JP2002198182A - Organic el element - Google Patents

Organic el element

Info

Publication number
JP2002198182A
JP2002198182A JP2000393169A JP2000393169A JP2002198182A JP 2002198182 A JP2002198182 A JP 2002198182A JP 2000393169 A JP2000393169 A JP 2000393169A JP 2000393169 A JP2000393169 A JP 2000393169A JP 2002198182 A JP2002198182 A JP 2002198182A
Authority
JP
Japan
Prior art keywords
organic
layer
hole injection
anode
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000393169A
Other languages
Japanese (ja)
Inventor
Koji Hanawa
幸治 花輪
Jiro Yamada
二郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2000393169A priority Critical patent/JP2002198182A/en
Publication of JP2002198182A publication Critical patent/JP2002198182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To aim improvement in luminescence characteristics by increasing the electron hole current of an organic EL element as an upper surface luminescence element. SOLUTION: The organic EL element is constituted by successively laminating a substrates 1, a positive pole 2 of optical reflection nature, an insulation film 3 that separates a luminescence domain, a thin-film layer 4 for hole injection of 1 into 10 nm film thickness, which consists of a material having work function larger than that of the positive pole 2, three organic layers of an hole injection layer 5, a hole transport layer 6, and a luminescence layer 7, and a negative pole 8 having optical permeability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光層に有機化合
物からなる有機層を用いた有機EL(エレクトロルミネ
センス)素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic EL (electroluminescence) element using an organic layer made of an organic compound for a light emitting layer.

【0002】[0002]

【従来の技術】有機EL素子は自己発光するため視認性
が高く、かつ完全な固体であるため耐衝撃性に優れるな
どの利点を有し、各種の表示装置における発光素子とし
ての利用が期待されている。
2. Description of the Related Art Organic EL elements have advantages such as high visibility because they emit light by themselves, and excellent impact resistance because they are completely solid, and are expected to be used as light emitting elements in various display devices. ing.

【0003】有機EL素子は、基本的には有機発光層を
一対の電極で挟んで構成され、陰極から注入された電子
と陽極から注入された正孔が、発光層内で結合するとき
に発光するものである。したがって、陰極側へ光を取り
出す上面発光素子の場合、基板上に陽極、発光層を含む
有機層、光透過性の陰極が順に積層されて構成される。
[0003] An organic EL element is basically constituted by sandwiching an organic light emitting layer between a pair of electrodes, and emits light when electrons injected from a cathode and holes injected from an anode are combined in the light emitting layer. Is what you do. Therefore, in the case of a top light emitting element that extracts light to the cathode side, an anode, an organic layer including a light emitting layer, and a light transmissive cathode are sequentially laminated on a substrate.

【0004】このような上面発光素子では、陽極材料に
求められる特性としては正孔の注入効率に関与する仕事
関数と陰極側へ発光を反射する反射率がある。有機層へ
の正孔の注入効率が大きいと、より低い電界で正孔電流
を増大させることができ、発光効率の高い有機EL素子
を得ることができる。陽極から有機層への正孔の注入効
率は、有機層に接する陽極の仕事関数が大きいほど高効
率となるため、陽極材料としては仕事関数の大きいもの
がよいと考えられてきた。光反射性を有し仕事関数のよ
り大きい電極材料としては、ニッケル、金、白金等が挙
げられる。
[0004] In such a top-surface light emitting device, characteristics required for the anode material include a work function related to hole injection efficiency and a reflectivity for reflecting light emission to the cathode side. When the efficiency of injecting holes into the organic layer is high, the hole current can be increased at a lower electric field, and an organic EL device having high luminous efficiency can be obtained. Since the efficiency of hole injection from the anode to the organic layer increases as the work function of the anode in contact with the organic layer increases, it has been considered that a material having a large work function is preferable as the anode material. Nickel, gold, platinum, and the like can be given as examples of the electrode material having light reflectivity and a higher work function.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、金や白
金は、有機ELディスプレイを作製するために必要なリ
ソグラフィなどの微細加工に適せず、上面発光素子の陽
極として用いることが難しいという問題があった。ま
た、金は可視光領域で反射率が大きく変わるため、上面
発光素子の陽極として用いると、有機層での発光スペク
トルを変化させてしまうという問題があった。
However, gold and platinum are not suitable for fine processing such as lithography necessary for manufacturing an organic EL display, and have a problem that it is difficult to use them as an anode of a top emission device. Was. In addition, since the reflectance of gold greatly changes in the visible light region, when used as an anode of a top emission element, there is a problem that the emission spectrum of the organic layer is changed.

【0006】本発明は、かかる点に対処してなされたも
ので、有機層への正孔の注入効率が高くかつ上面発光素
子として反射による可視光領域の発光スペクトルの変化
の少ない、発光特性に優れた有機EL素子を提供するこ
とを目的とする。
The present invention has been made in view of such a point, and has a high emission efficiency of holes into an organic layer and a small emission characteristic of a visible light region due to reflection as a top emission element. An object is to provide an excellent organic EL device.

【0007】[0007]

【課題を解決するための手段】すなわち、請求項1の発
明は、陽極と陰極の間に一層以上の有機層を有する有機
EL素子において、陽極と有機層の間に陽極よりも仕事
関数の大きい正孔注入用薄膜層を有することを特徴とす
る。この発明においては、陽極と有機層の間に陽極のよ
うにリソグラフィなどの微細加工の必要のない正孔注入
用薄膜層を設けて、これを陽極より仕事関数の大きい材
料で形成することにより、有機層への正孔の注入効率を
高めることができ、有機EL素子の電流−電圧特性を向
上させることが可能となる。
That is, according to the first aspect of the present invention, in an organic EL device having one or more organic layers between an anode and a cathode, the work function between the anode and the organic layer is larger than that of the anode. It has a hole injection thin film layer. In the present invention, by providing a thin film layer for hole injection that does not require fine processing such as lithography between the anode and the organic layer like the anode, by forming this with a material having a larger work function than the anode, The efficiency of injecting holes into the organic layer can be increased, and the current-voltage characteristics of the organic EL element can be improved.

【0008】請求項2の発明は、請求項1の有機EL素
子において、正孔注入用薄膜層の膜厚が1〜10nmの
範囲内であることを特徴とする。正孔注入用薄膜層の膜
厚を1〜10nmと非常に薄くすることで、可視光領域
で反射率が大きく変わる金属材料でも、有機層の発光ス
ペクトルをほとんど変えることなく使用することができ
る。
According to a second aspect of the present invention, in the organic EL device of the first aspect, the thickness of the hole injection thin film layer is in the range of 1 to 10 nm. By making the thickness of the hole injecting thin film layer as extremely thin as 1 to 10 nm, even a metal material whose reflectance largely changes in the visible light region can be used without substantially changing the emission spectrum of the organic layer.

【0009】請求項3の発明は、請求項1の有機EL素
子において、正孔注入用薄膜層が陽極上に蒸着法により
成膜されてなることを特徴とする。正孔注入用薄膜層は
蒸着法により成膜可能なため、リソグラフィなどの微細
加工に適さない材料でも、仕事関数の観点から任意に用
いることができる。
According to a third aspect of the present invention, in the organic EL device of the first aspect, the hole injection thin film layer is formed on the anode by a vapor deposition method. Since the hole injecting thin film layer can be formed by a vapor deposition method, a material that is not suitable for fine processing such as lithography can be arbitrarily used from the viewpoint of a work function.

【0010】請求項4の発明は、請求項1の有機EL素
子において、有機層が正孔注入用薄膜層を覆うようによ
り大きい形状に蒸着法により成膜されてなることを特徴
とする。正孔注入用薄膜層の形成に用いたマスクより大
きいマスクで有機層を成膜することで、容易に正孔注入
用薄膜層より形状の大きな有機層を正孔注入用薄膜層上
に積層することができ、これにより正孔注入用薄膜層と
陰極との短絡を防ぐことができる。
According to a fourth aspect of the present invention, in the organic EL device of the first aspect, the organic layer is formed by a vapor deposition method so as to cover the thin film layer for hole injection. By forming an organic layer using a mask larger than the mask used for forming the hole injection thin film layer, an organic layer having a shape larger than the hole injection thin film layer can be easily laminated on the hole injection thin film layer. This can prevent a short circuit between the hole injection thin film layer and the cathode.

【0011】[0011]

【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態を説明する。図1〜3は、本発明の一実施の形
態の有機EL素子の製造工程を示すもので、図3に最終
的な構成が示されている。図3において、本発明の一実
施の形態の有機EL素子は、ガラス等の絶縁性の基板1
と、光反射性の陽極2と、発光領域を分離する絶縁膜3
と、有機層へ正孔をより多く注入するための正孔注入用
薄膜層4と、正孔注入層5、正孔輸送層6及び発光層7
の3層の有機層と、光透過性の陰極8が順次積層されて
構成されている。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 show a manufacturing process of an organic EL device according to an embodiment of the present invention, and FIG. 3 shows a final configuration. In FIG. 3, an organic EL element according to one embodiment of the present invention is an insulating substrate 1 made of glass or the like.
And a light-reflective anode 2 and an insulating film 3 for separating a light emitting region
A hole injection thin film layer 4 for injecting more holes into the organic layer, a hole injection layer 5, a hole transport layer 6, and a light emitting layer 7.
, And a light-transmissive cathode 8 are sequentially laminated.

【0012】上記構成において、基板1上にまず陽極2
が形成される。陽極2の材料としては、例えばCrのよ
うに、仕事関数が比較的大きい導電性材料のうち微細加
工が容易でかつ可視光領域で反射率のほぼ一定したもの
が用いられる。陽極2は、基板1上に陽極材料をスパッ
タ法等により成膜し、リソグラフィ等により所定の形状
にエッチングして形成される。
In the above structure, the anode 2 is first placed on the substrate 1.
Is formed. As a material of the anode 2, for example, a conductive material having a relatively large work function, such as Cr, which can be easily microprocessed and has a substantially constant reflectance in a visible light region is used. The anode 2 is formed by forming a film of an anode material on the substrate 1 by a sputtering method or the like and etching the anode material into a predetermined shape by lithography or the like.

【0013】この所定の形状に加工された陽極2上に、
例えばSiO2 のような絶縁膜3がCVD法等により成
膜され、リゾグラフィ等により発光素子の発光部分とな
る領域の陽極2が露出するよう絶縁膜3の開口が行われ
る。
On the anode 2 processed into the predetermined shape,
For example, an insulating film 3 such as SiO 2 is formed by a CVD method or the like, and an opening of the insulating film 3 is made by lithography or the like so that the anode 2 in a region to be a light emitting portion of the light emitting element is exposed.

【0014】上記のようにして陽極2及び絶縁膜3が所
定の形状に形成された基板1上に、金等の仕事関数が陽
極2よりも大きい金属材料を用いて正孔注入用薄膜層4
が約1〜10nmの範囲の膜厚に成膜される。その際、
陽極2が露出した部分を中心にして、絶縁膜3の開口部
分よりひとまわり大きい開口部分を持つマスク9を用い
て、抵抗加熱法や電子ビーム蒸着法等の真空蒸着法など
により正孔注入用薄膜層4の成膜が行われる。
On the substrate 1 on which the anode 2 and the insulating film 3 are formed in a predetermined shape as described above, a metal material such as gold having a work function larger than that of the anode 2 is used.
Is formed into a film thickness in the range of about 1 to 10 nm. that time,
Using a mask 9 having an opening part slightly larger than the opening part of the insulating film 3 around the part where the anode 2 is exposed, holes are injected by a vacuum evaporation method such as a resistance heating method or an electron beam evaporation method. The thin film layer 4 is formed.

【0015】次に、上記正孔注入用薄膜層4の上に、正
孔注入用薄膜層4の形成に用いたマスク9よりも開口部
分がひとまわり大きいマスク10を用いて、正孔注入層
5、正孔輸送層6及び発光層7の各有機層と陰極8が真
空蒸着法等にて成膜される。正孔注入層5、正孔輸送層
6及び発光層7はすでに公知のもので、例えば正孔注入
層5としては、4、4′、4″−トリス(3−メチルフ
ェニルフェニルアミノ)トリフェニルアミン(以下、M
TDATAという。)等を、正孔輸送層6としては、ビ
ス(N−ナフチル)−N−フェニルベンジジン(以下、
α−NPDという。)等を、発光層7としては、8−キ
ノリノ−ルアルミニウム錯体(以下、Alqという。)
等を用いることができる。また、陰極8の材料として
は、透明な導電性材料が好ましい。
Next, a hole injection layer is formed on the hole injection thin film layer 4 by using a mask 10 having an opening part larger than the mask 9 used for forming the hole injection thin film layer 4. 5, the respective organic layers of the hole transport layer 6 and the light emitting layer 7 and the cathode 8 are formed by a vacuum deposition method or the like. The hole injection layer 5, the hole transport layer 6, and the light emitting layer 7 are already known. For example, as the hole injection layer 5, 4,4 ′, 4 ″ -tris (3-methylphenylphenylamino) triphenyl Amine (hereinafter referred to as M
It is called TDATA. ) And the like as the hole transport layer 6, as bis (N-naphthyl) -N-phenylbenzidine (hereinafter, referred to as
It is called α-NPD. ) And the like as the light-emitting layer 7, an 8-quinolinol aluminum complex (hereinafter referred to as Alq).
Etc. can be used. Further, as the material of the cathode 8, a transparent conductive material is preferable.

【0016】上記の説明からも明らかなように、本実施
の形態においては、微細加工された陽極の上に陽極より
も仕事関数の大きい材料からなる膜厚の薄い正孔注入用
薄膜層を設けることにより、正孔注入用薄膜層によって
有機層への正孔の注入効率を高めることができ、これに
よりより低い電界で正孔電流を増大させることができ、
電流−電圧特性の向上を図ることができる。
As is clear from the above description, in this embodiment, a thin hole injection thin film layer made of a material having a larger work function than the anode is provided on the finely processed anode. With this, the hole injection efficiency to the organic layer can be increased by the hole injection thin film layer, whereby the hole current can be increased at a lower electric field,
The current-voltage characteristics can be improved.

【0017】また、正孔注入用薄膜層を有機層を成膜す
る直前に蒸着により成膜することができるので、金や白
金等のリソグラフィ等の微細加工に適さない材料を正孔
注入用薄膜層に用いることができる。さらに、正孔注入
用薄膜層の膜厚を1〜10nm程度と非常に薄くしてい
るので、金のように可視光領域に反射率が大きく変化す
る材料でも、有機層の発光スペクトルをほとんど変えな
いため、正孔注入用薄膜層に用いることができる。さら
にまた、有機層の成膜を正孔注入用薄膜層の成膜よりも
大きな形状に行うことにより、正孔注入用薄膜層と陰極
との短絡を防ぐことができる。
Further, since the hole injection thin film layer can be formed by evaporation immediately before forming the organic layer, a material such as gold or platinum which is not suitable for fine processing such as lithography is used. Can be used for layers. Further, since the thickness of the thin film layer for hole injection is extremely thin, about 1 to 10 nm, the emission spectrum of the organic layer is hardly changed even for a material such as gold whose reflectance greatly changes in the visible light region. Therefore, it can be used for a hole injection thin film layer. Furthermore, by forming the organic layer into a shape larger than that of the hole injection thin film layer, a short circuit between the hole injection thin film layer and the cathode can be prevented.

【0018】なお、本発明は上記実施の形態に限らず、
各層の材料及び成膜方法は例示されたものに限定されな
い。また、絶縁膜3は必要不可欠なものではない。さら
に、有機層は発光層7を含む他の構成をとることもでき
る。
The present invention is not limited to the above embodiment,
The material of each layer and the film forming method are not limited to those illustrated. Further, the insulating film 3 is not indispensable. Further, the organic layer may have another configuration including the light emitting layer 7.

【0019】[0019]

【実施例】次に、本発明を実施例によりさらに詳細に説
明する。ガラス基板に陽極としてCrをスパッタ法にて
200nm成膜し、通常のリソグラフィによって所定の
形状にエッチングした。この所定の形状に加工されたC
r上に絶縁膜としてSiO2 をCVD法により600n
m成膜し、リソグラフィにより有機EL素子の発光部分
となる部分のSiO2 を除去した。
Next, the present invention will be described in more detail with reference to examples. A 200 nm Cr film was formed as an anode on a glass substrate by a sputtering method, and etched into a predetermined shape by ordinary lithography. C processed into this predetermined shape
SiO 2 as an insulating film on the substrate 600 by CVD method
m was formed, and SiO 2 was removed by lithography from the light emitting portion of the organic EL element.

【0020】ついで、陽極の露出部分よりもひとわり大
きい開口部分を持つメタルマスクを用いて、露出してい
る陽極及びその周囲の絶縁膜上に金を抵抗加熱法により
真空蒸着により1nm程度成膜し、正孔注入用薄膜層を
形成した。その際、蒸着用ボートに金を1g程度充填
し、真空蒸着器に入れ、10-4Pa以上の真空度にて蒸
着用ボートに電圧を印加し、抵抗加熱法で1nm蒸着し
た。
Then, using a metal mask having an opening part slightly larger than the exposed part of the anode, gold is deposited to a thickness of about 1 nm on the exposed anode and the insulating film around the exposed anode by vacuum evaporation by resistance heating. Then, a thin film layer for hole injection was formed. At this time, about 1 g of gold was filled in the evaporation boat, put in a vacuum evaporation apparatus, a voltage was applied to the evaporation boat at a degree of vacuum of 10 −4 Pa or more, and 1 nm was evaporated by a resistance heating method.

【0021】ついで、正孔注入用薄膜層の金を蒸着した
ときに用いたマスクよりもひとまわり開口部の大きいメ
タルマスクを用いて、正孔注入層、正孔輸送層及び発光
層の各有機層と陰極を真空蒸着法により順次成膜した。
なお、正孔注入層としてMTDATA、正孔輸送層とし
てα−NPD、発光層としてAlq、陰極としてマグネ
シウムと銀の合金(Mg:Ag)をそれぞれ用いた。真
空蒸着法により成膜するにあたって、有機材料はそれぞ
れ0.2g程度蒸着用ボートに充填し、Mgは0.1g
程度、Agは0.4g程度同様に蒸着用ボートに充填
し、真空蒸着器内の電極に取り付けた。そして、真空度
10-4Pa以上で順次蒸着用ボートに電圧を印加して蒸
着を行った。有機層の膜厚は、MTDATA、α−NP
D、Alqをそれぞれ30nm、30nm、60nmと
し、Mg:Agは蒸着レートを制御し、MgとAgの混
合比が9:1になるようにして10nm成膜した。この
ようにして製作された有機EL素子は、電流−電圧特性
に優れ、発光特性の向上が認められた。
Then, using a metal mask having a larger opening than the mask used when depositing the gold of the hole injecting thin film layer, the respective organic layers of the hole injecting layer, the hole transporting layer, and the light emitting layer are used. The layer and the cathode were sequentially formed by a vacuum evaporation method.
Note that MTDATA was used as a hole injection layer, α-NPD was used as a hole transport layer, Alq was used as a light emitting layer, and an alloy of magnesium and silver (Mg: Ag) was used as a cathode. In forming a film by the vacuum deposition method, each of the organic materials is filled into a boat for vapor deposition in an amount of about 0.2 g, and 0.1 g of Mg
Similarly, about 0.4 g of Ag was charged into a vapor deposition boat and attached to an electrode in a vacuum vaporizer. Then, a voltage was sequentially applied to the evaporation boat at a degree of vacuum of 10 −4 Pa or more to perform evaporation. The thickness of the organic layer is MTDATA, α-NP
D and Alq were 30 nm, 30 nm, and 60 nm, respectively, and a 10 nm film was formed by controlling the deposition rate of Mg: Ag so that the mixing ratio of Mg and Ag became 9: 1. The organic EL device manufactured in this manner was excellent in current-voltage characteristics, and improvement in light emission characteristics was recognized.

【0022】[0022]

【発明の効果】上述したように、請求項1の発明によれ
ば、陽極より仕事関数の大きい正孔注入用薄膜層を陽極
と有機層の間に設けることにより、有機層への正孔の注
入効率を高めることができ、電流−電圧特性に優れた有
機EL素子を達成することができる。
As described above, according to the first aspect of the present invention, the hole injection thin film layer having a larger work function than the anode is provided between the anode and the organic layer, so that holes can be injected into the organic layer. The injection efficiency can be improved, and an organic EL device having excellent current-voltage characteristics can be achieved.

【0023】請求項2の発明によれば、正孔注入用薄膜
層の膜厚を1〜10nmとすることで、可視光領域で反
射率が大きく変わる材料でも、有機層の発光スペクトル
を変化させることなく、使用することができる。
According to the second aspect of the present invention, by setting the thickness of the thin film layer for hole injection to 1 to 10 nm, the emission spectrum of the organic layer can be changed even for a material whose reflectance greatly changes in the visible light region. Can be used without.

【0024】請求項3の発明によれば、正孔注入用薄膜
層を蒸着法により陽極上に形成することにより、リソグ
ラフィなどの微細加工に適さない材料でも、正孔注入用
薄膜層に用いることができる。
According to the third aspect of the present invention, the hole injection thin film layer is formed on the anode by a vapor deposition method, so that even a material which is not suitable for fine processing such as lithography can be used for the hole injection thin film layer. Can be.

【0025】請求項4の発明によれば、有機層を正孔注
入用薄膜層を覆うようにより大きい形状に蒸着法により
成膜することにより、正孔注入用薄膜層と陰極との短絡
を防ぐことができる。
According to the fourth aspect of the present invention, a short circuit between the hole injection thin film layer and the cathode is prevented by forming the organic layer in a larger shape so as to cover the hole injection thin film layer by vapor deposition. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の有機EL素子の製造工
程(その1)を示す断面図である。
FIG. 1 is a cross-sectional view illustrating a manufacturing process (part 1) of an organic EL device according to an embodiment of the present invention.

【図2】本発明の一実施の形態の有機EL素子の製造工
程(その2)を示す断面図である。
FIG. 2 is a cross-sectional view showing a manufacturing process (part 2) of the organic EL device according to one embodiment of the present invention.

【図3】本発明の一実施の形態の有機EL素子を示す断
面図である。
FIG. 3 is a cross-sectional view showing an organic EL device according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1……基板、2……陽極、3……絶縁膜、4……正孔注
入用薄膜層、5……正孔注入層、6……正孔輸送層、7
……発光層、8……陰極、9、10……マスク
DESCRIPTION OF SYMBOLS 1 ... board | substrate, 2 ... anode, 3 ... insulating film, 4 ... hole injection thin film layer, 5 ... hole injection layer, 6 ... hole transport layer, 7
… Emitting layer, 8… Cathode, 9, 10… Mask

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 陽極と陰極の間に一層以上の有機層を有
する有機EL素子において、前記陽極と有機層の間に陽
極よりも仕事関数の大きい正孔注入用薄膜層を有するこ
とを特徴とする有機EL素子。
1. An organic EL device having one or more organic layers between an anode and a cathode, characterized in that a hole injection thin film layer having a larger work function than the anode is provided between the anode and the organic layer. Organic EL device.
【請求項2】 前記正孔注入用薄膜層の膜厚が1〜10
nmの範囲内であることを特徴とする請求項1記載の有
機EL素子。
2. The method of claim 1, wherein the thickness of the hole injection thin film layer is 1 to 10
2. The organic EL device according to claim 1, wherein the value is in the range of nm.
【請求項3】 前記正孔注入用薄膜層が前記陽極上に蒸
着法により成膜されてなることを特徴とする請求項1記
載の有機EL素子。
3. The organic EL device according to claim 1, wherein the hole injection thin film layer is formed on the anode by a vapor deposition method.
【請求項4】 前記有機層が前記正孔注入用薄膜層を覆
うようにより大きい形状に蒸着法により成膜されてなる
ことを特徴とする請求項3記載の有機EL素子。
4. The organic EL device according to claim 3, wherein the organic layer is formed in a larger shape by a vapor deposition method so as to cover the hole injection thin film layer.
JP2000393169A 2000-12-25 2000-12-25 Organic el element Pending JP2002198182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000393169A JP2002198182A (en) 2000-12-25 2000-12-25 Organic el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000393169A JP2002198182A (en) 2000-12-25 2000-12-25 Organic el element

Publications (1)

Publication Number Publication Date
JP2002198182A true JP2002198182A (en) 2002-07-12

Family

ID=18859031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000393169A Pending JP2002198182A (en) 2000-12-25 2000-12-25 Organic el element

Country Status (1)

Country Link
JP (1) JP2002198182A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006327A (en) * 2002-04-23 2004-01-08 Semiconductor Energy Lab Co Ltd Light emitting device and its fabrication method
US7091659B2 (en) 2003-04-28 2006-08-15 Mitsubishi Denki Kabushiki Kaisha Organic electro luminescence element and manufacturing method thereof
JP2009289806A (en) * 2008-05-27 2009-12-10 Kyocera Corp Organic el element
US7692375B2 (en) 2005-04-22 2010-04-06 Hitachi Displays, Ltd. Organic light emitting display apparatus
KR20130017916A (en) * 2011-08-12 2013-02-20 삼성디스플레이 주식회사 Organic light emitting device and manufacturing method therof
US8519619B2 (en) 2002-04-23 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US9000429B2 (en) 2002-04-24 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing same
US9166202B2 (en) 2002-06-07 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
US9412804B2 (en) 2002-04-26 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method of the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8519619B2 (en) 2002-04-23 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US9978811B2 (en) 2002-04-23 2018-05-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
JP2004006327A (en) * 2002-04-23 2004-01-08 Semiconductor Energy Lab Co Ltd Light emitting device and its fabrication method
US9287330B2 (en) 2002-04-23 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US9831459B2 (en) 2002-04-24 2017-11-28 Semiconductor Energy Laboratory Co., Ltd. Display module with white light
US9000429B2 (en) 2002-04-24 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing same
US10454059B2 (en) 2002-04-24 2019-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing same
US9362534B2 (en) 2002-04-24 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing same
US9853098B2 (en) 2002-04-26 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method of the same
US9412804B2 (en) 2002-04-26 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method of the same
US9166202B2 (en) 2002-06-07 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
US7091659B2 (en) 2003-04-28 2006-08-15 Mitsubishi Denki Kabushiki Kaisha Organic electro luminescence element and manufacturing method thereof
US7692375B2 (en) 2005-04-22 2010-04-06 Hitachi Displays, Ltd. Organic light emitting display apparatus
US7898172B2 (en) 2005-04-22 2011-03-01 Hitachi Displays, Ltd. Organic light emitting display apparatus
JP2009289806A (en) * 2008-05-27 2009-12-10 Kyocera Corp Organic el element
KR20130017916A (en) * 2011-08-12 2013-02-20 삼성디스플레이 주식회사 Organic light emitting device and manufacturing method therof
US8816579B2 (en) 2011-08-12 2014-08-26 Samsung Display Co., Ltd. Organic light-emitting device and method of manufacturing the same
EP2557608A3 (en) * 2011-08-12 2014-03-26 Samsung Display Co., Ltd. Organic light-emitting device and method of manufacturing the same
KR101871227B1 (en) 2011-08-12 2018-08-03 삼성디스플레이 주식회사 Organic light emitting device and manufacturing method therof
JP2013041828A (en) * 2011-08-12 2013-02-28 Samsung Display Co Ltd Organic light emitting element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US10522781B2 (en) Electroluminescence device and display device
US6774561B2 (en) Light-emitting device and process for production thereof having an emission laser held between electrodes
JP5063778B2 (en) Light-emitting devices with anodized metallization
JP2000068073A (en) Organic electroluminescent element and its manufacture
JP2002198182A (en) Organic el element
JP2848386B1 (en) Organic electroluminescence device and method of manufacturing the same
JPH1012386A (en) Organic electroluminescent element
JP2001176660A (en) Manufacturing method of organic electroluminescent element and organic electroluminescent element
KR20020076171A (en) Organic light-emitting device capable of high-quality display
JP2000077190A (en) Organic electroluminescent element and manufacture thereof
JP2002246173A (en) Organic el device and manufacturing method for the same
JP2003234193A (en) Organic light emitting element and its manufacturing method, and base material having positive electrode of organic light emitting element
JP2000148090A (en) Organic el element and its production
JP2013157424A (en) Organic el panel
JPH02220394A (en) Electroluminescence element
JP2002083692A (en) Organic electroluminescence device
JP2000252082A (en) El element
JPH06310280A (en) Electrode for organic light emitting element, and organic light emitting element using it, and manufacture of organic light emitting element
JPH10125471A (en) El element and manufacture thereof
JP2000040592A (en) Electroluminescence element
JP4323825B2 (en) Organic light emitting device
JPH1022074A (en) Organic led element and its manufacture
JPH09274988A (en) Organic electroluminscent element
JP2010010054A (en) Organic electroluminescent panel
KR20020028793A (en) Organic electroluminescent device having a gadolinium layer