JP2002139478A - Creep damage detection method and device of structural material - Google Patents

Creep damage detection method and device of structural material

Info

Publication number
JP2002139478A
JP2002139478A JP2000337227A JP2000337227A JP2002139478A JP 2002139478 A JP2002139478 A JP 2002139478A JP 2000337227 A JP2000337227 A JP 2000337227A JP 2000337227 A JP2000337227 A JP 2000337227A JP 2002139478 A JP2002139478 A JP 2002139478A
Authority
JP
Japan
Prior art keywords
structural material
creep damage
ultrasonic
divided
ultrasonic probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000337227A
Other languages
Japanese (ja)
Inventor
Hiroaki Hatanaka
宏明 畠中
Takahiro Arakawa
敬弘 荒川
Saburo Shibata
三郎 芝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2000337227A priority Critical patent/JP2002139478A/en
Publication of JP2002139478A publication Critical patent/JP2002139478A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect a creep damage for each depth position of a structural material, and further to perform evaluation objectively. SOLUTION: An ultrasonic sound 3 is applied from the surface of the structural material to the bottom surface by an ultrasonic probe 2. Out of the detected waveforms, the time zone between a transmission pulse and a first bottom surface echo is divided into a plurality of equal sections, and a noise signal for each divided zone is analyzed by a computing unit 6. The analysis result it compared with the noise value ratio of a raw material for calculating as a numeric value. Numeric value data for each scanning position are stored at a storage 8, and are subjected to imaging processing as two-dimensional data by an image processor 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は構造材料内部のクリ
ープ損傷を精度よく検出する構造材料のクリープ損傷検
出方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for detecting creep damage of a structural material for accurately detecting creep damage inside the structural material.

【0002】[0002]

【従来の技術】従来より、各種産業用プラントの余寿命
評価の研究開発が盛んに行われているが、プラント機器
等の余寿命を予測する上で、構造材料の劣化、損傷によ
る欠陥部を非破壊的に検査する技術は非常に重要であ
る。
2. Description of the Related Art Conventionally, research and development of remaining life evaluation of various industrial plants have been actively carried out. However, in order to predict the remaining life of plant equipment and the like, defective parts due to deterioration and damage of structural materials are considered. Nondestructive testing techniques are very important.

【0003】構造材料の非破壊検査のうち、構造材料の
表面部の欠陥を検出する方法としては、レプリカ法が知
られている。この方法は、構造材料表面の凹凸を、電子
線が透過し易い薄膜(レプリカ)で転写し、この薄膜を
間接的に電子顕微鏡で観察するものである。
[0003] In the nondestructive inspection of a structural material, a replica method is known as a method for detecting a defect on the surface of the structural material. In this method, irregularities on the surface of a structural material are transferred by a thin film (replica) through which an electron beam easily passes, and this thin film is indirectly observed with an electron microscope.

【0004】一方、構造材料内部のクリープ損傷を検出
する方法としては、超音波ノイズ分析法が知られてい
る。かかる超音波ノイズ分析法は、構造材料に欠陥部が
ない部分では、材料表面から入射させた超音波が底面
(裏面)で反射して戻ってくるため、これをエコーとし
て検出し、一方、構造材料の内部に、たとえば、ボイド
の如き欠陥部があると、欠陥部に衝突した超音波の散乱
波がノイズとして検出されるため、欠陥部の存在を把握
できることになる。すなわち、深さ方向に内部欠陥のな
い未損傷材(新材)の場合は、図4(イ)に一例を示す
如き超音波波形が検出され、内部の深さ方向にボイドの
如き欠陥のある損傷材の場合は、各欠陥部から返って来
る音により図4(ロ)に一例を示す如き超音波波形が検
出されることになるので、次に、それぞれ送信パルスa
と第1回底面エコーbとの間の時間帯Gのノイズ信号に
ゲートをかけて、FFT演算により周波数解析すると、
未損傷材の場合は、図5(イ)に一例を示す如きスペク
トルが得られ、又、損傷材の場合は、図5(ロ)に一例
を示す如きスペクトルが得られることになる。したがっ
て、この周波数スペクトルの面積値を図6に示す如き検
定曲線と照合させてクリープ損傷評価を行うようにして
いる。この場合、図5(イ)に示す周波数スペクトルの
面積値を1として、図5(ロ)に示す周波数スペクトル
の面積値を1.5(面積比)とすると、図6からクリー
プ損傷度は約85%という評価が得られる。
On the other hand, as a method for detecting creep damage inside a structural material, an ultrasonic noise analysis method is known. In such an ultrasonic noise analysis method, in a portion where there is no defect in the structural material, since the ultrasonic wave incident from the material surface is reflected back on the bottom surface (back surface), it is detected as an echo. If there is a defect such as a void inside the material, for example, the scattered wave of the ultrasonic wave colliding with the defect is detected as noise, so that the existence of the defect can be grasped. That is, in the case of an undamaged material (new material) having no internal defect in the depth direction, an ultrasonic waveform as shown in an example in FIG. 4A is detected, and a defect such as a void exists in the internal depth direction. In the case of a damaged material, an ultrasonic waveform as shown in an example in FIG. 4B is detected by the sound returned from each defective portion.
When a noise signal in a time zone G between the first time and the first bottom echo b is gated and frequency-analyzed by FFT operation,
In the case of an undamaged material, a spectrum as shown in FIG. 5A is obtained, and in the case of a damaged material, a spectrum as shown in FIG. 5B is obtained. Therefore, the area value of the frequency spectrum is collated with a test curve as shown in FIG. 6 to perform creep damage evaluation. In this case, assuming that the area value of the frequency spectrum shown in FIG. 5A is 1 and the area value of the frequency spectrum shown in FIG. An evaluation of 85% is obtained.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記超音波
ノイズ分析法によるクリープ損傷検出方法では、構造材
料の板厚全体としての評価を行うことはできるが、クリ
ープ損傷度の高い部位(深さ位置)を特定することが困
難であり、又、算出された数値のみによって或る一点の
評価を行うため、客観性に欠ける問題がある。
However, in the creep damage detection method using the ultrasonic noise analysis method, it is possible to evaluate the entire thickness of the structural material, but it is possible to evaluate a portion having a high degree of creep damage (depth position). ) Is difficult to identify, and a certain point is evaluated only by the calculated numerical value, so that there is a problem of lack of objectivity.

【0006】そこで、本発明は、構造材料の深さ位置毎
のクリープ損傷を検出できるようにし、更に、客観性の
ある評価を行うことができるようにしようとするもので
ある。
[0006] Therefore, the present invention is to make it possible to detect creep damage at each depth position of a structural material and to perform an objective evaluation.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するために、構造材料の表面から底面へ向けて超音波
探触子により超音波を入射させ、そのとき検出される送
信パルスと第1回底面エコーとの間の時間帯を複数等分
割して、各分割帯域毎のノイズ信号を解析することによ
り、各分割帯域に対応する深さ位置毎のクリープ損傷度
を数値データとして求めるようにする構造材料のクリー
プ損傷検出方法及び装置とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides an ultrasonic probe in which ultrasonic waves are incident from the surface to the bottom surface of a structural material, and a transmission pulse detected at that time is used. The time zone between the first bottom echo is divided into a plurality of equal parts, and the noise signal of each divided band is analyzed, thereby obtaining the creep damage degree for each depth position corresponding to each divided band as numerical data. A method and an apparatus for detecting creep damage of a structural material are described.

【0008】ノイズ信号を構造材料の深さ方向に分割し
て解析することから、深さ位置毎の情報を得ることがで
きて、クリープ損傷度の高い部位を特定することができ
るようになる。
Since the noise signal is divided and analyzed in the depth direction of the structural material, information at each depth position can be obtained, and a portion having a high degree of creep damage can be specified.

【0009】又、超音波探触子を走査させるようにし
て、走査位置と深さ位置毎の数値データを2次元データ
として画像化処理するようにすることにより、その画像
からクリープ損傷度の客観的評価が可能となる。
[0009] Further, by causing the ultrasonic probe to scan and numerical data at each scanning position and depth position to be image-processed as two-dimensional data, the degree of creep damage can be objectively determined from the image. Evaluation is possible.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1乃至図3は本発明の構造材料のクリー
プ損傷検出装置の実施の一形態を示すもので、たとえ
ば、溶接部1aを有する構造材料1に対し超音波探触子
2を介して超音波3を送受信する超音波送受信器4と、
該超音波送受信器4から送られた電気信号をA/D変換
するA/D変換器5と、該A/D変換器5にてデジタル
化された図2に示す如き波形のうちの送信パルスaと第
1回底面エコーbとの間の時間帯Gを複数等分割(たと
えば、5等分)して各分割帯域gを設定し且つ各分割帯
域g毎にゲートをかけて各分割帯域g毎のノイズ信号を
ノイズ分析法により解析する演算器6と、該演算器6に
よる演算結果を未損傷材による設定データと比較して数
値化する比較器7とを備える。
FIGS. 1 to 3 show an embodiment of a creep damage detecting apparatus for a structural material according to the present invention. For example, a structural material 1 having a welded portion 1a is connected to an ultrasonic probe 2 through an ultrasonic probe 2. FIG. An ultrasonic transceiver 4 for transmitting and receiving the ultrasonic waves 3;
An A / D converter 5 for A / D converting an electric signal sent from the ultrasonic transmitter / receiver 4, and a transmission pulse of a waveform as shown in FIG. a is divided into a plurality of equal parts (for example, divided into five equal parts), and each divided band g is set, and each divided band g is gated for each divided band g. An arithmetic unit 6 for analyzing each noise signal by a noise analysis method, and a comparator 7 for comparing a calculation result of the arithmetic unit 6 with setting data of an undamaged material and digitizing the result.

【0012】又、上記比較器7により得られた各走査位
置毎の各分割帯域gの数値データを記憶させる記憶器8
と、該記憶器8に記憶された数値データを図3に示すよ
うなカラーマップの如き2次元画像データとして処理す
る画像処理器9と、該画像処理器9にて処理された画像
を表示する表示器10とを備える。
A storage unit 8 for storing numerical data of each divided band g for each scanning position obtained by the comparator 7.
And an image processor 9 for processing the numerical data stored in the storage unit 8 as two-dimensional image data such as a color map as shown in FIG. 3, and displaying the image processed by the image processor 9. And a display 10.

【0013】たとえば、図1に示す如き構造材料1の溶
接部1a付近のクリープ損傷を検出する場合は、溶接部
1aの一側に位置するように超音波探触子2を構造材料
1の表面部に配置し、探触子2を矢印X方向に走査させ
ながら、超音波送受信器4の送信部から探触子2を介し
て超音波3を発信させて伝播させ、底面に当って反射し
た波を探触子2を介して超音波送受信器4の受信部で受
け、その信号をA/D変換器5でデジタル化して演算器
6に送るようにする。
For example, when detecting creep damage near the welded portion 1a of the structural material 1 as shown in FIG. 1, the ultrasonic probe 2 is placed on one side of the welded portion 1a. While transmitting the probe 2 in the direction of the arrow X, the transmitter 3 of the ultrasonic transmitter / receiver 4 transmits and propagates the ultrasonic wave 3 via the probe 2 while scanning the probe 2 in the direction of the arrow X. The wave is received by the receiving unit of the ultrasonic transceiver 4 via the probe 2, and the signal is digitized by the A / D converter 5 and sent to the arithmetic unit 6.

【0014】上記演算器6では、図2に示す如きデジタ
ル波形のうちの送信パルスaと第1回底面エコーbとの
間の時間帯Gを複数等分割した分割帯域gを定めて、各
分割帯域gにゲートをかけ、各分割帯域g毎のノイズ信
号をノイズ分析法により解析させるようにし、解析結果
を比較器7に送るようにする。比較器7では、新材と比
較したノイズ値比から、各分割帯域g毎のクリープ損傷
度を推定し、数値として算出するようにし、その数値デ
ータを記憶器8に送って記憶させるようにする。これに
より、損傷度の高い深さ部位を特定することができる。
The computing unit 6 determines a plurality of divided bands g obtained by equally dividing a time zone G between the transmission pulse a and the first bottom echo b in the digital waveform as shown in FIG. A gate is applied to the band g, a noise signal for each divided band g is analyzed by a noise analysis method, and an analysis result is sent to the comparator 7. The comparator 7 estimates the creep damage degree for each divided band g from the noise value ratio compared with the new material, calculates the numerical value as a numerical value, and sends the numerical data to the storage device 8 for storage. . As a result, it is possible to specify a depth portion having a high degree of damage.

【0015】更に、上記と同様にして、探触子2の走査
に伴う各走査位置毎のクリープ損傷度の数値データを順
次記憶器8に記憶させて行くようにする。このようにし
て、探触子2の深さ、走査位置毎の2次元のクリープ損
傷度の数値データが集められると、次に、これらの数値
データを画像処理器9に送り、図3に示す如き2次元デ
ータとして画像化処理し、表示器10に表示させるよう
にする。したがって、この2次元データによりクリープ
損傷度を客観的に評価することができる。
Further, in the same manner as described above, numerical data of the degree of creep damage at each scanning position accompanying the scanning of the probe 2 is sequentially stored in the storage unit 8. After the numerical data of the two-dimensional creep damage degree for each of the depth of the probe 2 and the scanning position is collected in this way, these numerical data are then sent to the image processor 9 and shown in FIG. Image processing is performed as two-dimensional data as described above, and is displayed on the display device 10. Therefore, the degree of creep damage can be objectively evaluated using the two-dimensional data.

【0016】なお、本発明は上記実施の形態にのみ限定
されるものではなく、演算器6によるノイズ信号の解析
に当り、時間ゲートの分割数は任意に選定できること、
その他本発明の要旨を逸脱しない範囲内において種々変
更を加え得ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, and that the number of divisions of the time gate can be arbitrarily selected when analyzing the noise signal by the computing unit 6.
Of course, various changes can be made without departing from the spirit of the present invention.

【0017】[0017]

【発明の効果】以上述べた如く、本発明によれば、構造
材料の表面から底面へ向けて超音波探触子により超音波
を入射させ、そのとき検出される送信パルスと第1回底
面エコーとの間の時間帯を複数等分割して、各分割帯域
毎のノイズ信号を解析することにより、各分割帯域に対
応する深さ位置毎のクリープ損傷度を数値データとして
求めるようにする構造材料のクリープ損傷検出方法及び
装置としてあるので、これまでの超音波ノイズ分析法に
よる場合に比して詳細な情報を得ることができることに
より、クリープ損傷度の高い深さ部位を特定することが
でき、又、超音波探触子を走査させるようにして、走査
位置と深さ位置毎の数値データを2次元データとして画
像化処理するようにすることによって、広範なデータに
よる画像から、クリープ損傷度の客観的な評価を行うこ
とができる、等の優れた効果を発揮する。
As described above, according to the present invention, ultrasonic waves are made incident from the surface of the structural material toward the bottom surface by the ultrasonic probe, and the transmission pulse and the first bottom surface echo detected at that time are detected. Structural material that divides the time zone between and into multiple equal parts and analyzes the noise signal for each divided band to obtain the creep damage degree for each depth position corresponding to each divided band as numerical data Since it is a creep damage detection method and apparatus, it is possible to obtain more detailed information than in the case of the conventional ultrasonic noise analysis method, it is possible to identify the depth portion of high creep damage degree, In addition, by scanning the ultrasonic probe and performing numerical processing on the numerical data for each scanning position and depth position as two-dimensional data, it is possible to perform a Objective evaluation of over-flops degree of damage can be carried out, to excellent effect and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構造材料のクリープ損傷検出装置の実
施の一形態を示す概略図である。
FIG. 1 is a schematic view showing an embodiment of a structural material creep damage detection device according to the present invention.

【図2】演算器で設定した分割帯域の一例を示す超音波
波形図である。
FIG. 2 is an ultrasonic waveform diagram showing an example of a divided band set by a computing unit.

【図3】画像処理器により処理した画像の一例を示す図
である。
FIG. 3 is a diagram illustrating an example of an image processed by an image processor.

【図4】デジタル化された超音波波形を示すもので、
(イ)は未損傷材の場合の一例を示す図、(ロ)は損傷
材の場合の一例を示す図である。
FIG. 4 shows a digitized ultrasonic waveform,
(A) is a diagram showing an example of a case of an undamaged material, and (B) is a diagram showing an example of a case of a damaged material.

【図5】超音波波形の解析結果を示すもので、(イ)は
未損傷材の場合の一例を示す図、(ロ)は損傷材の場合
の一例を示す図である。
FIGS. 5A and 5B show analysis results of an ultrasonic waveform, in which FIG. 5A shows an example of an undamaged material, and FIG. 5B shows an example of a damaged material.

【図6】クリープ損傷度の評価に用いる検定曲線を示す
図である。
FIG. 6 is a diagram showing a test curve used for evaluating the degree of creep damage.

【符号の説明】[Explanation of symbols]

1 構造材料 2 超音波探触子 3 超音波 4 超音波送受信器 5 A/D変換器 6 演算器 7 比較器 8 記憶器 9 画像処理器 10 表示器 a 送信パルス b 第1回底面エコー G 時間帯 g 分割帯域 DESCRIPTION OF SYMBOLS 1 Structural material 2 Ultrasonic probe 3 Ultrasonic wave 4 Ultrasonic wave transmitter / receiver 5 A / D converter 6 Computing unit 7 Comparator 8 Memory unit 9 Image processor 10 Display a Transmission pulse b 1st bottom echo G time Band g Divided band

───────────────────────────────────────────────────── フロントページの続き (72)発明者 芝田 三郎 東京都江東区豊洲三丁目1番15号 石川島 播磨重工業株式会社東京エンジニアリング センター生産技術開発センター内 Fターム(参考) 2G047 AA07 AB07 BC07 BC10 BC11 GA19 GG01 GG09 GG19 GG33 GH06  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Saburo Shibata 3-1-1-15 Toyosu, Koto-ku, Tokyo Ishikawajima-Harima Heavy Industries, Ltd. Tokyo Engineering Center F-term (reference) 2G047 AA07 AB07 BC07 BC10 BC11 GA19 GG01 GG09 GG19 GG33 GH06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 構造材料の表面から底面へ向けて超音波
探触子により超音波を入射させ、そのとき検出される送
信パルスと第1回底面エコーとの間の時間帯を複数等分
割して、各分割帯域毎のノイズ信号を解析することによ
り、各分割帯域に対応する深さ位置毎のクリープ損傷度
を数値データとして求めることを特徴とする構造材料の
クリープ損傷検出方法。
1. An ultrasonic probe is irradiated by an ultrasonic probe from a surface of a structural material to a bottom surface, and a time zone between a transmission pulse detected at that time and a first bottom echo is divided into a plurality of equal parts. A method for detecting a creep damage degree of a structural material at each depth position corresponding to each divided band as numerical data by analyzing a noise signal for each divided band.
【請求項2】 超音波探触子を走査させるようにして、
走査位置と深さ位置毎の数値データを2次元データとし
て画像化処理するようにした請求項1記載の構造材料の
クリープ損傷検出方法。
2. An ultrasonic probe is scanned.
2. The method for detecting creep damage of a structural material according to claim 1, wherein the numerical data at each of the scanning position and the depth position is imaged as two-dimensional data.
【請求項3】 構造材料に対し超音波探触子を介して超
音波を送受信する超音波送受信器と、該超音波送受信器
からの電気信号をデジタル化するA/D変換器と、デジ
タル化した波形の送信パルスと第1回底面エコーとの間
の時間帯を複数等分割して各分割帯域毎のノイズ信号を
解析する演算器と、該演算器による演算結果を設定デー
タと比較して数値化する比較器とを備えた構成を有する
ことを特徴とする構造材料のクリープ損傷検出装置。
3. An ultrasonic transceiver for transmitting and receiving ultrasonic waves to and from a structural material via an ultrasonic probe, an A / D converter for digitizing an electric signal from the ultrasonic transceiver, and digitizing. An arithmetic unit for analyzing a noise signal for each divided band by dividing a time zone between the transmission pulse of the obtained waveform and the first bottom echo into a plurality of equal parts, and comparing the operation result of the arithmetic unit with the set data. An apparatus for detecting creep damage of a structural material, comprising a configuration provided with a comparator for digitizing.
【請求項4】 比較器により得られた各走査位置毎の各
分割帯域の数値データを記憶させる記憶器と、該記憶器
に記憶させた各数値データを画像化処理して2次元画像
データとして表示器に表示させる画像処理器とを備えた
請求項3記載の構造材料のクリープ損傷検出装置。
4. A storage for storing numerical data of each divided band for each scanning position obtained by the comparator, and image processing of each numerical data stored in the storage to produce two-dimensional image data. 4. The apparatus for detecting creep damage of a structural material according to claim 3, further comprising an image processor for displaying the image on a display.
JP2000337227A 2000-11-06 2000-11-06 Creep damage detection method and device of structural material Pending JP2002139478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000337227A JP2002139478A (en) 2000-11-06 2000-11-06 Creep damage detection method and device of structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000337227A JP2002139478A (en) 2000-11-06 2000-11-06 Creep damage detection method and device of structural material

Publications (1)

Publication Number Publication Date
JP2002139478A true JP2002139478A (en) 2002-05-17

Family

ID=18812646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000337227A Pending JP2002139478A (en) 2000-11-06 2000-11-06 Creep damage detection method and device of structural material

Country Status (1)

Country Link
JP (1) JP2002139478A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110900A1 (en) * 2006-03-24 2007-10-04 Ihi Corporation Defect inspecting device, and defect inspecting method
JP2010243375A (en) * 2009-04-08 2010-10-28 National Maritime Research Institute Extended crack detection method, apparatus, and program
JP2011516897A (en) * 2008-04-15 2011-05-26 ザ・ボーイング・カンパニー Anomaly imaging using backscattered waves
JP2019138922A (en) * 2019-06-04 2019-08-22 原子燃料工業株式会社 Material diagnosis method
JP2020153938A (en) * 2019-03-22 2020-09-24 Ykk Ap株式会社 Tile deterioration diagnosis method, estimation method for building wall surface repair cost, tile deterioration diagnosis system, and estimation system for building wall surface repair cost
JP2020201057A (en) * 2019-06-06 2020-12-17 一般財団法人電力中央研究所 Damage evaluation device for metal weld zone

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110900A1 (en) * 2006-03-24 2007-10-04 Ihi Corporation Defect inspecting device, and defect inspecting method
JP4821848B2 (en) * 2006-03-24 2011-11-24 株式会社Ihi Defect inspection apparatus and defect inspection method
US8175820B2 (en) 2006-03-24 2012-05-08 Ihi Corporation Defect inspection apparatus and defect inspection method
JP2011516897A (en) * 2008-04-15 2011-05-26 ザ・ボーイング・カンパニー Anomaly imaging using backscattered waves
JP2010243375A (en) * 2009-04-08 2010-10-28 National Maritime Research Institute Extended crack detection method, apparatus, and program
JP2020153938A (en) * 2019-03-22 2020-09-24 Ykk Ap株式会社 Tile deterioration diagnosis method, estimation method for building wall surface repair cost, tile deterioration diagnosis system, and estimation system for building wall surface repair cost
JP7219647B2 (en) 2019-03-22 2023-02-08 Ykk Ap株式会社 Tile deterioration diagnosis method, building wall surface repair cost estimation method, tile deterioration diagnosis system, and building wall surface repair cost estimation system
JP2019138922A (en) * 2019-06-04 2019-08-22 原子燃料工業株式会社 Material diagnosis method
JP2020201057A (en) * 2019-06-06 2020-12-17 一般財団法人電力中央研究所 Damage evaluation device for metal weld zone
JP7261093B2 (en) 2019-06-06 2023-04-19 一般財団法人電力中央研究所 Damage evaluation equipment for metal welds

Similar Documents

Publication Publication Date Title
US7522780B2 (en) Frequency domain processing of scanning acoustic imaging signals
RU2521720C1 (en) Method and device for welding zone imaging
US4441369A (en) Ultrasonic detection of extended flaws
WO2014116473A1 (en) Transforming a-scan data samples into a three-dimensional space for facilitating visualization of flaws
JP4591850B2 (en) Ultrasonic inspection method and apparatus
JP2002139478A (en) Creep damage detection method and device of structural material
JP5742513B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP6371575B2 (en) Ultrasonic flaw detection inspection method and ultrasonic flaw detection inspection apparatus
Albright et al. The benefits of using time-frequency analysis with synthetic aperture focusing technique
JP4738243B2 (en) Ultrasonic flaw detection system
CN111047547B (en) Combined defect quantification method based on multi-view TFM
JP7078128B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detector, steel material manufacturing equipment, steel material manufacturing method, and steel material quality control method
KR101963820B1 (en) Reflection mode nonlinear ultrasonic diagnosis apparatus
KR100485450B1 (en) Ultrasonic testing apparatus and control method therefor
KR100546827B1 (en) System and its method for processing digital ultrasonic image
JP5150302B2 (en) Ultrasonic inspection data evaluation apparatus and ultrasonic inspection data evaluation method
JP2005331439A (en) Analysis method and analyzer of flaw detection signal
JPS6229023B2 (en)
JP2761928B2 (en) Non-destructive inspection method and device
KR101964758B1 (en) Non-contact nonlinear ultrasonic diagnosis apparatus
JP2740871B2 (en) Method and apparatus for measuring shear wave velocity in ultrasonic test
Hinders et al. Multi‐Mode Lamb Wave Arrival Time Extraction for Improved Tomographic Reconstruction
JP2002162390A (en) Method and device for ultrasonic wave inspection
JP2001165912A (en) Ultrasonic signal processor
Doctor et al. Application of real-time 3-D saft in the tandem mode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070725

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080215