JP2002152108A - Method and device for mobile communication - Google Patents

Method and device for mobile communication

Info

Publication number
JP2002152108A
JP2002152108A JP2000341888A JP2000341888A JP2002152108A JP 2002152108 A JP2002152108 A JP 2002152108A JP 2000341888 A JP2000341888 A JP 2000341888A JP 2000341888 A JP2000341888 A JP 2000341888A JP 2002152108 A JP2002152108 A JP 2002152108A
Authority
JP
Japan
Prior art keywords
base station
mobile
mobile station
station
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000341888A
Other languages
Japanese (ja)
Other versions
JP3975054B2 (en
Inventor
Koichi Tsunekawa
光一 常川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2000341888A priority Critical patent/JP3975054B2/en
Publication of JP2002152108A publication Critical patent/JP2002152108A/en
Application granted granted Critical
Publication of JP3975054B2 publication Critical patent/JP3975054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable high-speed down transmission by controlling a base station transmitting pattern with a little up information from a mobile station. SOLUTION: In each of base stations BS1, BS2 and BS3, the thin multibeam of beam width for about several frequency, for example, is radiated, a base station number BSi thereof and a beam number #j are added to the transmitting information of each of beams, the mobile station detects a receiving level for each of beams from the respective base stations, prepares a level table LT2, in which beam numbers are located in order from the highest receiving level of >= threshold SL, for each base station and transmits it to the correspondent base station and in each of base stations, the interference degree of respective beams in the present station is obtained from the level table from each of mobile stations. Then, the beam number of the least quantity of interference of >= SL is assigned to each of mobile stations and the beam number and an interference number Iv are transmitted to the mobile station. While using the beam number received from each of base stations and the beam of a little Iv in the Iv, the mobile station performs communication with that base station.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は基地局にマルチビ
ーム放射パターンを形成し、そのビームごとに異なる移
動局との通信に用いかつその用いるビームをアダプティ
ブに変更する移動通信方法、その装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mobile communication method and apparatus for forming a multi-beam radiation pattern in a base station, using the beam for communication with different mobile stations, and adaptively changing the used beam. It is.

【0002】[0002]

【従来の技術】図13に従来の放射パターン形状を時間
的に変化させて通信を行う移動通信システムを示す。こ
こで、基地局BS1,BS2,BS3が存在し、移動局
MS1は基地局BS1、移動局MS2は基地局BS2と
通信している場合である。基地局から移動局への信号伝
送(下り伝送)時において、電波放射パターン形状を時
間的に変化させて行うためにアダプティブアンテナを用
いた場合である。基地局BS1のアンテナの送信パター
ンPB1は、通信状態にある移動局MS1へは最大レベ
ルを向け、他移動局MS2には干渉を与えないようにヌ
ルまたは低いレベルを向ける。基地局BS2のアンテナ
の送信パターンPB2も移動局MS2に対し同様な関係
とする。一方、下り伝送において移動局MS1の受信パ
ターンPM1は、各基地局BS1〜BS3からの電波の
うち、通信状態にある基地局BS1の電波の到来方向に
最大レベルを向け、その他の基地局BS2,BS3から
の電波にはヌルまたは低いレベルを向ける。
2. Description of the Related Art FIG. 13 shows a conventional mobile communication system for performing communication by changing the radiation pattern shape with time. Here, base stations BS1, BS2, and BS3 are present, and mobile station MS1 is communicating with base station BS1, and mobile station MS2 is communicating with base station BS2. This is a case in which an adaptive antenna is used to change the shape of a radio wave radiation pattern over time during signal transmission (downlink transmission) from a base station to a mobile station. The transmission pattern PB1 of the antenna of the base station BS1 points the maximum level to the mobile station MS1 in a communication state, and points the null or low level so as not to interfere with the other mobile station MS2. The transmission pattern PB2 of the antenna of the base station BS2 has a similar relationship to the mobile station MS2. On the other hand, in the downlink transmission, the reception pattern PM1 of the mobile station MS1 has the maximum level of the radio wave from each of the base stations BS1 to BS3 directed to the arrival direction of the radio wave of the base station BS1 in the communication state, and the other base stations BS2 A null or low level is directed to the radio wave from BS3.

【0003】この場合、基地局の最適送信パターンと移
動局の最適受信パターンを作るためには、基地局BS1
(BS2)が周辺全ての通信状態にあるまたは通信に入
ろうとする移動局MS1,MS2の受信レベル情報やS
IR(信号対干渉比)を知る必要がある。
In this case, in order to create an optimum transmission pattern of the base station and an optimum reception pattern of the mobile station, the base station BS1
(BS2) is in the communication state of all the surroundings or receiving level information or S of mobile stations MS1 and MS2 trying to enter communication.
It is necessary to know the IR (signal to interference ratio).

【0004】[0004]

【発明が解決しようとする課題】このため、基地局では
膨大な量の情報を刻々と移動局から得る必要があり、制
御が膨大なものになってしまい、本来の情報伝送の伝送
容量が制限されたり、制御信号用に別チャネルが必要に
なるなどの欠点が生じ、アダプティブアンテナを導入し
たにもかかわらず、周波数有効利用が出来ないという状
態となる。この発明の目的は移動局から基地局への上り
伝送情報は少なく、しかも適切な基地局送信パターンの
形成を可能とし、基地局から移動局への高速な下り伝送
が出来るアダプティブアンテナを用いた移動通信方法と
その装置を提供することにある。
Therefore, it is necessary for the base station to obtain an enormous amount of information from the mobile station every moment, so that the control becomes enormous and the transmission capacity of the original information transmission is limited. And the need for a separate channel for control signals arises. As a result, even though an adaptive antenna is introduced, the frequency cannot be effectively used. SUMMARY OF THE INVENTION It is an object of the present invention to provide a mobile station using an adaptive antenna, which has a small amount of uplink transmission information from a mobile station to a base station and can form an appropriate base station transmission pattern and can perform high-speed downlink transmission from the base station to the mobile station. It is an object of the present invention to provide a communication method and an apparatus therefor.

【0005】[0005]

【課題を解決するための手段】この発明の1実施形態に
よれば、基地局はマルチビーム放射パターンを形成し、
その各ビームごとに、そのビーム識別信号を、伝送情報
に含め、移動局は受信した各ビーム識別信号を、そのビ
ーム受信時の信号品質の良いものの順に並べた信号品質
表を周辺の各基地局ごとに作って送信し、各基地局は各
移動局から受信した信号品質表に基づき、移動局ごとに
通信に用いるビームを割当てその識別信号を移動局へ送
信し、移動局は各基地局から割当ビームから通信に用い
る基地局を決定し、その基地局とその割当ビームを用い
て通信を行う。
According to one embodiment of the present invention, a base station forms a multi-beam radiation pattern;
For each of the beams, the beam identification signal is included in the transmission information, and the mobile station displays a signal quality table in which the received beam identification signals are arranged in descending order of the signal quality at the time of receiving the beam. Each base station allocates a beam to be used for communication for each mobile station based on the signal quality table received from each mobile station, and transmits an identification signal to the mobile station. A base station used for communication is determined from the allocated beam, and communication is performed with the base station using the allocated beam.

【0006】[0006]

【発明の実施の形態】図1を参照してこの発明の実施形
態の概要を説明する。基地局BS1,BS2,BS3は
それぞれマルチビームアンテナによりマルチビーム放射
パターンMBPを形成し、ビームごとに異なる通信を可
能とする。この例では各マルチビーム放射パターン(以
下単にマルチビームと記す)MBPはそれぞれビーム量
が#1〜#NのN個のビームを形成している。移動局は
近い基地局のその移動局の方向に向いているビームを用
いてその基地局と通信をする。従って基地局での放射パ
ターンの制御の自由度が限定されているため、基地局か
ら移動局への下り伝送のために基地局で放射パターン制
御に必要とする、移動局からの情報は非常に少なくて済
む。従来は、所望移動局の正確な方向へパターン最大値
を向け、その他干渉となる移動局にはヌルを向ける放射
パターン制御操作が必要なため、その制御操作に非常に
多くのパラメータを特定しなくてはならず、周辺全移動
局から膨大な情報を基地局へ伝送する必要があった。し
かし、このマルチビームのビームごとの通信によればN
個ビーム中から、通信を行っている移動局の方向に最も
近い方向のビームを選択するか、移動局の方向に近い方
向の2ビームを用いて合成するのみで良い。さらに大き
な干渉移動局がある場合にはその方向のビームの放射を
停止するのみで良い。このことから、通信を行う、また
は行っている移動局のみの情報、または数台以下の干渉
移動局の情報を得るだけで良く、大変少ない移動局の情
報のみで基地局送信パターンの制御が出来る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The outline of an embodiment of the present invention will be described with reference to FIG. The base stations BS1, BS2, and BS3 each form a multi-beam radiation pattern MBP using a multi-beam antenna, and enable different communication for each beam. In this example, each multi-beam radiation pattern (hereinafter simply referred to as multi-beam) MBP forms N beams with beam amounts # 1 to #N. A mobile station communicates with a nearby base station using a beam pointing in the direction of the mobile station. Therefore, since the degree of freedom in controlling the radiation pattern at the base station is limited, the information from the mobile station required for the radiation pattern control at the base station for downlink transmission from the base station to the mobile station is very small. Less is needed. Conventionally, a radiation pattern control operation that directs the pattern maximum value in the exact direction of the desired mobile station and directs null to other interference-producing mobile stations is required, so that it is not necessary to specify a large number of parameters in the control operation. It was necessary to transmit a huge amount of information from all the mobile stations in the vicinity to the base station. However, according to this multi-beam communication for each beam, N
From the individual beams, it is only necessary to select the beam in the direction closest to the direction of the mobile station that is communicating, or to combine the two beams in the direction close to the direction of the mobile station. If there is a larger interfering mobile station, it is only necessary to stop emitting the beam in that direction. From this, it is only necessary to obtain information on only the mobile stations that are performing or performing communication or information on several or less interfering mobile stations, and it is possible to control the base station transmission pattern with only a very small amount of information on mobile stations. .

【0007】この場合の放射パターン成形の様子を図2
に示した。ここで、(a)は従来のピークとヌルを制御
するもの、(b)はこの発明に用いるマルチビームアン
テナでピークのみを制御する(切り替える)ものであ
る。既に述べたように(a)では、所望移動局MSと干
渉移動局I1 ,I2 ,I3 を識別し、移動局MSの方向
にピークを、干渉移動局I1 ,I2 ,I3の各方向にヌ
ルをそれぞれ向ける。一方、マルチビームの(b)では
所望移動局MSの方向に向いたビームを選択するのみ
で、干渉移動局I1 ,I2 ,I3 の各方向は特定しない
ため、ビームを高い利得として、非常に鋭いビームを作
るとともに、ビーム方向以外に余計な放射を行わないよ
うにサイドローブを低く押さえる必要がある。このこと
は、将来予想されるマイクロ波などの高い周波数帯を用
いた移動通信システムでは比較的容易に実現できる。以
下に説明する。
FIG. 2 shows how the radiation pattern is formed in this case.
It was shown to. Here, (a) controls the conventional peak and null, and (b) controls (switches) only the peak with the multi-beam antenna used in the present invention. As described above, in (a), the desired mobile station MS and the interfering mobile stations I 1 , I 2 , and I 3 are identified, the peak is directed in the direction of the mobile station MS, and the interfering mobile stations I 1 , I 2 , and I 3 are set. Turn the null in each direction. On the other hand, in (b) of the multi-beam, only the beam directed to the desired mobile station MS is selected, and the respective directions of the interfering mobile stations I 1 , I 2 and I 3 are not specified. It is necessary to make a very sharp beam and keep the side lobe low so as not to emit extra radiation except in the beam direction. This can be realized relatively easily in a mobile communication system using a high frequency band such as a microwave expected in the future. This will be described below.

【0008】アンテナの大きさとビーム幅の関係は以下
の式で表される。またこの結果を図3(a)に示す。 G=4π・Ae/λ2 ここで、Gはアンテナ利得、Aeはアンテナ実効開口面
積、λは波長である。また利得とビーム幅の関係は以下
で表される。 G=4π/(θHP・φHP)≒41000/(θ゜HP・φ
HP) ここで、θHP、φHPは垂直面内、水平面内の各ビーム半
値角(ラジアン)であり、θ゜HP、φ゜HPは角度を単位
としたものである。図3(a)の横軸の辺、その長さ
W、H(x)は開口アンテナで効率100%の場合図3
(b)に示すように開口面積H×Wを表わすH,Wであ
り、アレイアンテナで素子利得0dBi、給電損失0d
Bの場合、図3(c)に示すようにアレイ面積H×Wを
表わすH,Wである。
[0008] The relationship between the size of the antenna and the beam width is expressed by the following equation. FIG. 3A shows the result. G = 4π · Ae / λ 2 where G is the antenna gain, Ae is the effective aperture area of the antenna, and λ is the wavelength. The relationship between the gain and the beam width is expressed as follows. G = 4π / (θ HP · φ HP) ≒ 41000 / (θ ° HP · φ
HP ) Here, θ HP and φ HP are the half-value angles (radians) of the respective beams in the vertical plane and the horizontal plane, and θ ゜HP and φ ゜HP are in units of angles. The side of the horizontal axis in FIG. 3A and the lengths W and H (x) are aperture antennas with an efficiency of 100%.
As shown in (b), H and W represent the opening area H × W, and the element gain is 0 dBi and the feed loss is 0 d in the array antenna.
In the case of B, H and W represent the array area H × W as shown in FIG.

【0009】図3(a)から明らかなように、アンテナ
の大きさが大きくなるとビーム幅が小さくなることがわ
かる。図3(a)はアンテナ効率を含まない値、つまり
アンテナ効率を100%とした値である。ここで、ビー
ム幅が数十度(30〜120度)程度である場合、アン
テナ効率が可成り悪いとしてもアンテナ一辺の長さは1
0波長程度で良く、現行移動通信システムの波長約30
cmでは3×3mのアンテナで実現できる。この場合は
ビーム幅が広すぎるため、この発明で行うマルチビーム
化を行っても、所望移動局方向のみならず広いエリアを
照射してしまうため、セクタアンテナ的な効果に留ま
り、アダプティブアンテナ的な効果はあまり無い。一
方、この発明において高い効果を得るにはマルチビーム
の1つのビームの幅が数度にする必要がある。そこで、
ビーム幅を数度程度とした場合、アンテナ一辺の長さは
数十波長程度となり現行移動通信システムでは大きなア
ンテナとなる。しかし、将来においてさらに高い周波数
が移動通信方式に割当てられる可能性があり、10GH
zのシステムとすると、ほぼ現行と同程度のアンテナの
大きさで済む。この場合、ビーム幅が数度であることか
ら利得が非常に高く、所望の移動局に強い放射を行える
と共に、ほぼ全てのエネルギーをビームに集中させるた
め、ビーム方向以外は基本的に既にエネルギーが少なく
なりサイドローブを低く押さえることが可能である。従
って、将来予想されるマイクロ波などの高い周波数帯を
用いた移動通信システムでは比較的容易に、かつアンテ
ナを大型化せずに実現できる。
As apparent from FIG. 3A, it is understood that the beam width decreases as the size of the antenna increases. FIG. 3A shows a value not including the antenna efficiency, that is, a value when the antenna efficiency is 100%. Here, when the beam width is about several tens degrees (30 to 120 degrees), the length of one side of the antenna is 1 even if the antenna efficiency is considerably low.
The wavelength may be about 0 wavelength, and about 30 wavelength of the current mobile communication system.
cm, it can be realized with a 3 × 3 m antenna. In this case, since the beam width is too wide, even if the multi-beam conversion according to the present invention is performed, not only the desired mobile station direction but also a wide area is illuminated. Not very effective. On the other hand, in order to obtain a high effect in the present invention, the width of one beam of the multi-beam needs to be several degrees. Therefore,
When the beam width is set to about several degrees, the length of one side of the antenna becomes about several tens of wavelengths, which is a large antenna in the current mobile communication system. However, higher frequencies may be allocated to mobile communication systems in the future, and 10 GHz
In the case of the z system, the antenna size is almost the same as that of the current system. In this case, the gain is very high because the beam width is several degrees, and strong radiation can be performed to a desired mobile station. In addition, since almost all energy is concentrated on the beam, the energy is basically already provided except for the beam direction. As a result, the side lobe can be kept low. Therefore, a mobile communication system using a high frequency band such as a microwave expected in the future can be realized relatively easily and without increasing the size of the antenna.

【0010】従って、この実施形態では、基地局アンテ
ナにビーム幅数度程度のマルチビームアンテナを用い、
しかも移動局から基地局への上り伝送情報が少なくても
適切な基地局ビームを得て、基地局から移動局への高速
な下り情報伝送を可能とする。さらに本発明は将来予想
されるマイクロ波帯域を用いた移動通信システムではア
ンテナを現行システム程度の大きさに押させることが出
来ることから、さらに高い効果がある。
Therefore, in this embodiment, a multi-beam antenna having a beam width of about several degrees is used as a base station antenna.
Moreover, even if there is little upstream transmission information from the mobile station to the base station, an appropriate base station beam is obtained, and high-speed downlink information transmission from the base station to the mobile station is enabled. Further, the present invention has a further higher effect since the antenna can be pushed to the size of the current system in the mobile communication system using the microwave band expected in the future.

【0011】以下にこのマルチビームの適切な制御に必
要とする移動局から基地局への上り伝送情報の具体例
と、通信に用いる基地局のビームの決定法の例を述べ
る。つまりこの例は簡単な表の情報を移動局から基地局
に送信することで複数移動局、複数基地局で構成される
移動通信システム全体のパターン制御が可能であること
を示す。またこの例では移動局に任意のパターン成形が
可能な従来のアダプティブアンテナを用いた場合であ
る。図4に示すように基地局BS1,BS2,BS3に
はそれぞれマルチビームアンテナが設けられ、それぞれ
ビーム#1〜#Nを形成することができる。このビーム
数は基地局によって異なっていてもよい。移動局MS
1,MS2はそれぞれアダプティブアンテナを備えてい
る。各基地局BS1〜BS3の各ビームから例えば図5
に示すようにその送信された基地局番号BSi(i=
1,2,…)と基地局の何番ビームであるかを示す情
報、つまりビーム番号#j(j=1,2,…,N)がパ
イロット信号としてヘッダに付けた信号が伝送されてい
る。各移動局MS1,MS2は例えば図6に示す信号品
質テーブル(表)を作って移動局から送信する。この実
施形態では受信レベルの高さを尺度として信号品質テー
ブルを作成した例であるので、レベルテーブルと呼ぶ。
移動局はこのレベルテーブルを作成する場合、アダプテ
ィブ動作を解除し、アンテナ放射パターンをなるべく無
指向性に近い放射パターンとする。移動局で作成するレ
ベルテーブルは、各基地局BS1,BS2,…ごとにそ
の各ビームの受信レベルの強さ順に並べてあり、所望の
信号伝送の出来る限界点すなわちSL(スレッショルド
レベルしきい値)の点が明示されている。図6の例では
移動局MS1で作られたレベルテーブルである基地局番
号BS1からのビーム番号#3,#2,#10,…の順
に受信レベルが高く、かつ#XまでがSL以上であり同
様に他の基地局BS2,BS3,…についても受信レベ
ルの高い順にビーム番号を配列したレベルテーブルを作
る。
A specific example of uplink transmission information from the mobile station to the base station required for appropriate control of the multi-beam and an example of a method of determining a base station beam used for communication will be described below. That is, this example shows that the pattern control of the entire mobile communication system including a plurality of mobile stations and a plurality of base stations can be performed by transmitting the information in the simple table from the mobile station to the base station. Also, in this example, a conventional adaptive antenna capable of forming an arbitrary pattern is used for a mobile station. As shown in FIG. 4, each of the base stations BS1, BS2, and BS3 is provided with a multi-beam antenna, and can form beams # 1 to #N, respectively. This number of beams may vary from base station to base station. Mobile station MS
1 and MS2 each have an adaptive antenna. From each beam of each base station BS1 to BS3, for example, FIG.
, The transmitted base station number BSi (i =
,...) And information indicating the number of the beam of the base station, that is, a signal in which a header is assigned as a pilot signal with beam number #j (j = 1, 2,..., N) is transmitted. . Each of the mobile stations MS1 and MS2 creates a signal quality table shown in FIG. 6, for example, and transmits the table from the mobile station. This embodiment is an example in which the signal quality table is created using the level of the reception level as a measure, and is therefore called a level table.
When the mobile station creates this level table, it cancels the adaptive operation and sets the antenna radiation pattern to a radiation pattern as close as possible to non-directionality. The level table created by the mobile station is arranged for each base station BS1, BS2,... In order of the intensity of the reception level of each beam, and the limit point of the desired signal transmission, that is, the SL (threshold level threshold). Points are specified. In the example of FIG. 6, the reception levels are higher in the order of beam numbers # 3, # 2, # 10,... From the base station number BS1, which is a level table created by the mobile station MS1, and up to #X is SL or higher. Similarly, for the other base stations BS2, BS3,..., A level table in which the beam numbers are arranged in descending order of the reception level is created.

【0012】この例では全移動局は受信可能な全基地
局、全ビームについて、このような表を作る。各移動局
ではそのレベルテーブル中の各基地局BSiごとの全ビ
ームの平均受信レベルを求め、その平均受信レベルが高
い上位m基地局分のレベルテーブルLTk(k=1,
2,…)をその各m基地局へ送信する。ここで、mはパ
ラメータであり、システム設計値により、または基地
局、移動局の環境などから決める。このmの選定基準
は、自移動局の電波で干渉が問題となると思われる基地
局には全て送信するようにする。
In this example, all mobile stations make such a table for all receivable base stations and all beams. Each mobile station obtains an average reception level of all the beams for each base station BSi in the level table, and obtains a level table LTk (k = 1, k) for the upper m base stations having a higher average reception level.
,...) To each of the m base stations. Here, m is a parameter, which is determined by a system design value or the environment of a base station or a mobile station. The criterion for selecting m is to transmit all the signals to base stations in which interference is considered to be a problem in the radio waves of the own mobile station.

【0013】各基地局BSiは受信した各移動局MSk
からのレベルテーブルLTkを以下のように処理する。
つまり図7(a)に示すような基地局内のレベルテーブ
ルと図7(b)に示すような干渉テーブルとを作成す
る。つまり基地局BSiのレベルテーブルは各移動局M
S1,MS2,…から送られた自分の局のビーム番号が
受信レベル順に並んだ各レベルテーブルの配列である。
図7(a)中空白はビーム番号を記入していないだけで
受信ビームがあるが、「−」はビームが受信できなかっ
たことを示す。従って、基地局BS1のレベルテーブル
中の移動局MS1からのものは、図6に示した中のMS
1に対するものと同一となる。また例えばビーム#Xの
干渉量Ivを次のように定義する。即ちビーム#Xは移
動局MS1,MS4,MSn ,MSn+2 で受信されてお
り、それぞれにおける#XとSL(スレッショルドレベ
ル)との間のテーブルとの距離は、移動局MS1では#
Xは4番目であり、SLは4番目であるからその間の距
離Px1=4−4=0であり、移動局MS4では#Xは3
番目、SLは5番目であるから、この間の距離Px4=5
−3=2であり、同様に移動局MSn ではPxn=5−4
=1、移動局MSn+2ではPxn+2=4−2=2である。
これらの距離を全て足した値5(=Px1+Px4+Pxn
xn+2=0+2+1+2)がビーム#Xの干渉量Ivと
する。
Each base station BSi receives each mobile station MSk
Is processed as follows.
That is, a level table in the base station as shown in FIG. 7A and an interference table as shown in FIG. 7B are created. That is, the level table of the base station BSi is
It is an array of each level table in which the beam numbers of the own station transmitted from S1, MS2,... Are arranged in order of the reception level.
In FIG. 7A, a blank indicates that there is a received beam only by not entering a beam number, but "-" indicates that the beam could not be received. Therefore, those from the mobile station MS1 in the level table of the base station BS1 correspond to those in the level table shown in FIG.
Same as for 1. Further, for example, the interference amount Iv of the beam #X is defined as follows. That beam #X is received at the mobile station MS1, MS4, MS n, MS n + 2, the distance between the table between #X and the SL (threshold level) in each, the mobile station MS1 #
Since X is the fourth and SL is the fourth, the distance between them is P x1 = 4-4 = 0, and #X is 3 in the mobile station MS4.
And SL is the fifth, so the distance P x4 = 5 between them
-3 = 2, and P xn = 5-4 for the mobile station MSn.
= 1, and P xn + 2 = 4-2 = 2 for the mobile station MS n + 2 .
The value 5 (= P x1 + P x4 + P xn +
P xn + 2 = 0 + 2 + 1 + 2) is the interference amount Iv of the beam #X.

【0014】基地局BS1における各ビーム#1〜#N
についてこの干渉量Ivを求めて図7(b)に示す干渉
テーブルを作る。次に移動局に対するビームの割当て法
を示す。例えば、移動局MS1に対するビームを決める
には、図7(a)のレベルテーブル中の移動局MS1の
レベルテーブルにおいてSL(スレッショルドレベル)
以上のビームで、図7(b)の干渉テーブルから見た干
渉量Ivが最も少ないビームを選択する。この例ではM
S1からのレベルテーブル中の#3,#2,#1,#X
のビームがSL(スレッショルドレベル)以上のビーム
であり、これら各ビームの干渉量は図7(b)の干渉テ
ーブルより、#3=8、#2=3、#1=12、#X=
5である。そこでこれらのうち、最も干渉量Ivの少な
いビームは#2であるから、#2のビームを移動局MS
1との通信に割当てる。この操作を全移動局について行
う。そして、各移動局に割当ビーム番号とその干渉量I
vをビーム指定信号として送信する。
Each of beams # 1 to #N at base station BS1
Then, the interference amount Iv is obtained to create an interference table shown in FIG. Next, a method of allocating beams to mobile stations will be described. For example, in order to determine a beam for the mobile station MS1, SL (threshold level) in the level table of the mobile station MS1 in the level table of FIG.
Among the above beams, a beam having the least amount of interference Iv viewed from the interference table of FIG. 7B is selected. In this example, M
# 3, # 2, # 1, #X in the level table from S1
Are beams of SL (threshold level) or higher, and the interference amounts of these beams are obtained from the interference table of FIG.
5 Therefore, among these, the beam with the least amount of interference Iv is # 2, so the beam of # 2 is assigned to the mobile station MS.
Assigned to communication with 1. This operation is performed for all mobile stations. Each mobile station is assigned an assigned beam number and its interference amount I.
v is transmitted as a beam designation signal.

【0015】移動局では各m個の基地局から受信した割
当ビームとその干渉量Ivの情報から、通信を行う基地
局を決定する。ここでは、各基地局が指定した割当ビー
ムの干渉量Ivが最も少ない基地局と通信を行う。ただ
し、システム設計法によるがハンドオーバを行う場合、
すなわちSL(スレッショルドレベル)付近で2基地局
からの受信レベルが近づいている場合、同時に2つの基
地局との通信を行うこともある。このようにして通信す
るべき基地局とビームが決定される。そして、このビー
ムについて移動局側のアダプティブアンテナが動作し、
最適な移動局側のパターンが決定される。
The mobile station determines a base station for communication based on information on the allocated beams received from each of the m base stations and the amount of interference Iv. Here, communication is performed with the base station having the smallest interference amount Iv of the assigned beam specified by each base station. However, when handover is performed according to the system design method,
That is, when the reception levels from the two base stations are approaching near the SL (threshold level), communication with the two base stations may be performed at the same time. In this way, the base station to communicate with and the beam are determined. Then, the mobile station side adaptive antenna operates for this beam,
An optimal mobile station pattern is determined.

【0016】以上の動作の流れについて移動局側を図8
に、基地局側を図9にそれぞれ示す。つまり各移動局に
おいては基地局からの制御チャネルを受信し待機状態で
あり(S1)、通信が開始されるようになると(S
2)、アンテナパターンを初期化、つまり無指向性状態
とし(S3)、周辺の各基地局の各ビームを受信し(S
4)、各基地局ごとのレベルテーブルを作成し(S
5)、基地局ごとの全ビームの平均受信レベルを計算し
(S6)、その平均レベルの上位m局のレベルテーブル
を送信する(S7)。そのm個の各基地局から割当ビー
ムとその干渉量、つまりビーム指定信号を受信すると
(S8)、これらビーム指定信号中の干渉量が最も少な
い基地局を決定し、その基地局の割当ビームを通信用と
し(S9)、その基地局ビームに対する受信信号のSI
NR(信号対干渉比)が最大になるように適応アルゴリ
ズムを動作させ(S10)、これに応じてアンテナパタ
ーンを成形し(S11)、通信を行う。通信が終了しな
ければ(S12)、ステップS4に戻り同様の処理を繰
り返し行い移動局で成形したパターンが適性であったか
の確認を行うと共に移動局の移動があっても常に好まし
い基地局のビームの選択と移動局の受信パターンが決定
・更新される。なお図に示していないが通信中に通信レ
ベルが著しく低下したらステップS3に戻って、好まし
い基地局とそのビームを決定するようにしてもよい。通
信が終了したら(S12)、ステップS1に戻る。
The above operation flow is shown in FIG.
FIG. 9 shows the base station side. That is, each mobile station receives a control channel from the base station and is in a standby state (S1), and when communication starts (S1).
2) Initialize the antenna pattern, that is, make it omnidirectional (S3), and receive each beam of each of the surrounding base stations (S3).
4), create a level table for each base station (S
5) The average reception level of all beams for each base station is calculated (S6), and the level table of the m stations with the highest average level is transmitted (S7). Upon receiving an allocated beam and its interference amount, that is, a beam designation signal from each of the m base stations (S8), a base station having the least amount of interference in these beam designation signals is determined, and the allocated beam of the base station is determined. For communication (S9), the SI of the received signal for that base station beam
The adaptive algorithm is operated so that NR (signal-to-interference ratio) is maximized (S10), and an antenna pattern is shaped (S11) according to the operation, and communication is performed. If the communication is not completed (S12), the flow returns to step S4 to repeat the same processing to check whether the pattern formed by the mobile station is appropriate, and to always check the beam of the preferred base station even if the mobile station moves. The selection and the reception pattern of the mobile station are determined and updated. Although not shown, if the communication level is significantly reduced during communication, the process may return to step S3 to determine a preferable base station and its beam. When the communication is completed (S12), the process returns to step S1.

【0017】各基地局においては図9に示すように、通
信要求のあった移動局からのレベルテーブルを受信する
と、それを基地局レベルテーブル記憶部に記憶し(s
1)、その記憶されている基地局レベルテーブルを用い
て干渉テーブルを作成し(s2)、通信要求のあった移
動局から受信したレベルテーブルと干渉テーブルを参照
してその移動局に対する割当ビーム番号を決定し(s
3)、要求のあった移動局に対し、その基地局番号と割
当ビーム番号のビーム指示信号を送信する(s4)。
As shown in FIG. 9, when each base station receives a level table from a mobile station that has made a communication request, it stores it in the base station level table storage unit (s).
1) Create an interference table using the stored base station level table (s2), and refer to the level table and the interference table received from the mobile station that has made the communication request, and assign an assigned beam number to the mobile station. Is determined (s
3) A beam indication signal of the base station number and the assigned beam number is transmitted to the requesting mobile station (s4).

【0018】基地局における装置の構成例を図10に示
す。複数アンテナ素子21よりなるアレーアンテナが設
けられ、各アンテナ素子21にそれぞれサーキュレータ
22を介して低雑音増幅器、ダウンコンバータなどより
なる受信部23と、アップコンバータ、電力増幅器など
よりなる送信部24とがそれぞれ接続されている。各受
信部23の出力はAD変換器25によりデジタル信号に
変換されて、N個の受信アダプティブパターン制御装置
26に供給され、N個の受信アダプティブパターン制御
装置26の出力はn個の信号処理制御化部27の何れか
に切替部28を介して選択的に供給される。n個の信号
処理制御復号部27よりの各チャネルの復号信号が出力
端子29にそれぞれ出力される。
FIG. 10 shows an example of the configuration of a device in a base station. An array antenna including a plurality of antenna elements 21 is provided. Each antenna element 21 includes a receiving unit 23 including a low noise amplifier and a down converter via a circulator 22, and a transmitting unit 24 including an up converter and a power amplifier. Each is connected. The output of each receiving unit 23 is converted into a digital signal by an AD converter 25 and supplied to N receiving adaptive pattern control devices 26. The output of the N receiving adaptive pattern control devices 26 is n signal processing control devices. And is selectively supplied to any of the conversion units 27 via the switching unit 28. The decoded signals of each channel from the n signal processing control decoding units 27 are output to output terminals 29, respectively.

【0019】一方、n個の各チャネルの入力端子31よ
りの送信されるべき信号はn個の信号処理制御符号化部
32でそれぞれ符号化されかつ中間周波信号とされて、
切替部33によりN個の送信アダプティブパターン制御
装置34の何れかに選択的に供給され、N個の送信アダ
プティブパターン制御装置34の各出力はそれぞれDA
変換器35にアナログ信号に変換されて、全ての送信部
24へ供給される。各アダプティブパターン制御装置2
6,34はそれぞれマルチビームのN個のビームの各1
つと対応したビームパターンを成形する。信号処理制御
復号化部27、信号処理制御符号化部32の数nは、そ
の基地局が収容するチャネル数分であり、N以下の数で
ある。
On the other hand, the signals to be transmitted from the input terminals 31 of each of the n channels are respectively encoded by the n signal processing control encoders 32 and converted into intermediate frequency signals.
The output of the N transmission adaptive pattern control devices 34 is selectively supplied to any of the N transmission adaptive pattern control devices 34 by the switching unit 33.
The signal is converted into an analog signal by the converter 35 and supplied to all the transmission units 24. Each adaptive pattern control device 2
Reference numerals 6 and 34 denote each one of the N beams of the multi-beam.
And forming a corresponding beam pattern. The number n of the signal processing control decoder 27 and the signal processing control encoder 32 is equal to the number of channels accommodated by the base station, and is equal to or less than N.

【0020】この発明の実施形態によれば、n個の信号
処理制御復号化部27で受信復号された周辺移動局から
のレベルテーブルはレベルテーブル記憶部41に格納さ
れ、この記憶部41内に格納されている各移動局からの
レベルテーブルを参照して干渉テーブル作成部42で干
渉テーブルを作成し、更にビーム割当て部43で記憶部
41内の通信要求のあった移動局のレベルテーブルと、
干渉テーブルを参照して、ビーム割当てを行い、基地局
番号とその割当ビーム番号よりなるビーム指定信号にそ
の移動局番号を付けて出力部44より信号処理符号化部
32へ供給して、その移動局へ送信する。記憶部41、
干渉テーブル作成部42、ビーム割当部43、出力部4
4に対する各処理を制御部45により順次行わせる。
According to the embodiment of the present invention, the level tables from the peripheral mobile stations received and decoded by the n signal processing control decoding sections 27 are stored in the level table storage section 41. The interference table creation unit 42 creates an interference table with reference to the stored level tables from the mobile stations, and the beam assignment unit 43 further stores the level table of the mobile station that has requested communication in the storage unit 41;
Referring to the interference table, beam assignment is performed, a beam designation signal consisting of a base station number and the assigned beam number is given the mobile station number, and supplied from the output unit 44 to the signal processing coding unit 32, and the Send to the station. Storage unit 41,
Interference table creating unit 42, beam allocating unit 43, output unit 4
4 is sequentially performed by the control unit 45.

【0021】次に移動局の装置構成例を図11に示す。
基地局と同様に複数のアンテナ素子51、サーキュレー
タ52、受信部53、送信部54、AD変換器55、受
信アダプティブパターン制御装置56、信号処理制御復
号化部57、出力端子59、入力端子61、信号処理制
御符号化部62、送信アダプティブパターン制御装置6
4、DA変換器65を備える。ただしアダプティブパタ
ーン制御装置56,64は各1個であり、かつ、アンテ
ナパターンの主ビームを通信している移動局の方向に、
ヌル又は低レベルを干渉移動局の方向にそれぞれ向ける
適応制御を行う。また信号処理制御復号化部57、信号
処理制御符号化部62はそれぞれ1個設けられるのみで
ある。
Next, FIG. 11 shows an example of a device configuration of a mobile station.
Similarly to the base station, a plurality of antenna elements 51, a circulator 52, a receiving unit 53, a transmitting unit 54, an AD converter 55, a receiving adaptive pattern control device 56, a signal processing control decoding unit 57, an output terminal 59, an input terminal 61, Signal processing control coding section 62, transmission adaptive pattern control device 6
4. A DA converter 65 is provided. However, the number of the adaptive pattern control devices 56 and 64 is one each, and in the direction of the mobile station communicating the main beam of the antenna pattern,
Adaptive control is performed to direct a null or low level towards the interfering mobile station, respectively. Also, only one signal processing control decoding unit 57 and one signal processing control coding unit 62 are provided.

【0022】この発明の実施形態によれば、受信アダプ
ティブパターン制御装置56の出力はレベル検出部71
へも分岐供給され、各基地局の各ビームごとの受信レベ
ルが検出される。例えば各基地局番号とビーム番号が記
憶部72に記憶されてあり、レプリカ信号生成部73に
より各基地局番号と各ビーム番号の組合せを取出し、つ
まり図5に示した各パイロット信号を作り、これら受信
アダプティブパターン制御装置56の出力における基地
局からのパイロット信号に相当する信号、つまりレプリ
カ信号を作り、このレプリカ信号と受信アダプティブパ
ターン制御装置56の出力信号との相関を、その信号形
式と同期をとった状態で、レベル検出部71でとり、そ
の相関出力を、その基地局番号とそのビーム番号のビー
ム受信レベルとする。
According to the embodiment of the present invention, the output of the reception adaptive pattern control device 56 is
And the reception level of each beam of each base station is detected. For example, each base station number and beam number are stored in the storage unit 72, and a combination of each base station number and each beam number is extracted by the replica signal generation unit 73, that is, each pilot signal shown in FIG. A signal corresponding to the pilot signal from the base station at the output of the reception adaptive pattern control device 56, that is, a replica signal is created, and the correlation between this replica signal and the output signal of the reception adaptive pattern control device 56 is synchronized with the signal format. In this state, the level detection unit 71 takes the correlation output and sets the correlation output as the beam reception level of the base station number and the beam number.

【0023】この各基地局ごとにそのビーム番号の受信
レベルを検出した値を高い順にビーム番号を並べたレベ
ルテーブルを、レベルテーブル作成部74で作成する。
各基地局の全ビームの平均受信レベルを平均レベル計算
部75で計算され、その平均レベルの高いm個の基地局
のレベルテーブルをその基地局番号と移動局識別信号を
付けて出力部76から信号処理制御符号化部62へ供給
して、対応基地局へ送信する。各基地局から受信された
割当ビーム、つまりビーム指示信号は信号処理制御復号
化部57から入力部77で取込まれ、各基地局の受信ビ
ーム指示信号から通信する基地局とビームを通信基地局
決定部78で決定する。これらレベル検出部71、レプ
リカ信号生成部73、レベルテーブル作成部74、平均
レベル計算部75、出力部76、入力部77、通信基地
局決定部78での各動作を制御部79により順次行わせ
る。制御部79はアダプティブパターン制御装置56,
64をそれぞれ初期化して無指向性パターンを形成する
ようにしたり、通信に用いると決定した基地局とそのビ
ームに対し主ビームのパターンを向けるための初期設定
なども行う。基地局番号ビーム番号記憶部72とレプリ
カ信号生成部73の代りに各パイロット信号と対応する
レプリカ信号を予め記憶部に記憶しておいてもよい。レ
ベルテーブルの作成のためのレベル検出などは並列的に
処理できるように構成してもよい。
The level table creator 74 creates a level table in which the detected values of the reception levels of the beam numbers are arranged in ascending order of the beam numbers for each base station.
The average reception level of all the beams of each base station is calculated by the average level calculation unit 75, and the level table of the m base stations having the high average level is added to the base station number and the mobile station identification signal from the output unit 76. The signal is supplied to the signal processing control encoding unit 62 and transmitted to the corresponding base station. The assigned beam received from each base station, that is, the beam instruction signal, is taken in from the signal processing control decoding unit 57 at the input unit 77, and the base station and the communication base station communicate with the beam from the received beam instruction signal of each base station. The decision unit 78 decides. The operations of the level detector 71, the replica signal generator 73, the level table generator 74, the average level calculator 75, the output unit 76, the input unit 77, and the communication base station determination unit 78 are sequentially performed by the control unit 79. . The control unit 79 includes the adaptive pattern control device 56,
64 are initialized to form an omni-directional pattern, and initialization is performed to direct the main beam pattern to the base station and its beam determined to be used for communication. Instead of the base station number beam number storage unit 72 and the replica signal generation unit 73, a replica signal corresponding to each pilot signal may be stored in the storage unit in advance. Level detection for creating a level table may be configured to be performed in parallel.

【0024】なおこれらレベル検出から、通信に用いる
基地局とビームの決定は、例えば図12に示すように、
CPU81によりメモリ82内のプログラムを実行する
ことにより受信アダプティブパターン制御装置56の出
力を取込部83から取込み記憶部84に記憶し、記憶部
72から基地局番号とビーム番号を取出しレプリカ信号
を生成して記憶部84の取込んだ受信信号との相関をと
って各基地局の各ビームごとの受信レベルを検出し、そ
の受信レベルから各基地局ごとのレベルテーブルを作成
し、更に全ビーム平均受信レベルを計算してm個のレベ
ルテーブルを出力部85を通じて送信し、受信したビー
ム指示信号を入力部86から取込み、通信基地局のビー
ムを決定し、またアダプティブパターン制御装置56,
64に対する初期設定を制御部87を通じて行うなど、
いわゆるソフトウェア処理によって行ってもよい。基地
局におけるレベルテーブルの受信より、ビーム割当てを
行ってビーム指示信号の送出までも同様にソフトウェア
処理により行ってもよい。
From these level detections, the base station and beam used for communication are determined, for example, as shown in FIG.
By executing the program in the memory 82 by the CPU 81, the output of the receiving adaptive pattern control device 56 is stored in the storage unit 84 from the acquisition unit 83, and the base station number and the beam number are extracted from the storage unit 72 to generate a replica signal. Then, the reception level of each beam of each base station is detected by correlating with the received signal fetched by the storage unit 84, and a level table for each base station is created from the reception level, and the average of all beams is further averaged. The reception level is calculated, the m level tables are transmitted through the output unit 85, the received beam indication signal is fetched from the input unit 86, the beam of the communication base station is determined, and the adaptive pattern control unit 56,
For example, the initial setting for 64 is performed through the control unit 87,
It may be performed by so-called software processing. The processing from the reception of the level table by the base station to the beam assignment and the transmission of the beam instruction signal may be similarly performed by software processing.

【0025】以上述べたように、この発明では基地局か
ら移動局への下り伝送系のみで独立した動作をするた
め、アダプティブ動作は送信と受信で違うものを適用す
ることができる。特に基地局から移動局への下り伝送で
は、このアルゴリズムを用いて、逆(上り)では従来か
らあるアルゴリズムを用いることが出来る。なお、この
実施形態では、信号品質表を受信レベルにより作成した
が、これをSN比、誤り率などの他の受信品質を決める
他の尺度を用いて作成しても良い。また図8に示したよ
うに通信の開始前に動作するのみでなく、待機中も適宜
この動作を繰り返すことも、移動局が周辺にどの程度存
在するかなどの状態を基地局で知る上で便利である。
As described above, in the present invention, since the independent operation is performed only in the downlink transmission system from the base station to the mobile station, different adaptive operations can be applied for transmission and reception. In particular, this algorithm can be used for downlink transmission from a base station to a mobile station, and a conventional algorithm can be used for reverse transmission (uplink). In this embodiment, the signal quality table is created based on the reception level. However, the signal quality table may be created using another criterion that determines other reception quality such as an SN ratio and an error rate. Further, as shown in FIG. 8, the mobile station not only operates before the start of communication, but also appropriately repeats this operation during standby, which is useful for the base station to know how much the mobile station is around. It is convenient.

【0026】上述において移動局はアダプティブパター
ン制御を行わず、無指向性パターンを用いてもよい。ま
たアダプティブパターン制御を行う場合に、ステップS
12の通信中にステップS4に戻ることなく、始めに決
定した基地局ビームを用いたままで、受信レベルが所定
値以下になったら、ステップS3以後の処理を行っても
よい。移動局で基地局ごと全ビームの平均受信レベルを
計算し、上位m個のレベルテーブルを送信したが、この
ような平均受信レベルの計算を行うことなく、例えばS
L(スレッショルドレベル)以上のビームが受信された
基地局については全てそのレベルテーブルを送信しても
よい。また基地局では割当たビーム番号の干渉量Ivも
ビーム指示信号に含めて移動局へ送信したが、干渉量I
vは送信することなく、割当てたビーム番号のみを送信
し、移動局では、受信した各ビーム指定信号のビーム番
号中で移動局での受信レベルが一番高いものを通信に使
用するようにしてもよい、なおこの発明はFDMA,T
DMA,CDMAの何れに対しても適用でき、かつ移動
局の周辺基地局が例えば同一周波数又は同一拡散符号を
用いる場合でもよい。
In the above description, the mobile station may use an omnidirectional pattern without performing adaptive pattern control. Also, when performing adaptive pattern control, step S
If the reception level becomes equal to or less than the predetermined value without using the base station beam determined first without returning to step S4 during the communication of step 12, processing after step S3 may be performed. The mobile station calculates the average reception level of all the beams for each base station and transmits the upper m level tables. However, without calculating such an average reception level, for example, S
The level table may be transmitted for all base stations that have received a beam of L (threshold level) or higher. The base station also transmits the interference amount Iv of the assigned beam number to the mobile station while including it in the beam instruction signal.
v is not transmitted, only the assigned beam number is transmitted, and the mobile station uses the highest reception level at the mobile station among the beam numbers of the received beam designation signals for communication. In addition, the present invention relates to FDMA, T
The present invention can be applied to both DMA and CDMA, and the base stations around the mobile station may use, for example, the same frequency or the same spreading code.

【0027】[0027]

【発明の効果】以上述べたようにこの発明によれば、受
信レベルなどの数値データをある精度をもって全ての移
動局から基地局へ伝送するのではなく、例えば単純な順
位をつけた表と数桁の数字を伝送するのみで、適切な基
地局のビーム選択ができ、また必要に応じて移動局の受
信パターンが決定でき、必要に応じてこれら更新される
こともできる。従って、基地局アンテナに例えばビーム
幅数度程度のマルチビームアンテナを用い、かつ少ない
移動局から基地局へ(上り)の伝送情報で適切な基地局
ビームを得て、高速な基地局から移動局へ(下り)の情
報伝送が出来る移動通信システムが実現できる。
As described above, according to the present invention, rather than transmitting numerical data such as the reception level from all the mobile stations to the base station with a certain accuracy, for example, a simple ranking table and a number are used. Only by transmitting the digits, it is possible to select an appropriate base station beam, determine the reception pattern of the mobile station as needed, and update these as needed. Therefore, for example, a multi-beam antenna having a beam width of about several degrees is used as the base station antenna, and an appropriate base station beam is obtained from transmission information from a small number of mobile stations to the base station (uplink). A mobile communication system capable of transmitting (down) information can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】基地局にマルチビームアンテナを用いた移動通
信シスステムの例を示す図。
FIG. 1 is a diagram showing an example of a mobile communication system using a multi-beam antenna for a base station.

【図2】アダプティブ動作時の放射パターン成形の様子
を示し(a)は従来のピークとヌルを制御するもの、
(b)はマルチビームアンテナでピークのみを制御する
(切り替える)ものである。
FIGS. 2A and 2B show a state of shaping a radiation pattern at the time of an adaptive operation, and FIG.
(B) is for controlling (switching) only the peak by the multi-beam antenna.

【図3】(a)はアンテナの大きさとビーム幅の関係を
示す図、(b)は開口面アンテナの開口面の大きさを示
す図、(c)はアレイアンテナのアレイ面の大きさを示
す図である。
3A is a diagram showing the relationship between the size of the antenna and the beam width, FIG. 3B is a diagram showing the size of the aperture surface of the aperture antenna, and FIG. 3C is a diagram showing the size of the array surface of the array antenna; FIG.

【図4】この発明の実施形態における移動通信システム
の構成を示す図。
FIG. 4 is a diagram showing a configuration of a mobile communication system according to the embodiment of the present invention.

【図5】各基地局の各ビームで送信される信号形式の例
を示す図。
FIG. 5 is a diagram showing an example of a signal format transmitted by each beam of each base station.

【図6】各移動局が内部で作成するレベルテーブル
(表)の例を示す図。
FIG. 6 is a diagram showing an example of a level table created internally by each mobile station.

【図7】(a)は基地局で受信した各移動局のレベルテ
ーブルの例を示す図、(b)は基地局内で作成する干渉
テーブルの例を示す図である。
FIG. 7A is a diagram illustrating an example of a level table of each mobile station received by a base station, and FIG. 7B is a diagram illustrating an example of an interference table created in the base station.

【図8】移動局の動作手順の例を示す流れ図。FIG. 8 is a flowchart showing an example of an operation procedure of a mobile station.

【図9】基地局の動作手順の例を示す流れ図。FIG. 9 is a flowchart showing an example of an operation procedure of a base station.

【図10】基地局の装置の機能構成例を示す図。FIG. 10 is a diagram showing an example of a functional configuration of a device of a base station.

【図11】移動局の装置の機能構成例を示す図。FIG. 11 is a diagram showing a functional configuration example of a device of a mobile station.

【図12】移動局装置の他の機能構成の一方を示す図。FIG. 12 is a diagram showing one of the other functional configurations of the mobile station device.

【図13】従来の放射パターン形状を時間的に変化させ
て行う移動通信システムの構成を示す図。
FIG. 13 is a diagram showing a configuration of a conventional mobile communication system that changes a radiation pattern shape with time.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 基地局の放射パターン形状を時間的に変
化させて移動局と通信を行う移動通信方法において、 基地局はマルチビーム放射パターンを形成し、 移動局は周辺基地局からの電波に関する情報を通信回線
により基地局に伝送し、 基地局はその移動局からの情報を基に基地局のマルチビ
ーム放射パターンのその切り替えまたは合成の制御を行
うことを特徴とする移動通信方法。
1. A mobile communication method for communicating with a mobile station by changing the radiation pattern shape of the base station with time, wherein the base station forms a multi-beam radiation pattern, and the mobile station relates to radio waves from peripheral base stations. A mobile communication method comprising: transmitting information to a base station via a communication line; and the base station controlling the switching or combination of the multi-beam radiation pattern of the base station based on the information from the mobile station.
【請求項2】 請求項1記載の移動通信方法において、 基地局はそのマルチビーム放射パターンの各ビームより
伝送する情報にそのビーム識別信号を含め、 移動局は受信した各ビーム識別信号を、その各ビーム受
信時の信号品質の良いものの順番に並べた信号品質表を
作成し、その表を上記情報として周辺基地局へ伝送し、 各基地局は上記情報を基に通信すべき移動局とその通信
に用いるビームを割当て、この割当てたビーム識別信号
を移動局に送り、 移動局は受信した周辺基地局からの割当ビームが識別信
号から通信すべき基地局とビームを決定することを特徴
とする移動通信方法。
2. The mobile communication method according to claim 1, wherein the base station includes the beam identification signal in information transmitted from each beam of the multi-beam radiation pattern, and the mobile station transmits each received beam identification signal to the information. Create a signal quality table arranged in the order of good signal quality at the time of receiving each beam, transmit the table to the neighboring base stations as the above information, each base station and the mobile station to communicate based on the A beam to be used for communication is allocated, and the allocated beam identification signal is transmitted to the mobile station, and the mobile station determines the base station to communicate with based on the received allocation beam from the peripheral base station based on the identification signal. Mobile communication method.
【請求項3】 請求項2に記載の移動通信方法におい
て、 上記信号品質表の作成、通信、上記ビームの割当て、そ
の識別信号の送信、上記通信すべき基地局とビーム決定
を繰返すことを特徴とする移動通信方法。
3. The mobile communication method according to claim 2, wherein the creation of the signal quality table, communication, allocation of the beam, transmission of the identification signal thereof, and determination of the base station to communicate with and the beam are repeated. Mobile communication method.
【請求項4】 請求項1乃至3の何れかに記載の移動通
信方法において、 基地局は移動局との通信状態に基づいて、通信に用いる
ビームを切り替える、または他基地局との通信に切り替
えることを特徴とする移動通信方法。
4. The mobile communication method according to claim 1, wherein the base station switches a beam used for communication or switches to communication with another base station based on a communication state with the mobile station. A mobile communication method, comprising:
【請求項5】 請求項1〜4の何れかに記載の移動通信
方法において、 移動局は受信状態および、または基地局からの情報を判
断して放射パターン形状を制御することを特徴とする移
動通信方法。
5. The mobile communication method according to claim 1, wherein the mobile station determines a reception state and / or information from the base station to control a radiation pattern shape. Communication method.
【請求項6】 請求項2〜5の何れかに記載の移動通信
方法において、 各基地局は受信した各移動局からの信号品質表を用い
て、その基地局の各ビームの干渉の程度を求めて干渉テ
ーブルを作り、各移動局についてその受信信号品質表と
干渉テーブルに基づいて上記通信に用いるビームを割当
て、割当てたビーム識別信号とその干渉の程度を移動局
へ送信し、 移動局は各基地局から受信された割当ビーム識別信号と
干渉の程度に基づいて、上記通信すべき基地局とビーム
の決定を行うことを特徴とする移動通信方法。
6. The mobile communication method according to claim 2, wherein each base station uses a received signal quality table from each mobile station to determine a degree of interference of each beam of the base station. Obtain an interference table, allocate a beam used for the communication based on the received signal quality table and the interference table for each mobile station, transmit the allocated beam identification signal and the degree of the interference to the mobile station, A mobile communication method comprising: determining a base station to communicate with and a beam based on an allocated beam identification signal received from each base station and a degree of interference.
【請求項7】 周辺基地局の各マルチビーム放射パター
ンの各ビームごとに信号品質を検出する信号品質検出手
段と、 検出した信号品質の良い順にビーム識別信号を並べた信
号品質表を基地局ごとに作ってその基地局へ送信する手
段と、を具備することを特徴とする移動局装置。
7. A signal quality detecting means for detecting a signal quality for each beam of each multi-beam radiation pattern of a peripheral base station, and a signal quality table in which beam identification signals are arranged in descending order of detected signal quality for each base station. And transmitting to the base station.
【請求項8】 請求項7記載の移動局装置において、 周辺の各基地局から受信された割当ビーム識別信号及び
そのビームの干渉量から通信を行う基地局を決定する手
段を備えることを特徴とする移動局装置。
8. The mobile station apparatus according to claim 7, further comprising: means for determining a base station to communicate with from an assigned beam identification signal received from each of the base stations in the vicinity and an interference amount of the beam. Mobile station equipment.
【請求項9】 マルチビーム放射パターンを形成する手
段と、 各移動局から受信されたマルチビームの各ビームごとの
受信信号品質の順にビーム識別信号が並べられた信号品
質表を記憶する手段と、 上記各移動局からの信号品質表から、各ビームごとの干
渉の程度を求めて干渉表を作成する手段と、 各移動局ごとにその通信可能なビーム中の干渉が少ない
ビームを通信用に上記信号品質表及び干渉表を参照して
割当てる手段と、 その割当てたビームの識別信号をその移動局へ送信する
手段とを具備する移動通信の基地局装置。
9. A means for forming a multi-beam radiation pattern, means for storing a signal quality table in which beam identification signals are arranged in the order of received signal quality for each beam of a multi-beam received from each mobile station, Means for obtaining an interference table for each beam from the signal quality table from each mobile station to create an interference table; A base station apparatus for mobile communication, comprising: means for allocating by referring to a signal quality table and an interference table; and means for transmitting an identification signal of the allocated beam to the mobile station.
JP2000341888A 2000-11-09 2000-11-09 Mobile communication method and apparatus Expired - Fee Related JP3975054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000341888A JP3975054B2 (en) 2000-11-09 2000-11-09 Mobile communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000341888A JP3975054B2 (en) 2000-11-09 2000-11-09 Mobile communication method and apparatus

Publications (2)

Publication Number Publication Date
JP2002152108A true JP2002152108A (en) 2002-05-24
JP3975054B2 JP3975054B2 (en) 2007-09-12

Family

ID=18816544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000341888A Expired - Fee Related JP3975054B2 (en) 2000-11-09 2000-11-09 Mobile communication method and apparatus

Country Status (1)

Country Link
JP (1) JP3975054B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064113A (en) * 2002-07-24 2004-02-26 Toshiba Corp Wireless packet communication apparatus
WO2004028037A1 (en) * 2002-09-20 2004-04-01 Mitsubishi Denki Kabushiki Kaisha Radio communication system
JP2005136862A (en) * 2003-10-31 2005-05-26 Advanced Telecommunication Research Institute International Radio communication system, and program for making computer execute determination of existing direction of receiver to transmitter in the same
JP2005252521A (en) * 2004-03-03 2005-09-15 Hitachi Ltd Packet schedule method and radio communications device
JP2005531987A (en) * 2002-06-28 2005-10-20 インターディジタル テクノロジー コーポレイション A system that efficiently provides coverage of sectorized cells.
JP2007506351A (en) * 2003-09-15 2007-03-15 エルジー テレコム, リミテッド BEAM SWITCHING ANTENNA SYSTEM, CONTROL METHOD AND CONTROL DEVICE THEREOF
JP2007521708A (en) * 2003-12-22 2007-08-02 テレフオンアクチーボラゲット エル エム エリクソン(パブル) How to determine the transmission weight
WO2008004609A1 (en) 2006-07-07 2008-01-10 Mitsubishi Electric Corporation Wireless communication system and communication control method
JP2008104174A (en) * 2006-10-09 2008-05-01 Sony Deutsche Gmbh Transmission device and reception device for establishing radio communication link, and method thereof
JP2008227747A (en) * 2007-03-09 2008-09-25 Ntt Docomo Inc Antenna radiation pattern control method of base station in mobile communication system, and the system
US7596387B2 (en) 2002-06-28 2009-09-29 Interdigital Technology Corporation System for efficiently covering a sectorized cell utilizing beam forming and sweeping
JP2010004324A (en) * 2008-06-20 2010-01-07 Mitsubishi Electric Corp Wireless power transmission system, power transmission device, and rectenna base station
WO2010100809A1 (en) * 2009-03-02 2010-09-10 ソニー株式会社 Communication apparatus and automatic gain control method
JP2011522470A (en) * 2008-05-15 2011-07-28 クゥアルコム・インコーポレイテッド Space Interference Mitigation Scheme for Wireless Communication
WO2011093032A1 (en) * 2010-01-28 2011-08-04 パナソニック株式会社 Adaptive array antenna device and antenna control method
JP2011523818A (en) * 2008-05-30 2011-08-18 アルカテル−ルーセント Method and base station for controlling beam forming in a mobile cellular network
WO2011114412A1 (en) * 2010-03-18 2011-09-22 日本電気株式会社 Wireless communication system control method, wireless communication system, and wireless communication device
US8248303B2 (en) 2007-01-23 2012-08-21 Nec Corporation Radio control method
JP2013522642A (en) * 2010-03-23 2013-06-13 ユニバーシティ オブ オスロ High accuracy robust ultrasonic indoor positioning system
JP2013176121A (en) * 2013-04-15 2013-09-05 Mitsubishi Electric Corp Communication method, mobile station and base station
JP2014526837A (en) * 2011-09-16 2014-10-06 サムスン エレクトロニクス カンパニー リミテッド Beam allocation apparatus and method in wireless communication system
JP2014527367A (en) * 2011-08-23 2014-10-09 サムスン エレクトロニクス カンパニー リミテッド Scheduling apparatus and method using beam scanning in a wireless communication system based on beamforming
JP2015173416A (en) * 2014-03-12 2015-10-01 ソフトバンク株式会社 communication system and base station
US10009895B2 (en) 2015-12-08 2018-06-26 Fujitsu Llimited Beamforming for selecting a transmitting direction based on feedback from a reception device
JP2019536304A (en) * 2016-09-30 2019-12-12 オッポ広東移動通信有限公司 Beam management method, terminal device and network device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08237729A (en) * 1994-12-28 1996-09-13 N T T Ido Tsushinmo Kk Method for monitoring interference state in base station of mobile communication system
JPH0974375A (en) * 1995-09-06 1997-03-18 Toshiba Corp Radio communication system
JPH09200115A (en) * 1996-01-23 1997-07-31 Toshiba Corp Method for controlling antenna directivity for radio base station in radio communication system and variable directivity antenna
JPH09284200A (en) * 1996-04-10 1997-10-31 Mitsubishi Electric Corp Radio communication equipment and radio communication method
JP2000091981A (en) * 1998-09-17 2000-03-31 Mitsubishi Electric Corp Subscriber radio communication system
JP2000114846A (en) * 1998-10-06 2000-04-21 Toshiba Corp System and method for selecting directional antenna, directional antenna base station, and radio terminal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08237729A (en) * 1994-12-28 1996-09-13 N T T Ido Tsushinmo Kk Method for monitoring interference state in base station of mobile communication system
JPH0974375A (en) * 1995-09-06 1997-03-18 Toshiba Corp Radio communication system
JPH09200115A (en) * 1996-01-23 1997-07-31 Toshiba Corp Method for controlling antenna directivity for radio base station in radio communication system and variable directivity antenna
JPH09284200A (en) * 1996-04-10 1997-10-31 Mitsubishi Electric Corp Radio communication equipment and radio communication method
JP2000091981A (en) * 1998-09-17 2000-03-31 Mitsubishi Electric Corp Subscriber radio communication system
JP2000114846A (en) * 1998-10-06 2000-04-21 Toshiba Corp System and method for selecting directional antenna, directional antenna base station, and radio terminal

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7596387B2 (en) 2002-06-28 2009-09-29 Interdigital Technology Corporation System for efficiently covering a sectorized cell utilizing beam forming and sweeping
JP2005531987A (en) * 2002-06-28 2005-10-20 インターディジタル テクノロジー コーポレイション A system that efficiently provides coverage of sectorized cells.
JP2004064113A (en) * 2002-07-24 2004-02-26 Toshiba Corp Wireless packet communication apparatus
WO2004028037A1 (en) * 2002-09-20 2004-04-01 Mitsubishi Denki Kabushiki Kaisha Radio communication system
JP2007506351A (en) * 2003-09-15 2007-03-15 エルジー テレコム, リミテッド BEAM SWITCHING ANTENNA SYSTEM, CONTROL METHOD AND CONTROL DEVICE THEREOF
JP2005136862A (en) * 2003-10-31 2005-05-26 Advanced Telecommunication Research Institute International Radio communication system, and program for making computer execute determination of existing direction of receiver to transmitter in the same
JP2007521708A (en) * 2003-12-22 2007-08-02 テレフオンアクチーボラゲット エル エム エリクソン(パブル) How to determine the transmission weight
JP2005252521A (en) * 2004-03-03 2005-09-15 Hitachi Ltd Packet schedule method and radio communications device
WO2008004609A1 (en) 2006-07-07 2008-01-10 Mitsubishi Electric Corporation Wireless communication system and communication control method
US7965619B2 (en) 2006-07-07 2011-06-21 Mitsubishi Electric Corporation Wireless communication system and communication control method
JP2008104174A (en) * 2006-10-09 2008-05-01 Sony Deutsche Gmbh Transmission device and reception device for establishing radio communication link, and method thereof
US8248303B2 (en) 2007-01-23 2012-08-21 Nec Corporation Radio control method
JP2008227747A (en) * 2007-03-09 2008-09-25 Ntt Docomo Inc Antenna radiation pattern control method of base station in mobile communication system, and the system
JP2011522470A (en) * 2008-05-15 2011-07-28 クゥアルコム・インコーポレイテッド Space Interference Mitigation Scheme for Wireless Communication
JP2011524663A (en) * 2008-05-15 2011-09-01 クゥアルコム・インコーポレイテッド Spatial interference mitigation for wireless communication
US8447236B2 (en) 2008-05-15 2013-05-21 Qualcomm Incorporated Spatial interference mitigation schemes for wireless communication
JP2014003622A (en) * 2008-05-15 2014-01-09 Qualcomm Incorporated Spatial interference mitigation scheme for wireless communication
JP2011523818A (en) * 2008-05-30 2011-08-18 アルカテル−ルーセント Method and base station for controlling beam forming in a mobile cellular network
JP4715874B2 (en) * 2008-06-20 2011-07-06 三菱電機株式会社 Wireless power transmission system, power transmission device, and rectenna base station
JP2010004324A (en) * 2008-06-20 2010-01-07 Mitsubishi Electric Corp Wireless power transmission system, power transmission device, and rectenna base station
US8553715B2 (en) 2009-03-02 2013-10-08 Sony Corporation Communication apparatus and automatic gain control
WO2010100809A1 (en) * 2009-03-02 2010-09-10 ソニー株式会社 Communication apparatus and automatic gain control method
US9125150B2 (en) 2009-03-02 2015-09-01 Sony Corporation Communication apparatus and automatic gain control method
JP2010206421A (en) * 2009-03-02 2010-09-16 Sony Corp Communication apparatus and automatic gain control method
WO2011093032A1 (en) * 2010-01-28 2011-08-04 パナソニック株式会社 Adaptive array antenna device and antenna control method
JP5633559B2 (en) * 2010-03-18 2014-12-03 日本電気株式会社 Wireless communication system control method, wireless communication system, and wireless communication apparatus
WO2011114412A1 (en) * 2010-03-18 2011-09-22 日本電気株式会社 Wireless communication system control method, wireless communication system, and wireless communication device
JP2013522642A (en) * 2010-03-23 2013-06-13 ユニバーシティ オブ オスロ High accuracy robust ultrasonic indoor positioning system
JP2014527367A (en) * 2011-08-23 2014-10-09 サムスン エレクトロニクス カンパニー リミテッド Scheduling apparatus and method using beam scanning in a wireless communication system based on beamforming
JP2014526837A (en) * 2011-09-16 2014-10-06 サムスン エレクトロニクス カンパニー リミテッド Beam allocation apparatus and method in wireless communication system
JP2013176121A (en) * 2013-04-15 2013-09-05 Mitsubishi Electric Corp Communication method, mobile station and base station
JP2015173416A (en) * 2014-03-12 2015-10-01 ソフトバンク株式会社 communication system and base station
US10009895B2 (en) 2015-12-08 2018-06-26 Fujitsu Llimited Beamforming for selecting a transmitting direction based on feedback from a reception device
JP2019536304A (en) * 2016-09-30 2019-12-12 オッポ広東移動通信有限公司 Beam management method, terminal device and network device
US11171704B2 (en) 2016-09-30 2021-11-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for managing wave beam, terminal device and network device

Also Published As

Publication number Publication date
JP3975054B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
JP2002152108A (en) Method and device for mobile communication
JP4922426B2 (en) Reflector apparatus, radio base station, and radio communication method
CN100488076C (en) Intellectual antenna array and improvement concerned
EP3301825B1 (en) Location estimation system, location estimation method, and base station control device
CN106797239A (en) The wave beam management method of cell/wireless network
US20080242243A1 (en) Transmission Directional Antenna Control System, Base Station, And Transmission Directional Antenna Control Method Used For System And Base Station
JP2015164271A (en) Radio communication method and radio communication system
JP2003060423A (en) Smart antenna array
EA005804B1 (en) System and method utilizing beam forming for wireless communication signals
EP0659028A2 (en) Radio link control method for a mobile telecommunications system
CN101128995A (en) Enhanced switched-beam antenna arrangement
KR101897587B1 (en) Multi-antenna transmission process and system and relative mobile terminal
KR20060081194A (en) Apparatus and method for configuration of sector in antenna array system
CN110784251A (en) Antenna array
JP3575437B2 (en) Directivity control device
JP3081891B2 (en) Antenna beam control method
US6822619B2 (en) Antenna system
KR100464332B1 (en) Apparatus and method for forming beam of array antenna in mobile communication system
JP2008228013A (en) Antenna controller, antenna device and wireless apparatus
JP3866118B2 (en) Space division multiple access apparatus, adaptive array antenna base station, terminal and control method thereof
JP6658920B2 (en) Base station, directional receiving method, and program
JP2002325062A (en) Mobile communication system and mobile communication terminal
CN113114308A (en) Antenna control method and electronic equipment
KR101548668B1 (en) Transmitter and method for signal transmission in beam division multiple access communication system
JPH04320121A (en) Mobile communication channel switching control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees