JP2002143795A - Method for cleaning glass substrate for liquid crystal - Google Patents

Method for cleaning glass substrate for liquid crystal

Info

Publication number
JP2002143795A
JP2002143795A JP2000346864A JP2000346864A JP2002143795A JP 2002143795 A JP2002143795 A JP 2002143795A JP 2000346864 A JP2000346864 A JP 2000346864A JP 2000346864 A JP2000346864 A JP 2000346864A JP 2002143795 A JP2002143795 A JP 2002143795A
Authority
JP
Japan
Prior art keywords
glass substrate
liquid crystal
cleaning
electric field
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000346864A
Other languages
Japanese (ja)
Inventor
Takuya Yara
卓也 屋良
Motokazu Yuasa
基和 湯浅
Koji Honma
孝治 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Chemitronics Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Chemitronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd, Chemitronics Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2000346864A priority Critical patent/JP2002143795A/en
Publication of JP2002143795A publication Critical patent/JP2002143795A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Cleaning In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for cleaning a glass substrate for a liquid crystal which is capable of in-line setting, large area processing, and high-speed processing. SOLUTION: In the method, a solid dielectric is fitted to at least one of facing electrodes of a pair under atmospheric pressure in an atmosphere containing at least 4 vol.% of oxygen, and the glass substrate is brought into contact with discharge plasma generated by applying a pulse electric field between the electrodes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶用ガラス基板
の洗浄方法に関し、特に、大気圧近傍でのパルス電界を
利用した放電プラズマにより液晶ガラス基板を洗浄する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cleaning a glass substrate for liquid crystal, and more particularly to a method for cleaning a liquid crystal glass substrate by discharge plasma using a pulsed electric field near atmospheric pressure.

【0002】[0002]

【従来の技術】近年、電子工業界では超LSIや液晶デ
ィスプレイの製造を頂点とするデバイスの微細化要望が
ますます厳しくなり、これに対応して製品の表面状態か
らの影響を受けることが多くなり、超精密洗浄技術が必
要となってきている。液晶パネルの製造工程では、ガラ
ス基板の洗浄が不可欠であり、一般には湿式法で行わ
れ、例えば、純水によるシャワー洗浄、界面活性剤等の
薬剤を用いたブラシ洗浄、純水ブラシ洗浄、純水リン
ス、純水超音波洗浄、エアーブロー水切り乾燥、赤外線
加熱方式等による脱水ベークという工程が順次行われて
いる。しかしながら、この方法は、多くの工程を経なけ
ればならず非常に煩雑であり、湿式方法の性質上、一枚
毎の枚葉処理であって、インライン化ができないという
問題があった。
2. Description of the Related Art In recent years, in the electronics industry, there has been an increasing demand for miniaturization of devices, which is centered on the manufacture of VLSI and liquid crystal displays. Therefore, ultra-precision cleaning technology is required. In the manufacturing process of the liquid crystal panel, cleaning of the glass substrate is indispensable, and is generally performed by a wet method. For example, shower cleaning with pure water, brush cleaning using a surfactant or the like, pure water brush cleaning, pure water brush cleaning, and the like. The steps of water rinsing, pure water ultrasonic cleaning, air blow draining and drying, and dehydration baking by an infrared heating method are sequentially performed. However, this method has to go through many steps and is very complicated. Due to the nature of the wet method, it is a one-by-one processing and cannot be inlined.

【0003】これに対して、乾式洗浄方式であるプラズ
マ洗浄が注目されている(「月刊エコインダストリー」
CMC社刊、2000年8月、p45−54)。プラズ
マ状態に励起した気体を洗浄に利用するもので、この励
起された媒体は汚染物質を化学変化させて揮散させる働
きをする。このプラズマ洗浄は、真空プラズマ方式と大
気圧プラズマ方式に分類される。
[0003] On the other hand, plasma cleaning, which is a dry cleaning method, has attracted attention ("Monthly Eco-Industry").
Published by CMC, August 2000, pp. 45-54). The gas excited in the plasma state is used for cleaning, and the excited medium serves to volatilize the pollutant by chemically changing it. This plasma cleaning is classified into a vacuum plasma method and an atmospheric pressure plasma method.

【0004】真空プラズマ方式は、1.333×10
Pa以下の低圧プラズマでは放電を安定して継続するこ
とはできるが、低圧での処理が必要とされるので、真空
チャンバー、真空排気装置等が設置されなければなら
ず、表面処理装置は高価なものとなり、また、この方法
により大面積基板を処理する場合には、大容量の真空容
器、大出力の真空排気装置が必要になるために、表面処
理装置は、更に高価なものとなる。
The vacuum plasma method is 1.333 × 10 4
Discharge can be stably continued with low-pressure plasma of Pa or less, but processing at low pressure is required, so a vacuum chamber, a vacuum exhaust device, and the like must be installed, and a surface treatment device is expensive. When a large-area substrate is processed by this method, a large-capacity vacuum vessel and a large-output vacuum evacuation apparatus are required, so that the surface treatment apparatus becomes more expensive.

【0005】また、6×10Pa〜大気圧近傍下の常
圧プラズマでは、大面積処理や処理の高速化に対応でき
るが、雰囲気が限定され、また、放電が安定しないとい
う問題があった。
[0005] In addition, with normal pressure plasma at 6 × 10 4 Pa to near atmospheric pressure, large-area processing and high-speed processing can be supported, but the atmosphere is limited and the discharge is not stable. .

【0006】特開平5−275193号公報には、固体
誘電体が配設された電極間に、希ガスと処理用ガスとか
らなる混合ガスを一方向への送流状態に保持し放電プラ
ズマを発生させる基材表面処理装置が開示されている。
しかし、この表面処理装置は、開放系の大気圧状態で放
電プラズマを発生させる装置であるので、外気の影響を
無くし、放電プラズマを基材表面に接触させて所望の表
面処理を行う場合には、高速で混合ガスを流す必要があ
り、大流量のガスを流し続けなければならず、満足のい
く表面処理装置とはいえない。
[0006] Japanese Patent Application Laid-Open No. Hei 5-275193 discloses that a mixed gas composed of a rare gas and a processing gas is maintained in a unidirectional flow state between electrodes provided with a solid dielectric and discharge plasma is generated. An apparatus for treating a substrate surface to be generated is disclosed.
However, since this surface treatment apparatus is an apparatus that generates discharge plasma in an open-system atmospheric pressure state, in the case where a desired surface treatment is performed by eliminating the influence of the outside air and bringing the discharge plasma into contact with the substrate surface. It is necessary to flow the mixed gas at a high speed, and it is necessary to keep flowing a large flow of gas, which is not a satisfactory surface treatment apparatus.

【0007】さらに、ヘリウムを用いた大気圧プラズマ
を用いた処理方法等も提案されてきた(例えば、特開平
7−99182号公報)。ところが、ヘリウムガスは自
然界での存在量が極めて少なく高価である。また、安定
的な放電のため、高い割合でヘリウムを使用する必要か
ら、反応に必要な酸素系ガスの添加割合が少なく十分な
処理速度効率が得られていない。
Further, a processing method using atmospheric pressure plasma using helium has been proposed (for example, Japanese Patent Application Laid-Open No. 7-99182). However, helium gas has a very small amount in nature and is expensive. In addition, since helium must be used at a high rate for stable discharge, the rate of addition of oxygen-based gas necessary for the reaction is small, and sufficient processing rate efficiency cannot be obtained.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の問題
に鑑み、インライン化が可能で、大面積処理や処理の高
速化の出来る液晶用ガラス基板の洗浄方法を提供する。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention provides a method for cleaning a glass substrate for a liquid crystal, which can be in-lined, can perform a large area processing and can speed up the processing.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究した結果、大気圧条件下で安定し
た放電プラズマを特定ガス雰囲気下で発生させて、液晶
用ガラス基板の洗浄を行うことができることを見出し、
本発明を完成させた。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, a stable discharge plasma is generated under a specific gas atmosphere under atmospheric pressure conditions, and a glass substrate for a liquid crystal is formed. Finding that washing can be done,
The present invention has been completed.

【0010】すなわち、本発明の第1の発明は、大気圧
近傍の圧力下で、酸素を4体積%以上含有する雰囲気中
で、対向する一対の電極の少なくとも一方の対向面に固
体誘電体を設置し、当該一対の対向電極間にパルス化さ
れた電界を印加することにより発生させた放電プラズマ
を液晶用ガラス基板に接触させることを特徴とする液晶
用ガラス基板の洗浄方法である。
That is, a first aspect of the present invention is to provide a solid dielectric on at least one of the opposing surfaces of a pair of electrodes facing each other in an atmosphere containing at least 4% by volume of oxygen at a pressure near atmospheric pressure. A method for cleaning a glass substrate for a liquid crystal, comprising: disposing a discharge plasma generated by applying a pulsed electric field between the pair of opposed electrodes to the glass substrate for a liquid crystal.

【0011】また、本発明の第2の発明は、酸素を20
〜30体積%含有する雰囲気中で発生させた放電プラズ
マを接触させることを特徴とする第1の発明に記載の液
晶用ガラス基板の洗浄方法である。
[0011] The second invention of the present invention relates to a method in which
The method for cleaning a glass substrate for a liquid crystal according to the first invention, wherein a discharge plasma generated in an atmosphere containing about 30% by volume is contacted.

【0012】また、本発明の第3の発明は、酸素を含有
する窒素及び/又は空気からなる雰囲気中で発生させた
放電プラズマを接触させることを特徴とする第1又は2
の発明に記載の液晶用ガラス基板の洗浄方法である。
A third invention of the present invention is characterized in that a discharge plasma generated in an atmosphere consisting of oxygen-containing nitrogen and / or air is brought into contact with the discharge plasma.
A method for cleaning a glass substrate for liquid crystal according to the invention.

【0013】また、本発明の第4の発明は、パルス化さ
れた電界が、立ち上がり時間及び立ち下がり時間とが4
0ns〜100μs、電界強度が0.5〜250kV/
cmであることを特徴とする第1〜3のいずれかの発明
に記載の液晶用ガラス基板の洗浄方法である。
According to a fourth aspect of the present invention, the pulsed electric field has a rise time and a fall time of 4 times.
0 ns to 100 μs, electric field intensity is 0.5 to 250 kV /
cm. The method for cleaning a glass substrate for a liquid crystal according to any one of the first to third inventions, wherein

【0014】[0014]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明は、大気圧近傍の圧力下、酸素を4体積%以上含
有する雰囲気中で、好ましくは、不活性ガス中の酸素含
有量が4〜30体積%の雰囲気中で、対向する一対の対
向電極の少なくとも一方の対向面に固体誘電体を設置
し、当該一対の電極間にパルス化された電界、好ましく
は、立ち上がり時間及び立ち下がり時間とが40ns〜
100μs、電界強度が0.5〜250kV/cmであ
る電界を印加することにより発生させた放電プラズマを
液晶用ガラス基板に接触させ、液晶用ガラス基板の有機
汚れ等を高速洗浄する方法である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The present invention is directed to a pair of opposing counterparts in an atmosphere containing 4% by volume or more of oxygen at a pressure near atmospheric pressure, preferably in an atmosphere containing 4 to 30% by volume of oxygen in an inert gas. A solid dielectric is placed on at least one of the opposing surfaces of the electrodes, and a pulsed electric field between the pair of electrodes, preferably, a rise time and a fall time are 40 ns or more.
This is a method in which discharge plasma generated by applying an electric field having an electric field strength of 0.5 to 250 kV / cm for 100 μs is brought into contact with a glass substrate for a liquid crystal, and high-speed cleaning of organic stains and the like on the glass substrate for a liquid crystal.

【0015】本発明において、上記大気圧近傍の圧力下
とは、1.333×10〜10.4×10Paの圧
力下を指す。中でも、圧力調整が容易で、装置が簡便に
なる9.3×10〜10.4×10Paの範囲が好
ましい。
In the present invention, the above-mentioned pressure near the atmospheric pressure means a pressure of 1.333 × 10 4 to 10.4 × 10 4 Pa. Above all, the pressure is preferably in the range of 9.3 × 10 4 to 10.4 × 10 4 Pa where the pressure can be easily adjusted and the apparatus can be simplified.

【0016】上記放電プラズマを発生させる雰囲気が、
大気圧近傍の圧力下で、かつ、酸素を4体積%以上、好
ましくは4〜30体積%、より好ましくは20〜30体
積%含有させることにより、高密度のプラズマを発生さ
せることができ、高速処理を行うことが可能となる。酸
素が4体積%未満であると、高濃度のプラズマが実現し
ない。また、30体積%を超えても処理効果はそれほど
上がらず不経済である。
The atmosphere for generating the discharge plasma is as follows:
High-density plasma can be generated at a pressure close to the atmospheric pressure and by containing oxygen in an amount of 4% by volume or more, preferably 4 to 30% by volume, and more preferably 20 to 30% by volume. Processing can be performed. If the oxygen content is less than 4% by volume, high-concentration plasma cannot be realized. Further, even if it exceeds 30% by volume, the treatment effect is not so improved, and it is uneconomical.

【0017】本発明の方法において、酸素ガスには、酸
素ラジカルを発生させるガスを用いてもよい。酸素ラジ
カルとしては、例えば、酸素分子、励起酸素分子、酸素
分子イオン、酸素原子、酸素原子イオン、励起オゾン分
子、オゾン分子イオン等が挙げられる。これらの発生源
としては、含酸素ガスであれば良く、酸素の他に一酸化
炭素、二酸化炭素、空気、水蒸気等も用いることができ
る。プラズマ中に上記のような酸素を含有するガスを導
入すると、非常に活性で酸化力の強いラジカルが発生
し、レジストの除去等で知られるアッシングのような酸
化処理による不要樹脂の除去にも有効である。
In the method of the present invention, a gas which generates oxygen radicals may be used as the oxygen gas. Examples of the oxygen radical include an oxygen molecule, an excited oxygen molecule, an oxygen molecule ion, an oxygen atom, an oxygen atom ion, an excited ozone molecule, and an ozone molecule ion. As a source of these, any oxygen-containing gas may be used, and in addition to oxygen, carbon monoxide, carbon dioxide, air, water vapor, and the like can also be used. When the oxygen-containing gas as described above is introduced into the plasma, very active and strong oxidizing radicals are generated, and it is also effective in removing unnecessary resin by an oxidizing process such as ashing which is known for removing resist. It is.

【0018】上記酸素ガス雰囲気中の処理は、不活性ガ
スによって希釈された雰囲気中で処理を行うことが好ま
しい。酸素以外の雰囲気ガスとしては、アルゴン、ネオ
ン、キセノン、ヘリウム、窒素、空気等を用いることが
でき、これらは単独でも2種以上を混合して用いてもよ
い。これらの中では、処理効果と経済性や取り扱い性の
兼合いを考慮すると、酸素と窒素及び/又は空気からな
る雰囲気が好ましい。従来、大気圧近傍の圧力下におい
ては、ヘリウムの存在下の処理が行われてきたが、本発
明のパルス化された電界を印加する方法によれば、ヘリ
ウムに比較して安価な窒素、アルゴン中における安定し
た処理が可能である。ただし、空気を用いる場合の酸素
含有量は、空気中の酸素も含めた値である。
The treatment in an oxygen gas atmosphere is preferably performed in an atmosphere diluted with an inert gas. As the atmospheric gas other than oxygen, argon, neon, xenon, helium, nitrogen, air and the like can be used, and these may be used alone or in combination of two or more. Among these, an atmosphere composed of oxygen, nitrogen, and / or air is preferable in consideration of the balance between the processing effect, economy, and handleability. Conventionally, the treatment in the presence of helium has been performed under a pressure near the atmospheric pressure. However, according to the method of applying a pulsed electric field of the present invention, nitrogen and argon are inexpensive compared to helium. Stable processing inside is possible. However, the oxygen content when air is used is a value including oxygen in the air.

【0019】上記対向する一対の対向電極の少なくとも
一方の対向面に固体誘電体を設置し、当該一対の電極間
にパルス化された電界を印加することにより発生する放
電プラズマが安定化する。固体誘電体を設置せずに電界
を印加したり、パルス化されていない電界を用いると放
電がアークに移行し、処理を継続することができず、ま
た、基材を損傷するおそれがある。
A solid dielectric is provided on at least one opposing surface of the pair of opposing electrodes, and a discharge plasma generated by applying a pulsed electric field between the pair of electrodes is stabilized. If an electric field is applied without using a solid dielectric or an electric field that is not pulsed is used, the electric discharge shifts to an arc, so that the treatment cannot be continued and the substrate may be damaged.

【0020】上記電極としては、例えば、銅、アルミニ
ウム等の金属単体、ステンレス、真鍮等の合金、金属間
化合物等からなるものが挙げられる。電極の形状として
は、特に限定されないが、電界集中によるアーク放電の
発生を避けるために、対向電極間の距離が一定となる構
造であることが好ましい。この条件を満たす電極構造と
しては、例えば、平行平板型、円筒対向平板型、球対向
平板型、双曲対向平板型、同軸円筒型構造等が挙げられ
る。
The electrodes include, for example, those composed of a simple metal such as copper and aluminum, alloys such as stainless steel and brass, and intermetallic compounds. The shape of the electrodes is not particularly limited, but is preferably a structure in which the distance between the opposed electrodes is constant in order to avoid the occurrence of arc discharge due to electric field concentration. Examples of the electrode structure that satisfies this condition include a parallel plate type, a cylindrical opposed plate type, a spherical opposed plate type, a hyperbolic opposed plate type, and a coaxial cylindrical structure.

【0021】また、略一定構造以外では、円筒対向円筒
型で円筒曲率の大きなものもアーク放電の原因となる電
界集中の度合いが小さいので対向電極として用いること
ができる。曲率は少なくとも半径20mm以上が好まし
い。固体誘電体の誘電率にもよるが、それ以下の曲率で
は、電界集中によるアーク放電が集中しやすい。それぞ
れの曲率がこれ以上であれば、対向する電極の曲率が異
なっても良い。曲率は大きいほど近似的に平板に近づく
ため、より安定した放電が得られるので、より好ましく
は半径40mm以上である。
In addition, other than a substantially constant structure, a cylindrically opposed cylindrical type having a large cylindrical curvature can be used as a counter electrode because the degree of electric field concentration causing arc discharge is small. The curvature is preferably at least 20 mm in radius. Although it depends on the dielectric constant of the solid dielectric, at a curvature smaller than that, arc discharge due to electric field concentration tends to concentrate. If the respective curvatures are greater than this, the curvatures of the opposing electrodes may be different. The larger the curvature, the closer to the flat plate, the more stable the discharge can be obtained. Therefore, the radius is more preferably 40 mm or more.

【0022】さらに、プラズマを発生させる電極は、一
対のうち少なくとも一方に固体誘電体が配置されていれ
ば良く、一対の電極は、短絡に至らない適切な距離をあ
けた状態で対向してもよく、直交してもよい。
Further, the electrodes for generating plasma only need to have a solid dielectric disposed on at least one of the pair. Even if the pair of electrodes face each other at an appropriate distance so as not to cause a short circuit. Well, they may be orthogonal.

【0023】上記固体誘電体は、電極の対向面の一方又
は双方に設置する。この際、固体誘電体と設置される側
の電極とが密着し、かつ、接する電極の対向面を完全に
覆うようにする。固体誘電体によって覆われずに電極同
士が直接対向する部位があると、そこからアーク放電が
生じやすい。
The solid dielectric is placed on one or both of the opposing surfaces of the electrodes. At this time, the solid dielectric and the electrode on the side on which it is installed are in close contact with each other, and the opposing surface of the contacting electrode is completely covered. If there is a portion where the electrodes directly face each other without being covered by the solid dielectric, an arc discharge is likely to occur therefrom.

【0024】固体誘電体の材質としては、例えば、ポリ
テトラフルオロエチレン、ポリエチレンテレフタレート
等のプラスチック、ガラス、二酸化珪素、酸化アルミニ
ウム、二酸化ジルコニウム、二酸化チタン等の金属酸化
物、チタン酸バリウム等の複酸化物等が挙げられる。こ
れらの2種を積層して用いてもよい。
Examples of the material of the solid dielectric include plastics such as polytetrafluoroethylene and polyethylene terephthalate, glass, metal oxides such as silicon dioxide, aluminum oxide, zirconium dioxide and titanium dioxide, and double oxides such as barium titanate. Objects and the like. These two types may be laminated and used.

【0025】上記固体誘電体の形状は、シート状でもフ
ィルム状でもよく、厚みが0.05〜4mmであること
が好ましい。厚すぎると放電プラズマを発生するのに高
電圧を要することがあり、薄すぎると電圧印加時に絶縁
破壊が起こり、アーク放電が発生することがある。ま
た、固体誘電体の形状として、容器状のものを用いても
よい。
The solid dielectric may be in the form of a sheet or a film, and preferably has a thickness of 0.05 to 4 mm. If it is too thick, a high voltage may be required to generate discharge plasma, and if it is too thin, dielectric breakdown may occur when a voltage is applied, and arc discharge may occur. Further, the shape of the solid dielectric may be a container shape.

【0026】上記電極間の距離は、固体誘電体の厚さ、
印加電圧の大きさ、プラズマを利用する目的等を考慮し
て適宜決定されるが、1〜50mmであることが好まし
い。1mm未満では、電極間の間隔を置いて設置するの
に充分でないことがあり、50mmを超えると、均一な
放電プラズマを発生させにくい。
The distance between the electrodes is determined by the thickness of the solid dielectric,
It is appropriately determined in consideration of the magnitude of the applied voltage, the purpose of utilizing the plasma, and the like, and is preferably 1 to 50 mm. If it is less than 1 mm, it may not be sufficient to place the electrodes at intervals, and if it is more than 50 mm, it is difficult to generate uniform discharge plasma.

【0027】本発明に用いるパルス電界の電圧波形の例
を、図1に示す。図1中の波形(a)、(b)はインパ
ルス型、波形(c)はパルス型、波形(d)は変調型の
波形である。図1には電圧印加が正負の繰り返しである
ものを挙げたが、正又は負のいずれかの極性側に電圧を
印加するタイプのパルスを用いてもよい。本発明におけ
るパルス電圧波形は、ここで挙げた波形に限定されない
が、パルスの立ちあがり時間及び立下り時間が短いほど
プラズマ発生の際のガスの電離が効率よく行われる。
FIG. 1 shows an example of the voltage waveform of the pulse electric field used in the present invention. Waveforms (a) and (b) in FIG. 1 are impulse waveforms, waveform (c) is a pulse waveform, and waveform (d) is a modulation waveform. Although FIG. 1 shows a case where the voltage application is repeated positive and negative, a pulse of a type that applies a voltage to either the positive or negative polarity side may be used. The pulse voltage waveform in the present invention is not limited to the above-mentioned waveforms, but the shorter the rise time and the fall time of the pulse, the more efficiently the gas is ionized during the generation of plasma.

【0028】上記パルス電界の立ち上がり時間及び立ち
下がり時間は、40ns〜100μsであることが好ま
しい。40ns未満では設備上現実的ではなく、100
μsを超えると放電状態がアークに移行しやすく不安定
なものとなる。より好ましくは50ns〜5μsであ
る。なお、ここでいう立ち上がり時間とは、電圧変化が
連続して正である時間、立ち下がり時間とは、電圧変化
が連続して負である時間を指すものとする。
The rise time and fall time of the pulse electric field are preferably 40 ns to 100 μs. If it is less than 40 ns, it is not realistic in equipment, and 100
When the time exceeds μs, the discharge state easily shifts to an arc and becomes unstable. More preferably, it is 50 ns to 5 μs. Here, the rise time refers to the time during which the voltage change is continuously positive, and the fall time refers to the time during which the voltage change is continuously negative.

【0029】さらに、パルス波形、立ち上がり時間、周
波数の異なるパルスを用いて変調を行ってもよい。
Further, modulation may be performed using pulses having different pulse waveforms, rise times, and frequencies.

【0030】上記パルス電界の周波数は、1〜100k
Hzであることが好ましい。1kHz未満であると処理
に時間がかかりすぎ、100kHzを超えるとアーク放
電が発生しやすくなる。
The frequency of the pulse electric field is 1 to 100 k
Hz is preferable. If it is less than 1 kHz, it takes too much time for the treatment, and if it exceeds 100 kHz, arc discharge is likely to occur.

【0031】また、ひとつのパルス電界が印加される時
間は、1〜1000μsであることが好ましい。1μs
未満であると放電が不安定なものとなり、1000μs
を超えるとアーク放電に移行しやすくなる。より好まし
くは、3〜200μsである。ここで、上記ひとつのパ
ルス電界が印加される時間とは、図1中に例を示してあ
るが、ON、OFFの繰り返しからなるパルス電界にお
ける、ひとつのパルスの連続するON時間を言う。
The time for applying one pulsed electric field is preferably 1 to 1000 μs. 1 μs
When the discharge time is less than 1,000 μs, the discharge becomes unstable.
When it exceeds, it is easy to shift to arc discharge. More preferably, it is 3 to 200 μs. Here, the time during which the one pulse electric field is applied, as shown in FIG. 1 as an example, refers to a continuous ON time of one pulse in a pulse electric field composed of repetition of ON and OFF.

【0032】上記放電は、電圧の印加によって行われ
る。電圧の大きさは、適宜決められるが、電極に印加し
た際の電界強度が0.5〜250kV/cmとなる範囲
にすることが好ましい。電界強度が0.5kV/cm未
満であると、処理に時間がかかりすぎ、250kV/c
mを超えるとアーク放電が発生しやすくなる。また、パ
ルス電圧の印加において、直流を重畳してもよい。
The above discharge is performed by applying a voltage. The magnitude of the voltage is determined as appropriate, but is preferably in a range where the electric field strength when applied to the electrode is 0.5 to 250 kV / cm. If the electric field strength is less than 0.5 kV / cm, it takes too much time for the treatment, and 250 kV / c.
If m is exceeded, arc discharge is likely to occur. In applying the pulse voltage, a direct current may be superimposed.

【0033】本発明の被処理基材である液晶用ガラス基
板とは、液晶パネルの製造に用いられるものなら、特に
限定されない。本発明の方法によれば、ガラス基板の有
機汚れを高速、かつ効率的に洗浄することができ、ま
た、大面積基板にも対応できる。
The glass substrate for a liquid crystal as a substrate to be treated according to the present invention is not particularly limited as long as it is used for manufacturing a liquid crystal panel. ADVANTAGE OF THE INVENTION According to the method of this invention, the organic dirt of a glass substrate can be cleaned at high speed and efficiently, and it can respond also to a large area board | substrate.

【0034】本発明の洗浄方法は、液晶パネルの製造工
程で洗浄が必要される工程であれば、特に限定されずに
組み込むことができる。特に、ガラス基板受入時の素板
に対する洗浄工程に好適である。また、必要に応じて、
薬液処理や不織布等による拭き取り処理、基板の過熱冷
却処理等と組み合わせてもよい。
The cleaning method of the present invention can be incorporated without particular limitation as long as cleaning is required in a liquid crystal panel manufacturing process. In particular, it is suitable for a cleaning process for a raw plate at the time of receiving a glass substrate. Also, if necessary,
It may be combined with a chemical solution treatment, a wiping process using a nonwoven fabric, or the like, a substrate overheating cooling process, or the like.

【0035】プラズマを被処理物に照射する手段として
は、例えば、対向する電極間で発生したプラズマ中に被
処理物を配置する方法と容器内で発生したプラズマをガ
ス流や電界配置、あるいは磁気的な作用により被処理物
に向かって吹き出す方法(リモートプラズマ)等が挙げ
られる。
As means for irradiating the object to be treated with plasma, there are, for example, a method of arranging the object to be treated in plasma generated between opposing electrodes, a method of arranging the plasma generated in the container in a gas flow, an electric field arrangement, or a magnetic field. Method (remote plasma) by blowing toward the object to be processed by a typical action.

【0036】本発明で用いる装置の具体例として、平行
平板型電極を用いる装置の一例を図2に示す。図2中、
1は電源、2は上部電極、3は下部電極、4は固体誘電
体、6は被処理基材をそれぞれ表す。図2の装置は、図
示しない容器に入っており、この容器内は処理ガスで充
填されている。図2において、ガラス基板の幅を超える
長さの上下の平行平板型の放電電極の双方の対向面は固
体誘電体で被覆されており、上部電極2と下部電極3と
の間に電界を印加することにより放電プラズマを発生さ
せ、この間を液晶用ガラス基板が搬送されることによ
り、ガラス基板の表裏両面の洗浄処理がなされる。
FIG. 2 shows an example of an apparatus using parallel plate electrodes as a specific example of the apparatus used in the present invention. In FIG.
Reference numeral 1 denotes a power source, 2 denotes an upper electrode, 3 denotes a lower electrode, 4 denotes a solid dielectric, and 6 denotes a substrate to be processed. The apparatus shown in FIG. 2 is contained in a container (not shown), and the inside of the container is filled with a processing gas. In FIG. 2, both opposing surfaces of upper and lower parallel plate type discharge electrodes having a length exceeding the width of the glass substrate are covered with a solid dielectric, and an electric field is applied between the upper electrode 2 and the lower electrode 3. As a result, discharge plasma is generated, and the glass substrate for a liquid crystal is transported during this period, whereby the front and back surfaces of the glass substrate are cleaned.

【0037】また、ロール型電極を用いる装置の一例を
図3に示す。図3中、1は電源、2は上部ロール電極、
3は下部ロール電極兼搬送ロール、4は固体誘電体、6
は被処理基材をそれぞれ表す。図3において、処理ガス
が電極間の放電空間に導入された状態で、上部ロール電
極は固体誘電体で被覆されており、上部電極2と下部電
極3との間に電界を印加することにより放電プラズマを
発生させ、この間を液晶用ガラス基板が下部ロール電極
兼搬送ロール3により搬送されることにより、ガラス基
板の表面の洗浄処理がなされる。
FIG. 3 shows an example of an apparatus using a roll type electrode. In FIG. 3, 1 is a power supply, 2 is an upper roll electrode,
3 is a lower roll electrode / conveyance roll, 4 is a solid dielectric, 6
Represents a substrate to be treated, respectively. In FIG. 3, the upper roll electrode is covered with a solid dielectric in a state where the processing gas is introduced into the discharge space between the electrodes, and discharge is performed by applying an electric field between the upper electrode 2 and the lower electrode 3. Plasma is generated, and the glass substrate for liquid crystal is transported by the lower roll electrode / transport roll 3 during this time, whereby the surface of the glass substrate is cleaned.

【0038】次に、平行平板型電極を用いたリモートプ
ラズマ装置の一例を図4に示す。図4中、1は電源、2
及び3は電極、4は固体誘電体、5はガス放出口、6は
被処理基材、7はガス導入管、8は搬送ロールをそれぞ
れ表す。図4において、処理ガスは矢印方向にガス導入
管から電極2及び3の間の放電空間に導入され、電極間
に電界を印加することにより放電プラズマを発生させ、
その放電プラズマをガス放出口5から液晶用ガラス基板
6に吹き付け、リモートプラズマ装置そのものを移動さ
せるか、基材6を搬送ロール8により移動させることに
よりガラス基板表面の洗浄処理がなされる。
Next, FIG. 4 shows an example of a remote plasma apparatus using parallel plate electrodes. In FIG. 4, 1 is a power source, 2
Reference numerals 3 and 3 denote electrodes, 4 is a solid dielectric, 5 is a gas outlet, 6 is a substrate to be treated, 7 is a gas inlet tube, and 8 is a transport roll. In FIG. 4, the processing gas is introduced into the discharge space between the electrodes 2 and 3 from the gas introduction tube in the direction of the arrow, and a discharge plasma is generated by applying an electric field between the electrodes.
The discharge plasma is sprayed from the gas discharge port 5 onto the glass substrate 6 for liquid crystal, and the surface of the glass substrate is cleaned by moving the remote plasma device itself or by moving the substrate 6 by the transport roll 8.

【0039】本発明の処理方法において、基板表面から
除去された有機物が再付着することを防ぐため、基板の
近傍に排気機構を設けて排気を行いながら処理してもよ
い。
In the processing method of the present invention, in order to prevent the organic substance removed from the substrate surface from reattaching, an exhaust mechanism may be provided near the substrate to perform the processing while performing the exhaust.

【0040】本発明のパルス電界を用いた大気圧放電洗
浄処理では、電極間において直接大気圧下で放電を生じ
せしめることが可能であり、より単純化された電極構
造、放電手順による大気圧プラズマ装置、及び処理手法
でかつ高速処理を実現することができる。また、放電プ
ラズマ処理に要する時間は、印加電圧の大きさや、被処
理基材、混合ガス配合等によって適宜決定される。さら
に、パルス周波数、電圧、電極間隔等のパラメータによ
り洗浄レート等の処理パラメータも調整できる。
In the atmospheric pressure discharge cleaning process using a pulsed electric field according to the present invention, a discharge can be directly generated between the electrodes under the atmospheric pressure. High-speed processing can be realized with the device and the processing method. The time required for the discharge plasma treatment is appropriately determined depending on the magnitude of the applied voltage, the substrate to be treated, the composition of the mixed gas, and the like. Further, processing parameters such as a cleaning rate can be adjusted by parameters such as a pulse frequency, a voltage, and an electrode interval.

【0041】また、本発明の洗浄後の液晶用ガラス基板
は、酸素プラズマに接触することにより有機汚れが効率
的に除去され、基板の被処理面が親水化される。
Further, the glass substrate for a liquid crystal after cleaning according to the present invention is efficiently removed of organic dirt by contacting with oxygen plasma, and the surface to be treated of the substrate is made hydrophilic.

【0042】[0042]

【実施例】本発明を実施例に基づいてさらに詳細に説明
するが、本発明はこれら実施例のみに限定されるもので
はない。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0043】実施例1 図4に示す処理装置を用いた。図4において、印加電極
2と接地電極3は、高さ30cm×幅100cmのステ
ンレス(SUS304)製であり、電極間距離は1mm
である。固体誘電体4は、1mm厚のアルミナ系誘電体
であり、放出口5は、1mmのスリット状である。搬送
ロール8で搬送されるガラス基板と放出口5との距離
は、8mmである。電極2と3との間の放電空間にガス
導入管7から、酸素25体積%、窒素75体積%の混合
ガスが流速10SLMで導入され、以下の条件で、液晶
用ガラス基板を走行させながら酸素プラズマ処理を行っ
た。
Example 1 The processing apparatus shown in FIG. 4 was used. In FIG. 4, the application electrode 2 and the ground electrode 3 are made of stainless steel (SUS304) having a height of 30 cm and a width of 100 cm, and the distance between the electrodes is 1 mm.
It is. The solid dielectric 4 is a 1 mm thick alumina-based dielectric, and the discharge port 5 is a 1 mm slit. The distance between the glass substrate transported by the transport roll 8 and the discharge port 5 is 8 mm. A mixed gas of 25% by volume of oxygen and 75% by volume of nitrogen is introduced into the discharge space between the electrodes 2 and 3 from the gas introduction tube 7 at a flow rate of 10 SLM. Plasma treatment was performed.

【0044】プラズマ処理条件 処理ガス:酸素25体積%+窒素75体積%の混合ガス
10SLM 放電条件:波形(a)、立ち上がり/立ち下がり時間5
μs、出力300W、周波数10KHz、波高値25k
PP、処理時間20sec;発生したプラズマは、ア
ーク柱のみられない均一な放電であった。
Plasma processing conditions Processing gas: mixed gas 10 SLM of 25 vol% oxygen + 75 vol% nitrogen Discharge conditions: waveform (a), rise / fall time 5
μs, output 300W, frequency 10KHz, peak value 25k
V PP , treatment time 20 sec; generated plasma was a uniform discharge with no arc pillars.

【0045】プラズマ照射部分の処理効果を液晶用ガラ
ス基板の表面を処理前後でESCAでC/Siを測定す
ることにより確かめた。C/Siが10%から0.5%
に減少しており、液晶用ガラス基板表面の有機成分が消
失していることを確認した。
The processing effect of the plasma-irradiated portion was confirmed by measuring C / Si by ESCA before and after processing the surface of the glass substrate for liquid crystal. C / Si is 10% to 0.5%
It was confirmed that the organic components on the surface of the glass substrate for liquid crystal had disappeared.

【0046】実施例2 処理ガスとして、乾燥空気を用いたこと以外は、実施例
1と同様にして液晶用ガラス基板の表面の処理を行っ
た。プラズマ照射部分の処理効果を液晶用ガラス基板の
表面を処理前後でESCAでC/Siを測定することに
より確かめた。C/Siが10%から0.42%に減少
しており、液晶用ガラス基板表面の有機成分が消失して
いることを確認した。
Example 2 A surface of a glass substrate for liquid crystal was processed in the same manner as in Example 1 except that dry air was used as a processing gas. The processing effect of the plasma-irradiated portion was confirmed by measuring C / Si by ESCA before and after processing the surface of the liquid crystal glass substrate. C / Si was reduced from 10% to 0.42%, and it was confirmed that the organic components on the surface of the glass substrate for liquid crystal had disappeared.

【0047】比較例1 パルス化された電界の代わりに、波高値8.4k
PP、周波数2.4kHzのsin波形の交流電圧に
よる放電を行ったこと以外は、実施例1と同様にして液
晶用ガラス基板の表面の処理を行った。ストリーマーが
多数見られる不均一な放電状態が確認され、処理ムラが
発生した。
Comparative Example 1 Instead of a pulsed electric field, a peak value of 8.4 k
The surface treatment of the liquid crystal glass substrate was performed in the same manner as in Example 1 except that the discharge was performed using an AC voltage having a sin waveform of V PP and a frequency of 2.4 kHz. An uneven discharge state where a large number of streamers were observed was confirmed, and processing unevenness occurred.

【0048】比較例2 処理ガスとして、酸素2体積%とアルゴン98体積%の
混合ガスを用い、放電条件として、VPP:10kVに
する以外は、実施例1と同様にして液晶用ガラス基板の
表面の処理を行った。処理効果をESCAで確かめたと
ころ、C/Siが10%から2%に減少した。実施例1
と同等の結果を得るためには処理時間を延長して、80
secにする必要があった。
Comparative Example 2 A liquid crystal glass substrate was prepared in the same manner as in Example 1 except that a mixed gas of 2% by volume of oxygen and 98% by volume of argon was used as a processing gas, and the discharge conditions were V PP : 10 kV. Surface treatment was performed. When the treatment effect was confirmed by ESCA, C / Si was reduced from 10% to 2%. Example 1
To obtain a result equivalent to
sec.

【0049】[0049]

【発明の効果】以上の特徴から、本発明の方法は、大気
圧下での実施が可能であるので、容易にインライン化で
き、液晶パネルの製造工程中で付着する有機物を常圧プ
ラズマ処理することで除去する方法として有効である。
また、本発明の方法を用いることにより処理工程全体の
速度低下を防ぐことができる。その他、半導体素子のド
ライエッチングや被処理物の表面に存在する有機汚染物
等のクリーニング、レジストの剥離、有機フィルムの密
着性の改善、金属酸化物の還元、表面改質などに用いる
ことができる。
From the above characteristics, the method of the present invention can be carried out under atmospheric pressure, so that it can be easily in-lined and the organic substances adhering during the manufacturing process of the liquid crystal panel are subjected to normal pressure plasma treatment. It is effective as a method of removing by.
Further, by using the method of the present invention, it is possible to prevent a reduction in the speed of the entire processing step. In addition, it can be used for dry etching of semiconductor elements, cleaning of organic contaminants and the like present on the surface of the object to be processed, stripping of resist, improvement of adhesion of organic films, reduction of metal oxides, surface modification, etc. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】パルス化された電界の例を示す電圧波形の図で
ある。
FIG. 1 is a diagram of a voltage waveform showing an example of a pulsed electric field.

【図2】平行平板型電極を用いた洗浄処理装置の例を示
す図である。
FIG. 2 is a diagram showing an example of a cleaning apparatus using a parallel plate type electrode.

【図3】ロール型電極を用いた洗浄処理装置の例を示す
図である。
FIG. 3 is a diagram showing an example of a cleaning apparatus using a roll-type electrode.

【図4】平行平板型電極を用いたリモートプラズマ装置
の例を示す図である。
FIG. 4 is a diagram showing an example of a remote plasma device using parallel plate electrodes.

【符号の説明】[Explanation of symbols]

1 電源(高電圧パルス電源) 2 印加電極 3 接地電極 4 固体誘電体 5 ガス放出口 6 ガラス基板 7 ガス導入管 8 搬送ロール Reference Signs List 1 power supply (high-voltage pulse power supply) 2 applied electrode 3 ground electrode 4 solid dielectric 5 gas discharge port 6 glass substrate 7 gas introduction pipe 8 transport roll

───────────────────────────────────────────────────── フロントページの続き (72)発明者 湯浅 基和 大阪府三島郡島本町百山2−1 積水化学 工業株式会社内 (72)発明者 本間 孝治 東京都東大和市立野2−703 株式会社ケ ミトロニクス内 Fターム(参考) 2H088 FA21 FA24 FA30 MA20 2H090 JC09 JC19 3B116 AA02 AB14 BB62 BB89 BC01 CC05  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Motokazu Yuasa 2-1 Shimomotocho, Mishima-gun, Osaka Prefecture Sekisui Chemical Co., Ltd. (72) Inventor Takaharu Honma 2-703 Tateno Higashiyamato-shi Tokyo F term in Chemtronics (reference) 2H088 FA21 FA24 FA30 MA20 2H090 JC09 JC19 3B116 AA02 AB14 BB62 BB89 BC01 CC05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 大気圧近傍の圧力下で、酸素を4体積%
以上含有する雰囲気中で、対向する一対の電極の少なく
とも一方の対向面に固体誘電体を設置し、当該一対の対
向電極間にパルス化された電界を印加することにより発
生させた放電プラズマを液晶用ガラス基板に接触させる
ことを特徴とする液晶用ガラス基板の洗浄方法。
1. At a pressure near atmospheric pressure, oxygen is added at 4% by volume.
In an atmosphere containing the above, a solid dielectric is placed on at least one of the opposing surfaces of a pair of opposing electrodes, and a discharge plasma generated by applying a pulsed electric field between the pair of opposing electrodes is used as a liquid crystal. A method for cleaning a glass substrate for a liquid crystal, comprising contacting the glass substrate for a liquid crystal.
【請求項2】 酸素を20〜30体積%含有する雰囲気
中で発生させた放電プラズマを接触させることを特徴と
する請求項1に記載の液晶用ガラス基板の洗浄方法。
2. The method for cleaning a glass substrate for a liquid crystal according to claim 1, wherein a discharge plasma generated in an atmosphere containing 20 to 30% by volume of oxygen is contacted.
【請求項3】 酸素を含有する窒素及び/又は空気から
なる雰囲気中で発生させた放電プラズマを接触させるこ
とを特徴とする請求項1又は2に記載の液晶用ガラス基
板の洗浄方法。
3. The method for cleaning a glass substrate for a liquid crystal according to claim 1, wherein a discharge plasma generated in an atmosphere comprising oxygen-containing nitrogen and / or air is contacted.
【請求項4】 パルス化された電界が、立ち上がり時間
及び立ち下がり時間とが40ns〜100μs、電界強
度が0.5〜250kV/cmであることを特徴とする
請求項1〜3のいずれか1項に記載の液晶用ガラス基板
の洗浄方法。
4. The pulsed electric field according to claim 1, wherein the rise time and the fall time are 40 ns to 100 μs, and the electric field strength is 0.5 to 250 kV / cm. The method for cleaning a glass substrate for a liquid crystal according to the above item.
JP2000346864A 2000-11-14 2000-11-14 Method for cleaning glass substrate for liquid crystal Withdrawn JP2002143795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000346864A JP2002143795A (en) 2000-11-14 2000-11-14 Method for cleaning glass substrate for liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000346864A JP2002143795A (en) 2000-11-14 2000-11-14 Method for cleaning glass substrate for liquid crystal

Publications (1)

Publication Number Publication Date
JP2002143795A true JP2002143795A (en) 2002-05-21

Family

ID=18820676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000346864A Withdrawn JP2002143795A (en) 2000-11-14 2000-11-14 Method for cleaning glass substrate for liquid crystal

Country Status (1)

Country Link
JP (1) JP2002143795A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005055266A1 (en) * 2003-12-03 2005-06-16 Konica Minolta Holdings, Inc. Method for manufacturing electron emission source
KR100706435B1 (en) 2005-11-19 2007-04-10 현대자동차주식회사 Pretreatment method for water-repellent coating glass by microwave plasma torch
KR101339501B1 (en) 2006-10-27 2013-12-10 오를리콘 트레이딩 아크티엔게젤샤프트, 트뤼프바흐 Method and apparatus for manufacturing cleaned substrates or clean substrates which are further processed
US20140216343A1 (en) 2008-08-04 2014-08-07 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
JP2016072258A (en) * 2014-09-26 2016-05-09 株式会社Screenホールディングス Etching device
US9721764B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Method of producing plasma by multiple-phase alternating or pulsed electrical current
US9721765B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US10242846B2 (en) 2015-12-18 2019-03-26 Agc Flat Glass North America, Inc. Hollow cathode ion source
US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
US10586685B2 (en) 2014-12-05 2020-03-10 Agc Glass Europe Hollow cathode plasma source
US10755901B2 (en) 2014-12-05 2020-08-25 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005055266A1 (en) * 2003-12-03 2005-06-16 Konica Minolta Holdings, Inc. Method for manufacturing electron emission source
JPWO2005055266A1 (en) * 2003-12-03 2007-06-28 コニカミノルタホールディングス株式会社 Manufacturing method of electron emission source
JP4525595B2 (en) * 2003-12-03 2010-08-18 コニカミノルタホールディングス株式会社 Manufacturing method of electron emission source
KR100706435B1 (en) 2005-11-19 2007-04-10 현대자동차주식회사 Pretreatment method for water-repellent coating glass by microwave plasma torch
KR101339501B1 (en) 2006-10-27 2013-12-10 오를리콘 트레이딩 아크티엔게젤샤프트, 트뤼프바흐 Method and apparatus for manufacturing cleaned substrates or clean substrates which are further processed
TWI641292B (en) * 2008-08-04 2018-11-11 Agc北美平面玻璃公司 Plasma source
US20150002021A1 (en) 2008-08-04 2015-01-01 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US20150004330A1 (en) 2008-08-04 2015-01-01 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US20140216343A1 (en) 2008-08-04 2014-08-07 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US9478401B2 (en) 2008-08-04 2016-10-25 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
TWI578854B (en) * 2008-08-04 2017-04-11 Agc北美平面玻璃公司 Method of forming coating using plasma enhanced chemical vapor deposition (pecvd)
US10580625B2 (en) 2008-08-04 2020-03-03 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US10580624B2 (en) 2008-08-04 2020-03-03 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US10438778B2 (en) 2008-08-04 2019-10-08 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
JP2016072258A (en) * 2014-09-26 2016-05-09 株式会社Screenホールディングス Etching device
US10586685B2 (en) 2014-12-05 2020-03-10 Agc Glass Europe Hollow cathode plasma source
US10755901B2 (en) 2014-12-05 2020-08-25 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
US11875976B2 (en) 2014-12-05 2024-01-16 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
US9721765B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US10559452B2 (en) 2015-11-16 2020-02-11 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US20170309458A1 (en) 2015-11-16 2017-10-26 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US9721764B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Method of producing plasma by multiple-phase alternating or pulsed electrical current
US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
US10242846B2 (en) 2015-12-18 2019-03-26 Agc Flat Glass North America, Inc. Hollow cathode ion source

Similar Documents

Publication Publication Date Title
KR100676450B1 (en) Plasma processing device and plasma processing method
JP2002237480A (en) Method of treating base material with discharge plasma
JP2003093869A (en) Discharge plasma treatment apparatus
JP2002143795A (en) Method for cleaning glass substrate for liquid crystal
JP2002151478A (en) Method and apparatus for dry etching
JP2003166065A (en) Discharge plasma treatment apparatus
JP2003209096A (en) Plasma etching treatment method and device therefor
JP2003318000A (en) Discharge plasma treatment apparatus
JP2002151494A (en) Normal pressure plasma processing method and device therefor
KR20020071694A (en) Method and apparatus for removing contaminants from the surface of a substrate with atmospheric-pressure plasma
JP2002094221A (en) Normal pressure pulse plasma treatment method and its device
JP2002151480A (en) Processing method for semiconductor element and device therefor
JP2004207145A (en) Discharge plasma processing device
JP2002155370A (en) Method and system for atmospheric pressure plasma treatment
JP2002020514A (en) Method for modifying surface of fluororesin
JP2002151543A (en) Method for removing oxide film of metal electrode
JP2003163207A (en) Removing treatment method for remaining photo-resist
JP4772215B2 (en) Atmospheric pressure plasma processing equipment
JP2005347278A (en) Discharge plasma processing apparatus
JP2003173899A (en) Discharge plasma processor
JP2002151476A (en) Method and apparatus for removing resist
JP2002176050A (en) Method of forming silicon oxide film and system thereof
JP2006005007A (en) Method and device for forming amorphous silicon layer
JP2004103251A (en) Discharge plasma treatment device
JP2003093870A (en) Discharge plasma treatment apparatus and discharge plasma treatment method using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091029