JP2002153096A - Inverter controller for alternating-current motor- generator for vehicle - Google Patents

Inverter controller for alternating-current motor- generator for vehicle

Info

Publication number
JP2002153096A
JP2002153096A JP2000343508A JP2000343508A JP2002153096A JP 2002153096 A JP2002153096 A JP 2002153096A JP 2000343508 A JP2000343508 A JP 2000343508A JP 2000343508 A JP2000343508 A JP 2000343508A JP 2002153096 A JP2002153096 A JP 2002153096A
Authority
JP
Japan
Prior art keywords
vehicle
inverter
engine
carrier frequency
motor generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000343508A
Other languages
Japanese (ja)
Other versions
JP4123706B2 (en
Inventor
Hirohide Sato
博英 佐藤
Atsushi Ishii
淳 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000343508A priority Critical patent/JP4123706B2/en
Publication of JP2002153096A publication Critical patent/JP2002153096A/en
Application granted granted Critical
Publication of JP4123706B2 publication Critical patent/JP4123706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Eletrric Generators (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alternating-current motor-generator controller for vehicle that makes it possible to avoid breakdown of a switching element, reduce switching loss, and suppress increase in noise through simple circuitry. SOLUTION: An alternating-current motor-generator 3 giving and receiving power to and from an engine 5 through a clutch 4 and driving equipment, not shown, mounted in the vehicle is supplied with electric power from an inverter 1. The inverter 1 is PWM-controlled with a low carrier frequency when the engine 5 is started, and with a high carrier frequency when the equipment mounted in the vehicle is driven.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車両用交流電動発
電機のインバータ制御装置に関する。
The present invention relates to an inverter control device for an AC motor generator for a vehicle.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来の
交流回転電機をインバータ制御する場合、そのPWM搬
送波周波数は騒音低減のために十分高く(通常10〜1
5kHz)設定される。
2. Description of the Related Art When inverter control is performed on a conventional AC rotating electric machine, the PWM carrier frequency thereof is sufficiently high to reduce noise (usually 10 to 1).
5 kHz).

【0003】しかしながら、PWM搬送波周波数を増加
させることは、インバータのスイッチング素子の電力損
失(スイッチング損失)を増加させ、スイッチング素子
の破壊可能性を増大させる。これは、ターンオン電流が
大きいもののターンオン抵抗が小さいためにターンオン
電力損失は比較的小さく、ターンオン電流は相対的に小
さいもののターンオン抵抗が大きいために過渡期間のス
イッチング損失が相対的に大きいためである。
[0003] However, increasing the PWM carrier frequency increases the power loss (switching loss) of the switching element of the inverter, and increases the possibility of destruction of the switching element. This is because the turn-on power loss is relatively small because the turn-on current is large but the turn-on resistance is small, and the switching loss during the transition period is relatively large because the turn-on resistance is large while the turn-on current is relatively small.

【0004】特開平6ー141402号公報、特開平4
ー295278号公報は、スイッチング素子の温度や電
流を計測し、所定温度又は所定電流値以上でインバータ
のPWM搬送波周波数を低下させることにより、スイッ
チング素子の破壊回避とスイッチング損失低減とを両立
させることを提案している。
[0004] Japanese Patent Application Laid-Open No.
Japanese Patent Application Laid-Open No. 295278/1990 discloses that the temperature and current of a switching element are measured, and the PWM carrier frequency of the inverter is reduced at a predetermined temperature or a predetermined current value or more, so that the destruction of the switching element is prevented and the switching loss is reduced. is suggesting.

【0005】しかし、上記した従来のPWM搬送波周波
数切り替え技術は、温度検出や電流検出などの検出回路
系の追設を必要とする上、これらの検出回路系の故障時
にスイッチング素子の破壊可能性が増大するという問題
を内包している。
However, the above-mentioned conventional PWM carrier frequency switching technology requires additional detection circuit systems such as temperature detection and current detection, and the possibility of destruction of the switching element when these detection circuit systems fail. It has the problem of increasing.

【0006】また、低いPWM搬送波周波数で運転する
場合にPWM搬送波周波数が交流回転電機の機械共振周
波数値に接近するなどして騒音が増大するという問題も
あった。
In addition, when operating at a low PWM carrier frequency, the PWM carrier frequency approaches the mechanical resonance frequency value of the AC rotary electric machine, and the noise increases.

【0007】本発明は上記問題点に鑑みなされたもので
あり、簡素な回路構成でスイッチング素子の破壊回避と
スイッチング損失低減と騒音増大抑止とを実現可能な車
両用交流電動発電機のインバータ制御装置を提供するこ
とをその解決すべき課題としている。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and has an inverter control apparatus for an AC motor generator for a vehicle capable of realizing avoidance of switching element destruction, reduction of switching loss and suppression of noise increase with a simple circuit configuration. Is the issue to be solved.

【0008】[0008]

【課題を解決するための手段】請求項1記載の車両用交
流電動発電機のインバータ制御装置は、エンジンと断続
可能に動力授受するとともに車載機器を駆動する交流電
動発電機と、前記交流電動発電機とバッテリとの間に配
置されて直交双方向電力変換を行うインバータと、前記
インバータを制御する制御手段とを備え、前記制御手段
が、前記エンジンの始動時に前記交流電動発電機を前記
エンジン始動用のモータとして作動させる始動モ−ド
と、前記エンジンの始動完了後に前記交流電動発電機を
発電機として作動させる発電モ−ドと、前記エンジンの
停止時に前記エンジンと前記動力伝達手段とを分離しか
つ前記車載機器を駆動する車載機器駆動モ−ドとを切り
替える車両用発電電動機制御装置において、前記制御手
段は、前記車載機器駆動モ−ドにて前記インバータを第
1のPWM搬送波周波数で駆動させ、かつ、前記始動モ
−ドにて前記インバータを前記第1のPWM搬送波周波
数より低周波数の第2のPWM搬送波周波数で駆動する
ことを特徴としている。
According to a first aspect of the present invention, there is provided an inverter control device for an AC motor generator for a vehicle, wherein the AC motor generator is configured to exchange power with an engine intermittently and to drive a vehicle-mounted device; An inverter arranged between the motor and a battery to perform orthogonal bidirectional power conversion, and control means for controlling the inverter, wherein the control means causes the AC motor generator to start the engine when the engine is started. A start mode that operates as a motor for power generation, a power generation mode that operates the AC motor generator as a generator after the start of the engine is completed, and the engine and the power transmission means when the engine is stopped. A vehicular generator motor control device for switching between a vehicular device driving mode for driving the vehicular device and the vehicular device. In the dynamic mode, the inverter is driven at a first PWM carrier frequency, and in the start mode, the inverter is driven at a second PWM carrier frequency lower than the first PWM carrier frequency. It is characterized by doing.

【0009】本発明は、発電の他にエンジン始動及び車
載機器駆動(たとえば交差点などのアイドルストップ
時)を行う車両用交流電動発電機では、インバータのス
イッチング素子に最も大きな電流が流れ、スイッチング
素子が最高温度となるのは、エンジン始動時であるとい
う点に着目したものである。
According to the present invention, in an AC motor generator for a vehicle which performs engine start and vehicle-mounted equipment drive (for example, at the time of an idle stop at an intersection) in addition to power generation, the largest current flows through the switching element of the inverter and the switching element It is noted that the highest temperature is obtained when the engine is started.

【0010】したがって、車載機器駆動モ−ドに比較し
て格段に大電流がスイッチング素子に通電されるエンジ
ン始動モ−ドにおいて、PWM搬送波周波数を低下すれ
ば、インバータのスイッチング素子の発熱を抑止するこ
とができる。このエンジン始動時にはPWM搬送波周波
数の低下により車両用交流発電機の騒音は増大するが、
エンジン始動のための期間は短く、エンジン自体の騒音
も大きいので、全体騒音は聴覚理論上それほど大きくな
らない。更に、エンジン始動期間はイグニッションスイ
ッチや回転数センサなど既存の検出手段の出力信号で判
定できるので、電流センサや温度センサなどの検出回路
系の追設を必要とせず、回路構成の複雑化とその信頼性
確保対策を必要としない。また、車載機器駆動モ−ドで
は、高PWM搬送波周波数でインバータを運転するが電
流が小さいので、スイッチング素子の過熱を防止しつつ
騒音低減を図ることができる。また、車載機器駆動モ−
ドではエンジンが停止しているために、車両用交流発電
機の騒音が聴覚理論上目立つために、その低減は特に効
果的である。なお、車載機器駆動モ−ドでのPWM搬送
波周波数は、それに起因する車両用交流発電機の騒音を
可聴周波数域より高くするために、たとえば15KHz
以上とすることが公的である。
Therefore, when the PWM carrier frequency is lowered in the engine start mode in which a much larger current is supplied to the switching element than in the on-vehicle equipment driving mode, heat generation of the inverter switching element is suppressed. be able to. At the time of starting the engine, the noise of the vehicle alternator increases due to the decrease of the PWM carrier frequency,
Since the period for starting the engine is short and the noise of the engine itself is also large, the total noise is not so large in the theory of hearing. Furthermore, since the engine start period can be determined by the output signal of the existing detection means such as an ignition switch and a rotation speed sensor, no additional detection circuit system such as a current sensor or a temperature sensor is required, and the circuit configuration becomes complicated and the No measures to ensure reliability are required. In the on-vehicle equipment driving mode, the inverter is operated at a high PWM carrier frequency, but the current is small, so that it is possible to reduce the noise while preventing the switching element from overheating. In addition, in-vehicle equipment driving mode
Since the noise of the vehicle alternator is noticeable in the auditory theory because the engine is stopped in the vehicle, the reduction is particularly effective. The PWM carrier frequency in the in-vehicle device driving mode is, for example, 15 KHz in order to make the noise of the vehicle alternator higher than the audible frequency range.
The above is public.

【0011】好適な態様において、発電モ−ドでは、車
載機器駆動モ−ドと同じくPWM搬送波周波数を高く設
定することが好ましい。たとえば、発電モ−ドのPWM
搬送波周波数は車載機器駆動モ−ドと同じとされるが、
エンジン始動モ−ドのPWM搬送波周波数より高く車載
機器駆動モ−ド時のそれより低い値としてもよい。
In a preferred embodiment, in the power generation mode, it is preferable to set the PWM carrier frequency to be high as in the vehicle equipment drive mode. For example, PWM of power generation mode
The carrier frequency is the same as in the in-vehicle equipment drive mode,
The value may be higher than the PWM carrier frequency in the engine start mode and lower than that in the in-vehicle device driving mode.

【0012】請求項2記載の構成によれば請求項1記載
の車両用交流電動発電機のインバータ制御装置において
更に、前記第1のPWM搬送波周波数は、前記交流電動
発電機の所定の機械共振周波数値より高く設定され、前
記第2のPWM搬送波周波数は、前記所定の機械共振周
波数値より低く設定される。
According to a second aspect of the present invention, in the inverter control device for an AC motor generator for a vehicle according to the first aspect, the first PWM carrier frequency further includes a predetermined mechanical resonance frequency of the AC motor generator. And the second PWM carrier frequency is set lower than the predetermined mechanical resonance frequency value.

【0013】このようにすれば、車載機器駆動モ−ドで
もエンジン始動モ−ドでも車両用交流発電機の機械共振
周波数値と干渉することなく大きくPWM搬送波周波数
を変更することができ、エンジン始動モ−ド時のスイッ
チング損失を大幅に低減することができ、車載機器駆動
モ−ドでの騒音を良好に低減することができる。
In this manner, the PWM carrier frequency can be largely changed without interfering with the mechanical resonance frequency value of the automotive alternator in both the on-vehicle equipment driving mode and the engine starting mode. The switching loss in the mode can be greatly reduced, and the noise in the in-vehicle device driving mode can be reduced favorably.

【0014】請求項3記載の構成によれば請求項2記載
の車両用交流電動発電機のインバータ制御装置において
更に、前記機械共振周波数値は、ランデル型の前記交流
電動発電機の回転子の爪形磁極部の機械共振周波数値か
らなる。
According to a third aspect of the present invention, in the inverter control apparatus for an AC motor generator for a vehicle according to the second aspect, the mechanical resonance frequency value is a claw of a rotor of the AC motor generator of a Landel type. It consists of the mechanical resonance frequency value of the magnetic pole part.

【0015】ランデル型の車両用交流発電機では、回転
子鉄心の爪形磁極部の共振周波数が5〜8KHzである
ため、車載機器駆動モ−ドにおけるPWM搬送波周波数
をそれより高い値(たとえば13KHz)、始動モ−ド
時のPWM搬送波周波数をそれより低い値(たとえば3
KHz)とすれば、騒音抑制とスイッチング素子の熱破
壊防止とを好適に両立させることができる。
In the Landel type vehicle alternator, the resonance frequency of the claw-shaped magnetic pole portion of the rotor iron core is 5 to 8 KHz. ), The PWM carrier frequency in the start mode is set to a lower value (for example, 3
KHz), it is possible to suitably achieve both noise suppression and prevention of thermal damage of the switching element.

【0016】請求項4記載の構成によれば請求項2又は
3記載の車両用交流電動発電機のインバータ制御装置に
おいて更に、前記制御手段は、前記エンジンの回転数が
前記エンジンのアイドル回転数値より低い所定値を下回
る場合でかつエンジン始動モ−ド時に前記PWM搬送波
周波数は前記第2の搬送波に設定する。
According to a fourth aspect of the present invention, in the inverter control apparatus for an AC alternator for a vehicle according to the second or third aspect, the control means further comprises: a control unit configured to control the rotational speed of the engine based on an idle rotational speed value of the engine. The PWM carrier frequency is set to the second carrier when the value is lower than the low predetermined value and in the engine start mode.

【0017】本構成によれば、エンジン始動モ−ド(エ
ンジン回転数がエンジンのアイドル回転数値未満)時で
かつアイドル回転数値未満の所定値未満である場合にお
いて、このエンジン始動モ−ドにおける低エンジン回転
数帯でのみPWM搬送波周波数を低下する。
According to this configuration, when the engine is in the engine start mode (the engine speed is less than the idle speed value of the engine) and is less than the predetermined value which is less than the idle speed value, the engine start mode is low. The PWM carrier frequency is reduced only in the engine speed band.

【0018】エンジン始動モ−ドにおいて、インバータ
のスイッチング素子に大電流が流れるのは、このエンジ
ン始動モ−ドの初期であり、この時のスイッチング損失
を低減する。これにより、電流がエンジン始動モ−ドの
初期よりも減少するエンジン始動モ−ドの後期にPWM
搬送波周波数を増大させてスイッチング素子の破壊の心
配なしに騒音低下を図ることができる。
In the engine start mode, a large current flows through the switching element of the inverter at the beginning of the engine start mode, and the switching loss at this time is reduced. As a result, in the later stage of the engine start mode in which the current decreases from the initial stage of the engine start mode, the PWM
By increasing the carrier frequency, noise can be reduced without fear of destruction of the switching element.

【0019】請求項5記載の構成によれば請求項2又は
3記載の車両用交流電動発電機のインバータ制御装置に
おいて更に、前記制御手段は、前記交流電動発電機の電
流が所定値以上の場合でかつエンジン始動モ−ド時に前
記PWM搬送波周波数は前記前記第2の搬送波に設定す
る。
According to a fifth aspect of the present invention, in the inverter control device for an AC motor generator for a vehicle according to the second or third aspect, the control means further comprises: And in the engine start mode, the PWM carrier frequency is set to the second carrier.

【0020】このようにすれば、スイッチング素子に大
電流が流れる場合にPWM搬送波周波数を車両用交流発
電機の所定部位特に好適には爪形磁極部の機械共振周波
数値未満にまで低下させるので、機械共振による騒音増
大を抑止しつつスイッチング素子の過熱を抑止すること
ができる。
With this arrangement, when a large current flows through the switching element, the PWM carrier frequency is reduced to a value less than the mechanical resonance frequency of the predetermined portion of the automotive alternator, particularly preferably the claw-shaped magnetic pole portion. It is possible to suppress overheating of the switching element while suppressing noise increase due to mechanical resonance.

【0021】[0021]

【発明の実施の形態】本発明の好適な実施態様を図面を
参照して以下に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0022】1はインバータ、2はインバータ制御用の
コントローラ、3はランデル型の車両用交流電動発電
機、4はクラッチ、5はエンジン、6は車両用交流電動
発電機3の回転数を検出する回転センサ、7は電流セン
サ、8は図示しないエンジンなどを制御する車両用電子
制御装置(ECU)、9は車載のバッテリ、10は平滑
コンデンサである。
1 is an inverter, 2 is a controller for inverter control, 3 is a rundle type AC motor generator for a vehicle, 4 is a clutch, 5 is an engine, and 6 is a rotational speed of the AC motor generator 3 for a vehicle. A rotation sensor, 7 is a current sensor, 8 is a vehicle electronic control unit (ECU) for controlling an engine (not shown), 9 is a vehicle-mounted battery, and 10 is a smoothing capacitor.

【0023】インバータ1は、6個のスイッチング素子
(ここではIGBT素子)で組んだ周知の三相インバー
タ回路により構成されているが、更に各IGBT素子と
個別に逆並列に接続された図示しないフライホイルダイ
オードと入力平滑コンデンサCとを有している。インバ
ータ1の一対の直流入力端子はバッテリ9と直流電力授
受し、インバータ1の三相交流端子は交流電動発電機3
の三相電機子コイルと交流電力授受している。
The inverter 1 is composed of a well-known three-phase inverter circuit composed of six switching elements (here, IGBT elements), and further includes a flywheel (not shown) individually connected in anti-parallel with each IGBT element. It has a wheel diode and an input smoothing capacitor C. A pair of DC input terminals of the inverter 1 exchange DC power with the battery 9, and a three-phase AC terminal of the inverter 1 is connected to the AC motor generator 3.
It exchanges AC power with three-phase armature coils.

【0024】コントローラ2は、マイクロコンピュータ
21と界磁電流スイッチング用のトランジスタ22と、
フライホイルダイオード23とを有している。この実施
例では動作理解を容易とするために、コントローラ2を
マイコン構成としたが、ハードウエア回路で構成しても
よいことはもちろんである。マイクロコンピュータ21
は、回転センサ6が検出した車両用交流発電機3の回転
信号と電流センサ7が検出したインバータ1の所定の一
相の交流電流と、バッテリ電圧+Bとを読み込んで車両
ECU8からの指令に基づいてインバータ1の各IGB
TをPWM制御し、更にトランジスタ22をP制御して
車両用交流発電機3の界磁コイル31へ通電する界磁電
流を調整する。
The controller 2 includes a microcomputer 21 and a transistor 22 for switching a field current.
And a flywheel diode 23. In this embodiment, the controller 2 is constituted by a microcomputer in order to facilitate the understanding of the operation, but it goes without saying that the controller 2 may be constituted by a hardware circuit. Microcomputer 21
Reads a rotation signal of the vehicle alternator 3 detected by the rotation sensor 6, a predetermined one-phase AC current of the inverter 1 detected by the current sensor 7, and a battery voltage + B, based on a command from the vehicle ECU 8. Each IGB of inverter 1
T is subjected to PWM control, and the transistor 22 is further P-controlled to adjust the field current supplied to the field coil 31 of the vehicle alternator 3.

【0025】車両用交流発電機3は、クラッチ4を介し
てエンジン5と動力授受可能に連結されている。ランデ
ル型の車両用交流発電機3の回転子鉄心は、回転軸に嵌
着、固定されたコア部と、その固定子鉄心の径方向内側
に周方向一定ピッチで配列された偶数個の爪形磁極部と
をもち、奇数番目の爪形磁極部はコア部の軸方向一端か
ら軸方向に延在し、偶数番目の爪形磁極部はコア部の軸
方向他端から軸方向に延在している。コア部には界磁コ
イル31が巻装されている。
The vehicle alternator 3 is connected to an engine 5 via a clutch 4 so as to be able to exchange power. The rotor core of the Landel type vehicle alternator 3 has a core portion fitted and fixed to a rotating shaft, and an even number of claw shapes arranged at a constant pitch in a circumferential direction inside the stator core in a radial direction. A magnetic pole portion, the odd-numbered claw-shaped magnetic pole portions extend in the axial direction from one axial end of the core portion, and the even-numbered claw-shaped magnetic pole portions extend in the axial direction from the other axial end of the core portion. ing. A field coil 31 is wound around the core.

【0026】電流センサ7は省略可能である他、車両用
交流発電機2の電流に相関を有する他の電気量に置換し
てもよい。
The current sensor 7 may be omitted, or may be replaced with another electric quantity having a correlation with the current of the vehicle alternator 2.

【0027】上記回路構成自体は、既によく知られてい
るので、詳細な説明は省略し、マイクロコンピュータ2
1による制御動作を図2のフローチャートを参照して以
下に説明する。
Since the circuit configuration itself is already well known, detailed description is omitted, and the microcomputer 2
1 will be described below with reference to the flowchart of FIG.

【0028】まず、各センサの検出信号やバッテリ電圧
や車両ECU8の指令を読み込み(S100)、それら
にもとづいて最適な動作モードを選択し(S102)、
動作モードが、エンジン始動モ−ドであればS104へ
進んでエンジン始動モ−ドを実施し、車載機器駆動モ−
ドであればS106へ進んで車載機器駆動モ−ドを実施
し、発電モ−ドであればS108へ進んで発電モ−ドを
実施する。
First, a detection signal of each sensor, a battery voltage, and a command of the vehicle ECU 8 are read (S100), and an optimum operation mode is selected based on the read signal (S102).
If the operation mode is the engine start mode, the process proceeds to step S104 to execute the engine start mode, and the in-vehicle device driving mode is performed.
If it is, the process proceeds to S106 to execute the in-vehicle device driving mode, and if it is the power generation mode, the process proceeds to S108 to execute the power generation mode.

【0029】エンジン始動モ−ドは、直接あるいは車両
ECU8を通じて検出した図示しないイグニッションス
イッチのオン状態期間における車両用交流発電機2の制
御動作を意味するが、イグニッションスイッチのオン状
態期間の代わりに、イグニッションスイッチのオンから
エンジン回転数が所定値に達するまでの期間をエンジン
始動モ−ド期間としてもよい。この実施例のエンジン始
動モ−ドでは、マイクロコンピュータ21は、回転セン
サ6から入力される車両用交流発電機2の回転子の回転
位置に基づく所定の位相角(電動モード)及びその回転
数と一致する周波数の三相交流電圧を車両用交流発電機
2に出力するようにインバータ1をPWM(パルス幅変
調)制御する。電流目標値と電流センサ7が検出した電
流値とを一致させるようにPWM制御のデューテイ比を
制御することができる。
The engine start mode means a control operation of the vehicle alternator 2 during an ON state of an ignition switch (not shown) detected directly or through the vehicle ECU 8, but instead of the ON state of the ignition switch, A period from when the ignition switch is turned on to when the engine speed reaches a predetermined value may be set as the engine start mode period. In the engine start mode of this embodiment, the microcomputer 21 determines a predetermined phase angle (electric mode) based on the rotational position of the rotor of the automotive alternator 2 input from the rotation sensor 6 and its rotational speed. The inverter 1 is subjected to PWM (pulse width modulation) control so that a three-phase AC voltage having a matching frequency is output to the vehicle AC generator 2. The duty ratio of the PWM control can be controlled so that the current target value matches the current value detected by the current sensor 7.

【0030】車載機器駆動モ−ドは、車両ECU8がク
ラッチ4を遮断した状態でかつ所定の車載機器(たとえ
ば車両空調用コンプレッサ)を駆動する動作モードであ
って、車両ECU8からクラッチオンを検出し、かつ、
所定の車載機器(たとえば車両空調用コンプレッサ)を
動作させるスイッチのオンを電気的に読み込んだ場合に
実施される。この実施例の車載機器駆動モ−ドでは、マ
イクロコンピュータ21は、回転センサ6から読み込ん
だ車両用交流発電機2の回転数を所定範囲に設定するよ
うに、インバータ1をPWM制御する。電流目標値と電
流センサ7が検出した電流値とを一致させるようにPW
M制御のデューテイ比を制御することもできる。
The on-vehicle device driving mode is an operation mode in which the vehicle ECU 8 drives a predetermined on-vehicle device (for example, a vehicle air-conditioning compressor) while the clutch 4 is disengaged. ,And,
This is carried out when a switch for operating a predetermined vehicle-mounted device (for example, a vehicle air-conditioning compressor) is electrically read. In the in-vehicle device driving mode of this embodiment, the microcomputer 21 performs PWM control on the inverter 1 so that the rotation speed of the vehicle alternator 2 read from the rotation sensor 6 is set within a predetermined range. The PW is set so that the current target value matches the current value detected by the current sensor 7.
It is also possible to control the duty ratio of the M control.

【0031】マイクロコンピュータ21は、上記エンジ
ン始動モ−ド及び車載機器駆動モ−ドにて、インバータ
1の各スイッチング素子のおけるPWM制御により実施
するが、エンジン始動モ−ドでのPWM制御に用いる搬
送波周波数はf1(ここでは3〜4kHz)とされ、車
載機器駆動モ−ドでのPWM制御に用いる搬送波周波数
はf2(ここでは13〜16kHz)とされる。
The microcomputer 21 executes the PWM control in each switching element of the inverter 1 in the engine start mode and the on-vehicle device driving mode, and is used for the PWM control in the engine start mode. The carrier frequency is f1 (here, 3 to 4 kHz), and the carrier frequency used for PWM control in the in-vehicle device driving mode is f2 (here, 13 to 16 kHz).

【0032】発電モ−ドは、車両用交流発電機2がバッ
テリ9を充電する動作モードであって、バッテリ電圧と
所定の基準電圧値とを比較し、比較結果に基づいてトラ
ンジスタ22を断続制御して界磁電流を調整し、バッテ
リ電圧を基準電圧値に収束させる。発電モ−ドでは、車
両用交流発電機2が発電した発電出力は、インバータ1
の各スイッチング素子と個別に逆並列接続された図示し
ないダイオードにより三相全波整流されてバッテリ9に
送られる。マイクロコンピュータ21はトランジスタ2
2を100%オンさせるが、回転数が高速となるにつれ
てトランジスタ22をPWM制御し、そのデューテイ比
を徐々に低下させて、車両用交流発電機2の発電電圧を
低下させることが好適である。
The power generation mode is an operation mode in which the vehicle alternator 2 charges the battery 9. The battery voltage is compared with a predetermined reference voltage value, and the transistor 22 is intermittently controlled based on the comparison result. To adjust the field current to converge the battery voltage to the reference voltage value. In the power generation mode, the power output generated by the vehicle alternator 2 is generated by the inverter 1.
Are subjected to three-phase full-wave rectification by diodes (not shown) individually and anti-parallel connected to the respective switching elements, and are sent to the battery 9. The microcomputer 21 is a transistor 2
2 is turned on 100%, but it is preferable that the transistor 22 is subjected to PWM control as the rotation speed increases, and the duty ratio thereof is gradually reduced to lower the generated voltage of the vehicle AC generator 2.

【0033】なお、この発電モードは、マイクロコンピ
ュータ21によるトランジスタ22の制御の代わりに周
知のオルタネータのレギュレータ回路を用いて実施可能
である。ただし、このレギュレータ回路を採用する場
合、このレギュレータ回路は、エンジン始動モ−ドにお
いてトランジスタ22を100%オンし、車載機器駆動
モ−ドにおいてトランジスタ22を100%オンする
か、又は、所定デューテイ比にてPWM制御される。
The power generation mode can be implemented by using a well-known alternator regulator circuit instead of controlling the transistor 22 by the microcomputer 21. However, when this regulator circuit is employed, this regulator circuit turns on the transistor 22 in the engine start mode by 100% and turns on the transistor 22 in the on-vehicle equipment driving mode by 100% or a predetermined duty ratio. Is subjected to PWM control.

【0034】(実施例の効果)通常用いるランデル型車
両用交流発電機2の機械共振周波数は、5KHz〜9K
Hzの範囲に存在する。そこで、この実施例ではエンジ
ン始動モ−ドのPWM搬送波周波数をこの機械共振周波
数範囲未満とし、車載機器駆動モ−ドでそれを超える範
囲に設定している。
(Effects of the Embodiment) The mechanical resonance frequency of the commonly used Landel type vehicle alternator 2 is 5 kHz to 9 kHz.
Hz range. Therefore, in this embodiment, the PWM carrier frequency in the engine start mode is set to be lower than the mechanical resonance frequency range, and set to a range exceeding the mechanical resonance frequency range in the in-vehicle device driving mode.

【0035】これにより、車両用交流発電機2の機械共
振を避けかつ、車載機器駆動モ−ドでの可聴騒音を低減
し、エンジン始動モ−ドでのインバータ1のスイッチン
グ素子の発熱低減を図ることができた。
Thus, mechanical resonance of the vehicle alternator 2 is avoided, audible noise is reduced in the on-vehicle equipment driving mode, and heat generation of the switching element of the inverter 1 in the engine starting mode is reduced. I was able to.

【0036】図3に、爪形磁極部数 個の市販の車両用
交流発電機の爪形磁極部の機械振動特性とインバータ1
の出力周波数との関係を示す。
FIG. 3 shows the mechanical vibration characteristics of the claw-shaped magnetic pole portion of the commercial AC generator for a vehicle having several claw-shaped magnetic pole portions and the inverter 1.
Shows the relationship with the output frequency.

【0037】(変形態様)この変形態様は、図2に示す
ステップS102とS104との間に、図4に示すステ
ップS110、S112、S114を追加したものであ
る。
(Modification) In this modification, steps S110, S112, and S114 shown in FIG. 4 are added between steps S102 and S104 shown in FIG.

【0038】ステップS110では電流センサ7から読
み込んだ電流iが所定しきい値ithを超える場合に、
ステップS112に進んで回転数が所定しきい値Nth
を超えるかどうかを調べて超えればS104に進み、そ
れ以外の条件ではS114に進んで、PWM搬送波周波
数を15kHzに固定してS114へ進む。なお、ステ
ップS110、S112のどちらかを省略してもよい。
このようにすれば、エンジン始動モ−ドの後期の電流減
少期間又は回転数増大期間における騒音をスイッチング
素子の過熱を抑止しつつ低減することができる。
In step S110, when the current i read from the current sensor 7 exceeds the predetermined threshold value ith,
Proceeding to step S112, the rotational speed is set to the predetermined threshold Nth.
The process proceeds to S104 if it is exceeded, otherwise proceeds to S114, fixes the PWM carrier frequency to 15 kHz, and proceeds to S114. Note that either step S110 or S112 may be omitted.
In this manner, noise during the latter period of the current reduction or the period of increase in the number of revolutions in the engine start mode can be reduced while suppressing overheating of the switching element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の車両用発電電動機制御装置のブロッ
ク回路図である。
FIG. 1 is a block circuit diagram of a vehicular generator motor control device according to a first embodiment.

【図2】図1のマイクロコンピュータの制御動作を示す
フローチャートである。
FIG. 2 is a flowchart showing a control operation of the microcomputer of FIG.

【図3】ランデル型車両用交流発電機の振動特性を示す
特性図である。
FIG. 3 is a characteristic diagram showing a vibration characteristic of a rundle type vehicle alternator.

【図4】変形実施態様を示すフローチャートである。FIG. 4 is a flowchart showing a modified embodiment.

【符号の説明】[Explanation of symbols]

1 インバータ 2 インバータ制御用のコントローラ(制御手段) 3 ランデル型の車両用交流電動発電機 4 クラッチ 5 エンジン 6 回転センサ 7 電流センサ 8 車両用電子制御装置(ECU) 9 車載のバッテリ DESCRIPTION OF SYMBOLS 1 Inverter 2 Controller (control means) for inverter control 3 Randell type vehicle AC motor generator 4 Clutch 5 Engine 6 Rotation sensor 7 Current sensor 8 Vehicle electronic control unit (ECU) 9 In-vehicle battery

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G093 AA07 BA32 CA01 DA12 DB01 DB19 EB08 EC02 FA14 5H007 AA01 AA03 BB06 CA01 CB05 CC03 DB01 EA14 5H115 PA05 PA08 PA15 PI21 PV09 PV23 QE01 QE12 QH03 QI04 RB22 TO02 TU05 5H590 AA06 CA07 CA23 CC01 CC18 CC24 CD01 CD03 CE05 EA01 EA10 FA01 FA08 FB02 FC12 FC17 FC22 GA09 GB05 HA04 HA27 JA02 JA19 JB15  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) CC18 CC24 CD01 CD03 CE05 EA01 EA10 FA01 FA08 FB02 FC12 FC17 FC22 GA09 GB05 HA04 HA27 JA02 JA19 JB15

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】エンジンと断続可能に動力授受するととも
に車載機器を駆動する交流電動発電機と、前記交流電動
発電機とバッテリとの間に配置されて直交双方向電力変
換を行うインバータと、前記インバータを制御する制御
手段とを備え、 前記制御手段は、 前記エンジンの始動時に前記交流電動発電機を前記エン
ジン始動用のモータとして作動させるエンジン始動モ−
ドと、 前記エンジンの始動完了後に前記交流電動発電機を発電
機として作動させる発電モ−ドと、 前記エンジンの停止時に前記エンジンと前記動力伝達手
段とを分離しかつ前記車載機器を駆動する車載機器駆動
モ−ドと、 を切り替える車両用発電電動機制御装置において、 前記制御手段は、前記車載機器駆動モ−ドにて前記イン
バータを第1のPWM搬送波周波数で駆動させ、かつ、
前記始動モ−ドにて前記インバータを前記第1のPWM
搬送波周波数より低周波数の第2のPWM搬送波周波数
で駆動することを特徴とする車両用交流電動発電機のイ
ンバータ制御装置。
An AC motor generator for intermittently transmitting and receiving power to and from an engine and for driving an on-vehicle device; an inverter disposed between the AC motor generator and a battery to perform orthogonal bidirectional power conversion; Control means for controlling an inverter, wherein the control means operates the AC motor generator as the motor for starting the engine when the engine is started.
A power generation mode for operating the AC motor generator as a generator after the start of the engine is completed, and a vehicle mounted for separating the engine and the power transmission means and driving the vehicle-mounted device when the engine is stopped. In a vehicle generator motor control device for switching between a device driving mode and a vehicle driving device, the control means drives the inverter at a first PWM carrier frequency in the vehicle driving device driving mode, and
In the start mode, the inverter is connected to the first PWM.
An inverter control device for an AC alternator for a vehicle, wherein the inverter is driven at a second PWM carrier frequency lower than the carrier frequency.
【請求項2】請求項1記載の車両用交流電動発電機のイ
ンバータ制御装置において、 前記第1のPWM搬送波周波数は、前記交流電動発電機
の所定の機械共振周波数値より高く設定され、前記第2
のPWM搬送波周波数は、前記所定の機械共振周波数値
より低く設定されることを特徴とする車両用交流電動発
電機のインバータ制御装置。
2. The inverter control device for an AC motor generator for a vehicle according to claim 1, wherein the first PWM carrier frequency is set higher than a predetermined mechanical resonance frequency value of the AC motor generator. 2
Wherein the PWM carrier frequency is set lower than the predetermined mechanical resonance frequency value.
【請求項3】請求項2記載の車両用交流電動発電機のイ
ンバータ制御装置において、 前記機械共振周波数値は、ランデル型の前記交流電動発
電機の回転子の爪形磁極部の機械共振周波数値からなる
ことを特徴とする車両用交流電動発電機のインバータ制
御装置。
3. The inverter control device for an AC motor generator for a vehicle according to claim 2, wherein the mechanical resonance frequency value is a mechanical resonance frequency value of a claw-shaped magnetic pole portion of a rotor of the rundle type AC motor generator. An inverter control device for an AC alternator for a vehicle, comprising:
【請求項4】請求項2又は3記載の車両用交流電動発電
機のインバータ制御装置において、 前記制御手段は、前記エンジンの回転数が前記エンジン
のアイドル回転数値より低い所定値を下回る場合でかつ
エンジン始動モ−ド時に前記PWM搬送波周波数を前記
第2の搬送波に設定することを特徴とする車両用交流電
動発電機のインバータ制御装置。
4. The inverter control device for an AC alternator for a vehicle according to claim 2, wherein said control means is adapted to control a case where the engine speed is lower than a predetermined value lower than an idle speed value of said engine. An inverter control device for an AC alternator for a vehicle, wherein the PWM carrier frequency is set to the second carrier wave in an engine start mode.
【請求項5】請求項2又は3記載の車両用交流電動発電
機のインバータ制御装置において、 前記制御手段は、前記交流電動発電機の電流が所定値以
上の場合でかつエンジン始動モ−ド時に前記PWM搬送
波周波数は前記前記第2の搬送波に設定することを特徴
とする車両用交流電動発電機のインバータ制御装置。
5. The inverter control device for an AC alternator for a vehicle according to claim 2 or 3, wherein said control means is provided when said current of said AC alternator is equal to or more than a predetermined value and in an engine start mode. The inverter control device for an AC motor generator for a vehicle, wherein the PWM carrier frequency is set to the second carrier wave.
JP2000343508A 2000-11-10 2000-11-10 Inverter control device for vehicle AC motor generator Expired - Fee Related JP4123706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000343508A JP4123706B2 (en) 2000-11-10 2000-11-10 Inverter control device for vehicle AC motor generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000343508A JP4123706B2 (en) 2000-11-10 2000-11-10 Inverter control device for vehicle AC motor generator

Publications (2)

Publication Number Publication Date
JP2002153096A true JP2002153096A (en) 2002-05-24
JP4123706B2 JP4123706B2 (en) 2008-07-23

Family

ID=18817866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000343508A Expired - Fee Related JP4123706B2 (en) 2000-11-10 2000-11-10 Inverter control device for vehicle AC motor generator

Country Status (1)

Country Link
JP (1) JP4123706B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538523B2 (en) 2006-04-12 2009-05-26 Mitsubishi Electric Corporation Control apparatus-integrated generator-motor
US7594491B2 (en) 2006-01-31 2009-09-29 Toyota Jidosha Kabushiki Kaisha Internal combustion engine start controller
EP2148429A1 (en) * 2008-07-25 2010-01-27 Honda Motor Co., Ltd. Inverter generator
JP2010057243A (en) * 2008-08-27 2010-03-11 Toyota Motor Corp Vehicle
US7762787B2 (en) 2004-02-26 2010-07-27 Honda Motor Co., Ltd. Engine driven working machine
CN102113204A (en) * 2009-04-13 2011-06-29 松下电器产业株式会社 Synchronous electric motor driving system
US20110172859A1 (en) * 2010-01-12 2011-07-14 Ford Global Technologies, Llc E-Drive PWM Frequency Strategy
RU2515474C2 (en) * 2011-05-17 2014-05-10 Хонда Мотор Ко., Лтд. Inverter generator
US9302668B2 (en) 2012-04-11 2016-04-05 Toyota Jidosha Kabushiki Kaisha Control device for vehicle
JP2016527436A (en) * 2013-08-01 2016-09-08 ヴァレオ エキプマン エレクトリク モトゥール Method and apparatus for controlling alternator / starter of automobile and corresponding alternator / starter
EP3758218A4 (en) * 2018-02-21 2021-11-10 Hitachi Astemo, Ltd. Motor control device and electric vehicle system using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101836596B1 (en) * 2016-01-25 2018-03-08 현대자동차주식회사 Inverter control method of eco-friendly vehicle for reducing noise
JP7019764B1 (en) * 2020-08-18 2022-02-15 三菱電機株式会社 AC rotary machine control device and electric vehicle

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7762787B2 (en) 2004-02-26 2010-07-27 Honda Motor Co., Ltd. Engine driven working machine
US7594491B2 (en) 2006-01-31 2009-09-29 Toyota Jidosha Kabushiki Kaisha Internal combustion engine start controller
US7538523B2 (en) 2006-04-12 2009-05-26 Mitsubishi Electric Corporation Control apparatus-integrated generator-motor
EP2148429A1 (en) * 2008-07-25 2010-01-27 Honda Motor Co., Ltd. Inverter generator
AU2009202714B2 (en) * 2008-07-25 2010-09-16 Honda Motor Co., Ltd. Inverter generator
JP2010057243A (en) * 2008-08-27 2010-03-11 Toyota Motor Corp Vehicle
JP4605274B2 (en) * 2008-08-27 2011-01-05 トヨタ自動車株式会社 vehicle
US7923961B2 (en) 2008-08-27 2011-04-12 Toyota Jidosha Kabushiki Kaisha Vehicle equipped with motor and inverter
CN102113204A (en) * 2009-04-13 2011-06-29 松下电器产业株式会社 Synchronous electric motor driving system
US8405341B2 (en) 2009-04-13 2013-03-26 Panasonic Corporation Synchronous electric motor system
US20110172859A1 (en) * 2010-01-12 2011-07-14 Ford Global Technologies, Llc E-Drive PWM Frequency Strategy
US8649923B2 (en) * 2010-01-12 2014-02-11 Ford Global Technologies, Llc E-drive PWM frequency strategy
RU2515474C2 (en) * 2011-05-17 2014-05-10 Хонда Мотор Ко., Лтд. Inverter generator
US9302668B2 (en) 2012-04-11 2016-04-05 Toyota Jidosha Kabushiki Kaisha Control device for vehicle
JP2016527436A (en) * 2013-08-01 2016-09-08 ヴァレオ エキプマン エレクトリク モトゥール Method and apparatus for controlling alternator / starter of automobile and corresponding alternator / starter
EP3758218A4 (en) * 2018-02-21 2021-11-10 Hitachi Astemo, Ltd. Motor control device and electric vehicle system using same
US11558000B2 (en) 2018-02-21 2023-01-17 Hitachi Astemo, Ltd. Motor control device and electric vehicle system using the same

Also Published As

Publication number Publication date
JP4123706B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
JP4116292B2 (en) Electric power generation system for hybrid vehicles
JP4622758B2 (en) Voltage control device for vehicle
JP3797972B2 (en) Generator motor system for vehicles
JP4196953B2 (en) Vehicle power generation control device and power generation state detection method
US7081738B2 (en) Generating device having magneto generator
CN111108681B (en) Inverter control device
US7135784B2 (en) Fast torque control of a belted alternator starter
JP4123706B2 (en) Inverter control device for vehicle AC motor generator
EP1503074A1 (en) Drive circuit for rotating electric device and electrical unit for vehicle
JP3770220B2 (en) Hybrid motorcycle and power transmission device for hybrid motorcycle
JP5966946B2 (en) Vehicle power generation control device
US6304056B1 (en) Pulsed charge power delivery circuit for a vehicle having a combined starter/alternator
JP4655431B2 (en) Generator motor device for vehicle
US20240022200A1 (en) Pulsed electric machine control with soft start and end
US20240022199A1 (en) Pulsed electric machine control with soft start and end
JP2004320861A (en) Controller for three-phase motor-generator for vehicle
WO2018131568A1 (en) Control device for power conversion circuit and rotary electric machine unit
JP2002142497A (en) Power generation controller for vehicle
JP3146743B2 (en) Retarder device
JP4534114B2 (en) Rotating electrical machine for vehicle
JP2007189772A (en) Drive control system of motor generator for vehicle
JP3928835B2 (en) Generator motor for hybrid vehicles
JP3018503B2 (en) Power supply for vehicles
JP2002218797A (en) Engine-driven generator
JP3064787B2 (en) Retarder device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4123706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees