JP2002185860A - Imaging device - Google Patents

Imaging device

Info

Publication number
JP2002185860A
JP2002185860A JP2000382444A JP2000382444A JP2002185860A JP 2002185860 A JP2002185860 A JP 2002185860A JP 2000382444 A JP2000382444 A JP 2000382444A JP 2000382444 A JP2000382444 A JP 2000382444A JP 2002185860 A JP2002185860 A JP 2002185860A
Authority
JP
Japan
Prior art keywords
pixel
unit
pixels
information
pixel information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000382444A
Other languages
Japanese (ja)
Other versions
JP4602541B2 (en
Inventor
Hideaki Yoshida
英明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2000382444A priority Critical patent/JP4602541B2/en
Publication of JP2002185860A publication Critical patent/JP2002185860A/en
Application granted granted Critical
Publication of JP4602541B2 publication Critical patent/JP4602541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Image Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an imaging device that attains effective defect correction where deterioration in the resolution cannot substantially be caused by utilizing information of effective pixels without waste, so as to minimize the deterioration in the S/N without the need for provision of a complicated hardware circuit needing much load. SOLUTION: The imaging device the sensitivity of which is enhanced through summation of pixel values, is provided with a read function that attains summation reading, where pixel information items of a unit pixel of a pixel in the unit of photoelectric conversion of a CCD image pickup element 105 picking up an object are summed. In a 1st photographing mode corresponding to an exposure time less than a prescribed time, summation reading can generate pixel information of pixels being after the summation. In a 2nd photographing mode corresponding to the exposure time being the prescribed time or over, non-summation reading is conducted, summing pixel information items of read unit pixels by an external arithmetic means generates pixel information for the pixels. In the case of the summation in the 2nd photographing mode, a defect compensation processing is conducted where the defect pixel information in the pixel information of the unit pixel is supplemented by pixel information of adjacent non-defective unit pixels.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、画素加算により感
度の向上をはかった撮像装置に係わり、特に欠陥補償機
能を備えた撮像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image pickup apparatus whose sensitivity is improved by adding pixels, and more particularly to an image pickup apparatus having a defect compensation function.

【0002】[0002]

【従来の技術】近年、CCD等の撮像素子により被写体
像を撮像して映像信号を得るデジタルスチルカメラ(電
子カメラ)が盛んに開発されている。この種の電子カメ
ラに用いられる撮像装置において、画素欠陥の補償及び
画素加算読み出しはそれぞれ公知である。即ち、前者に
よって欠陥のある撮像素子でも実用に供されることが可
能となり、市場に提供可能なコストが実現されている。
また、後者によってSN比やダイナミックレンジの向上
を図ることができる。
2. Description of the Related Art In recent years, digital still cameras (electronic cameras) for capturing a subject image with an image sensor such as a CCD and obtaining a video signal have been actively developed. In an image pickup apparatus used in this type of electronic camera, compensation for pixel defects and pixel addition readout are known. That is, the former makes it possible to use even an imaging device having a defect, and realizes a cost that can be provided to the market.
In addition, the latter can improve the SN ratio and the dynamic range.

【0003】このとき、例えば2行2列の4画素加算読
み出しによって1つの画素(これを複画素と称する、こ
れに対して原画素を単位画素と称する)を得る場合、複
画素中に1画素でも欠陥画素が含まれていた場合はこの
複画素は欠陥画素となる。このため、従来の欠陥補償技
術を適用したとすると、この欠陥複画素に対して隣接す
る複画素の情報をもって充当(代用)することになる。
At this time, for example, when one pixel (this is referred to as a multi-pixel and the original pixel is referred to as a unit pixel) is obtained by adding and reading four pixels in two rows and two columns, one pixel is included in the multi-pixel. However, if a defective pixel is included, the multiple pixels become defective pixels. For this reason, if the conventional defect compensation technology is applied, the defective multi-pixel is applied (substituted) with information of the adjacent multi-pixel.

【0004】[0004]

【発明が解決しようとする課題】上記の例では、欠陥複
画素の中にも、単位画素では欠陥でない有効な画素が含
まれているにも拘わらず、加算読み出しによって欠陥画
素情報と混合されるためにこれらの画素情報は無効とな
る。そして、欠陥複画素に対する補正は、欠陥単位画素
に最も近い隣接単位画素ではなく、より遠い隣接複画素
情報によって行われる。従って、解像度の劣化が大きい
ものであった。
In the above example, the defective pixel information is mixed with the defective pixel information by addition reading even though the defective multiple pixels include valid pixels that are not defective in the unit pixel. Therefore, these pieces of pixel information become invalid. Then, the correction for the defective multi-pixel is performed not based on the adjacent unit pixel closest to the defective unit pixel, but on the information of the farther adjacent multi-pixel. Therefore, the resolution was greatly deteriorated.

【0005】なお、この課題に対し、画素信号加算読み
出し方式として撮像素子からの信号読み出し部、即ちサ
ンプルホールド回路を利用した画素信号加算を用いる場
合に関しては、欠陥画素が含まれる部分だけを通常の加
算動作と異なるサンプルホールド処理をすることで、有
効な単位画素に相当する情報を得ることができるように
して、解像度劣化を防ぐようにした技術が提案されてい
る。(特開平11−122538号公報)しかしなが
ら、この種の方式にあっても次のような問題があった。
即ち、技術的に高度な要素を含むデリケートなハード回
路であり、基本性能の安定確保が困難な場合もあるサン
プルホールド回路に、更に特殊な切り換え動作を必要と
するため、性能の確保が極めて困難になる可能性があ
る。また、水平方向の加算に対してしか適用できないか
ら、例えば最も一般的に垂直2ライン加算後にこの技術
を適用した上記4画素加算の場合を考えれば、欠陥画素
が1画素だけであった場合でも、有効に利用可能なのは
高々2画素の情報までであり、無駄が大きい。そしてこ
のとき、4画素のうち例えば対角の2画素が欠陥である
と、この複画素は欠陥画素となってしまう。
[0005] In order to solve this problem, in the case of using a signal readout unit from an image sensor, that is, a pixel signal addition using a sample and hold circuit, as a pixel signal addition and readout method, only a portion including a defective pixel is used in a normal manner. A technique has been proposed in which information corresponding to an effective unit pixel can be obtained by performing a sample-and-hold process different from the addition operation, thereby preventing resolution degradation. (Japanese Patent Laid-Open Publication No. H11-122538) However, this type of system has the following problems.
In other words, it is a delicate hardware circuit that contains technically advanced elements, and it is extremely difficult to ensure performance because a sample-and-hold circuit, which may be difficult to ensure stable basic performance, requires a more special switching operation. Could be Also, since it can be applied only to addition in the horizontal direction, for example, in the case of the above-described four-pixel addition in which this technology is applied most commonly after addition of two vertical lines, even if there is only one defective pixel, The information that can be effectively used is up to two pixels of information, which is wasteful. At this time, if, for example, two diagonal pixels among the four pixels are defective, the multiple pixels are defective pixels.

【0006】本発明は、上記事情を考慮して成されたも
ので、その目的とするところは、複雑な負担の大きいハ
ード回路を要することなく、また有効画素の情報を無駄
無く利用し、従ってSNの劣化を最小限にとどめつつ解
像度の劣化を事実上生じない効果的な欠陥補正が可能な
撮像装置を提供することにある。
The present invention has been made in consideration of the above circumstances, and has as its object to eliminate the need for a complicated and heavy hardware circuit and to use the information of effective pixels without waste. It is an object of the present invention to provide an image pickup apparatus capable of performing effective defect correction with practically no resolution degradation while minimizing SN degradation.

【0007】[0007]

【課題を解決するための手段】(構成)上記課題を解決
するために本発明は次のような構成を採用している。
(Structure) In order to solve the above problem, the present invention employs the following structure.

【0008】即ち本発明は、画素加算により感度の向上
をはかった撮像装置において、被写体を撮像する撮像素
子と、この撮像素子を駆動する駆動手段と、前記駆動手
段を用いて前記撮像素子の光電変換単位の画素である単
位画素の画素情報を複数個加算しつつ読み出す加算読み
出しが可能な読み出し手段と、前記単位画素に関する画
素欠陥情報である単位画素欠陥情報を記憶する記憶手段
と、第1の撮影モードにおいては、前記読み出し手段を
制御して加算読み出しを行うことで加算後の画素である
複画素の画素情報を生成し、第2の撮影モードにおいて
は、前記読み出し手段を制御して非加算読み出しを行
い、読み出された単位画素の画素情報を外部演算手段で
複数個加算することで複画素の画素情報を生成する撮像
制御手段とを有したことを特徴とする。
That is, according to the present invention, in an imaging apparatus in which sensitivity is improved by pixel addition, an imaging element for imaging a subject, driving means for driving the imaging element, and photoelectric conversion of the imaging element using the driving means. A reading unit that can perform addition and reading while adding a plurality of pieces of pixel information of a unit pixel that is a pixel of a conversion unit; a storage unit that stores unit pixel defect information that is pixel defect information related to the unit pixel; In the photographing mode, pixel information of a multi-pixel, which is a pixel after addition, is generated by performing addition reading by controlling the reading means. In the second photographing mode, non-addition is performed by controlling the reading means. Image reading control means for performing read-out and adding a plurality of read-out pixel information of the unit pixel by an external arithmetic means to generate pixel information of a plurality of pixels. And wherein the door.

【0009】ここで、本発明の望ましい実施態様として
は次のものが挙げられる。
Here, preferred embodiments of the present invention include the following.

【0010】(1) 第1の撮影モードは露光時間が所定値
未満の場合で、第2の撮影モードは露光時間が所定値以
上の場合であること。 (2) 第1の撮影モードは連写で、第2の撮影モードは単
写であること。 (3) 第1の撮影モードは動画で、第2の撮影モードは静
止画であること。
(1) The first photographing mode is when the exposure time is shorter than a predetermined value, and the second photographing mode is when the exposure time is longer than a predetermined value. (2) The first shooting mode is continuous shooting, and the second shooting mode is single shooting. (3) The first shooting mode is a moving image, and the second shooting mode is a still image.

【0011】(4) 撮像制御手段は、第2の撮影モードに
おける画素情報の加算に際して、単位画素の画素情報に
おける欠陥画素情報をその近隣の非欠陥単位画素の画素
情報をもって充当する欠陥補償処理を施した後に加算処
理を行うように構成されていること。
(4) The imaging control means performs a defect compensation process in which defective pixel information in the pixel information of a unit pixel is applied with pixel information of a neighboring non-defective unit pixel when adding pixel information in the second imaging mode. It is configured to perform the addition process after the application.

【0012】(5) 欠陥補償処理は、その近隣の非欠陥単
位画素のうち、同一の複画素に属するものの平均値をも
って充当するものであること。 (6) 欠陥補償処理は、その近隣の非欠陥単位画素のう
ち、隣接するものの平均値をもって充当するものである
こと。
(5) The defect compensation processing is to be applied with an average value of neighboring non-defect unit pixels belonging to the same multiple pixels. (6) The defect compensation process shall be applied using the average value of the neighboring non-defective unit pixels.

【0013】(7) 外部演算手段は、デジタル演算手段で
あること。
(7) The external operation means is a digital operation means.

【0014】また本発明は、画素加算により感度の向上
をはかった撮像装置において、被写体を撮像する撮像素
子と、この撮像素子を駆動する駆動手段と、前記撮像素
子の光電変換単位の画素である単位画素に関する画素欠
陥情報である単位画素欠陥情報を記憶する記憶手段と、
前記撮像素子から読み出された単位画素の画素情報を外
部演算手段で複数個加算することで複画素の画素情報を
生成する撮像制御手段とを有し、前記撮像制御手段は、
前記単位画素の画素情報における欠陥画素情報をその近
隣の非欠陥単位画素のうち、同一の複画素に属するもの
の中から充当する欠陥補償処理を施した後に加算処理を
行うように構成されていることを特徴とする。
The present invention also provides an image pickup device for picking up an object, a driving unit for driving the image pickup device, and a pixel of a photoelectric conversion unit of the image pickup device in an image pickup device in which sensitivity is improved by pixel addition. Storage means for storing unit pixel defect information, which is pixel defect information relating to the unit pixel,
Imaging control means for generating pixel information of multiple pixels by adding a plurality of pixel information of unit pixels read from the imaging element by an external arithmetic means, the imaging control means,
It is configured to perform an addition process after performing a defect compensation process that applies defective pixel information in the pixel information of the unit pixel from among the non-defective unit pixels belonging to the same multiple pixels among the neighboring non-defective unit pixels. It is characterized by.

【0015】(作用)本発明によれば、通常露光等の第
1の撮影モードでは加算読み出しを用いるが、長時間露
光等の第2の撮影モードの場合は非加算読み出しを用い
て、外部でデジタル加算を行う。従って、欠陥が多く発
生する長時間露光等の場合には、単位画素レベルで欠陥
補償を行うことができ、欠陥補償に伴う画質の劣化を抑
制することが可能となる。なお、非加算読み出し後に外
部で加算する場合は時間がかかるが、長時間露光等の場
合はレート低下は問題が少ない。
(Operation) According to the present invention, addition reading is used in the first shooting mode such as normal exposure, but non-addition reading is used in the second shooting mode such as long-time exposure, so that external reading is performed. Perform digital addition. Therefore, in the case of long-time exposure or the like in which many defects occur, defect compensation can be performed at the unit pixel level, and deterioration in image quality due to defect compensation can be suppressed. Note that it takes time to perform addition externally after non-addition reading, but there is little problem with rate reduction in long-time exposure or the like.

【0016】このように第2の撮影モードは、欠陥画素
の補償には適しているが、非加算読み出しであることか
ら時間がかかる。そのため、あまり高速性を要求されな
い撮影に適している。従って、連写と単写では、連写を
第1の撮影モード、単写を第2の撮影モードとすれば、
上記と同様の効果が期待できる。また、動画と静止画で
は、動画を第1の撮影モード、静止画を第2の撮影モー
ドとすれば上記と同様の効果を期待できる。
As described above, the second photographing mode is suitable for compensating for a defective pixel, but takes time because of non-additional reading. Therefore, it is suitable for photographing that does not require high speed. Therefore, in continuous shooting and single shooting, if continuous shooting is the first shooting mode and single shooting is the second shooting mode,
The same effect as above can be expected. For moving images and still images, the same effects as described above can be expected if the moving image is set to the first shooting mode and the still image is set to the second shooting mode.

【0017】また、欠陥画素の補償に際して、その近隣
の非欠陥単位画素のうち、隣接するものの平均値を持っ
て充当することにより、解像度の劣化を極力小さくする
ことができ、更に同一の複画素に属するものの平均値を
もって充当することにより、解像度の劣化を実質的に無
くすことが可能となる。
Further, when compensating for a defective pixel, by allocating the average value of the neighboring non-defective unit pixels with the average value of the adjacent non-defective unit pixels, the deterioration of the resolution can be minimized, and the same multiple pixels It is possible to substantially eliminate the deterioration of the resolution by applying the average value of those belonging to.

【0018】[0018]

【発明の実施の形態】以下、本発明の詳細を図示の実施
形態によって説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the illustrated embodiments.

【0019】図1は、本発明の一実施形態に係わる電子
カメラの概略構成を示すブロック図である。
FIG. 1 is a block diagram showing a schematic configuration of an electronic camera according to an embodiment of the present invention.

【0020】図中101は各種レンズからなるレンズ
系、102はレンズ系101を駆動するためのレンズ駆
動機構、103はレンズ系101の絞りを制御するため
の露出制御機構、104はローパス及び赤外カット用の
フィルタ、105は色フィルタを内蔵したCCDカラー
撮像素子、106は撮像素子105を駆動するためのC
CDドライバ、107はA/D変換器等を含むプリプロ
セス回路、108は色信号生成処理,マトリックス変換
処理,その他各種のデジタル処理を行うためのデジタル
プロセス回路、109はカードインターフェース、11
0はCF等のメモリカード、111はLCD画像表示系
を示している。
In the figure, reference numeral 101 denotes a lens system including various lenses; 102, a lens driving mechanism for driving the lens system 101; 103, an exposure control mechanism for controlling the aperture of the lens system 101; A filter for cutting, 105 is a CCD color image sensor having a built-in color filter, and 106 is a CCD for driving the image sensor 105.
CD driver 107, a pre-processing circuit including an A / D converter, etc., 108, a digital processing circuit for performing color signal generation processing, matrix conversion processing, and other various digital processing, 109, a card interface, 11
0 denotes a memory card such as a CF, and 111 denotes an LCD image display system.

【0021】また、図中の112は各部を統括的に制御
するためのシステムコントローラ(CPU)、113は
各種SWからなる操作スイッチ系、114は操作状態及
びモード状態等を表示するための操作表示系、115は
レンズ駆動機構102を制御するためのレンズドライ
バ、116は発光手段としてのストロボ、117は露出
制御機構及びストロボ116を制御するための露出制御
ドライバ、118は各種設定情報等を記憶するための不
揮発性メモリ(EEPROM)を示している。
In the figure, reference numeral 112 denotes a system controller (CPU) for comprehensively controlling each unit, 113 denotes an operation switch system including various switches, and 114 denotes an operation display for displaying an operation state, a mode state, and the like. System, 115 is a lens driver for controlling the lens driving mechanism 102, 116 is a strobe as a light emitting means, 117 is an exposure control driver for controlling the exposure control mechanism and the strobe 116, and 118 is various kinds of setting information and the like. Non-volatile memory (EEPROM) is shown.

【0022】本実施形態の電子カメラにおいては、シス
テムコントローラ112が全ての制御を統括的に行って
おり、CCDドライバ106によるCCD撮像素子10
5の駆動を制御して露光(電荷蓄積)及び信号の読み出
しを行い、それをプリプロセス回路107を介してデジ
タルプロセス回路108に取込んで、各種信号処理を施
した後にカードインターフェース109を介してメモリ
カード110に記録するようになっている。
In the electronic camera of the present embodiment, the system controller 112 performs overall control, and the CCD driver 106 controls the CCD image pickup device 10.
5 is controlled to perform exposure (charge accumulation) and signal readout, which are taken into a digital process circuit 108 via a preprocess circuit 107, subjected to various signal processings, and then subjected to a card interface 109 via a card interface 109. The data is recorded on the memory card 110.

【0023】図2は、CCD撮像素子105の素子構造
を示す平面図である。受光素子としてフォトダイオード
201がマトリクス配置され、フォトダイオード201
間に縦列方向に複数本の垂直CCD202が配置され、
垂直CCD202の端部に横列方向に1本の水平CCD
203が配置されている。そして、フォトダイオード2
01に蓄積された信号電荷は電荷移送パルスTGにより
垂直CCD202に読み出され、垂直CCD202内を
紙面下方向に転送される。垂直CCD202を転送した
信号電荷は水平CCD203に移送され、この水平CC
D203を紙面左方向に転送され、最終的に読み出しア
ンプであるFDA(フローティングディフュージョンア
ンプ)204を介して出力されるようになっている。
FIG. 2 is a plan view showing the element structure of the CCD image pickup device 105. Photodiodes 201 are arranged in a matrix as light receiving elements.
A plurality of vertical CCDs 202 are arranged in the column direction between them,
One horizontal CCD in the row direction at the end of the vertical CCD 202
203 are arranged. And the photodiode 2
The signal charge stored in the first CCD 01 is read out to the vertical CCD 202 by the charge transfer pulse TG, and is transferred inside the vertical CCD 202 downward in the drawing. The signal charges transferred from the vertical CCD 202 are transferred to the horizontal CCD 203,
D203 is transferred leftward on the paper, and finally output via an FDA (floating diffusion amplifier) 204 which is a readout amplifier.

【0024】ここまでの基本構成は従来装置と同様であ
るが、本実施形態ではこれに加え、CCD105に対し
て単位画素の画素情報を複数個加算しつつ読み出す加算
読み出し手段と、単位画素欠陥情報を記憶する記憶手段
と、画素情報の補正を行うための画素情報補正手段が設
けられている。なお、撮像素子105における加算読み
出しはシステムコントローラ112の制御下にCCDド
ライバ106によって行われ、撮像素子外部での加算処
理及び補正処理はシステムコントローラ112の制御下
にデジタルプロセス回路108内で行われるようになっ
ている。
The basic configuration up to this point is the same as that of the conventional apparatus, but in this embodiment, in addition to this, an addition reading means for reading out the pixel information of the unit pixel while adding a plurality of pieces of pixel information to the CCD 105; And a pixel information correcting unit for correcting the pixel information. Note that the addition reading in the image sensor 105 is performed by the CCD driver 106 under the control of the system controller 112, and the addition processing and correction processing outside the image sensor are performed in the digital process circuit 108 under the control of the system controller 112. It has become.

【0025】本実施形態で用いる撮像素子105は、順
次走査(プログレシブスキャニング)型とし、縦横の画
素ピッチが等しい(値をpとする)正方画素タイプであ
るとする。そして、この撮像素子105は、図3に示す
ように2×2の4画素を最小単位として加算読み出しさ
れる。このように実質的な画像情報の最小単位が、撮像
素子102の複数の画素(単位画素)から構成されてい
る時に、これを複画素と名付ける。
It is assumed that the image sensor 105 used in this embodiment is of a square pixel type in which the vertical and horizontal pixel pitches are equal (value is p). Then, as shown in FIG. 3, the image pickup device 105 performs addition and readout with four 2 × 2 pixels as the minimum unit. When the minimum unit of the substantial image information is composed of a plurality of pixels (unit pixels) of the image sensor 102, this is referred to as a multi-pixel.

【0026】次に、本実施形態における画素加算信号読
み出し及び欠陥補正の動作について説明する。
Next, the operation of reading out a pixel addition signal and correcting defects in the present embodiment will be described.

【0027】まず、公知の測光手段(例えば、連続的な
仮撮像における撮像信号のレベルをシステムコントロー
ラ112が解析する、いわゆるイメージャ測光を用いる
ことができる)によって、撮像(静止画記録)に先立っ
て、シャッタ速即ち露光時間Tが求められる。
First, prior to image capturing (still image recording), using known photometric means (for example, so-called imager photometry, in which the system controller 112 analyzes the level of an image signal in continuous temporary image capturing, can be used). , The shutter speed, that is, the exposure time T is obtained.

【0028】 T<T0(例示値T0=1/60s)の場合→第1モード 露光時間が十分に短い場合は、画素欠陥が極めて少ない
ため、読み出し時に加算処理しても欠陥補償に関しては
殆ど問題ない。即ち、欠陥の発生は局所的にごく僅かの
数にとどまるから、仮にこれを放置しても、加算による
平均化効果とも合いまってこれが顕在化するおそれは極
めて小さい。或いはこの場合、従来の(すなわち複画素
単位での)欠陥処理を用いても良い。いずれにせよ、加
算読み出しを行なっても不具合が顕在化することは無い
から、読み出しを高速にすることで、次駒待機時間を短
くして速写性を確保する。
If T <T0 (exemplary value T0 = 1/60 s) → first mode If the exposure time is sufficiently short, pixel defects are extremely small, so even if addition processing is performed at the time of reading, there is almost no problem in defect compensation. Absent. That is, since the number of occurrences of defects is only a very small number locally, even if they are left unchecked, there is a very small possibility that they will become apparent due to the averaging effect by addition. Alternatively, in this case, conventional defect processing (that is, in units of multiple pixels) may be used. In any case, even if the addition reading is performed, no problem is evident. Therefore, by performing the reading at a high speed, the next frame standby time is shortened and the quick shooting performance is secured.

【0029】読み出しは、公知の垂直2画素加算と水平
2画素加算の同時採用による隣接4画素加算読み出しで
ある。垂直2画素加算は、図4(a)に示すように、毎
回の水平ブランキング期間に2画素(2行)分のV転送
クロックを出力することによって行われる。水平2画素
加算は、図4(b)に示すように、CDS(相関二重サ
ンプリング回路)における1回のサンプリング期間、即
ち各リセットゲートパルス間に2単位の水平転送パルス
を出力することによって行われる。
The readout is an adjacent four-pixel addition readout by employing the well-known vertical two-pixel addition and horizontal two-pixel addition simultaneously. As shown in FIG. 4A, the vertical two-pixel addition is performed by outputting a V transfer clock for two pixels (two rows) in each horizontal blanking period. As shown in FIG. 4B, horizontal two-pixel addition is performed by outputting two units of horizontal transfer pulses between sampling gates in a CDS (correlated double sampling circuit), that is, between each reset gate pulse. Will be

【0030】必要なら、加算後の読み出しデータ(複画
素)に対して従来と同様の欠陥補償を施すか、データ補
正を施す。
If necessary, the readout data (multiple pixels) after the addition is subjected to the same defect compensation as before, or data correction is performed.

【0031】T≧T0の場合→第2モード 露光時間が長くなると画素欠陥が増えてくる。欠陥が多
数発生するようになると、これを放置した場合はもちろ
ん、従来の複画素単位での欠陥処理を行なったとしても
画質への影響が無視できなくなる。このとき複画素単位
での欠陥処理においては、1単位画素の欠陥が1複画素
(4単位画素)の欠陥と同等の意味を持つから深刻な画
質低下に直結することは既述のとおりである。そこでこ
の場合、速写性を犠牲にしても画質確保を優先する。長
時間シャッタになれば、元々次駒速写性への要求は下が
るので問題ない。
When T ≧ T0 → Second Mode As the exposure time becomes longer, the number of pixel defects increases. If a large number of defects occur, the effect on the image quality cannot be ignored even if the conventional defect processing is performed in units of multiple pixels, as well as when the defect is left unattended. At this time, in the defect processing in units of multiple pixels, as described above, a defect in one unit pixel has the same meaning as a defect in one multiple pixel (four unit pixels), which directly leads to serious image quality deterioration. . Therefore, in this case, the priority is given to ensuring image quality even at the expense of quick shooting. If the shutter is used for a long time, there is no problem since the demand for the next frame fast shooting characteristic is reduced.

【0032】読み出しには非加算読み出しを使用し、外
部デジタル演算を行う。即ち、非加算読み出しに対応す
る単位画素データに対して、欠陥補償処理を施してから
4画素加算する。その際、 (1)同一の複画素に属する他の非欠陥画素データ(欠
陥が当該1画素だけの場合は他の3画素)の平均値で充
当する。この後に、4画素加算を行い複画素値を得る。
この場合、本来4画素の加算値となるべきこの複画素の
値は、欠陥画素を除いた有効3画素の合計値の4/3倍
として求められたことになる。複画素の開口が広がらな
いため、解像度が劣化しないという長所を有する。 (2)複画素への帰属にこだわらず、隣接(カラー素子
なら同色で最近接)の非欠陥単位画素データのうち任意
のもの、例えば対象全画素の平均値を用いるようにして
も良い。この場合補償可能性が高くなるという長所を有
する。(1)が不可能な場合に(2)という処理も望ま
しい。
For reading, non-addition reading is used, and an external digital operation is performed. That is, the unit pixel data corresponding to the non-addition reading is subjected to the defect compensation processing, and then four pixels are added. At that time, (1) the average value of other non-defective pixel data belonging to the same multiple pixel (other three pixels when the defect is only the one pixel) is applied. Thereafter, four-pixel addition is performed to obtain a multi-pixel value.
In this case, the value of the multiple pixels, which should be the sum of the four pixels, is obtained as 4/3 times the total value of the effective three pixels excluding the defective pixel. The advantage is that the resolution is not degraded because the aperture of the multiple pixels is not widened. (2) Instead of belonging to a plurality of pixels, any one of adjacent non-defective unit pixel data (for a color element, the same color and the closest pixel), for example, an average value of all target pixels may be used. In this case, there is an advantage that compensability is increased. If (1) is not possible, the process (2) is also desirable.

【0033】なお、例えば(1)の処理において、同一
複画素の4画素が全て欠陥画素の場合や、(2)で隣接
画素が全て欠陥画素の場合など、当該処理の実行が不可
能な場合は、この複画素を欠陥複画素と見なして、改め
て複画素単位で従来の欠陥補償処理を適用する。
In the processing (1), for example, when all four pixels of the same multiple pixel are defective pixels, or when the adjacent pixels are all defective pixels in (2), the processing cannot be executed. Regards this multiple pixel as a defective multiple pixel and applies the conventional defect compensation process again in multiple pixel units.

【0034】また上記では、欠陥情報の取得については
触れていないが、公知の任意の手法を用いることができ
る。例えば、事前に製造工程で調べたデータ(温度や露
光時間依存も含む)をメモリに記憶しておいたものを、
使用時の温度や露光時間を参照して用いても良い。特
に、黒欠陥はこの方法が望ましい。また、撮影直前に例
えば使用予定露光時間で遮光状態でテスト撮像して求め
たデータを利用しても良い。特に、白欠陥はこの方法が
優れている。なお、各欠陥として登録されるデータはそ
れぞれその該当する画素個々のアドレスデータであるこ
とは言うまでも無い。
In the above description, the acquisition of defect information is not described, but any known method can be used. For example, the data (including temperature and exposure time dependency) that was previously checked in the manufacturing process was stored in the memory,
The temperature and the exposure time during use may be referred to. In particular, this method is desirable for black defects. Further, data obtained by performing test imaging immediately before shooting, for example, in a light-shielded state at the expected use exposure time may be used. In particular, this method is excellent for white defects. It goes without saying that the data registered as each defect is the address data of the corresponding pixel.

【0035】以上の処理をまとめたフローチャートを、
図5に示す。まず、露光時間Tを判定し、T<T0の場
合は、加算読み出しを行う。そして、欠陥がある場合
は、隣接複画素の情報を基に欠陥の補正を行う。欠陥が
無い場合は、加算読み出しした信号をそのまま複画素情
報として用いる。
A flowchart summarizing the above processing is as follows:
As shown in FIG. First, the exposure time T is determined, and if T <T0, addition reading is performed. If there is a defect, the defect is corrected based on the information of the adjacent multiple pixels. If there is no defect, the added and read signal is used as it is as the multi-pixel information.

【0036】T≧T0の場合は、非加算読み出しを行
う。そして、欠陥がある場合は、隣接単位画素の情報を
基に欠陥の補正を行う。デジタル加算処理により複画素
情報を生成する。欠陥が無い場合は、読み出した信号を
そのまま加算して複画素情報を生成する。
When T ≧ T0, non-addition reading is performed. When there is a defect, the defect is corrected based on the information of the adjacent unit pixel. Multi-pixel information is generated by digital addition processing. If there is no defect, the read signals are added as they are to generate multi-pixel information.

【0037】このように本実施形態によれば、4画素加
算読み出しによって1つの複画素を得る方式において、
短時間露光等の第1の撮影モードでは、加算読み出しを
行って複画素の画素情報を生成することにより、次コマ
待機時間を短くして速写性を確保することができる。欠
陥の多くなる長時間露光等の第2の撮影モードでは、非
加算読み出しを行い、読み出された単位画素の画素情報
を外部でデジタル加算処理することで複画素の画素情報
を生成することにより、単位画素レベルで欠陥補償で
き、劣化を防止できる。
As described above, according to the present embodiment, in the method of obtaining one multi-pixel by adding and reading four pixels,
In the first photographing mode such as the short-time exposure, by performing addition reading to generate pixel information of a plurality of pixels, the next frame standby time can be shortened and fast shooting performance can be secured. In the second imaging mode such as long exposure, which causes many defects, non-additional readout is performed, and pixel information of multiple pixels is generated by externally performing digital addition processing on the readout pixel information of the unit pixel. , Defect can be compensated at the unit pixel level, and deterioration can be prevented.

【0038】特に、欠陥複画素に対する補正を隣接複画
素情報ではなく同一複画素内の単位画素の情報に基づい
て行うことにより、有効画素の情報を無駄無く利用する
ことができ、SNの劣化を最小限にとどめつつ解像度の
劣化を抑制することができる。また、サンプルホールド
回路に特殊な切り換え動作を持たせる等の複雑なハード
構成を要することなく、単純な計算式を用いて計算する
のみで実現することができる。
In particular, by correcting the defective multi-pixel based on the information of the unit pixel in the same multi-pixel instead of the adjacent multi-pixel information, the information of the effective pixel can be used without waste, and the degradation of SN can be reduced. Deterioration of resolution can be suppressed while keeping it to a minimum. Further, the present invention can be realized only by performing calculations using a simple calculation formula without requiring a complicated hardware configuration such as providing a special switching operation to the sample-and-hold circuit.

【0039】なお、本発明は上述した実施形態に限定さ
れるものではない。実施形態では、露光時間の長短で第
1モードと第2モードを切り換えたが、別の切り換えも
可能である。カメラの撮影モードとして連写モードと単
写モードを有したカメラでは、言うまでもなく連写モー
ドにおいてより高い次駒速写性が要求されるが、同時に
画質低下に対する若干高い許容度を期待できる。そこ
で、連写モード時は第1モード、単写モード時は第2モ
ードとすることも好適である。同様に、動画利用(ファ
インダ的利用も含めた連続出画モード)時には静止画記
録時よりも高いフレームレートが要求される反面、解像
度等の画質要求度は相対的に低いから、これを第1モー
ド、静止画記録時に第2モードとすることも好適であ
る。
The present invention is not limited to the above embodiment. In the embodiment, the first mode and the second mode are switched according to the length of the exposure time, but another switching is also possible. In a camera having a continuous shooting mode and a single shooting mode as a shooting mode of the camera, it is needless to say that a higher next frame fast shooting property is required in the continuous shooting mode, but at the same time, a slightly higher tolerance to image quality deterioration can be expected. Therefore, it is preferable to set the first mode in the continuous shooting mode and the second mode in the single shooting mode. Similarly, when a moving image is used (in a continuous image output mode including a viewfinder), a higher frame rate is required than when a still image is recorded, but the image quality requirement such as resolution is relatively low. It is also preferable to set the mode to the second mode when recording a still image.

【0040】本発明はカラー撮像素子にも同様に適用で
きる。カラーの場合は元の加算が通常同色の加算処理と
なり、コーディングパターンによっては隣接加算以外の
加算が用いられるが、その加算対象の複画素に対して全
く同様に適用できる。また、デジタルスチルカメラ等の
電子カメラに限らず、ビデオカメラ等のムービーにも全
く同様に適用できる。
The present invention can be similarly applied to a color image sensor. In the case of color, the original addition is usually the same color addition processing. Depending on the coding pattern, addition other than adjacent addition is used, but the same can be applied to multiple pixels to be added. Further, the present invention is not limited to an electronic camera such as a digital still camera, and can be applied to a movie such as a video camera in the same manner.

【0041】その他、本発明の要旨を逸脱しない範囲
で、種々変形して実施することができる。
In addition, various modifications can be made without departing from the spirit of the present invention.

【0042】[0042]

【発明の効果】以上詳述したように本発明によれば、画
素加算により感度の向上をはかった撮像装置において、
短時間露光等の第1の撮影モードにおいては、読み出し
手段を制御して加算読み出しを行うことで加算後の画素
である複画素の画素情報を生成し、長時間露光等の第2
の撮影モードにおいては、読み出し手段を制御して非加
算読み出しを行い、読み出された単位画素の画素情報を
外部演算手段で複数個加算することで複画素の画素情報
を生成するようにしているので、複雑な負担の大きいハ
ード回路を要することなく、また有効画素の情報を無駄
無く利用し、従ってSNの劣化を最小限にとどめつつ解
像度の劣化を事実上生じない効果的な欠陥補正が可能と
なる。
As described above in detail, according to the present invention, in an image pickup apparatus in which sensitivity is improved by pixel addition,
In the first photographing mode such as the short-time exposure, the readout unit is controlled to perform addition and reading to generate pixel information of a multi-pixel that is a pixel after addition, and to perform the second exposure such as the long-time exposure.
In the photographing mode, non-additional readout is performed by controlling the readout unit, and pixel information of a plurality of pixels is generated by adding a plurality of readout pixel information of the unit pixel by the external arithmetic unit. Therefore, it is possible to perform effective defect correction without using a complicated and heavy hardware circuit and effectively using information of effective pixels, thus minimizing SN degradation and causing virtually no resolution degradation. Becomes

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係わるデジタルカメラの
回路構成を示すブロック図。
FIG. 1 is a block diagram showing a circuit configuration of a digital camera according to an embodiment of the present invention.

【図2】CCD撮像素子の素子構造を示す平面図。FIG. 2 is a plan view showing an element structure of a CCD image sensor.

【図3】CCD撮像素子における単位画素と複画素との
関係を示す図。
FIG. 3 is a diagram showing a relationship between a unit pixel and multiple pixels in a CCD image sensor.

【図4】加算駆動のパルス位相を示すタイミングチャー
ト。
FIG. 4 is a timing chart showing a pulse phase of addition driving.

【図5】露光モードにより読み出し及び補正計算を選択
するためのフローチャート。
FIG. 5 is a flowchart for selecting readout and correction calculation according to an exposure mode.

【符号の説明】[Explanation of symbols]

101…レンズ系 102…レンズ駆動機構 103…露出制御機構 104…フィルタ系 105…CCDカラー撮像素子 106…CCDドライバ 107…プリプロセス部 108…デジタルプロセス部 109…カードインターフェース 110…メモリカード 111…LCD画像表示系 112…システムコントローラ(CPU) 113…操作スイッチ系 114…操作表示系 115…レンズドライバ 116…ストロボ 117…露出制御ドライバ 118…不揮発性メモリ(EEPROM) 201…フォトダイオード 202…垂直CCD 203…水平CCD 204…読み出しアンプ DESCRIPTION OF SYMBOLS 101 ... Lens system 102 ... Lens drive mechanism 103 ... Exposure control mechanism 104 ... Filter system 105 ... CCD color image sensor 106 ... CCD driver 107 ... Pre-process part 108 ... Digital process part 109 ... Card interface 110 ... Memory card 111 ... LCD image Display system 112 ... System controller (CPU) 113 ... Operation switch system 114 ... Operation display system 115 ... Lens driver 116 ... Strobe 117 ... Exposure control driver 118 ... Non-volatile memory (EEPROM) 201 ... Photodiode 202 ... Vertical CCD 203 ... Horizontal CCD 204: readout amplifier

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4M118 AA05 AA07 AA10 AB01 BA10 CA02 DB01 FA06 GC11 GC20 5B057 BA02 BA13 CA12 CA16 CB12 CB16 CC03 CE06 CH09 DA03 DB02 DC05 5C024 AX01 BX01 CX37 CY37 EX42 GY01 HX14 HX57  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4M118 AA05 AA07 AA10 AB01 BA10 CA02 DB01 FA06 GC11 GC20 5B057 BA02 BA13 CA12 CA16 CB12 CB16 CC03 CE06 CH09 DA03 DB02 DC05 5C024 AX01 BX01 CX37 CY37 EX42 GY01 HX14 HX57

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】被写体を撮像する撮像素子と、この撮像素
子を駆動する駆動手段と、前記駆動手段を用いて前記撮
像素子の光電変換単位の画素である単位画素の画素情報
を複数個加算しつつ読み出す加算読み出しが可能な読み
出し手段と、前記単位画素に関する画素欠陥情報である
単位画素欠陥情報を記憶する記憶手段と、第1の撮影モ
ードにおいては、前記読み出し手段を制御して加算読み
出しを行うことで加算後の画素である複画素の画素情報
を生成し、第2の撮影モードにおいては、前記読み出し
手段を制御して非加算読み出しを行い、読み出された単
位画素の画素情報を外部演算手段で複数個加算すること
で複画素の画素情報を生成する撮像制御手段とを有した
ことを特徴とする撮像装置。
An image pickup device for picking up an image of a subject, a driving unit for driving the image pickup device, and a plurality of pixel information of a unit pixel which is a pixel of a photoelectric conversion unit of the image pickup device are added by using the driving unit. A reading unit that can perform addition reading while reading, a storage unit that stores unit pixel defect information that is pixel defect information related to the unit pixel, and performs the addition reading by controlling the reading unit in the first imaging mode. In this way, pixel information of a multi-pixel that is a pixel after addition is generated, and in the second imaging mode, non-additional reading is performed by controlling the reading unit, and pixel information of the read unit pixel is externally calculated. An imaging control unit that generates pixel information of a plurality of pixels by adding a plurality of pieces of pixel information.
【請求項2】第1の撮影モードは露光時間が所定値未満
の場合で第2の撮影モードは露光時間が所定値以上の場
合、第1の撮影モードは連写で第2の撮影モードは単
写、又は第1の撮影モードは動画で第2の撮影モードは
静止画であることを特徴とする請求項1記載の撮像装
置。
2. The first photographing mode is a case where the exposure time is shorter than a predetermined value, the second photographing mode is a case where the exposure time is longer than a predetermined value, the first photographing mode is continuous photographing, and the second photographing mode is The imaging apparatus according to claim 1, wherein the single shooting mode or the first shooting mode is a moving image, and the second shooting mode is a still image.
【請求項3】前記撮像制御手段は、第2の撮影モードに
おける画素情報の加算に際して、単位画素の画素情報に
おける欠陥画素情報をその近隣の非欠陥単位画素の画素
情報をもって充当する欠陥補償処理を施した後に加算処
理を行うように構成されていることを特徴とする請求項
1又は2記載の撮像装置。
3. The image pickup control means performs a defect compensation process of applying defective pixel information in pixel information of a unit pixel with pixel information of a neighboring non-defective unit pixel when adding pixel information in a second imaging mode. 3. The image pickup apparatus according to claim 1, wherein the image pickup apparatus is configured to perform an addition process after the application.
【請求項4】前記欠陥補償処理は、その近隣の非欠陥単
位画素のうち、同一の複画素に属するものの平均値をも
って充当するものであることを特徴とする請求項3記載
の撮像装置。
4. The image pickup apparatus according to claim 3, wherein said defect compensation processing is performed by averaging non-defect unit pixels belonging to the same multi-pixel among neighboring non-defect unit pixels.
【請求項5】前記欠陥補償処理は、その近隣の非欠陥単
位画素のうち、隣接するものの平均値をもって充当する
ものであることを特徴とする請求項3記載の撮像装置。
5. The image pickup apparatus according to claim 3, wherein the defect compensation processing is performed by using an average value of adjacent non-defective unit pixels.
【請求項6】被写体を撮像する撮像素子と、この撮像素
子を駆動する駆動手段と、前記撮像素子の光電変換単位
の画素である単位画素に関する画素欠陥情報である単位
画素欠陥情報を記憶する記憶手段と、前記撮像素子から
読み出された単位画素の画素情報を外部演算手段で複数
個加算することで複画素の画素情報を生成する撮像制御
手段とを有し、 前記撮像制御手段は、前記単位画素の画素情報における
欠陥画素情報をその近隣の非欠陥単位画素のうち、同一
の複画素に属するものの中から充当する欠陥補償処理を
施した後に加算処理を行うように構成されていることを
特徴とする撮像装置。
6. An image pickup device for picking up an image of a subject, driving means for driving the image pickup device, and storage for storing unit pixel defect information as pixel defect information relating to a unit pixel which is a pixel of a photoelectric conversion unit of the image pickup device. Means, and imaging control means for generating pixel information of multiple pixels by adding a plurality of pixel information of unit pixels read from the image sensor by an external arithmetic means, the imaging control means, It is configured to perform the addition process after performing the defect compensation process that applies the defective pixel information in the pixel information of the unit pixel from among the neighboring non-defective unit pixels belonging to the same multiple pixels. Characteristic imaging device.
【請求項7】前記外部演算手段は、デジタル演算手段で
あることを特徴とする請求項1〜6の何れかに記載の撮
像装置。
7. The imaging apparatus according to claim 1, wherein said external operation means is a digital operation means.
JP2000382444A 2000-12-15 2000-12-15 Imaging device Expired - Fee Related JP4602541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000382444A JP4602541B2 (en) 2000-12-15 2000-12-15 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000382444A JP4602541B2 (en) 2000-12-15 2000-12-15 Imaging device

Publications (2)

Publication Number Publication Date
JP2002185860A true JP2002185860A (en) 2002-06-28
JP4602541B2 JP4602541B2 (en) 2010-12-22

Family

ID=18850266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000382444A Expired - Fee Related JP4602541B2 (en) 2000-12-15 2000-12-15 Imaging device

Country Status (1)

Country Link
JP (1) JP4602541B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007166267A (en) * 2005-12-14 2007-06-28 Samsung Techwin Co Ltd Pixel signal processing circuit and imaging apparatus
US7835639B2 (en) 2005-12-09 2010-11-16 Casio Computer Co., Ltd. Imaging apparatus with strobe consecutive shooting mode
JP2012231524A (en) * 2012-07-11 2012-11-22 Canon Inc Imaging system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114684A (en) * 1984-11-09 1986-06-02 Mitsubishi Electric Corp Compensation device for image deficiency of image pickup element
JPH11177890A (en) * 1997-12-15 1999-07-02 Canon Inc Image pickup device and image pickup method
JP2000023046A (en) * 1998-07-02 2000-01-21 Matsushita Electric Ind Co Ltd Image pickup device
JP2000224487A (en) * 1999-02-02 2000-08-11 Fuji Photo Film Co Ltd Image pickup device and image pickup method
JP2000224472A (en) * 1999-02-04 2000-08-11 Fuji Photo Film Co Ltd Image pickup controller and image pickup controlling method
JP2000224490A (en) * 1999-02-03 2000-08-11 Fuji Photo Film Co Ltd Image pickup controller and image pickup control method
JP2000244821A (en) * 1999-02-19 2000-09-08 Olympus Optical Co Ltd Image pickup device
JP2000244823A (en) * 1999-02-24 2000-09-08 Fuji Photo Film Co Ltd Device for concealing defective pixel of imaging device
JP2000261817A (en) * 1999-03-08 2000-09-22 Hitachi Ltd Image pickup device
JP2000308076A (en) * 1999-04-26 2000-11-02 Hitachi Ltd Image pickup device
JP2000308075A (en) * 1999-04-26 2000-11-02 Hitachi Ltd Image pickup element and driving method of the same
JP2001045382A (en) * 1999-08-03 2001-02-16 Canon Inc Image pickup device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114684A (en) * 1984-11-09 1986-06-02 Mitsubishi Electric Corp Compensation device for image deficiency of image pickup element
JPH11177890A (en) * 1997-12-15 1999-07-02 Canon Inc Image pickup device and image pickup method
JP2000023046A (en) * 1998-07-02 2000-01-21 Matsushita Electric Ind Co Ltd Image pickup device
JP2000224487A (en) * 1999-02-02 2000-08-11 Fuji Photo Film Co Ltd Image pickup device and image pickup method
JP2000224490A (en) * 1999-02-03 2000-08-11 Fuji Photo Film Co Ltd Image pickup controller and image pickup control method
JP2000224472A (en) * 1999-02-04 2000-08-11 Fuji Photo Film Co Ltd Image pickup controller and image pickup controlling method
JP2000244821A (en) * 1999-02-19 2000-09-08 Olympus Optical Co Ltd Image pickup device
JP2000244823A (en) * 1999-02-24 2000-09-08 Fuji Photo Film Co Ltd Device for concealing defective pixel of imaging device
JP2000261817A (en) * 1999-03-08 2000-09-22 Hitachi Ltd Image pickup device
JP2000308076A (en) * 1999-04-26 2000-11-02 Hitachi Ltd Image pickup device
JP2000308075A (en) * 1999-04-26 2000-11-02 Hitachi Ltd Image pickup element and driving method of the same
JP2001045382A (en) * 1999-08-03 2001-02-16 Canon Inc Image pickup device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7835639B2 (en) 2005-12-09 2010-11-16 Casio Computer Co., Ltd. Imaging apparatus with strobe consecutive shooting mode
US7995912B2 (en) 2005-12-09 2011-08-09 Casio Computer Co., Ltd. Imaging apparatus with strobe consecutive shooting mode and optional pixel addition drive
JP2007166267A (en) * 2005-12-14 2007-06-28 Samsung Techwin Co Ltd Pixel signal processing circuit and imaging apparatus
JP2012231524A (en) * 2012-07-11 2012-11-22 Canon Inc Imaging system

Also Published As

Publication number Publication date
JP4602541B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
US7907193B2 (en) Image capturing apparatus
US20100194958A1 (en) Imaging pickup apparatus and image pickup method
JP2009268073A (en) Imaging apparatus, and signal processing method thereof
JP2007053634A (en) Image pickup device and defective pixel correction device and method
JP4024581B2 (en) Imaging device
JP2008028516A (en) Camera system
US9100600B2 (en) Anti-blooming shutter control in image sensors
US5943094A (en) Image pickup device with noise data generation
US9282245B2 (en) Image capturing apparatus and method of controlling the same
JPH1175105A (en) Still image camera
JP4571150B2 (en) Camera shake correction method and apparatus
JP4602541B2 (en) Imaging device
JP2005217955A (en) Imaging device, its control method, program, and storage medium
JP4646394B2 (en) Imaging device
JPH05236422A (en) Image recorder
JP2005286470A (en) Imaging unit
JP2000032332A (en) Electronic camera
JP5106056B2 (en) Imaging apparatus and flicker detection method thereof
JP2009188650A (en) Imaging apparatus
JP2001086413A (en) Image pickup device
WO2023218980A1 (en) Imaging device, sensor chip, and processing circuit
JPH1175106A (en) Still image camera
JP7020463B2 (en) Imaging device
JP4646392B2 (en) Imaging device
JP2754090B2 (en) Solid-state imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees