic separation treatment, 13: classification, 14: coarse aggregate, 15: magnetic refractory, 16: press-fit filler, 17: secondary crushing treatment, 1
8: carbon-containing refractory, 19: crushing treatment, 20: reduction treatment, 21: magnetic separation treatment, 22: collected fine powder, 23: repair material for spraying, 24: dissolution treatment, 25: crushing treatment, 26: disposal treatment

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今川 浩志 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 筒井 康志 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4D004 AA16 AA19 AC05 BA10 CA04 CA09 CA12 CA29 CA37 CB05 CC11 DA03 DA20 4K051 AA06 AB03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Imagawa 1-1, Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Inside Nippon Steel Corporation Yawata Works (72) Inventor Yasushi Tsutsui 20-Shintomi, Futtsu City, Chiba Prefecture 1 Nippon Steel Corporation Technology Development Division F-term (reference) 4D004 AA16 AA19 AC05 BA10 CA04 CA09 CA12 CA29 CA37 CB05 CC11 DA03 DA20 4K051 AA06 AB03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 使用後の耐火物を破砕機で一次破砕し、
この破砕された耐火物を磁力選別機により磁選して非磁
性の粗粒を分別して回収し、磁性を有する耐火物を破砕
機で二次破砕して微粉耐火物を得て、該微粉耐火物に炭
素含有耐火物を加えて還元処理をした後に、該還元処理
後の微粉耐火物を再度磁力選別機で磁選して非磁性の微
粉耐火物を回収することを特徴とする耐火物のリサイク
ル方法。
1. A primary crusher for a refractory after use with a crusher,
The crushed refractory is magnetically separated by a magnetic separator to separate and collect nonmagnetic coarse particles, and the magnetic refractory is secondarily crushed by a crusher to obtain a fine powder refractory, and the fine powder refractory is obtained. A recycle method of refractories, characterized in that a carbon-containing refractory is added to the mixture, the refractory is reduced, and the reduced refractory is re-magnetically separated by a magnetic separator to collect a non-magnetic fine refractory. .
【請求項2】 請求項1記載の耐火物のリサイクル方法
において、前記非磁性の粗粒の粒径は、5〜100mm
であることを特徴とする耐火物のリサイクル方法。
2. The refractory recycling method according to claim 1, wherein the nonmagnetic coarse particles have a particle size of 5 to 100 mm.
A method for recycling refractories.
【請求項3】 請求項1又は2記載の耐火物のリサイク
ル方法において、前記非磁性の微粉耐火物の粒径は、5
mm未満であることを特徴とする耐火物のリサイクル方
法。
3. The refractory recycling method according to claim 1, wherein the nonmagnetic fine powder refractory has a particle size of 5 μm.
mm.
【請求項4】 請求項1〜3のいずれか1項に記載の耐
火物のリサイクル方法において、前記炭素含有耐火物
は、製鉄所内で発生する炭素含有耐火物であることを特
徴とする耐火物のリサイクル方法。
4. The refractory recycling method according to claim 1, wherein the carbon-containing refractory is a carbon-containing refractory generated in an ironworks. Recycling method.
【請求項5】 請求項1〜4のいずれか1項に記載の耐
火物のリサイクル方法において、前記非磁性の微粉耐火
物を吹き付け補修材に使用することを特徴とする耐火物
のリサイクル方法。
5. The refractory recycling method according to claim 1, wherein the non-magnetic fine powder refractory is used as a repair material.
【請求項6】 請求項1〜4のいずれか1項に記載の耐
火物のリサイクル方法において、前記非磁性の微粉耐火
物を溶融し、固化させた後破砕して骨材に使用すること
を特徴とする耐火物のリサイクル方法。
6. The refractory recycling method according to claim 1, wherein the nonmagnetic fine powdered refractory is melted, solidified, crushed, and used for an aggregate. Characteristic refractory recycling method.
JP2001001272A 2001-01-09 2001-01-09 How to recycle refractories Expired - Fee Related JP3645818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001001272A JP3645818B2 (en) 2001-01-09 2001-01-09 How to recycle refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001001272A JP3645818B2 (en) 2001-01-09 2001-01-09 How to recycle refractories

Publications (2)

Publication Number Publication Date
JP2002206867A true JP2002206867A (en) 2002-07-26
JP3645818B2 JP3645818B2 (en) 2005-05-11

Family

ID=18869925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001001272A Expired - Fee Related JP3645818B2 (en) 2001-01-09 2001-01-09 How to recycle refractories

Country Status (1)

Country Link
JP (1) JP3645818B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100941253B1 (en) 2009-04-02 2010-02-11 김창호 Reuse method of waste lining refractory in tundish
JP2013082953A (en) * 2011-10-06 2013-05-09 Nippon Steel & Sumitomo Metal Corp Method of extending life of converter refractory
JP2015171706A (en) * 2014-02-19 2015-10-01 Jfeスチール株式会社 Reuse method of used refractory and refractory raw material obtained by the method and refractory
JP2016168523A (en) * 2015-03-11 2016-09-23 Jfeスチール株式会社 Separation method and separation device of used blast furnace trough refractory
CN107716515A (en) * 2017-10-30 2018-02-23 赵鸿恩 The waste and old regeneration and treatment technique of resistance to material and its equipment
JP2022111745A (en) * 2021-01-20 2022-08-01 品川リフラクトリーズ株式会社 Method for producing recycled refractory raw material
TWI806572B (en) * 2022-04-25 2023-06-21 朝陽科技大學 Multifunctional material made from discarded fire doors

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100941253B1 (en) 2009-04-02 2010-02-11 김창호 Reuse method of waste lining refractory in tundish
JP2013082953A (en) * 2011-10-06 2013-05-09 Nippon Steel & Sumitomo Metal Corp Method of extending life of converter refractory
JP2015171706A (en) * 2014-02-19 2015-10-01 Jfeスチール株式会社 Reuse method of used refractory and refractory raw material obtained by the method and refractory
JP2016168523A (en) * 2015-03-11 2016-09-23 Jfeスチール株式会社 Separation method and separation device of used blast furnace trough refractory
CN107716515A (en) * 2017-10-30 2018-02-23 赵鸿恩 The waste and old regeneration and treatment technique of resistance to material and its equipment
JP2022111745A (en) * 2021-01-20 2022-08-01 品川リフラクトリーズ株式会社 Method for producing recycled refractory raw material
JP7328566B2 (en) 2021-01-20 2023-08-17 品川リフラクトリーズ株式会社 Manufacturing method of recycled refractory raw material
TWI806572B (en) * 2022-04-25 2023-06-21 朝陽科技大學 Multifunctional material made from discarded fire doors

Also Published As

Publication number Publication date
JP3645818B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
Jayasankar et al. Production of pig iron from red mud waste fines using thermal plasma technology
US4260414A (en) Process for recovering and utilizing useful substances from molten metal produced during reduction treatment of steel slag
JP4913023B2 (en) Slag manufacturing method
JP4077774B2 (en) Reusing used refractories
US20120073404A1 (en) Method of recovering valuable metal from slag
Bölükbaşı et al. Steelmaking slag beneficiation by magnetic separator and impacts on sinter quality
JP5531536B2 (en) Method for recovering iron and phosphorus from steelmaking slag
JP5347317B2 (en) How to reuse used tundish refractories
JP3645818B2 (en) How to recycle refractories
CA2148923A1 (en) The method of manufacturing alloy by using aluminum residuum
JP5017846B2 (en) Reuse of chromium-containing steel refining slag
JP2001192741A (en) Method for utilizing steel making slag
JP4499940B2 (en) Disposal of used refractories
JP3645843B2 (en) How to reuse refractories
JP3704301B2 (en) Disposal of used refractories
JP4932309B2 (en) Chromium recovery method from chromium-containing slag
JP2005188798A (en) Recycling method for used refractory and method of forming lining protective layer of molten metal container
Madias A review on recycling of refractories for the iron and steel industry
Yang et al. Treatments of AOD slag to produce aggregates for road construction
JP4187453B2 (en) Ladle method for high temperature molten slag
KR102633903B1 (en) Method for recovering iron and valuable metal from electric arc furnace dust
JP5679836B2 (en) Recovery method of iron and manganese oxide from steelmaking slag
JP2017213481A (en) Valuable recovery method from dephosphorization slag
JP2024072442A (en) Method for producing refractory raw material and refractory for molten iron container
JPH10265827A (en) Regenerating/utilizing method of refined slag in chromium-containing steel and regenerating/utilizing method of metallic component contained in the slag

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050204

R151 Written notification of patent or utility model registration

Ref document number: 3645818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees