JP2002176973A - Mammalian embryonic stem cell and method for establishing the same and subculture method for the same - Google Patents

Mammalian embryonic stem cell and method for establishing the same and subculture method for the same

Info

Publication number
JP2002176973A
JP2002176973A JP2000404227A JP2000404227A JP2002176973A JP 2002176973 A JP2002176973 A JP 2002176973A JP 2000404227 A JP2000404227 A JP 2000404227A JP 2000404227 A JP2000404227 A JP 2000404227A JP 2002176973 A JP2002176973 A JP 2002176973A
Authority
JP
Japan
Prior art keywords
embryonic stem
cells
stem cells
umbilical cord
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000404227A
Other languages
Japanese (ja)
Inventor
Shigeo Saito
成夫 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000404227A priority Critical patent/JP2002176973A/en
Publication of JP2002176973A publication Critical patent/JP2002176973A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide multifunctional embryonic stem cells, to provide a method for establishing the stem cells, and to provide a subculture method for the embryonic stem cells. SOLUTION: The objective mammalian embryonic stem cells are characterized by having all of the following cell biological characteristics: (1) derived from blastodermic embryos, (2) continuing the a proliferation in an undifferentiated condition, (3) expressing a sugar chain SSEA-1 antigen, (4) alkali phosphatase activity is positive, (5) expressing transcription factor Oct 3/4, and (6) having multidifferentiation potency. The method for establishing the embryonic stem cells comprises culturing cells obtained from the inner cell mass of mammalian blastodermic embryos on a feeder of umbilical cord endothelial cells isolated from an umbilical cord by the use of fetal bovine serum-containing MEMαas the medium to form a colony. The subculture method for the embryonic stem cells is also provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は胚性幹細胞とその
樹立方法並びにその胚性幹細胞の継代培養方法に関する
ものである。さらに詳しくは、この発明は胚性幹細胞か
ら臓器へ、臓器から個体へと分化する細胞生物学的、分
子生物学的な制御転換機能解明のための研究材料とし
て、或いは異種間移植用の臓器作出のための医療材料と
して、また胚性幹細胞は、高い頻度で外来遺伝子との相
同組み換えが起こる可能性があるため、有用医薬品のバ
イオリアクターなる組み換えクローン動物を生産するた
めのドナー細胞として有益な胚性幹細胞とその樹立方
法、並びにその胚性幹細胞を継代培養する方法に関する
ものである。
The present invention relates to an embryonic stem cell, a method for establishing the same, and a method for subculturing the embryonic stem cells. More specifically, the present invention is used as research material for elucidating the cell biology and molecular biology control and conversion functions of differentiating embryonic stem cells into organs and organs into individuals, or producing organs for xenotransplantation. Embryonic stem cells, which have the potential for high frequency of homologous recombination with foreign genes, can be useful as donor cells for producing recombinant cloned animals that serve as bioreactors for useful drugs. The present invention relates to a sex stem cell and a method for establishing the same, and a method for subculturing the embryonic stem cells.

【0002】[0002]

【従来の技術】生物個体への分化能を示す培養細胞とし
てのマウス胚性幹細胞が発見されて以来、この胚性幹細
胞を用いた組織・器官の再生、胚の発生機序の追求、ク
ローン化個体の作出を目指した発生学がクローズアップ
され、次世代の医学及びバイオテクノロジーの目指す方
向性の一つとして期待されている。
BACKGROUND OF THE INVENTION Since the discovery of mouse embryonic stem cells as cultured cells showing the ability to differentiate into living organisms, the regeneration of tissues and organs using these embryonic stem cells, the pursuit of embryonic development mechanisms, and cloning Embryology, which aims to create individuals, has been highlighted, and is expected to be one of the directions to be pursued in the next generation of medicine and biotechnology.

【0003】1998年にアメリカの研究者グループが
ヒトにおける胚性幹細胞の樹立を初めて報告して以来
(Thompson TA,et al.,Scien
ce 282,1145−1147,1998;Sha
mblott MJ,et al.,Proc.Nat
l.Acad.Sci.USA.1995,13726
−13731,1998)、胚性幹細胞がヒトの神経
系、血球系、臓器等の再生医療や遺伝子治療に道を開く
万能細胞として俄然世の脚光を浴びる様になってきた。
しかしながら、マウス以外の動物種では胚性幹細胞(或
いは胚性幹様細胞)を用いた生殖系列キメラの作出は未
だ成功しておらず(SticeS,et al.,Bi
ol.Reprod.48,715−719,199
6;Strelchenko N,Therio−ge
nology,37,111−126,1996)、体
外で胚性幹細胞の遺伝子操作を行い、形質転換された幹
細胞を介し、組み換え個体の生産が可能なものも今のと
ころマウスに限られている(Bradley A,et
al.,Nature,399,255,198
4)。
[0003] Since a group of researchers in the United States first reported the establishment of embryonic stem cells in humans in 1998 (Thompson TA, et al., Science).
ce 282, 1145-1147, 1998; Sha
mblott MJ, et al. Proc. Nat
l. Acad. Sci. USA. 1995, 13726
Embryonic stem cells have suddenly come into the limelight as universal cells that are paving the way for regenerative medicine and gene therapy of the human nervous system, blood cell system, organs, and the like.
However, in animal species other than mice, the production of germline chimeras using embryonic stem cells (or embryonic stem-like cells) has not been successful yet (SticeS, et al., Bi).
ol. Reprod. 48, 715-719, 199
6; Strelchenko N, Therio-ge
No., 37, 111-126, 1996), genetic manipulation of embryonic stem cells in vitro, and the production of transgenic individuals via transformed stem cells is currently limited to mice (Bradley). A, et
al. , Nature, 399, 255, 198.
4).

【0004】Strelchenkoは前出の論文でウ
シの胚性幹様細胞を樹立し、この細胞をドナー核として
核移植を行い、クローン胚をレシピエント牛に移植した
ところ妊娠55日で流産したと報告している。しかし、
本発明者が幹細胞の特徴として挙げたアルカリフォスフ
ァターゼの発現は陰性であり、その他の条件もクリアし
ていない様である。またCampbellらは、ヒツジ
でembryonic disc由来の培養細胞からの
クローン産仔の作出に成功したが(Nature,38
0,64−66,1996)、胚性幹細胞の特徴である
アルカリフォスファターゼの発現性や糖鎖SSEA−1
抗体の発現性に関しては記述しておらず、embryo
nic disc由来の細胞は形態的にも上皮様細胞の
様である。
[0004] Stellechenko reported in the above-mentioned article that he established bovine embryonic stem-like cells, performed nuclear transfer using these cells as donor nuclei, and transplanted cloned embryos into recipient cattle. are doing. But,
The expression of alkaline phosphatase, which the present inventors have listed as a feature of the stem cells, is negative, and it seems that other conditions have not been cleared. Also, Campbell et al. Succeeded in producing cloned offspring from cultured cells derived from embronic discs in sheep (Nature, 38).
0, 64-66, 1996), the expression of alkaline phosphatase and the sugar chain SSEA-1 which are characteristics of embryonic stem cells.
No description is given regarding the expression of the antibody.
The cells from the nic disc are morphologically like epithelial-like cells.

【0005】Strelchenko,Campbel
lらは胚性幹様細胞の培養を行う為に、胎児繊維芽細胞
株であるマウスSTOかマウス胎児由来の初代繊維芽細
胞を用いている。胚性幹細胞の維持に使われる初代繊維
芽細胞は始原生殖細胞の二次培養以降に使えば細胞株が
得られるが、初代培養に使うと継代出来ないとされてお
り(Stewart,CL,et al.,Dev.B
iol.161,626−628,1994)、ウシや
ヒツジなど家畜種の胚性幹細胞樹立のために、その初代
繊維芽細胞を用いたことが幹細胞の樹立を妨げた可能性
が高いと考えられる。また胚性幹細胞は白血病阻害因子
存在下において未分化状態が維持され、細胞の増殖を促
されることが知られている。しかしながら、白血病阻害
因子を加えてもマウス以外の齧歯類や家畜種胚性幹細胞
の樹立には成功しておらず、未知の増殖因子が存在して
いるのかもしれない。
[0005] Stellechenko, Campbel
have used mouse STO, a fetal fibroblast cell line, or primary fibroblasts derived from a mouse fetus in order to culture embryonic stem-like cells. Primary fibroblasts used for the maintenance of embryonic stem cells can be used as cell lines if used after the secondary culture of primordial germ cells, but cannot be subcultured when used in primary cultures (Stewart, CL, et al.). al., Dev.
iol. 161, 626-628, 1994), it is highly likely that the use of the primary fibroblasts for the establishment of embryonic stem cells of livestock species such as cattle and sheep prevented the establishment of stem cells. It is also known that embryonic stem cells are maintained in an undifferentiated state in the presence of a leukemia inhibitory factor, and promote cell proliferation. However, even with the addition of leukemia inhibitory factors, rodents other than mice and livestock embryonic stem cells have not been successfully established, and an unknown growth factor may be present.

【0006】以上の通り、マウスやヒト以外には胚性幹
細胞の樹立された動物種は確認されておらず、胚性幹細
胞を特定するうえで不可欠な糖鎖SSEA−1が発現す
ることや体外培養系で多分化能を持つこと等が証明され
た報告はない。
As described above, no animal species in which embryonic stem cells have been established have been confirmed other than mice and humans, and the expression of sugar chains SSEA-1 essential for identifying embryonic stem cells, There are no reports that the culture system has pluripotency.

【0007】[0007]

【発明が解決しようとする課題】本発明は以上の様な事
情を勘案してなされたものであり、マウスやヒト以外の
胚性幹細胞を提供することを目的としている。またこの
発明はそれらの細胞を樹立するための方法と、それらの
細胞を継代的に培養するための方法を提供することを目
的としてもいる。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide embryonic stem cells other than mice and humans. Another object of the present invention is to provide a method for establishing those cells and a method for continuously culturing those cells.

【0008】[0008]

【課題を解決するための手段】この発明はまず、上記の
課題を解決するものとして、以下の細胞生物学的特徴、
(1)胚盤胞期胚由来であること、(2)未分化状態で
の増殖を継続すること、(3)糖鎖SSEA−1抗原が
発現すること、(4)アルカリフォスファターゼ活性が
陽性であること、(5)転写因子Oct3/4が発現す
ること、(6)多分化能を持つこと、の全てを有するこ
とを特徴とする、哺乳動物胚性幹細胞を提供する。
The present invention firstly solves the above-mentioned problems by providing the following cell biological features:
(1) that it is derived from the blastocyst stage embryo, (2) that it continues to grow in an undifferentiated state, (3) that the sugar chain SSEA-1 antigen is expressed, and (4) that its alkaline phosphatase activity is positive. A mammalian embryonic stem cell, characterized in that it has all of the following: (5) expression of a transcription factor Oct3 / 4; and (6) multipotency.

【0009】またこの発明は、哺乳動物胚の内細胞塊か
ら得られた細胞を牛胎児血清を含有するMEMαを培地
とし、臍帯より分離した臍帯内皮細胞のフィーダー上で
培養しコロニーを形成させるか、または、このコロニー
をアルカリフォスファターゼ活性の有無、糖鎖SSEA
−1抗原の発現性、Oct3/4の発現性、多分化能の
有無、未分化状態での増殖性、を指標にスクリーニング
することを特徴とする、胚性幹細胞の樹立方法を提供す
る。
The present invention also relates to a method for culturing cells obtained from the inner cell mass of a mammalian embryo on a feeder of umbilical cord endothelial cells separated from the umbilical cord using MEMα containing fetal bovine serum as a medium to form colonies. Or, this colony was tested for the presence or absence of alkaline phosphatase activity, sugar chain SSEA.
The present invention provides a method for establishing embryonic stem cells, characterized in that screening is performed using the expression of -1 antigen, the expression of Oct3 / 4, the presence or absence of pluripotency, and the proliferation in an undifferentiated state as indices.

【0010】さらにこの発明は、哺乳動物胚性幹細胞期
胚の内細胞塊から得られた細胞を、牛胎児血清を含有す
るMEMαを培地とし、臍帯より分離した臍帯内皮細胞
のフィーダー上で初代培養してコロニーを形成させ、
0.25%トリプシン0.1%EDTA溶液によってコ
ロニーの細胞を培地から剥がし、剥がした細胞をPBS
溶液と共に遠心分離器にかけることで洗浄し、個々の細
胞に分散させた後、上記初代培養に用いた培地で再培養
することを特徴とする、胚性幹細胞の継代培養法を提供
する。
Further, the present invention provides a method for primary culturing cells obtained from the inner cell mass of a mammalian embryonic stem cell stage embryo on a feeder of umbilical cord endothelial cells separated from the umbilical cord using MEMα containing fetal bovine serum as a medium. To form colonies,
The colony cells were detached from the medium with a 0.25% trypsin 0.1% EDTA solution, and the detached cells were washed with PBS.
A method for subculturing embryonic stem cells, comprising washing the cells by centrifugation together with a solution, dispersing the cells into individual cells, and reculturing the cells in the medium used for the primary culture.

【0011】なお、上記の胚性幹細胞の樹立方法、及
び、その継代培養法においては、哺乳動物胚盤胞期胚の
内細胞塊から得られた細胞を、牛胎児血清、上皮細胞成
長因子、白血病阻害因子を含有するMEMαの培地で培
養することを好ましい態様としてもいる。
In the above-mentioned method for establishing embryonic stem cells and the subculture method, cells obtained from the inner cell mass of a mammalian blastocyst-stage embryo are subjected to the treatment of fetal bovine serum, epidermal growth factor, In a preferred embodiment, the cells are cultured in a MEMα medium containing a leukemia inhibitory factor.

【0012】[0012]

【発明実施の形態】まず、この発明の胚性幹細胞の樹立
方法に関してさらに詳しく説明する。通常、胚性幹細胞
を樹立するためには、マイトマイシン処理をするか、γ
放射線を照射し細胞分裂を停止させたマウスSTOフィ
ーダー細胞が必要である。この発明では臍帯内皮細胞を
フィーダーに用いる。培養培地には牛胎児血清(FC
S)、白血病阻害因子(LIF)を含有させる。また上
皮細胞成長因子(EGF)は胚性幹細胞コロニーの形成
に必須ではないが、胚性幹細胞を株化するのに顕著な効
果があり、細胞の増殖因子として、培養培地に添加する
ことが重要である。臍帯細胞をフィーダーとして用い、
培養培地にEGFを添加することは、胚性幹細胞の増殖
に対し相乗的に働き、細胞株の樹立を可能にする。
First, the method for establishing embryonic stem cells of the present invention will be described in more detail. Usually, in order to establish embryonic stem cells, mitomycin treatment or γ
Mouse STO feeder cells that have been irradiated to stop cell division are required. In the present invention, umbilical cord endothelial cells are used as feeders. The culture medium contains fetal calf serum (FC
S), contains leukemia inhibitory factor (LIF). Epidermal growth factor (EGF) is not essential for the formation of embryonic stem cell colonies, but has a remarkable effect on cell lineage of embryonic stem cells, and it is important to add it to the culture medium as a growth factor for cells. It is. Using umbilical cord cells as feeders,
The addition of EGF to the culture medium acts synergistically on the growth of embryonic stem cells, allowing the establishment of cell lines.

【0013】これらの成分の培地中への添加量は、例え
ばFCSは5〜10%、LIFは10〜50ng/m
l、EGFは10〜50ng/ml程度とすることが出
来る。培養は5%CO条件下で39℃前後の温度で行
う。以上の通りの培養により、胚性幹細胞のコロニーが
得られる。さらに、これらのコロニーを形成する細胞に
対しては、例えば糖鎖SSEA−1抗原が発現するこ
と、アルカリフォスファターゼが陽性であること、転写
因子Oct3/4が発現すること、多分化能を持つこ
と、を指標としてスクリーニングすることによって、胚
性幹細胞としての機能発現を確認することが出来る。
The amounts of these components added to the medium are, for example, 5-10% for FCS and 10-50 ng / m for LIF.
l, EGF can be about 10 to 50 ng / ml. The cultivation is performed at a temperature of about 39 ° C. under 5% CO 2 conditions. By the culture as described above, a colony of embryonic stem cells is obtained. Furthermore, cells that form these colonies must, for example, express the sugar chain SSEA-1 antigen, be positive for alkaline phosphatase, express the transcription factor Oct3 / 4, and have pluripotency. The expression of the function as an embryonic stem cell can be confirmed by screening using, as an index.

【0014】例えばSSEA−1抗原の発現性は、細胞
をSSEA−1抗体で染色してからフローサイトメトリ
ーで分離することにより確認することが出来る。多分化
能を持つことは、培養系で神経細胞に分化させ、gli
al fibrillary acidic prot
ein(GFAP)、Nestin抗体マーカーで染色
してその多分化能を確認することが出来る。さらに胚性
幹細胞を除核した体外培養由来の未受精卵に核移植し、
更に体外培養することにより胚盤胞に発達させ、これを
受胚雌の子宮に移植することにより妊娠せしめることで
確認することも可能である。
For example, the expression of the SSEA-1 antigen can be confirmed by staining the cells with the SSEA-1 antibody and separating the cells by flow cytometry. Having pluripotency is to differentiate into neurons in a culture system,
al fibrillary acidic prot
The pluripotency can be confirmed by staining with ein (GFAP) and a Nestin antibody marker. Furthermore, nuclear transfer to unfertilized eggs derived from in vitro culture in which the embryonic stem cells were enucleated,
Further, it can be confirmed by developing the blastocyst by in vitro culture and transferring the blastocyst to the uterus of a recipient female to make it pregnant.

【0015】次に、この発明における胚性幹細胞の継代
培養法に関して説明する。この方法は、上記の樹立方法
によって得た胚性幹細胞のコロニー(初代培養細胞)を
培養器から剥がし、別の培養器において再培養し、増殖
させる方法である。コロニーを剥がす際には、培養器か
ら培養培地を取り除いた後、0.1〜0.25%程度の
トリプシンEDTA液を添加し、約39℃で6分間程度
処理することにより、フィーダー細胞と共にコロニーを
剥がすことが出来る。これを予め細胞分裂を抑止された
臍帯内皮細胞由来の初代培養に用いたものと同様の培地
(すなわちFCS、LIF、EGFを含有する培地)で
培養することによって、コロニーをフィーダーに接着さ
せ、再度増殖させることが出来る。継代培養に使用する
細胞以外は、定法に従って液体窒素中で凍結保存も出来
る。
Next, the method for subculturing embryonic stem cells according to the present invention will be described. In this method, a colony of embryonic stem cells (primary cultured cells) obtained by the above-described establishment method is detached from an incubator, recultured in another incubator, and expanded. When detaching the colony, after removing the culture medium from the incubator, add about 0.1 to 0.25% trypsin EDTA solution and treat at about 39 ° C. for about 6 minutes to remove the colony together with the feeder cells. Can be peeled off. By culturing this in a medium similar to that used for primary culture derived from umbilical cord endothelial cells in which cell division has been suppressed in advance (that is, a medium containing FCS, LIF, and EGF), the colonies are adhered to the feeder, and Can be multiplied. Other than the cells used for subculture, they can be cryopreserved in liquid nitrogen according to a standard method.

【0016】以上の通りこの発明の方法はヒトをはじめ
とする全ての哺乳動物の胚性幹細胞の樹立に適用するこ
とが出来、様々な動物種から胚性幹細胞を樹立するこ
と、並びにそれらの胚性幹細胞を継代的に培養すること
が出来る。そして例えばブタやウシ、ウマの胚性幹細胞
は異種移植用の臓器の作成に利用することが出来たり、
有用医薬品のバイオリアクターとなる組み換えクローン
動物生産に活用出来、再生医学やバイオテクノロジーの
発展に多大な貢献が期待される。
As described above, the method of the present invention can be applied to the establishment of embryonic stem cells of all mammals including humans, and can be used to establish embryonic stem cells from various animal species, Sex stem cells can be cultured continuously. For example, embryonic stem cells of pigs, cows, and horses can be used to create organs for xenotransplantation,
It can be used for the production of recombinant cloned animals as a bioreactor for useful drugs, and is expected to contribute greatly to the development of regenerative medicine and biotechnology.

【0017】以下、実施例を示し、この発明の幹細胞樹
立方法をさらに詳細かつ具体的に説明すると共に、この
方法によって得られた胚性幹細胞についても試験結果を
示してその特徴を解説する。しかしながら、この発明は
以下の例によって限定されるものではない。
Hereinafter, the present invention will be described in more detail and concretely with reference to examples, and the characteristics of the embryonic stem cells obtained by this method will be explained by showing test results. However, the present invention is not limited by the following examples.

【0018】[0018]

【実施例】実施例1この発明の胚性幹細胞を以下の方法
により取得し、その細胞を生物学的特性を試験した。
Example 1 Embryonic stem cells of the present invention were obtained by the following method, and the cells were tested for biological properties.

【0019】(1)臍帯内皮細胞の分離、培養法並びに
フィーダー細胞としての準備に関して記す。ウシ新生子
の臍帯を滅菌した外科用鋏で約1cmに切断し、70
%エタノールを噴霧し、火炎滅菌を行った後、抗生物質
添加PBS(−)(Dulbecco、Ca、Mg不
含)で数回洗浄した(ペニシリン2000単位/ml;
明治製菓、ストレプトマイシン100μg/ml;明治
製菓、ファンギゾン25μg/ml;GIBCO BR
L)。更に滅菌ペトリ皿上で上記サンプルを1mm
度に細切後、3mlの0.25%トリプシン0.1%E
DTA(GIBCO BRL)で10分間処理した。こ
のサンプルの入ったトリプシン液を5mlのPBS
(−)で希釈後、遠心分離(1000rpm、5分間)
し、沈殿を5mlのPBS(−)で懸濁し再度同条件で
遠心分離した。得られた沈殿を10%のFCS(GIB
CO BRL)と抗生物質を含有したMEMα(GIB
CO BRL)3mlの入った培養皿(プライマリア、
ファルコン、6cm径)に入れ、38.6℃、5%CO
の条件下で培養を行った。培養3〜4日後に細切され
た臍帯サンプルの周囲に内皮細胞がコロニーとなって出
現した。コンフルエントに至る迄更に7〜10日培養
後、臍帯サンプル塊を除去後、継代培養を行った。培地
は2日に1度新しいものと交換する。継代は細胞をPB
S(−)で2回洗浄後数分間トリプシンEDTA処理を
し、6cmの培養皿に約1/5の濃度で細胞を蒔くこと
で行った。4日後にほぼコンフルエントに達した。2〜
3回継代を繰り返した後、既法に従い凍結保存した。フ
ィーダーとして用いる時には凍結細胞を融解後新たに培
養を始めた。フィーダー細胞の作成手順。aコンフルエ
ントに近い臍帯内皮細胞に、10μg/mlとなるよう
マイトマイシン(Sigma)を加え、3〜4時間培養
した。b培地を除きPBS(−)で3回洗浄し、トリプ
シン処理を行い細胞を剥がした後、遠心分離した(10
00rpm、5分間)。細胞を2×10/mlの濃度
に懸濁した。c4穴培養皿(Nunc)に1穴当たり
0.5mlの懸濁液を滴下した。一様なフィーダー細胞
となる、作成後2日以降のものを胚性幹細胞の樹立の為
に使用した。
(1) A method for separating and culturing umbilical cord endothelial cells and preparation as feeder cells will be described. The bovine neonatal umbilical cord was cut to approximately 1 cm 2 with sterile surgical scissors,
% Ethanol, spray-sterilized, and washed several times with PBS (-) (without Dulbecco, Ca, Mg) containing antibiotics (2000 units / ml of penicillin;
Meiji Seika, Streptomycin 100 μg / ml; Meiji Seika, Fangisone 25 μg / ml; GIBCO BR
L). Further, the above sample was cut into about 1 mm 2 on a sterile petri dish, and then 3 ml of 0.25% trypsin 0.1% E
Treated with DTA (GIBCO BRL) for 10 minutes. Trypsin solution containing this sample in 5 ml of PBS
After dilution with (-), centrifugation (1000 rpm, 5 minutes)
The precipitate was suspended in 5 ml of PBS (-) and centrifuged again under the same conditions. The obtained precipitate was subjected to 10% FCS (GIB
CO BRL) and MEMα (GIB) containing antibiotics
CO BRL) 3 ml culture dish (primary,
Falcon, 6cm diameter), 38.6 ℃, 5% CO
Culture was performed under the conditions of 2 . After 3 to 4 days of culture, endothelial cells appeared as colonies around the minced umbilical cord sample. After further culturing for 7 to 10 days until reaching confluence, the umbilical cord sample mass was removed and subculture was performed. The medium is replaced with a new one every two days. Passage the cells to PB
After washing twice with S (-), the cells were treated with trypsin EDTA for several minutes, and the cells were plated at a concentration of about 1/5 in a 6 cm culture dish. Almost confluent after 4 days. Two
After repeating the passage three times, the cells were cryopreserved according to the conventional method. When used as a feeder, the frozen cells were thawed and a new culture was started. Procedure for creating feeder cells. a Mitomycin (Sigma) was added to umbilical cord endothelial cells near a confluence at a concentration of 10 μg / ml and cultured for 3 to 4 hours. b medium was removed and the cells were washed three times with PBS (-), treated with trypsin to detach cells, and then centrifuged (10
00 rpm, 5 minutes). The cells were suspended at a concentration of 2 × 10 6 / ml. 0.5 ml of the suspension was added dropwise to each well of a c4 well culture dish (Nunc). The uniform feeder cells, 2 days or more after preparation, were used for the establishment of embryonic stem cells.

【0020】(2)胚性幹細胞の樹立並びに培養予め凍
結保存された胚を既法に従い融解した後、試験に供し
た。ラットにおいては交尾確認後4日目の胚盤胞期胚を
ウシ及びウマにおいてはそれぞれ人工或いは自然交配後
7日目の胚盤胞期胚を用いた。全ての胚盤胞から顕微手
術により内細胞塊(ICM)部分を切り出し、フィーダ
ー細胞上で培養を行った。20ng/ml EGF(S
igma)、20ng/ml LIF(Sigma)を
加えたMEMα(10%FCS、ペニシリン、ストレプ
トマイシン含有)中で、38.6℃、5%CO条件下
で培養を続けた。培地は2日に1度交換した。フィーダ
ー上のICMは1〜2日でフィーダーに接着し、増殖を
続けた。培養4〜5日後には周囲に細胞コロニーが発達
してきた。更に培養を続け、コロニーの直径が3000
〜4000μmになった時点でピペットを用いてフィー
ダーより剥がし、トリプシン液でおよそ6〜7分間処理
した後、ガラスピペットを用い細胞を解離した。解離後
はPBS(−)で希釈後遠心分離を2回行って洗浄した
後、得られた沈殿を上記と同じ培養条件でフィーダー細
胞上に1/3濃度で蒔いた(初代培養)。
(2) Establishment and Culture of Embryonic Stem Cells Embryos that had been cryopreserved in advance were thawed according to a conventional method and then subjected to a test. In rats, blastocyst stage embryos 4 days after copulation was confirmed, and in cows and horses, blastocyst stage embryos 7 days after artificial or natural mating were used, respectively. An inner cell mass (ICM) portion was cut out from all blastocysts by microsurgery, and cultured on feeder cells. 20 ng / ml EGF (S
cultivation was continued in MEMα (containing 10% FCS, penicillin and streptomycin) supplemented with 20 ng / ml LIF (Sigma) at 38.6 ° C. and 5% CO 2 . The medium was changed once every two days. The ICM on the feeder adhered to the feeder in 1-2 days and continued to grow. After 4 to 5 days of culture, surrounding cell colonies have developed. Further culturing was continued until the colony diameter reached 3000.
When the thickness reached 44000 μm, the cells were detached from the feeder using a pipette, treated with a trypsin solution for about 6 to 7 minutes, and then the cells were dissociated using a glass pipette. After dissociation, the cells were diluted with PBS (-), centrifuged twice and washed, and the resulting precipitate was plated on feeder cells at a 1/3 concentration under the same culture conditions as described above (primary culture).

【0021】(3)試験方法胚性幹細胞の指標の1つと
なる形態を位相差顕微鏡下で観察し、未分化状態での増
殖を調べた。未分化細胞としての特徴であるアルカリフ
ォスファターゼ活性はfast red TR塩(Si
gma)含有のNaphthol AS MX Pho
sphate(Sigma)で染色することによって検
出した。胚性幹細胞の未分化マーカーSSEA−1抗原
の発現は、抗SSEA−1抗体染色によりフローサイト
メトリー(fluorescence activat
ed cell sorter;FACS)を用いSS
EA−1抗体と結合する幹細胞集団の分離を試みた。す
なわちラット胚性幹細胞2×10個を抗ラットIgG
及び抗マウスSSEA−1抗体と反応後、FITC(f
luorecein isothio−cyanat
e)標識ウサギ抗マウスIgGで二次染色しFACSに
て解析した。またウシ胚性幹細胞2×10個を抗ウシ
IgG及び抗マウスSSEA−1抗体と反応後、FIT
C標識ウサギ抗マウスIgGで二次染色しFACSにて
解析した。更にウマにおいても胚性幹細胞2×10
を抗ウマIgG及び抗マウスSSEA−1抗体と反応
後、ラット、ウシと同様に二次染色し、FACSにて解
析した。マウスの未分化細胞を同定するのに用いられる
転写因子Oct3/4の検出をPCR法により行った。
胚性幹細胞の多分化能を調べるため、得られた幹細胞を
神経系細胞へと分化させ、星状膠細胞、神経幹細胞の細
胞マーカー抗体であるGFAP、Nestin抗体で細
胞免疫化学的にそれらの検出を試みた。すなわち、ウ
マ、ラット胚性幹細胞をEGF、繊維芽細胞成長因子
(FGF)2、FGF9含有MEMα培地で3回継代培
養し、グリア細胞が観察された時点で、マウス抗Nes
tin抗体と反応後アルカリフォスファターゼ共役抗マ
ウスIgG抗体と二次反応させ、Fast redで染
色した。また同様にEGF、FGF2、FGF9含有地
で3回継代培養した後、これらサイトカインを除去し、
更に7日間培養した時点で、ウサギ抗GFAP抗体と反
応後、アルカリフォスファターゼ共役抗ウサギIgG抗
体と二次反応させ、同様に染色した。更にウシ胚性幹細
胞の多分化能を調べるため、幹細胞をドナー核とし、核
移植を実施し、クローン胚を作出した後、受胚雌に移植
した。培地への添加因子であるEGF、LIFをそれぞ
れ1種、及び、両方を除いたコントロール培地で、継代
3〜4代のウマ胚性幹細胞の培養を行い、添加因子の細
胞増殖への作用を調べた。又、フィーダー細胞の幹細胞
樹立に対する効果を調べるため、フィーダー細胞無しで
ウシICMの培養を行い、対照と比較した。
(3) Test Method A morphology that is one of the indicators of embryonic stem cells was observed under a phase-contrast microscope, and proliferation in an undifferentiated state was examined. Alkaline phosphatase activity, which is a characteristic of undifferentiated cells, is characterized by fast red TR salt (Si
gma) containing Naphthol AS MX Pho
Detected by staining with sphate (Sigma). Expression of the undifferentiated marker SSEA-1 antigen in embryonic stem cells was determined by flow cytometry (fluorescence activation) by anti-SSEA-1 antibody staining.
SS using ed cell sorter (FACS)
An attempt was made to separate a population of stem cells that bind to the EA-1 antibody. That is, 2 × 10 5 rat embryonic stem cells were used as anti-rat IgG
And after reaction with anti-mouse SSEA-1 antibody, FITC (f
fluorescein isothio-cyanat
e) Secondary staining with labeled rabbit anti-mouse IgG was performed and analyzed by FACS. After reacting 2 × 10 5 bovine embryonic stem cells with anti-bovine IgG and anti-mouse SSEA-1 antibody, FIT
Secondary staining with C-labeled rabbit anti-mouse IgG was performed and analyzed by FACS. Furthermore, in horses, 2 × 10 5 embryonic stem cells were reacted with anti-horse IgG and anti-mouse SSEA-1 antibodies, then secondary-stained in the same manner as rats and cows, and analyzed by FACS. The transcription factor Oct3 / 4 used to identify mouse undifferentiated cells was detected by PCR.
In order to examine the pluripotency of embryonic stem cells, the obtained stem cells are differentiated into nervous cells, and they are detected immunohistochemically using GFAP, a nestin antibody, a cell marker antibody for astrocytes and neural stem cells. Tried. That is, horse and rat embryonic stem cells were subcultured three times in MEMα medium containing EGF, fibroblast growth factor (FGF) 2 and FGF9, and when glial cells were observed, mouse anti-Nes
After the reaction with the tin antibody, a secondary reaction was performed with an alkaline phosphatase-conjugated anti-mouse IgG antibody, and staining was performed with Fast red. Similarly, after subculture three times in a place containing EGF, FGF2 and FGF9, these cytokines are removed,
When the cells were further cultured for 7 days, the cells were reacted with a rabbit anti-GFAP antibody, then subjected to a secondary reaction with an alkaline phosphatase-conjugated anti-rabbit IgG antibody, and stained in the same manner. Further, in order to examine the pluripotency of bovine embryonic stem cells, the stem cells were used as donor nuclei, nuclear transfer was performed, cloned embryos were produced, and then transplanted into recipient females. EGF and LIF, which are additional factors to the medium, are used, respectively, and one or three types of horse embryonic stem cells are cultured in a control medium excluding both, and the effect of the additional factors on cell growth is examined. Examined. In addition, to examine the effect of feeder cells on stem cell establishment, bovine ICM was cultured without feeder cells and compared with a control.

【0022】(4)試験結果上記(2)の条件で培養の
結果、図1〜3の位相差顕微鏡写真に示した様にマウス
胚性幹細胞と酷似した細胞同士が密に凝集した胚性幹細
胞コロニーが得られた。初代培養ではコンフルエントに
達するのに7〜10日間を要した。アルカリフォスファ
ターゼ活性は陽性であった(図4、5、6)。胚性幹細
胞の抗マウスSSEA−1抗体陽性細胞の割合は図7、
8、9で示してある。ラットは24.5%、ウシが1
0.2%、ウマは38.4%の割合となり、動物種間で
差があることが示唆された。
(4) Test Results As a result of culturing under the conditions of (2) above, embryonic stem cells in which cells very similar to mouse embryonic stem cells were closely aggregated as shown in the phase contrast micrographs of FIGS. Colonies were obtained. Primary cultures required 7-10 days to reach confluence. Alkaline phosphatase activity was positive (FIGS. 4, 5, and 6). The percentage of anti-mouse SSEA-1 antibody-positive cells in embryonic stem cells is shown in FIG.
It is indicated by 8 and 9. 24.5% rats, 1 cow
The ratio was 0.2% and the proportion of horses was 38.4%, suggesting that there was a difference between animal species.

【0023】[0023]

【表1】 表1から明らかなように、全ての動物種の胚性幹細胞で
Oct3/4が陽性であった。
[Table 1] As is clear from Table 1, Oct3 / 4 was positive in embryonic stem cells of all animal species.

【0024】次に胚性幹細胞の多分化能を示す証拠とし
てウマ胚性幹細胞から星状膠細胞マーカーGPAP抗体
陽性細胞(図10)、及び神経幹細胞マーカーNest
in抗体陽性細胞(図11)が体外培養系により作出さ
れた。この結果により、ウマ胚性幹細胞が多能性を有す
ることが証明された。ラット胚性幹細胞でも同様の結果
が得られた。
Next, as evidence of the pluripotency of embryonic stem cells, equine astrocyte marker GPAP antibody-positive cells (FIG. 10) and neural stem cell marker Nest
In antibody positive cells (FIG. 11) were generated by an in vitro culture system. This result proved that the equine embryonic stem cells had pluripotency. Similar results were obtained with rat embryonic stem cells.

【0025】[0025]

【表2】 [Table 2]

【0026】更にウシ胚性幹細胞をドナー核として用い
た核移植胚の妊娠率は表2に示した。このことにより細
胞核の多能性も確認出来た。
Table 2 shows the pregnancy rates of nuclear transfer embryos using bovine embryonic stem cells as donor nuclei. This also confirmed the pluripotency of the cell nucleus.

【0027】以上図1〜11、表1、2に示したように
本発明で樹立した細胞株は、多分化能を有する胚性幹細
胞としての特徴を完全に示すことが確認出来た。
As shown in FIGS. 1 to 11 and Tables 1 and 2, it was confirmed that the cell lines established in the present invention completely exhibited the characteristics as embryonic stem cells having pluripotency.

【0028】図12に明らかなように、EGF、LIF
共に除いたコントロールでは、1週間培養を続けてもコ
ンフルエントに達しないのに対し、EGF単独で加えた
系では4日で、EGF・LIFを組み合わせると更に3
日で、コンフルエントに達する顕著な増殖効果が認めら
れた。
As apparent from FIG. 12, EGF, LIF
In the control excluding both, the cells did not reach confluence even if the culture was continued for 1 week, whereas in the system added with EGF alone, 4 days, the combined use of EGF and LIF resulted in an additional 3 days.
At day, there was a noticeable proliferative effect reaching confluence.

【0029】[0029]

【表4】 [Table 4]

【0030】表4に明らかなように、フィーダー細胞の
存在無しではウシ胚性幹細胞の樹立は不可能であった
が、フィーダー細胞を用いることでICM9個中5個
(56%)が幹細胞として樹立され、フィーダー細胞を
使用することが胚性幹細胞樹立には必須であることが示
唆された。
As is clear from Table 4, it was impossible to establish bovine embryonic stem cells without the presence of feeder cells, but by using feeder cells, 5 out of 9 ICMs (56%) were established as stem cells. It was suggested that the use of feeder cells is essential for the establishment of embryonic stem cells.

【0031】実施例2実施例1で得た胚性幹細胞を、以
下の方法により継代培養した。フィーダー細胞上でコン
フルエントに達したウシ胚性幹細胞の培養皿から培地を
取り除いた後、0.25%トリプシン0.1%EDTA
で6〜10分間処理し、胚性幹細胞とフィーダー細胞と
を溶液中に分散させた。この懸濁液を2回遠心分離し
(1000rpm、5分間)、得られた沈殿を継代培養
に用いたものと同様の組成からなる培地に2×10
/ml濃度で蒔いたところ、細胞は培養皿上での活発な
分裂、増殖が観察され(図13)、ほぼ4〜5日でコン
フルエントに達した。
Example 2 The embryonic stem cells obtained in Example 1 were subcultured by the following method. After removing the medium from the culture dish of the bovine embryonic stem cells that reached confluence on the feeder cells, 0.25% trypsin 0.1% EDTA
For 6 to 10 minutes to disperse embryonic stem cells and feeder cells in the solution. This suspension was centrifuged twice (1000 rpm, 5 minutes), and the obtained precipitate was plated on a medium having the same composition as that used in the subculture at a concentration of 2 × 10 5 cells / ml. Active division and proliferation of the cells on the culture dish were observed (FIG. 13), and the cells reached confluence in about 4 to 5 days.

【0032】[0032]

【発明の効果】以上詳しく説明した通り、この発明によ
って胚性幹細胞とこの細胞を樹立するための方法、並び
にこの胚性幹細胞を継代的に培養する方法が提供され
る。このことにより、幹細胞の再生、分化機構の解明や
異種移植用の臓器の作成、有用医薬品のバイオリアクタ
ーとなる組み換えクローン動物生産に活用することが可
能となり、再生医学やバイオテクノロジーの発展に資す
ることが期待出来る。
As described above in detail, the present invention provides an embryonic stem cell, a method for establishing the cell, and a method for continuously culturing the embryonic stem cell. This will enable stem cell regeneration, elucidation of differentiation mechanisms, creation of organs for xenotransplantation, and production of recombinant cloned animals that will serve as bioreactors for useful drugs, contributing to the development of regenerative medicine and biotechnology. Can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ラット胚性幹細胞コロニー顕微鏡写真200
倍。
FIG. 1: Micrograph 200 of rat embryonic stem cell colony microscopy
Times.

【図2】ウシ胚性幹細胞コロニー顕微鏡写真200倍。FIG. 2 is a photomicrograph of a bovine embryonic stem cell colony at a magnification of 200 times.

【図3】ウマ胚性幹細胞コロニー顕微鏡写真100倍。FIG. 3 is a photomicrograph of a horse embryonic stem cell colony at a magnification of 100 times.

【図4】ラット胚性幹細胞コロニーアルカリフォスファ
ターゼ染色顕微鏡写真200倍。
FIG. 4 is a photomicrograph of a rat embryonic stem cell colony alkaline phosphatase staining microscope at a magnification of × 200.

【図5】ウシ胚性幹細胞コロニーアルカリフォスファタ
ーゼ染色顕微鏡写真200倍。
FIG. 5 is a photomicrograph of a bovine embryonic stem cell colony alkaline phosphatase staining microscope at a magnification of 200 times.

【図6】ウマ胚性幹細胞コロニーアルカリフォスファタ
ーゼ染色顕微鏡写真200倍。
FIG. 6 is a photomicrograph 200 times of equine embryonic stem cell colony alkaline phosphatase staining microscopy.

【図7】抗SSEA−1抗体によるラット胚性幹細胞の
FACSの結果。黒く塗られた領域が陽性細胞の割合。
FIG. 7 shows the results of FACS of rat embryonic stem cells by anti-SSEA-1 antibody. The area shaded in black is the percentage of positive cells.

【図8】抗SSEA−1抗体によるウシ胚性幹細胞のF
ACSの結果。黒く塗られた領域が陽性細胞の割合。
FIG. 8. F of bovine embryonic stem cells with anti-SSEA-1 antibody
ACS results. The area shaded in black is the percentage of positive cells.

【図9】抗SSEA−1抗体によるウマ胚性幹細胞のF
ACSの結果。黒く塗られた領域が陽性細胞の割合。
FIG. 9: F of horse embryonic stem cells by anti-SSEA-1 antibody
ACS results. The area shaded in black is the percentage of positive cells.

【図10】ウマ胚性幹細胞由来GFAP抗体陽性細胞顕
微鏡写真100倍。
FIG. 10 is a photomicrograph of GFAP antibody-positive cells derived from equine embryonic stem cells at 100 ×.

【図11】ウマ胚性幹細胞由来Nestin抗体陽性細
胞顕微鏡写真200倍。
FIG. 11 is a 200 × photograph of a Nestin antibody-positive cell micrograph derived from a horse embryonic stem cell.

【図12】細胞増殖因子がウマ胚性幹細胞増殖に及ぼす
影響を示したグラフ。
FIG. 12 is a graph showing the effect of cell growth factors on horse embryonic stem cell proliferation.

【図13】ウシ胚性幹細胞(継代数5)顕微鏡写真20
0倍。
FIG. 13: Photomicrograph 20 of bovine embryonic stem cells (passage number 5)
0 times.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】以下の細胞生物学的特徴(1)胚盤胞期胚
由来であること、(2)未分化状態での増殖を継続する
こと、(3)糖鎖SSEA−1抗原が発現すること、
(4)アルカリフォスファターゼ活性が陽性であるこ
と、(5)転写因子Oct3/4が発現すること、
(6)多分化能を持つこと、の全てを有することを特徴
とする哺乳動物胚性幹細胞。
1. The following cell biological characteristics (1) derived from a blastocyst stage embryo, (2) continued growth in an undifferentiated state, and (3) expression of a sugar chain SSEA-1 antigen To do,
(4) that the alkaline phosphatase activity is positive, (5) that the transcription factor Oct3 / 4 is expressed,
(6) Mammalian embryonic stem cells having all of pluripotency.
【請求項2】哺乳動物がラット、ウシ及びウマである請
求項1の胚性幹細胞。
2. The embryonic stem cell according to claim 1, wherein the mammal is a rat, cow or horse.
【請求項3】哺乳動物胚盤胞期胚の内細胞塊から得られ
た細胞を牛胎児血清を含有するMEMαを培地とし、臍
帯より分離した臍帯内皮細胞のフィーダー上で培養しコ
ロニーを形成させることを特徴とする胚性幹細胞の樹立
方法。
3. The cells obtained from the inner cell mass of a mammalian blastocyst stage embryo are cultured on a feeder of umbilical cord endothelial cells separated from the umbilical cord using MEMα containing fetal bovine serum as a medium to form a colony. A method for establishing embryonic stem cells, comprising:
【請求項4】哺乳動物胚盤胞期胚の内細胞塊から得られ
た細胞を牛胎児血清を含有するMEMαを培地とし、臍
帯より分離した臍帯内皮細胞のフィーダー上で培養しコ
ロニーを形成させ、このコロニーを未分化状態での増殖
能、糖鎖SSEA−1抗原の発現性、アルカリフォスフ
ァターゼ活性の有無、Oct3/4の発現性、多分化能
の有無、を指標にスクリーニングすることを特徴とする
胚性幹細胞の樹立方法。
4. The cells obtained from the inner cell mass of a mammalian blastocyst stage embryo are cultured on a feeder of umbilical cord endothelial cells separated from the umbilical cord using MEMα containing fetal bovine serum as a medium to form colonies. And screening the colonies using as indicators the proliferation ability in an undifferentiated state, the sugar chain SSEA-1 antigen expression, the presence or absence of alkaline phosphatase activity, the expression of Oct3 / 4, and the presence or absence of pluripotency. Method for establishing embryonic stem cells.
【請求項5】哺乳動物胚盤胞期胚の内細胞塊から得られ
た細胞を牛胎児血清、上皮細胞成長因子、白血病阻害因
子を含有するMEMα培地で培養する請求項3または4
の胚性幹細胞の樹立方法。
5. The cell obtained from the inner cell mass of a mammalian blastocyst stage embryo is cultured in a MEMα medium containing fetal calf serum, epidermal growth factor, and leukemia inhibitory factor.
Method for establishing embryonic stem cells.
【請求項6】哺乳動物がラット、ウシ及びウマである請
求項3から5のいずれかの胚性幹細胞の樹立方法。
6. The method for establishing embryonic stem cells according to claim 3, wherein the mammal is a rat, cow, or horse.
【請求項7】哺乳動物胚盤胞期胚の内細胞塊から得られ
た細胞を牛胎児血清を含有するMEMαを培地とし、臍
帯より分離した臍帯内皮細胞のフィーダー上で初代培養
してコロニーを形成させ、トリプシンEDTA溶液によ
ってコロニーの細胞を培地から剥がし、剥がした細胞を
PBS溶液と共に遠心分離器にかけることで洗浄し、個
々の細胞に分散させた後、上記初代培養に用いた培地で
再培養することを特徴とする胚性幹細胞の継代培養法。
7. A colony obtained by primary culture of cells obtained from the inner cell mass of a mammalian blastocyst stage embryo on a feeder of umbilical cord endothelial cells separated from the umbilical cord using MEMα containing fetal bovine serum as a medium. Once formed, the colony cells are detached from the medium with a trypsin EDTA solution, the detached cells are washed with a PBS solution by centrifugation, washed and dispersed into individual cells, and then re-dispersed in the medium used for the primary culture. A method for subculturing embryonic stem cells, which comprises culturing.
【請求項8】哺乳動物胚盤胞期の内細胞塊から得られた
細胞を牛胎児血清、上皮細胞成長因子、白血病阻害因子
を含有するMEMα培地で初代培養する請求項7の胚性
幹細胞の継代培養方法。
8. The embryonic stem cell according to claim 7, wherein cells obtained from the inner cell mass of the mammalian blastocyst stage are primarily cultured in a MEMα medium containing fetal bovine serum, epidermal growth factor, and leukemia inhibitory factor. Subculture method.
【請求項9】哺乳動物がラット、ウシ及びウマである請
求項7か8のいずれかの胚性幹細胞の継代培養方法。
9. The method for subculturing embryonic stem cells according to claim 7, wherein the mammal is a rat, cow or horse.
JP2000404227A 2000-12-14 2000-12-14 Mammalian embryonic stem cell and method for establishing the same and subculture method for the same Pending JP2002176973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000404227A JP2002176973A (en) 2000-12-14 2000-12-14 Mammalian embryonic stem cell and method for establishing the same and subculture method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000404227A JP2002176973A (en) 2000-12-14 2000-12-14 Mammalian embryonic stem cell and method for establishing the same and subculture method for the same

Publications (1)

Publication Number Publication Date
JP2002176973A true JP2002176973A (en) 2002-06-25

Family

ID=18868216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000404227A Pending JP2002176973A (en) 2000-12-14 2000-12-14 Mammalian embryonic stem cell and method for establishing the same and subculture method for the same

Country Status (1)

Country Link
JP (1) JP2002176973A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085427A1 (en) 2004-03-04 2005-09-15 Dainippon Sumitomo Pharma Co., Ltd. Rat embryonic stem cell
JP2006081542A (en) * 2004-08-18 2006-03-30 Institute Of Physical & Chemical Research Method for creating clone mammal
GB2424226B (en) * 2003-12-08 2009-03-04 Cellartis Ab Methods for clonal derivation of human blastocyst-derived stem cell lines
WO2009148622A1 (en) * 2008-06-06 2009-12-10 Proteonomix, Inc. Compositions and methods for growing embryonic stem cells
US8431395B2 (en) 2006-08-01 2013-04-30 The University Court Of The University Of Edinburgh Pluripotent cells from rat and other species

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2424226B (en) * 2003-12-08 2009-03-04 Cellartis Ab Methods for clonal derivation of human blastocyst-derived stem cell lines
WO2005085427A1 (en) 2004-03-04 2005-09-15 Dainippon Sumitomo Pharma Co., Ltd. Rat embryonic stem cell
JPWO2005085427A1 (en) * 2004-03-04 2008-01-24 大日本住友製薬株式会社 Rat embryonic stem cells
JP4862119B2 (en) * 2004-03-04 2012-01-25 大日本住友製薬株式会社 Rat embryonic stem cells
JP2012024088A (en) * 2004-03-04 2012-02-09 Dainippon Sumitomo Pharma Co Ltd Rat embryonic stem cell
US8137966B2 (en) 2004-03-04 2012-03-20 Dainippon Sumitomo Pharma Co., Ltd. Rat embryonic stem cell
US8628957B2 (en) 2004-03-04 2014-01-14 Dainippon Sumitomo Pharma Co., Ltd. Rat embryonic stem cell
US9700023B2 (en) 2004-03-04 2017-07-11 Ds Pharma Biomedical Co., Ltd. Rat embryonic stem cell
US10561122B2 (en) 2004-03-04 2020-02-18 Sumitomo Chemical Company, Limited Genetically modified rat derived from rat embryonic stem cell
JP2006081542A (en) * 2004-08-18 2006-03-30 Institute Of Physical & Chemical Research Method for creating clone mammal
US8431395B2 (en) 2006-08-01 2013-04-30 The University Court Of The University Of Edinburgh Pluripotent cells from rat and other species
WO2009148622A1 (en) * 2008-06-06 2009-12-10 Proteonomix, Inc. Compositions and methods for growing embryonic stem cells

Similar Documents

Publication Publication Date Title
US5523226A (en) Transgenic swine compositions and methods
US8597944B2 (en) Culture systems for ex vivo development
US20050132426A1 (en) Long-term cell culture compositions and genetically modified animals derived therefrom
JP2004057198A (en) Pluripotent somatic cell
JP4314372B2 (en) Method for producing testicular cell-derived pluripotent stem cells
JP2005151907A (en) Human stem cell derived from placenta or amnion and method for establishing the same and method for differentiation-induction to organ
JP2012502653A (en) Induced pluripotent stem cell marker
JP2005151907A5 (en)
Sukoyan et al. Establishment of new murine embryonic stem cell lines for the generation of mouse models of human genetic diseases
US20070298496A1 (en) Method of deriving pluripotent stem cells from a single blastomere
WO2002034890A2 (en) Pluripotential stem cells
Wang et al. Derivation and characterization of primordial germ cells from Guangxi yellow-feather chickens
US9163214B2 (en) Method for culturing stem cells
JP2002176973A (en) Mammalian embryonic stem cell and method for establishing the same and subculture method for the same
US20070053890A1 (en) Canine embryonic stem cells
JP2005523685A (en) Somatic embryonic stem cells and their differentiated progeny
WO2023176017A1 (en) Oocyte maturation promoter and uses thereof
WO2005040361A1 (en) Method of simply preparing stem cell and feeder cell to be used therein
JPH10179165A (en) Separation and purification of reproductive stem cell using antibody magnetic beads and establishment of stem cell strain.
Amporn et al. Review Sources of pluripotent stem cells for production of transgenic animals in mammals and poultry.
Du et al. Developmental incompatibility of human parthenogenetic embryonic stem cells in mouse blastocysts
Vodicka et al. The minipig as an animal model in biomedical stem cell research
Muth et al. Cell‐based delivery of cytokines allows for the differentiation of a doxycycline inducible oligodendrocyte precursor cell line in vitro
TW200806794A (en) Method of deriving pluripotent stem cells from a single blastomere
Ward The isolation, culture and therapeutic application of pluripotent stem cells derived from human embryos