JP2002168536A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2002168536A
JP2002168536A JP2000362865A JP2000362865A JP2002168536A JP 2002168536 A JP2002168536 A JP 2002168536A JP 2000362865 A JP2000362865 A JP 2000362865A JP 2000362865 A JP2000362865 A JP 2000362865A JP 2002168536 A JP2002168536 A JP 2002168536A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
air conditioner
liquid
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000362865A
Other languages
Japanese (ja)
Inventor
Harunobu Mizukami
春信 水上
Yasushi Watanabe
泰 渡辺
Tomoyasu Adachi
知康 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000362865A priority Critical patent/JP2002168536A/en
Publication of JP2002168536A publication Critical patent/JP2002168536A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2102Temperatures at the outlet of the gas cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner which enables the operation at an optimum balance point corresponding with cooling load by regulating the quantity of a refrigerant circulating within the system. SOLUTION: The air conditioner is equipped with a compressor 1 for compressing the refrigerant, a gas cooler 2 for condensing the compressed refrigerant, first and second control valves 3 and 4 for depressurizing the condensed refrigerant, and an evaporator 5 for evaporating the depressurized refrigerant; and constitutes a freezing cycle using carbon dioxide as the refrigerant. A liquid reserving container 8 for temporarily reserving the liquid-phase components of the refrigerant is installed between the first and second control valves 3 and 4 arranged in series. Also a refrigerant pipe 6a having passed through the second control valve 4 is passed into the liquid reserving container 8. The refrigerant gas at middle pressure within the liquid reserving container 8 is cooled for condensation, so as to regulate the quantity of the liquid refrigerant within the container by the temperature difference between the saturation temperature at middle pressure and the evaporation temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フロン冷媒に代え
て二酸化炭素を冷媒として使用する空気調和装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using carbon dioxide as a refrigerant instead of a chlorofluorocarbon refrigerant.

【0002】[0002]

【従来の技術】近年、地球環境の保全に対する関心が高
まっているが、空気調和装置の冷媒として使用されるR
134a等のフロン冷媒は、地球温暖化を助長すること
が懸念されている。このため、このようなフロン冷媒に
代わる物質として、元来自然界に存在する物質、いわゆ
る自然冷媒を用いた空気調和装置の研究が行われてい
る。
2. Description of the Related Art In recent years, interest in preserving the global environment has been increasing.
It is feared that a CFC refrigerant such as 134a promotes global warming. For this reason, research has been conducted on an air conditioner using a substance originally existing in the natural world, that is, a so-called natural refrigerant, as a substance replacing the chlorofluorocarbon refrigerant.

【0003】このような代替フロンの候補として、二酸
化炭素(以下、CO2と表記)が注目されている。CO
2は、地球温暖化への影響がフロンよりもはるかに小さ
いだけでなく、可燃性がないうえ、基本的には人体に無
害である点が高く評価されている。
As a candidate for such an alternative fluorocarbon, carbon dioxide (hereinafter referred to as CO2) has been receiving attention. CO
No. 2 is highly evaluated for not only having much less impact on global warming than CFCs, but also being nonflammable and basically harmless to the human body.

【0004】このような背景から、二酸化炭素を使用し
た蒸気圧縮式冷凍サイクル(以下、CO2冷凍サイクル
と表記)が提案されている。このCO2冷凍サイクルの
作動は、フロンを使用した従来の蒸気圧縮式冷凍サイク
ルと同様である。すなわち、図2のモリエル線図(圧力
−エンタルピ線図)に示すように、低温低圧のCO2
(気相状態)を圧縮機により圧縮し(A−B)、高温高
圧の超臨界状態とする。次に高温高圧のCO2(気相状
態)を凝縮器にて冷却する(B−C)。次に高温高圧の
CO2(超臨界状態)を減圧器によって減圧し(C−
D)、低温低圧の気液二相状態とする。次に低温低圧の
CO2(気液二相状態)CO2を蒸発器にて蒸発させ
(D−A)、その際に生じる蒸発潜熱を空気等の外部流
体から奪って外部流体を冷却する。
[0004] From such a background, a vapor compression refrigeration cycle using carbon dioxide (hereinafter referred to as a CO2 refrigeration cycle) has been proposed. The operation of this CO2 refrigeration cycle is the same as that of a conventional vapor compression refrigeration cycle using chlorofluorocarbon. That is, as shown in the Mollier diagram (pressure-enthalpy diagram) of FIG.
(A gas phase state) is compressed by a compressor (A-B) to obtain a supercritical state of high temperature and high pressure. Next, high temperature and high pressure CO2 (gas phase state) is cooled by a condenser (B-C). Next, high-temperature and high-pressure CO2 (supercritical state) is depressurized by a decompressor (C-
D) A low-temperature low-pressure gas-liquid two-phase state is set. Next, low-temperature and low-pressure CO2 (gas-liquid two-phase state) CO2 is evaporated by an evaporator (DA), and latent heat of evaporation generated at that time is taken from an external fluid such as air to cool the external fluid.

【0005】しかしながら、CO2の臨界温度は約31
℃とフロンに比べて低いので、夏場のように外気温が高
いときには、凝縮器側でのCO2の温度がCO2の臨界
点温度よりも高くなってしまう。つまり、凝縮器出口側
においてCO2は凝縮しない(線分BCが飽和液線SL
と交差しない)。
[0005] However, the critical temperature of CO2 is about 31
° C and lower than CFC, when the outside air temperature is high, such as in summer, the temperature of CO2 on the condenser side becomes higher than the critical point temperature of CO2. That is, CO2 is not condensed on the condenser outlet side (the line segment BC changes to the saturated liquid line SL).
Does not intersect).

【0006】[0006]

【発明が解決しようとする課題】上記のような超臨界圧
下の冷凍サイクルにおいては、冷媒が高圧値を示すいわ
ゆる高圧側(凝縮器と膨張弁との間)では冷媒が凝縮し
ないために高圧側にはレシーバ(気液分離器)を設置し
ても意味をなさない。そこで、冷媒が低圧値を示すいわ
ゆる低圧側(蒸発器と圧縮機との間)にレシーバを設置
してエンタルピの変化量を増大させる等の提案がなされ
ている。
In the refrigeration cycle under supercritical pressure as described above, the refrigerant does not condense on the so-called high pressure side (between the condenser and the expansion valve) where the refrigerant exhibits a high pressure value. It does not make sense to install a receiver (gas-liquid separator) on the. Therefore, proposals have been made to increase the amount of change in enthalpy by installing a receiver on a so-called low pressure side (between the evaporator and the compressor) where the refrigerant exhibits a low pressure value.

【0007】しかしながら、上記の場合は蒸発器側の冷
媒の状態が外気温や室内の設定条件等に影響されて成り
行きで決定してしまい、安定した運転が行えないという
問題がある。
However, in the above case, there is a problem that the state of the refrigerant on the side of the evaporator is determined by the effect of the outside air temperature, the set conditions in the room, and the like, and stable operation cannot be performed.

【0008】本発明は上記の事情に鑑みてなされたもの
であり、CO2冷凍サイクルの系内を循環する冷媒量を
調整して冷房負荷に見合った最適なバランス点での運転
を可能にする空気調和装置を提供することを目的として
いる。
The present invention has been made in view of the above circumstances, and has been made in consideration of the above circumstances, and is intended to adjust the amount of refrigerant circulating in the system of a CO2 refrigeration cycle to enable air to be operated at an optimum balance point corresponding to a cooling load. It aims at providing a harmony device.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
めの手段として、次のような構成の空気調和装置を採用
する。すなわち本発明に係る請求項1記載の空気調和装
置は、冷媒を圧縮する圧縮機と、該圧縮機により圧縮さ
れた前記冷媒を凝縮させる凝縮器と、該凝縮器において
凝縮した前記冷媒を減圧する第1、第2の減圧手段と、
該第1、第2の減圧手段により減圧された前記冷媒を蒸
発させる蒸発器とを備え、前記冷媒として二酸化炭素を
使用して冷凍サイクルを構成する空気調和装置であっ
て、直列に配置された前記第1、第2の減圧手段の間の
冷媒管に液溜め容器を設置し、該液溜め容器の下部と前
記冷媒管とを連結管にて接続し、前記第2の減圧手段と
前記蒸発器との間の冷媒管の一部を前記液溜め容器の内
部に通し、前記液溜め容器内部の冷媒の気相成分を、前
記第2の減圧手段により減圧された冷媒によって冷却
し、液相に変化させて貯留することを特徴とする。
As means for solving the above-mentioned problems, an air conditioner having the following configuration is employed. That is, the air conditioner according to claim 1 of the present invention is a compressor for compressing a refrigerant, a condenser for condensing the refrigerant compressed by the compressor, and depressurizing the refrigerant condensed in the condenser. First and second decompression means,
An evaporator for evaporating the refrigerant decompressed by the first and second decompression means, wherein the air conditioner constitutes a refrigeration cycle using carbon dioxide as the refrigerant, and is arranged in series. A liquid reservoir is installed in the refrigerant pipe between the first and second decompression means, a lower part of the liquid reservoir and the refrigerant pipe are connected by a connecting pipe, and the second decompression means and the evaporation A part of a refrigerant pipe between the reservoir and the inside of the reservoir is passed through the inside of the reservoir, and a gas phase component of the refrigerant in the reservoir is cooled by the refrigerant decompressed by the second pressure reducing means. It is characterized by being changed and stored.

【0010】請求項2記載の空気調和装置は、請求項1
記載の空気調和装置において、前記凝縮器側に位置する
前記第1の減圧手段を開度調整が可能な制御弁とし、そ
の弁開度を、前記凝縮器を経た後の冷媒温度に基づいて
制御することを特徴とする。
[0010] The air conditioner according to the second aspect is the first aspect.
In the air conditioner described above, the first pressure reducing means located on the side of the condenser is a control valve capable of adjusting an opening degree, and the opening degree of the valve is controlled based on a refrigerant temperature after passing through the condenser. It is characterized by doing.

【0011】請求項3記載の空気調和装置は、請求項1
または2記載の空気調和装置において、前記蒸発器側に
位置する前記第2の減圧手段を開度調整が可能な制御弁
とし、その弁開度を、前記蒸発器を経た後の冷媒温度に
基づいて制御することを特徴とする。
[0011] The air conditioner according to the third aspect is the first aspect.
Or the air conditioner according to 2, wherein the second pressure reducing means located on the side of the evaporator is a control valve capable of adjusting an opening degree, and the opening degree of the valve is determined based on a refrigerant temperature after passing through the evaporator. Control.

【0012】本発明に係る空気調和装置においては、液
溜め容器の内部に流入した冷媒が、第2の減圧手段を経
てさらに温度を下げた冷媒によって冷却され、凝縮す
る。これにより、液溜め容器の内部に飽和液の状態で冷
媒がストックされる。ストックされる冷媒の量は第1、
第2の減圧手段の間の冷媒圧力(中間圧)飽和温度と、
第2の減圧手段を経た冷媒圧力(蒸発器入口圧力)飽和
温度との差が大きいほど多くなる。
In the air conditioner according to the present invention, the refrigerant flowing into the liquid storage container is cooled and condensed by the refrigerant whose temperature has been further lowered through the second pressure reducing means. Thereby, the refrigerant is stored in the state of the saturated liquid inside the liquid reservoir. The amount of refrigerant to be stocked is first,
A refrigerant pressure (intermediate pressure) saturation temperature between the second pressure reducing means,
The larger the difference from the refrigerant pressure (evaporator inlet pressure) saturation temperature through the second pressure reducing means, the larger the difference.

【0013】高圧側の冷媒圧力が低下し、これを目標値
にまで高めるために第1の減圧手段の絞り量(弁開度)
が絞られると、液溜め容器が設置された第1、第2の減
圧手段間の冷媒圧力(中間圧)が低下し、液溜め容器に
溜まった気相状態の冷媒との圧力バランスを保つために
該液溜め容器から液相状態の冷媒が押し出される。これ
により、系内の冷媒量が増加して高圧側の冷媒圧力が高
まる。
[0013] The refrigerant pressure on the high pressure side decreases, and the throttle amount (valve opening) of the first pressure reducing means is increased to increase the refrigerant pressure to a target value.
When the pressure is reduced, the refrigerant pressure (intermediate pressure) between the first and second decompression means provided with the liquid reservoir decreases, and the pressure balance with the refrigerant in a gaseous state stored in the liquid reservoir is maintained. The liquid-phase refrigerant is extruded from the liquid reservoir. As a result, the amount of refrigerant in the system increases, and the refrigerant pressure on the high pressure side increases.

【0014】高圧側の冷媒圧力が上昇し、これを目標値
にまで低下させるために第1の減圧手段の絞り量が拡大
されると、中間圧が上昇し、液溜め容器に溜まった気相
状態の冷媒との圧力バランスを保つために液溜め容器に
液相状態の冷媒が吸い込まれる。これにより、系内の冷
媒量が減少して高圧側の冷媒圧力が低下する。
When the pressure of the refrigerant on the high pressure side rises and the throttle amount of the first pressure reducing means is increased in order to reduce the refrigerant pressure to the target value, the intermediate pressure rises and the gaseous phase accumulated in the liquid storage container increases. In order to maintain the pressure balance with the refrigerant in the liquid state, the refrigerant in the liquid state is sucked into the liquid reservoir. As a result, the amount of refrigerant in the system decreases, and the refrigerant pressure on the high pressure side decreases.

【0015】一方、蒸発器を経た後の冷媒の過熱度が高
まり、これを目標値に近づけるために第2の減圧手段の
絞り量が拡大されると、中間圧が低下し、液溜め容器に
溜まった気相状態の冷媒との圧力バランスを保つために
液溜め容器から液相状態の冷媒が押し出される。これに
より、系内の冷媒量が増加して高圧側の冷媒圧力が高ま
る。
On the other hand, when the degree of superheat of the refrigerant after passing through the evaporator increases, and the amount of throttle of the second pressure reducing means is increased in order to approach the target value, the intermediate pressure decreases, and the refrigerant is stored in the reservoir. In order to maintain the pressure balance with the accumulated refrigerant in the gas phase, the refrigerant in the liquid phase is extruded from the reservoir. As a result, the amount of refrigerant in the system increases, and the refrigerant pressure on the high pressure side increases.

【0016】[0016]

【発明の実施の形態】本発明に係る空気調和装置の実施
の形態を図1に示して説明する。図1には、フロンの代
替物としてのCO2を冷媒として冷凍サイクルを構成す
る空気調和装置の主な構成を示す。図に示す空気調和装
置は、例えば自動車のエアコンに適用されるものであ
り、符号1は冷媒を圧縮する圧縮機、2は圧縮された冷
媒を凝縮させるガスクーラ(凝縮器)、3,4は凝縮し
た冷媒を減圧する第1、第2の制御弁(減圧手段)、5
は減圧された冷媒を蒸発させるエバポレータ(蒸発器)
である。これらは配管6によって閉じた冷媒循環系を構
成している。
FIG. 1 shows an embodiment of an air conditioner according to the present invention. FIG. 1 shows a main configuration of an air conditioner constituting a refrigeration cycle using CO2 as a refrigerant instead of CFC as a refrigerant. The air conditioner shown in FIG. 1 is applied to, for example, an air conditioner of an automobile. Reference numeral 1 denotes a compressor for compressing a refrigerant, 2 denotes a gas cooler (condenser) for condensing the compressed refrigerant, and 3 and 4 denote condensates. First and second control valves (decompression means) for decompressing the cooled refrigerant, 5
Is an evaporator that evaporates the depressurized refrigerant
It is. These constitute a refrigerant circulation system closed by the pipe 6.

【0017】圧縮機1は、駆動源(例えば自動車に搭載
されたエンジン)から駆動力を得て駆動する。ガスクー
ラ2は、圧縮機1によって圧縮された冷媒を外気と熱交
換させて冷却し、凝縮させる。第1、第2の膨張弁3,
4は、ガスクーラ2において凝縮した冷媒を膨張させ、
減圧する。エバポレータ5は、第1、第2の膨張弁3,
4によって減圧された冷媒を車内の空気と熱交換させて
蒸発させ、冷媒が気化する際の気化潜熱によって車内の
空気を冷却する。
The compressor 1 is driven by obtaining a driving force from a driving source (for example, an engine mounted on an automobile). The gas cooler 2 cools and condenses the refrigerant compressed by the compressor 1 by exchanging heat with outside air. First and second expansion valves 3,
4 expands the refrigerant condensed in the gas cooler 2,
Reduce pressure. The evaporator 5 includes first and second expansion valves 3,
The refrigerant decompressed by the heat exchanger 4 evaporates by exchanging heat with the air inside the vehicle, and cools the air inside the vehicle by latent heat of vaporization when the refrigerant is vaporized.

【0018】ガスクーラ2と第1の制御弁3の間には、
インタークーラ7が設置されている。インタークーラ7
は、エバポレータ5で蒸発した後の低温の冷媒で、ガス
クーラ2で冷却された高温高圧の冷媒(超臨界状態)を
さらに冷却することで、冷房能力を増加させるものであ
る。
Between the gas cooler 2 and the first control valve 3,
An intercooler 7 is provided. Intercooler 7
Is a low-temperature refrigerant which has been evaporated by the evaporator 5 and further cools a high-temperature and high-pressure refrigerant (supercritical state) cooled by the gas cooler 2 to increase the cooling capacity.

【0019】第1、第2の制御弁3,4の間には、系内
を循環する冷媒を一時的に貯留する液溜め容器8が設置
されている。液溜め容器8の下部は、第1、第2の制御
弁3,4の間の冷媒管6と連結管8aにて接続されてい
る。また、液溜め容器8内部の冷媒を冷却するため、第
2の制御弁4とエバポレータ5との間の冷媒管6aの一
部が、液溜め容器8の内部に通されている。液溜め容器
8は、第1の制御弁3において膨張、減圧された冷媒に
含まれる気相成分を捕らえ、液相成分をエバポレータ5
に送り出すレシーバとしての機能も有している。
Between the first and second control valves 3 and 4, there is provided a liquid reservoir 8 for temporarily storing the refrigerant circulating in the system. The lower part of the liquid reservoir 8 is connected to the refrigerant pipe 6 between the first and second control valves 3 and 4 by a connecting pipe 8a. In order to cool the refrigerant inside the reservoir 8, a part of the refrigerant pipe 6 a between the second control valve 4 and the evaporator 5 is passed through the interior of the reservoir 8. The liquid reservoir 8 captures a gas phase component contained in the refrigerant that has been expanded and decompressed by the first control valve 3 and removes the liquid phase component from the evaporator 5.
It also has a function as a receiver to send to

【0020】高圧ガスクーラ2とインタークーラ7との
間には、CO2冷凍サイクルにおける高圧側の冷媒温度
を検出する温度センサ9が設置されている。第1の制御
弁3は、温度センサ9によって検出された冷媒温度に基
づいて高圧側の冷媒圧力を目標値に近づけるように弁開
度を制御される。
Between the high-pressure gas cooler 2 and the intercooler 7, a temperature sensor 9 for detecting the refrigerant temperature on the high-pressure side in the CO2 refrigeration cycle is provided. The opening degree of the first control valve 3 is controlled based on the refrigerant temperature detected by the temperature sensor 9 so that the refrigerant pressure on the high pressure side approaches a target value.

【0021】エバポレータ5とインタークーラ7との間
には、CO2冷凍サイクルにおける低圧側の冷媒温度を
検出する温度センサ10が設置されている。第2の制御
弁4は、温度センサ10によって検出された冷媒温度に
基づいて低圧側の冷媒の過熱度を目標値に近づけるよう
に弁開度を制御される。
Between the evaporator 5 and the intercooler 7, a temperature sensor 10 for detecting a low-pressure side refrigerant temperature in the CO2 refrigeration cycle is provided. The degree of opening of the second control valve 4 is controlled based on the refrigerant temperature detected by the temperature sensor 10 so that the degree of superheat of the refrigerant on the low pressure side approaches a target value.

【0022】第2の制御弁4とエバポレータ5との間の
配管6aは、一旦液溜め容器8の内部に導かれ、管の表
面を容器内部の冷媒に晒した後、容器の外に出てエバポ
レータ5に接続されている。液溜め容器8内部の空間と
配管6aの内側とは完全に仕切られており、この間で冷
媒の出入りは起こらないようになっている。
A pipe 6a between the second control valve 4 and the evaporator 5 is once led inside the liquid reservoir 8, and after exposing the surface of the pipe to the refrigerant inside the container, it goes out of the container. It is connected to the evaporator 5. The space inside the liquid reservoir 8 and the inside of the pipe 6a are completely separated, so that the refrigerant does not flow in and out between them.

【0023】上記のように構成された空気調和装置にお
いては、CO2冷凍サイクルにおいて高圧側の冷媒圧力
が低下した場合、これを目標値にまで高めるために第1
の制御弁3の弁開度が絞られる。このとき液溜め容器8
の内部において起こる現象を図3をもとに説明する。図
において、P0は第1の制御弁3で減圧される前の冷媒
圧力(高圧)、P1は第1の制御弁3で減圧されて第2
の制御弁4で減圧される前の冷媒圧力(中間圧)、P2
は第2の制御弁4で減圧された後の冷媒圧力(蒸発
圧)、T1は中間圧を示す冷媒の温度、T2は第2の制
御弁4で蒸発圧を示す冷媒の温度である。また、Gは液
溜め容器8内部のガス層を示す。
In the air conditioner configured as described above, when the refrigerant pressure on the high pressure side is reduced in the CO2 refrigeration cycle, the first pressure is set to increase the pressure to the target value.
Of the control valve 3 is reduced. At this time, the reservoir 8
The phenomenon that takes place inside the device will be described with reference to FIG. In the drawing, P0 is the refrigerant pressure (high pressure) before being depressurized by the first control valve 3, and P1 is depressurized by the first control valve 3 and is the second pressure.
Pressure (intermediate pressure) before pressure reduction by the control valve 4 of P2, P2
Is the refrigerant pressure (evaporation pressure) after being depressurized by the second control valve 4, T1 is the temperature of the refrigerant showing the intermediate pressure, and T2 is the temperature of the refrigerant showing the evaporation pressure of the second control valve 4. G indicates a gas layer inside the liquid reservoir 8.

【0024】第1の制御弁3の弁開度が絞られると、第
1、第2の制御弁3,4間の冷媒圧力(中間圧)P1が
低下し、液溜め容器8内部の飽和温度T1が下がるた
め、冷媒管6aとの温度差(T1−T2)が小さくな
り、液溜め容器8内部に溜まった気相状態の冷媒との熱
交換が進み難くなって冷媒が凝縮しなくなる。このた
め、液溜め容器8内部のガス圧が冷媒圧力P1にバラン
スするように液溜め容器8から冷媒液が押し出される
(図3(a)参照)。これにより、系内の冷媒量が増加し
て高圧側の冷媒圧力が高まる。
When the opening degree of the first control valve 3 is reduced, the refrigerant pressure (intermediate pressure) P1 between the first and second control valves 3 and 4 decreases, and the saturation temperature inside the liquid reservoir 8 is reduced. Since T1 is reduced, the temperature difference (T1-T2) between the refrigerant pipe 6a and the refrigerant pipe 6a becomes small, and it becomes difficult for heat exchange with the refrigerant in the gaseous state stored in the liquid reservoir 8 to proceed, so that the refrigerant does not condense. For this reason, the refrigerant liquid is pushed out of the liquid reservoir 8 so that the gas pressure inside the liquid reservoir 8 is balanced with the refrigerant pressure P1 (see FIG. 3A). As a result, the amount of refrigerant in the system increases, and the refrigerant pressure on the high pressure side increases.

【0025】高圧側の冷媒圧力が上昇した場合は、これ
を目標値にまで低下させるために第1の制御弁3の弁開
度が開かれる。第1の制御弁3の弁開度が開かれると、
中間圧P1が上昇し、液溜め容器8内部の飽和温度T1
が上がるため、冷媒管6aとの温度差(T1−T2)が
大きくなり、液溜め容器8内部に溜まった気相状態の冷
媒との熱交換が進み易くなって冷媒が凝縮する。このた
め、液溜め容器8内部の液量が増加するとともに、液溜
め容器8内部のガス圧が冷媒圧力P1にバランスすると
ころまで液溜め容器8に冷媒が吸い込まれる(図3(b)
参照)。これにより、系内の冷媒量が減少して高圧側の
冷媒圧力が低下する。
When the refrigerant pressure on the high pressure side rises, the valve opening of the first control valve 3 is opened to reduce the pressure to the target value. When the valve opening of the first control valve 3 is opened,
The intermediate pressure P1 rises and the saturation temperature T1 inside the liquid reservoir 8 increases.
Therefore, the temperature difference (T1-T2) between the refrigerant pipe 6a and the refrigerant pipe 6a increases, and heat exchange with the refrigerant in the gaseous state stored in the liquid reservoir 8 easily proceeds, and the refrigerant condenses. Therefore, the amount of liquid in the reservoir 8 increases, and the refrigerant is sucked into the reservoir 8 until the gas pressure in the reservoir 8 balances with the refrigerant pressure P1 (FIG. 3B).
reference). As a result, the amount of refrigerant in the system decreases, and the refrigerant pressure on the high pressure side decreases.

【0026】一方、第2の制御弁4では、エバポレータ
5を出た後の冷媒の過熱度を温度センサ10からの情報
をもとに検知し、過熱度が大きい場合は液冷媒の量が不
足するためで、これを目標値(=0)に近づけるために
第2の制御弁4の弁開度が開かれる。第2の制御弁4の
弁開度が開かれると、冷媒圧力P1が低下し、液溜め容
器8内部の飽和温度T1が下がるため、冷媒管6aとの
温度差(T1−T2)が小さくなり、液溜め容器8内部
に溜まった気相状態の冷媒との熱交換が進み難くなって
冷媒が凝縮しなくなる。このため、液溜め容器8内部の
ガス圧が冷媒圧力P1にバランスするように液溜め容器
8から冷媒液が押し出される(図3(a)に同じ)。これ
により、エバポレータ5に入る液冷媒の量が増加して過
熱度は小さくなる。
On the other hand, the second control valve 4 detects the degree of superheat of the refrigerant after leaving the evaporator 5 based on the information from the temperature sensor 10, and when the degree of superheat is large, the amount of the liquid refrigerant is insufficient. Therefore, the valve opening of the second control valve 4 is opened so as to approach the target value (= 0). When the valve opening of the second control valve 4 is opened, the refrigerant pressure P1 decreases, and the saturation temperature T1 inside the liquid reservoir 8 decreases, so that the temperature difference (T1-T2) with the refrigerant pipe 6a decreases. In addition, heat exchange with the refrigerant in a gaseous state stored in the liquid reservoir 8 becomes difficult to progress, and the refrigerant does not condense. Therefore, the refrigerant liquid is pushed out of the liquid reservoir 8 so that the gas pressure inside the liquid reservoir 8 is balanced with the refrigerant pressure P1 (the same as in FIG. 3A). As a result, the amount of liquid refrigerant entering the evaporator 5 increases, and the degree of superheat decreases.

【0027】高圧側の冷媒圧力が上昇すると、これを検
知して第1の制御弁3の弁開度も少し開かれ、中間圧お
よび冷媒流量が適正な状態に落ち着き、冷房負荷に見合
った最適なバランス点での運転が可能となる。
When the refrigerant pressure on the high-pressure side rises, this is detected and the valve opening of the first control valve 3 is also slightly opened, so that the intermediate pressure and the refrigerant flow rate are settled to an appropriate state, and the optimum pressure suitable for the cooling load is obtained. Operation at an appropriate balance point becomes possible.

【0028】ところで、本実施形態は、第2の制御弁4
を用い、エバポレータ5を経た冷媒の過熱度を適度な大
きさとなるように制御を行う場合に有効であるが、第2
の制御弁4の代わりに固定絞りを用いる場合は、エバポ
レータ5の出口側の冷媒管を液溜め容器内に通すように
しても構わない。
In this embodiment, the second control valve 4
Is effective when the superheat degree of the refrigerant passing through the evaporator 5 is controlled to be an appropriate size by using
When a fixed throttle is used instead of the control valve 4, the refrigerant pipe on the outlet side of the evaporator 5 may be passed through the liquid reservoir.

【0029】なお、本発明は上記実施形態に限定される
ものではなく、発明の要旨を逸脱しない範囲で設計変更
可能であることはいうまでもない。
The present invention is not limited to the above embodiment, and it goes without saying that the design can be changed without departing from the spirit of the invention.

【0030】[0030]

【発明の効果】以上説明したように、本発明に係る空気
調和装置によれば、液溜め容器内に液相状態の冷媒をス
トックしておき、高低圧制御に合わせて系内を循環する
冷媒量を変化させることにより、中間圧および冷媒流量
を適正な状態に落ち着かせて冷房負荷に見合った最適な
バランス点での運転を実現することができる。
As described above, according to the air conditioner of the present invention, the refrigerant in the liquid phase is stocked in the liquid reservoir, and the refrigerant circulates in the system in accordance with the high / low pressure control. By changing the amount, the intermediate pressure and the flow rate of the refrigerant can be settled in an appropriate state, and the operation at the optimum balance point corresponding to the cooling load can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る空気調和装置の実施の形態を示
す概略構成図である。
FIG. 1 is a schematic configuration diagram illustrating an embodiment of an air conditioner according to the present invention.

【図2】 二酸化炭素を冷媒として使用する従来の空気
調和装置によって実現される冷凍サイクルのモリエル線
図である。
FIG. 2 is a Mollier diagram of a refrigeration cycle realized by a conventional air conditioner using carbon dioxide as a refrigerant.

【図3】 液溜め容器の内部にて起こる現象を示す状態
説明図である。
FIG. 3 is a state explanatory view showing a phenomenon occurring inside the liquid reservoir.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 ガスクーラ(凝縮器) 3,4 第1、第2の制御弁(減圧手段) 5 エバポレータ(蒸発器) 6 配管 7 インタークーラ 8 液溜め容器 9,10 温度センサ DESCRIPTION OF SYMBOLS 1 Compressor 2 Gas cooler (condenser) 3,4 First and second control valve (decompression means) 5 Evaporator (evaporator) 6 Piping 7 Intercooler 8 Liquid storage container 9,10 Temperature sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を圧縮する圧縮機と、該圧縮機によ
り圧縮された前記冷媒を凝縮させる凝縮器と、該凝縮器
において凝縮した前記冷媒を減圧する第1、第2の減圧
手段と、該第1、第2の減圧手段により減圧された前記
冷媒を蒸発させる蒸発器とを備え、前記冷媒として二酸
化炭素を使用して冷凍サイクルを構成する空気調和装置
であって、 直列に配置された前記第1、第2の減圧手段の間の冷媒
管に液溜め容器を設置し、該液溜め容器の下部と前記冷
媒管とを連結管にて接続し、前記第2の減圧手段と前記
蒸発器との間の冷媒管の一部を前記液溜め容器の内部に
通し、 前記液溜め容器内部の冷媒の気相成分を、前記第2の減
圧手段により減圧された冷媒によって冷却し、液相に変
化させて貯留することを特徴とする空気調和装置。
1. A compressor for compressing a refrigerant, a condenser for condensing the refrigerant compressed by the compressor, first and second decompression means for decompressing the refrigerant condensed in the condenser, An evaporator for evaporating the refrigerant decompressed by the first and second decompression means, wherein the air conditioner constitutes a refrigeration cycle using carbon dioxide as the refrigerant, and is arranged in series. A liquid reservoir is installed in the refrigerant pipe between the first and second decompression means, a lower part of the liquid reservoir and the refrigerant pipe are connected by a connecting pipe, and the second decompression means and the evaporation A part of a refrigerant pipe between the reservoir and the inside of the liquid reservoir is passed through the inside of the liquid reservoir, and a gas phase component of the refrigerant inside the liquid reservoir is cooled by the refrigerant depressurized by the second decompression means. An air conditioner characterized by being changed into a storage.
【請求項2】 前記凝縮器側に位置する前記第1の減圧
手段を開度調整が可能な制御弁とし、その弁開度を前記
凝縮器を経た後の冷媒温度に基づいて制御することを特
徴とする請求項1記載の空気調和装置。
2. The method according to claim 1, wherein the first pressure reducing means located on the condenser side is a control valve capable of adjusting an opening degree, and the valve opening degree is controlled based on a refrigerant temperature after passing through the condenser. The air conditioner according to claim 1, characterized in that:
【請求項3】 前記蒸発器側に位置する前記第2の減圧
手段を開度調整が可能な制御弁とし、その弁開度を前記
蒸発器を経た後の冷媒温度に基づいて制御することを特
徴とする請求項1または2記載の空気調和装置。
3. The method according to claim 2, wherein the second pressure reducing means located on the side of the evaporator is a control valve capable of adjusting an opening degree, and the opening degree of the valve is controlled based on a refrigerant temperature after passing through the evaporator. The air conditioner according to claim 1 or 2, wherein:
JP2000362865A 2000-11-29 2000-11-29 Air conditioner Withdrawn JP2002168536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000362865A JP2002168536A (en) 2000-11-29 2000-11-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000362865A JP2002168536A (en) 2000-11-29 2000-11-29 Air conditioner

Publications (1)

Publication Number Publication Date
JP2002168536A true JP2002168536A (en) 2002-06-14

Family

ID=18834065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000362865A Withdrawn JP2002168536A (en) 2000-11-29 2000-11-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP2002168536A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2869098A1 (en) * 2003-12-23 2005-10-21 Tecumseh Products Co
WO2008032578A1 (en) * 2006-09-11 2008-03-20 Daikin Industries, Ltd. Refrigeration device
JP2008064437A (en) * 2006-09-11 2008-03-21 Daikin Ind Ltd Refrigerating device
WO2008059737A1 (en) * 2006-11-13 2008-05-22 Daikin Industries, Ltd. Air conditioning apparatus
CN105627650A (en) * 2016-01-18 2016-06-01 珠海格力电器股份有限公司 Liquid-state refrigerant control method and device
CN106403348A (en) * 2016-11-28 2017-02-15 广州华凌制冷设备有限公司 Air conditioner and refrigeration control method thereof
CN110529966A (en) * 2019-09-09 2019-12-03 宁波奥克斯电气股份有限公司 A kind of change coolant quantity air-conditioning system and its control method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2869098A1 (en) * 2003-12-23 2005-10-21 Tecumseh Products Co
WO2008032578A1 (en) * 2006-09-11 2008-03-20 Daikin Industries, Ltd. Refrigeration device
JP2008064437A (en) * 2006-09-11 2008-03-21 Daikin Ind Ltd Refrigerating device
JP2008064436A (en) * 2006-09-11 2008-03-21 Daikin Ind Ltd Refrigerating device
US8205464B2 (en) 2006-09-11 2012-06-26 Daikin Industries, Ltd. Refrigeration device
AU2007320604B9 (en) * 2006-11-13 2010-11-25 Daikin Industries, Ltd. Air conditioning apparatus
CN101535737A (en) * 2006-11-13 2009-09-16 大金工业株式会社 Air conditioning apparatus
AU2007320604B2 (en) * 2006-11-13 2010-07-22 Daikin Industries, Ltd. Air conditioning apparatus
JP2008121986A (en) * 2006-11-13 2008-05-29 Daikin Ind Ltd Air conditioner
KR101101946B1 (en) * 2006-11-13 2012-01-02 다이킨 고교 가부시키가이샤 Refrigeration apparatus
WO2008059737A1 (en) * 2006-11-13 2008-05-22 Daikin Industries, Ltd. Air conditioning apparatus
CN102095267B (en) * 2006-11-13 2012-09-12 大金工业株式会社 Air conditioning apparatus
CN105627650A (en) * 2016-01-18 2016-06-01 珠海格力电器股份有限公司 Liquid-state refrigerant control method and device
CN105627650B (en) * 2016-01-18 2018-12-14 珠海格力电器股份有限公司 A kind of liquid refrigerants control method and device
CN106403348A (en) * 2016-11-28 2017-02-15 广州华凌制冷设备有限公司 Air conditioner and refrigeration control method thereof
CN110529966A (en) * 2019-09-09 2019-12-03 宁波奥克斯电气股份有限公司 A kind of change coolant quantity air-conditioning system and its control method

Similar Documents

Publication Publication Date Title
WO1990007683A1 (en) Trans-critical vapour compression cycle device
JP2007162988A (en) Vapor compression refrigerating cycle
KR20080106311A (en) Freezing apparatus
JP3983520B2 (en) Supercritical vapor compression system and suction line heat exchanger for adjusting the pressure of the high pressure component of the refrigerant circulating in the supercritical vapor compression system
JP4294351B2 (en) CO2 refrigeration cycle
JP2006292229A (en) Co2 refrigeration cycle device and supercritical refrigeration operation method therefor
KR20150076775A (en) Dual refrigerating system
JP2002156161A (en) Air conditioner
WO1999008053A1 (en) Cooling cycle
JP4841288B2 (en) Refrigeration equipment
JP2000346466A (en) Vapor compression type refrigerating cycle
WO2006027330A1 (en) Co2 compression refrigeration apparatus for low temperature applications
JP2008164288A (en) Refrigerating device
JP2001004235A (en) Steam compression refrigeration cycle
JP2002168536A (en) Air conditioner
JP4841287B2 (en) Refrigeration equipment
JP4999531B2 (en) Air conditioner
JP5571429B2 (en) Gas-liquid heat exchange type refrigeration equipment
JP2000337722A (en) Vapor compression type refrigeration cycle
JP2006003023A (en) Refrigerating unit
JP4616461B2 (en) Air conditioner
JP2003329314A (en) Air conditioner
JP3735338B2 (en) Refrigeration apparatus for vehicle and control method thereof
JPH07120082A (en) Refrigerating cycle apparatus
JP2002156163A (en) Air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205