JP2002134794A - Optical device for optical element - Google Patents

Optical device for optical element

Info

Publication number
JP2002134794A
JP2002134794A JP2000327683A JP2000327683A JP2002134794A JP 2002134794 A JP2002134794 A JP 2002134794A JP 2000327683 A JP2000327683 A JP 2000327683A JP 2000327683 A JP2000327683 A JP 2000327683A JP 2002134794 A JP2002134794 A JP 2002134794A
Authority
JP
Japan
Prior art keywords
light
optical
optical element
reflecting member
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000327683A
Other languages
Japanese (ja)
Other versions
JP3791323B2 (en
Inventor
Yukari Terakawa
裕佳里 寺川
Hayami Hosokawa
速美 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2000327683A priority Critical patent/JP3791323B2/en
Publication of JP2002134794A publication Critical patent/JP2002134794A/en
Application granted granted Critical
Publication of JP3791323B2 publication Critical patent/JP3791323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Landscapes

  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem of usage of light being poor because a torus part is present, where no light exits or no incident light reaches a light-receiving element, related to an optical device for an optical element, where with a light reflection member comprising a concave surface, a light-emitting element and a light-receiving element are placed around the center of the light reflection member and the concave part is sealed with a mold resin. SOLUTION: A lens is made to be larger which is provided in a direct outgoing region on the outgoing side of light or in a direct incidence region on the incidence side of light. At the extra part, an interface with an air is provided or a second light reflecting member is provided, thus a torus region where no light exits or it is not received, or is lost from a light-receiving element is eliminated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光ダイオード
(LED)や半導体レーザー(LD)などの発光素子か
ら出射する光、またはフォトダイオードや光電変換素子
などの受光素子へ入射する光を、効率よく利用できるよ
うにした光素子用光学デバイスに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently emitting light emitted from a light emitting element such as a light emitting diode (LED) or a semiconductor laser (LD) or light incident on a light receiving element such as a photodiode or a photoelectric conversion element. The present invention relates to an optical device for an optical element that can be used.

【0002】[0002]

【従来の技術】従来から、発光ダイオード(LED)や
半導体レーザー(LD)などの発光素子チップを砲弾型
形状にモールド樹脂で封止した発光デバイスが存在す
る。こういった発光素子においては、前方へ出射された
光はそのまま出射されるが、斜め方向へ出射された光は
モールド樹脂の界面で全反射されたり、ケースの内部で
散乱されたりしてロスとなり、光の利用効率が悪いもの
があった。
2. Description of the Related Art Conventionally, there is a light-emitting device in which a light-emitting element chip such as a light-emitting diode (LED) or a semiconductor laser (LD) is sealed in a shell shape with a mold resin. In such a light emitting element, light emitted forward is emitted as it is, but light emitted obliquely is totally reflected at the interface of the mold resin or scattered inside the case, resulting in loss. Some of them have poor light use efficiency.

【0003】そのため本願出願人は、特願平11−34
1344号において、図11(A)に断面図を示したよ
うに、発光ダイオード(LED)や半導体レーザー(L
D)などの発光素子チップ(以下発光素子と略称する)
1を受け皿部2に載置してダイボンドしたリードフレー
ム3、ボンディングワイヤ4で発光素子1と接続された
他方のリードフレーム5、その回りに設けられた光反射
部材6などを有し、光出射側中央部に球面レンズ状、非
球面レンズ状、放物面状などの凸レンズ形状をした直接
出射領域7、及びこの直接出射領域7を囲むように平面
状に全反射領域8を形成するようモールド樹脂9で封止
した光素子用光学デバイスを用いた発光デバイスを提案
した。
[0003] For this reason, the applicant of the present application has filed Japanese Patent Application No. 11-34.
No. 1344, as shown in the cross-sectional view of FIG.
D) and other light-emitting element chips (hereinafter abbreviated as light-emitting elements)
1 has a lead frame 3 mounted on a receiving portion 2 and die-bonded, the other lead frame 5 connected to the light emitting element 1 by bonding wires 4, a light reflecting member 6 provided therearound, and the like. A mold is formed in a central portion on the side to form a direct emission region 7 having a convex lens shape such as a spherical lens shape, an aspherical lens shape, or a parabolic shape, and a total reflection region 8 formed in a plane so as to surround the direct emission region 7. A light emitting device using an optical device for an optical element sealed with a resin 9 has been proposed.

【0004】この図11に示した発光デバイスにおい
て、発光素子1は直接出射領域7の凸レンズ状部の焦
点、またはその近傍に置かれているため、発光素子1か
ら出て直接出射領域7に向かった光はほぼ平行光化さ
れ、経路10に示したように直接モールド樹脂9の前面
から前方へ出射される。一方直接出射領域7と全反射領
域8との境界方向と発光素子1の光軸とのなす角度α
を、モールド樹脂9と空気との間の全反射の臨界角と等
しいか、それよりも大きく設定してあるため、発光素子
1から出射された光のうち、経路11に示した全反射領
域8に向かった光は、モールド樹脂9の空気との界面で
全反射され、さらに光反射部材6で反射されてほぼ平行
光となって全反射領域8から前方へ出射する。そのため
この発光デバイスにおいては、発光素子1から出た光の
ほとんどが有効光として直接出射領域7と全反射領域8
とから出射され、非常に効率の良い発光デバイスを得る
ことができる。
In the light-emitting device shown in FIG. 11, the light-emitting element 1 is located at or near the focal point of the convex lens-like portion of the direct light-emitting area 7, so that the light-emitting element 1 exits the light-emitting element 1 and directly faces the light-emitting area 7. The light is converted into substantially parallel light, and is directly emitted from the front surface of the mold resin 9 to the front as shown in a path 10. On the other hand, the angle α between the direction of the boundary between the direct emission area 7 and the total reflection area 8 and the optical axis of the light emitting element 1
Is set to be equal to or greater than the critical angle of total reflection between the mold resin 9 and the air, and therefore, of the light emitted from the light emitting element 1, Is totally reflected at the interface of the mold resin 9 with the air, further reflected by the light reflecting member 6, becomes almost parallel light, and exits forward from the total reflection area 8. Therefore, in this light emitting device, most of the light emitted from the light emitting element 1 is used as effective light in the direct emission area 7 and the total reflection area 8.
And a very efficient light emitting device can be obtained.

【0005】また、前記特願平11−341344号に
おいては、このような光素子用光学デバイスを用い、図
12(A)のように発光素子の代わりにフォトダイオー
ドや光電変換素子などの受光素子を封止した受光デバイ
スも提案している。すなわちこの図12において、6は
光反射部材、21は光入射側中央部に球面レンズ状、非
球面レンズ状、放物面状などの凸レンズ形状として設け
た直接入射領域、22は入射した光を光反射部材6で反
射した後、モールド樹脂9と空気との界面で全反射させ
てフォトダイオードや光電変換素子などの受光素子20
に導く全反射領域で、これらの部材をモールド樹脂9で
封止してある。
In Japanese Patent Application No. 11-341344, such an optical device for an optical element is used, and a light receiving element such as a photodiode or a photoelectric conversion element is used instead of a light emitting element as shown in FIG. There is also proposed a light receiving device in which is sealed. That is, in FIG. 12, 6 is a light reflecting member, 21 is a direct incident area provided as a convex lens shape such as a spherical lens shape, an aspherical lens shape, or a parabolic shape in the central portion on the light incident side, and 22 is a light incident region. After being reflected by the light reflecting member 6, the light is totally reflected at an interface between the mold resin 9 and the air to form a light receiving element 20 such as a photodiode or a photoelectric conversion element.
These members are sealed with the mold resin 9 in the total reflection area leading to the above.

【0006】フォトダイオードや光電変換素子などの受
光素子は、例えばセンシング用であれば受光量が大きく
なることによって感度が向上し、また光電変換素子では
受光量が大きくなることによって発生する電気エネルギ
ーが増加する。従って、これらの受光素子では、できる
だけ受光面を大きくすることが望まれる。
Light-receiving elements such as photodiodes and photoelectric conversion elements improve sensitivity by increasing the amount of received light for sensing, for example, and increase the amount of electric energy generated by increasing the amount of received light in the photoelectric conversion element. To increase. Therefore, in these light receiving elements, it is desired to make the light receiving surface as large as possible.

【0007】入射光の強度が同じであれば、受光量を増
加させる方法としてまず考えられることは、受光素子の
面積を大きくすることである。しかし、受光素子のチッ
プ面積を大きくする方法では、一枚の単結晶ウェハから
得られるチップ数が少なくなるため大幅なコストアップ
につながる。また、受光素子の前方にレンズを配置し、
レンズに入射した光を受光素子に集光する方法もある。
しかし、この方法では大きなレンズが必要になると共
に、受光素子とレンズの距離の分だけ厚みがますので、
受光デバイスが大型になるという問題があった。
[0007] If the intensity of the incident light is the same, the first conceivable method for increasing the amount of received light is to increase the area of the light receiving element. However, in the method of increasing the chip area of the light receiving element, the number of chips obtained from one single crystal wafer is reduced, which leads to a significant cost increase. Also, a lens is placed in front of the light receiving element,
There is also a method of condensing light incident on a lens on a light receiving element.
However, this method requires a large lens and increases the thickness by the distance between the light receiving element and the lens.
There is a problem that the light receiving device becomes large.

【0008】しかしながら、図12(A)に示したよう
な光素子用光学デバイスを用いると、直接入射領域21
に経路23などで入射した光は、空気とモールド樹脂9
との界面で屈折して受光素子20に達し、一方、全反射
領域22に経路24などで入射した光は、光反射部材6
で反射された後、全反射領域22で反射されて受光素子
20に達し、受光素子そのものの受光面は小さいにも関
わらず大きな面積から入射した光を受光することがで
き、非常に効率の良い受光デバイスを構成することがで
きる。
However, when an optical device for an optical element as shown in FIG.
Incident on the light path 23 and the like are air and mold resin 9.
The light that is refracted at the interface with the light-receiving element 20 and reaches the light-receiving element 20, while being incident on the total reflection area 22 via the path 24 and the like,
Then, the light is reflected by the total reflection area 22 and reaches the light receiving element 20, and the light incident from a large area can be received although the light receiving surface of the light receiving element itself is small, which is very efficient. A light receiving device can be configured.

【0009】また、発光素子1や受光素子を封止せずに
光反射部材6とモールド樹脂で直接出射領域7と全反射
領域8を形成し、発光素子や受光素子と組み合わせる光
素子用光学デバイスとすると、いろいろな素子と容易に
組み合わせて効率の良い光素子を構成できる。
An optical device for an optical element, in which the light emitting element 1 and the light receiving element are not sealed and the light emitting member 6 and the molding resin are used to directly form the emission area 7 and the total reflection area 8 and are combined with the light emitting element and the light receiving element. Then, an efficient optical element can be configured by easily combining with various elements.

【0010】[0010]

【発明が解決しようとする課題】しかしながらこの図1
1に示したような発光デバイスや、図12に示したよう
な受光デバイスにおいては、直接出射領域7と全反射領
域8、または直接入射領域21と全反射領域22との境
界方向と発光素子1や受光素子20との光軸とのなす角
度αを、モールド樹脂9と空気との間の全反射の臨界角
と等しいか、それよりも大きく設定してあるため、図1
1の発光デバイスにおいても図12の受光デバイスにお
いても、(B)に12で示した領域からは光が出射しな
い、またはこの領域に入射した光は受光素子20に達せ
ず、発光面にドーナツ状に光っていない部分ができて発
光状態にムラがあるように見えたり(図11)、この領
域に入射した経路25の光は受光素子20で受光されず
に再び受光デバイス外に出射されてロスとなってしまう
(図12)。
However, FIG.
In the light emitting device shown in FIG. 1 and the light receiving device shown in FIG. 12, the boundary direction between the direct emission region 7 and the total reflection region 8 or the direct incidence region 21 and the total reflection region 22 and the light emitting element 1 Is set to be equal to or greater than the critical angle of total reflection between the mold resin 9 and the air, and the angle α between the optical axis and the optical axis with the light receiving element 20 is set to be equal to or larger than that.
In both the light-emitting device 1 and the light-receiving device of FIG. 12, no light is emitted from the region indicated by 12 in (B), or the light incident on this region does not reach the light-receiving element 20 and the light-emitting surface has a donut shape. There may be a portion that is not shining, and the light emission state looks uneven (FIG. 11), or the light of the path 25 incident on this area is not received by the light receiving element 20 but is emitted again out of the light receiving device and lost. (FIG. 12).

【0011】またこの臨界角は、使用するモールド樹脂
9によって一定であり、このモールド樹脂9の全反射領
域8、または22を光軸方向に大きくすることはでき
ず、また直接出射領域7から出射される光、または直接
入射領域21に入射する光より、全反射領域8から出射
される光、または全反射領域22に入射する光の強度割
合を大きくする、などということもできなかった。
The critical angle is constant depending on the molding resin 9 used, and the total reflection area 8 or 22 of the molding resin 9 cannot be increased in the optical axis direction. It cannot be said that the intensity ratio of the light emitted from the total reflection region 8 or the light incident on the total reflection region 22 is larger than that of the incident light or the light directly incident on the incident region 21.

【0012】上記事情に鑑み本発明においては、発光デ
バイスにおいては図11(B)に12で示したような光
の出射しないところ、及び、図12に示したような受光
デバイスにおいては、受光素子で受光されずにロスして
しまう図12(B)示したような領域12をなくし、効
率よく光を出射、若しくは受光できる光素子用光学デバ
イスを提供することが課題である。
In view of the above circumstances, in the present invention, the light emitting device does not emit light as indicated by 12 in FIG. 11B, and the light receiving device as shown in FIG. It is an object of the present invention to provide an optical device for an optical element that can efficiently emit or receive light by eliminating the region 12 as shown in FIG.

【0013】また本発明においては、使用するモールド
樹脂9によって定まる臨界角に左右されずに全反射領域
8、または22を、光軸方向に大きくすること、及び、
直接出射領域7から出射される光、または直接入射領域
21に入射する光より、全反射領域8から出射される
光、または全反射領域22に入射する光の強度割合を大
きくすることも課題である。
Further, in the present invention, the total reflection area 8 or 22 is increased in the optical axis direction without being influenced by the critical angle determined by the molding resin 9 used;
It is also an issue to increase the intensity ratio of light emitted from the total reflection area 8 or light incident on the total reflection area 22 than light emitted from the direct emission area 7 or light incident on the direct incidence area 21. is there.

【0014】[0014]

【課題を解決するための手段】上記課題を解決するため
本発明においては、全反射領域を形成する樹脂界面の大
きさをそのままに、レンズ部をこの全反射領域に重なる
ように大きくするか、または逆に全反射領域を光軸側に
レンズ部の下まで延長し、このレンズ部を大きくした部
分、または全反射領域を延長した部分に空気との界面を
持たせるか反射面を持たせて第2の光反射部材を形成
し、この第2の光反射部材の光軸に最も近い側から反射
した光が光反射部材で反射されて前方に出射したとき、
レンズ部外径近傍を通過するようにして、光の出射しな
い部分、または受光素子で受光されずにロスしてしまう
領域12をなくすようにした。また、この第2の光反射
部材を光軸方向に大きくし、光反射部材で反射させる面
積を大きくすることでコリメート範囲を大きくしたり、
光の出射特性を反射板の形状で制御できるようにすると
共に、全反射領域8から出射される光、または全反射領
域22に入射する光の強度割合を大きくできるようにし
た。
In order to solve the above-mentioned problems, according to the present invention, while maintaining the size of the resin interface forming the total reflection area, the lens portion is increased so as to overlap the total reflection area. Or conversely, extend the total reflection area to the optical axis side below the lens part, and make the part where this lens part is enlarged or the part where the total reflection area is extended have an interface with air or have a reflective surface Forming a second light reflecting member, when light reflected from the side closest to the optical axis of the second light reflecting member is reflected by the light reflecting member and emitted forward,
By passing near the outer diameter of the lens portion, a portion where light is not emitted or a region 12 where light is not received by the light receiving element and lost is eliminated. Also, by increasing the size of the second light reflecting member in the optical axis direction and increasing the area reflected by the light reflecting member, the collimation range can be increased,
The light emission characteristics can be controlled by the shape of the reflector, and the intensity ratio of light emitted from the total reflection area 8 or light incident on the total reflection area 22 can be increased.

【0015】これを実現するため本発明においては、請
求項1に記載したように、光素子から外部に至る出射
光、あるいは外部から光素子に至る入射光の光路を制御
する光素子用光学デバイスであって、光反射部材と、前
記光反射部材の少なくとも光反射面を覆い、前記光素子
前方の所定領域を外れた光を樹脂界面でほぼ全反射させ
る全反射領域と、前記光素子前方の所定領域に達した光
を出射あるいは集光するレンズ部と、を形成する樹脂と
からなり、前記光素子前方の所定領域を外れた光の、前
記光素子と光素子用光学デバイスの外部とを結ぶ光経路
が、前記樹脂界面あるいは前記樹脂界面近傍に設けられ
た第2の光反射部材のうち少なくともいずれか1方と、前
記光反射部材の各々で、少なくとも1回以上反射する経
路を経由するように前記樹脂界面、第2の光反射部材、
あるいは前記光反射部材の配置が定められ、かつ前記レ
ンズ部外形近傍を通過した光は前記光経路を経由するよ
うに、レンズ部、あるいは第2の光反射部材の形状ある
いは配置を定めたことを特徴とする。
In order to realize this, according to the present invention, as described in claim 1, an optical device for an optical element for controlling an optical path of outgoing light from an optical element to the outside or incident light from the outside to the optical element. A light reflection member, a total reflection area that covers at least a light reflection surface of the light reflection member, and that totally reflects light outside a predetermined area in front of the optical element at a resin interface, and a light reflection area in front of the optical element. A lens portion that emits or condenses the light that has reached the predetermined area, and a resin that forms the light, the light that has deviated from the predetermined area in front of the optical element, the optical element and the outside of the optical element for an optical element. A light path to be connected passes through at least one of the second light reflecting members provided at the resin interface or the vicinity of the resin interface and a path at least once reflected by each of the light reflecting members. like Serial resin interface, the second light reflecting member,
Alternatively, the arrangement of the light reflecting member is determined, and the shape or arrangement of the lens portion or the second light reflecting member is determined so that light passing near the outer shape of the lens portion passes through the optical path. Features.

【0016】このように樹脂界面に第2の光反射部材を
持たせ、レンズ部外形近傍を通過した光がこの第2の光
反射部材と光反射部材のおのおので少なくとも1回以上
反射する経路を経由するようにしたから、前記図11や
図12の(B)に示したようなドーナツ状の光が出射し
ない、または入射した光がロスする部分を無くなり、発
光デバイスの場合は正面から見て発光状態にムラが無
く、非常にきれいに見えると共に、効率よく光を出射、
若しくは受光できる光素子用光学デバイスを提供するこ
とができる。
As described above, the second light reflecting member is provided at the resin interface, and the path through which light passing near the outer shape of the lens portion is reflected at least once by each of the second light reflecting member and the light reflecting member. As shown in FIG. 11 and FIG. 12B, the donut-shaped light does not exit or the part where the incident light is lost disappears, and the light-emitting device is viewed from the front. There is no unevenness in the light emission state, it looks very beautiful, and it emits light efficiently,
Alternatively, an optical device for an optical element that can receive light can be provided.

【0017】またこの第2の光反射部材は、請求項2に
記載したように、前記全反射領域より前記所定領域側に
前記第2の光反射部材を形成し、前記樹脂界面の臨界角
より小さな角度で樹脂界面に向かった光を反射できるよ
うにしたことを特徴とする。
In the second light reflecting member, the second light reflecting member is formed on the predetermined region side from the total reflection region, and the second light reflecting member is formed at a critical angle of the resin interface. It is characterized in that light directed toward the resin interface can be reflected at a small angle.

【0018】このようにすることで、光反射部材で反射
させる面積を大きくすることができ、コリメート範囲を
大きくしたり、光の出射特性を反射板の形状で制御でき
るようにすると共に、全反射領域から出射される光、ま
たは全反射領域に入射する光の強度割合を大きくでき
る。そのため、コリメート光を出射したい場合は光反射
部材で制御した方が有効であるので効果が大きい。
By doing so, the area reflected by the light reflecting member can be increased, the collimating range can be increased, the light emission characteristics can be controlled by the shape of the reflector, and total reflection can be achieved. The intensity ratio of light emitted from the region or light incident on the total reflection region can be increased. Therefore, when it is desired to emit collimated light, it is more effective to control the light with a light reflecting member, so that the effect is large.

【0019】またこの第2の光反射部材からなる反射面
は、請求項3に記載したように、前記第2の光反射部材
からなる反射面を、ハーフミラー面としたことを特徴と
する。
Further, the reflecting surface made of the second light reflecting member is characterized in that the reflecting surface made of the second light reflecting member is a half mirror surface.

【0020】このようにすることで、ドーナツ状の光の
出射しない部分がなくなると共に、このハーフミラーで
構成した第2の光反射面を透過した光により、樹脂界面
から出射される光の境目がはっきりしなくなるので、発
光デバイスを正面から見ても、発光状態にムラが無く、
非常にきれいに見える。
By doing so, there is no portion where the donut-shaped light does not exit, and the boundary of the light exiting from the resin interface is formed by the light transmitted through the second light reflecting surface constituted by the half mirror. As it is not clear, even when the light emitting device is viewed from the front, there is no unevenness in the light emitting state,
Looks very pretty.

【0021】そして、このように構成した光素子用光学
デバイスを用いることで、請求項4に記載したように、
前記光反射部材の中央近辺に、発光素子を封止するか、
または配置できるように、することで、光利用率の大き
い効率の良い光素子用光学デバイスが得られる。
Then, by using the optical device for an optical element configured as described above,
In the vicinity of the center of the light reflecting member, a light emitting element is sealed,
Alternatively, an optical device for an optical element having a high light utilization efficiency and high efficiency can be obtained.

【0022】[0022]

【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態を例示的に詳しく説明する。但し、この実施の
形態に記載されている構成部品の寸法、材質、形状、そ
の相対配置などは、特に特定的な記載がない限りはこの
発明の範囲をそれのみに限定する趣旨ではなく、単なる
説明例に過ぎない。
Embodiments of the present invention will be illustratively described in detail below with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention to them unless otherwise specified. This is just an example.

【0023】図1は、本発明における第1の実施形態の
光素子用光学デバイスを用いた発光デバイスの概略断面
図であり、前記図11で示した従来例と同一の構成要素
には同一番号を付した。図中1は発光素子、2は発光素
子1を載置してダイボンドする受け皿部、3はリードフ
レーム、4は発光素子1と他方のリードフレーム5を結
ぶボンディングワイヤ、5は他方のリードフレーム、6
は光反射部材、7は直接出射領域、8は全反射領域、9
はこれら発光素子1やリードフレーム3、5、光反射部
材6等を覆う第1のモールド樹脂、30は直接出射領域
7に、球面レンズ状、非球面レンズ状、放物面状などの
凸レンズ状で、かつ、前記図11(B)に光の出射しな
い領域として示した12の部分を覆う大きさとして形成
したレンズ部、31、32、33は光の経路、34はレ
ンズ部30に形成したレンズの切れ込み部である。
FIG. 1 is a schematic sectional view of a light emitting device using an optical device for an optical element according to a first embodiment of the present invention. The same components as those in the conventional example shown in FIG. Is attached. In the figure, 1 is a light emitting element, 2 is a receiving portion for mounting and die-bonding the light emitting element 1, 3 is a lead frame, 4 is a bonding wire connecting the light emitting element 1 and the other lead frame 5, 5 is the other lead frame, 6
Is a light reflecting member, 7 is a direct emission area, 8 is a total reflection area, 9
Is a first mold resin which covers the light emitting element 1, the lead frames 3, 5, the light reflecting member 6, etc., and 30 is a convex lens shape such as a spherical lens shape, an aspherical lens shape, a parabolic surface shape, etc. And lens portions 31, 32, and 33 formed to have a size to cover the portion 12 shown as the region from which light is not emitted in FIG. It is a notch of a lens.

【0024】このうち切れ込み部34は、レンズ部30
の基部、すなわちレンズ部30と全反射領域8の境界部
分が発光素子1の光軸とのなす角度αを、モールド樹脂
9と空気との間の全反射の臨界角と等しいか、または大
きくなるように設定し、かつ、全反射領域8を形成して
いるモールド樹脂9が空気と接するようにしてある。
Of these, the cut portion 34 is
, That is, the boundary α between the lens portion 30 and the total reflection area 8 and the optical axis of the light emitting element 1 is equal to or larger than the critical angle of total reflection between the mold resin 9 and air. It is set so that the molding resin 9 forming the total reflection area 8 comes into contact with air.

【0025】この図1に示した発光デバイスにおいて、
発光素子1は、直接出射領域7に形成したレンズ30の
焦点、またはその近傍に置かれているため、発光素子1
から出て経路32へ向かった光は、直接出射領域7に形
成したレンズ部30のモールド樹脂9と空気の界面で屈
折してほぼ平行光化されて直接出射領域7から出射す
る。一方、発光素子1から出て経路33の全反射領域8
に向かった光は、モールド樹脂9の空気との界面で全反
射され、さらに光反射部材6で反射されてほぼ平行光と
なって全反射領域8から前方へ出射する。
In the light emitting device shown in FIG.
Since the light emitting element 1 is placed at or near the focal point of the lens 30 formed in the direct emission area 7, the light emitting element 1
The light that has exited the optical path and travels to the path 32 is refracted at the interface between the mold resin 9 of the lens portion 30 formed in the direct emission area 7 and the air, is converted into substantially parallel light, and exits from the direct emission area 7. On the other hand, the total reflection area 8 of the path 33 exiting from the light emitting element 1
Is totally reflected at the interface of the mold resin 9 with the air, further reflected by the light reflecting member 6, becomes almost parallel light, and exits forward from the total reflection area 8.

【0026】そして、全反射領域8とレンズ部30の境
界近辺、すなわち発光素子1を出て光軸からαの角度近
くで全反射領域8に向かった光は、全反射領域8、光反
射部材6で反射されてほぼ平行光となって全反射領域8
から出射するとき、直接出射領域7に構成したレンズ部
30の端を通り、前記図11(B)に12で示した光の
出射しない部分がなくなる。そのため、この図1に示し
た発光デバイスを正面から見ても、発光状態にムラが無
く、非常にきれいに見える。また、直接出射領域7に形
成したレンズ部30と発光素子1の距離が長くなるの
で、発光素子1の位置精度をそれほど高くしなくてもよ
く、さらにこのレンズ部30から出射される配光特性を
より狭指向角にできる。
The light that has exited the light emitting element 1 and is directed toward the total reflection area 8 near the boundary between the total reflection area 8 and the lens portion 30, ie, near the angle α from the optical axis, is reflected by the total reflection area 8 and the light reflecting member. The light is reflected at 6 and becomes almost parallel light, and is totally reflected.
When the light is emitted from the lens, the light does not pass through the end of the lens portion 30 formed in the direct emission area 7 and the portion where light is not emitted as indicated by 12 in FIG. Therefore, even when the light-emitting device shown in FIG. 1 is viewed from the front, the light-emitting state has no unevenness and looks very beautiful. In addition, since the distance between the lens unit 30 formed in the direct emission area 7 and the light emitting element 1 is long, the positional accuracy of the light emitting element 1 does not need to be so high, and further, the light distribution characteristics emitted from the lens unit 30 Can have a narrower directivity angle.

【0027】図2は、本発明における第2の実施形態の
光素子用光学デバイスを用いた発光デバイスの概略断面
図で、図1に示した第1の実施形態におけるレンズ部3
0の切れ込み部34を無くして第2の光反射部材を設
け、成形しやすくしたもので、前記図1と同一の構成要
素には同一番号を付した。
FIG. 2 is a schematic sectional view of a light emitting device using the optical device for an optical element according to the second embodiment of the present invention. The lens unit 3 in the first embodiment shown in FIG.
The second light reflecting member is provided by eliminating the 0 cut portion 34 to facilitate molding, and the same components as those in FIG. 1 are denoted by the same reference numerals.

【0028】図中1は発光素子、2は発光素子1を載置
してダイボンドする受け皿部、3はリードフレーム、4
は発光素子1と他方のリードフレーム5を結ぶボンディ
ングワイヤ、5は他方のリードフレーム、6は光反射部
材、7は直接出射領域、8は全反射領域、9はこれら発
光素子1やリードフレーム3、5、光反射部材6等を覆
う第1のモールド樹脂、35、36、37は光の経路、
38は直接出射領域7に、球面レンズ状、非球面レンズ
状、放物面状などの凸レンズ状で、かつ、前記図11
(B)に光の出射しない領域として示した12の部分を
覆う大きさとして形成したレンズ部、39はレンズ部3
8と全反射領域8の間に形成した第2の光反射部材であ
る。
In the drawing, reference numeral 1 denotes a light emitting element, 2 denotes a receiving portion on which the light emitting element 1 is mounted and die-bonded, 3 denotes a lead frame,
Is a bonding wire connecting the light emitting element 1 and the other lead frame 5, 5 is the other lead frame, 6 is a light reflecting member, 7 is a direct emission area, 8 is a total reflection area, and 9 is a light emitting element 1 or the lead frame 3 , 5, a first mold resin covering the light reflecting member 6 and the like, 35, 36, 37 are light paths,
Numeral 38 denotes a direct light emitting area 7 having a convex lens shape such as a spherical lens shape, an aspherical lens shape, a parabolic surface shape, and the like.
A lens portion formed to have a size to cover a portion 12 shown as a region from which no light is emitted in FIG.
8 is a second light reflection member formed between the light reflection area 8 and the total reflection area 8.

【0029】このうち第2の光反射部材39は、前記図
11(B)に光の出射しない領域として示した12の部
分を覆う大きさのドーナツ状とし、外径をレンズ部38
の外径とほぼ一致させ、内径と発光素子1の光軸とのな
す角度αを、モールド樹脂9と空気との間の全反射の臨
界角とほぼ等しくなる位置となるよう設定してある。
The second light reflecting member 39 has a donut shape having a size to cover a portion 12 shown as a region from which light is not emitted in FIG.
And the angle α between the inner diameter and the optical axis of the light emitting element 1 is set so as to be substantially equal to the critical angle of total reflection between the mold resin 9 and air.

【0030】このように光素子用光学デバイスを構成す
ることにより、発光素子1から出て経路36へ向かった
光は、直接出射領域7に形成したレンズ部38のモール
ド樹脂9と空気の界面で屈折してほぼ平行光化されて直
接出射領域7から出射し、一方、発光素子1から出て経
路37の全反射領域8に向かった光は、第2の光反射部
材39で反射され、さらに光反射部材6で反射されてほ
ぼ平行光となって全反射領域8から前方へ出射する。
By configuring the optical device for an optical element in this manner, the light exiting from the light emitting element 1 and traveling toward the path 36 is transmitted directly to the interface between the mold resin 9 of the lens portion 38 formed in the direct emission area 7 and the air. Light that is refracted and converted into substantially parallel light and exits directly from the emission region 7, while light exiting from the light emitting element 1 and traveling toward the total reflection region 8 of the path 37 is reflected by the second light reflection member 39, The light is reflected by the light reflecting member 6 and becomes substantially parallel light, and is emitted forward from the total reflection area 8.

【0031】そして、この第2の光反射部材39におけ
る光軸に近い方の境界部、すなわち発光素子1を出て光
軸からαの角度近くで全反射領域8に向かった光は、全
反射領域8、光反射部材6で反射されてほぼ平行光とな
って全反射領域8から出射するとき、直接出射領域7に
構成したレンズ部38の端を通り、前記図11(B)に
12で示した光の出射しない部分がなくなる。そのた
め、この図2に示した発光デバイスを正面から見ても、
発光状態にムラが無く、非常にきれいに見える。また、
直接出射領域7に形成したレンズ部30と発光素子1の
距離が長くなるので、発光素子1の位置精度をそれほど
高くしなくてもよく、さらにこのレンズ部30から出射
される配光特性をより狭指向角にできる。また、図1に
示した第1の実施形態に較べ、レンズの切れ込み部34
が無くなるので一体成形が一回ででき、図11に示す従
来品と較べても生産コストをほぼ同じに製作できる。
Then, the boundary portion of the second light reflecting member 39 closer to the optical axis, that is, the light that exits the light emitting element 1 and travels to the total reflection area 8 near the angle α from the optical axis is totally reflected. When the area 8 is reflected by the light reflecting member 6 and becomes substantially parallel light and exits from the total reflection area 8, the light passes through the end of the lens portion 38 formed in the direct emission area 7, and passes through 12 in FIG. There is no portion where the light is not emitted as shown. Therefore, even if the light emitting device shown in FIG. 2 is viewed from the front,
There is no unevenness in the light emission state and it looks very beautiful. Also,
Since the distance between the lens unit 30 formed in the direct emission area 7 and the light emitting element 1 is increased, the positional accuracy of the light emitting element 1 does not need to be so high, and the light distribution characteristics emitted from the lens unit 30 can be further improved. It can be made a narrow pointing angle. Also, as compared with the first embodiment shown in FIG.
As a result, the integral molding can be performed at one time, and the production cost can be substantially the same as that of the conventional product shown in FIG.

【0032】図3は、図2に示した第2の実施形態にお
ける光素子用光学デバイスの作成手順を説明するための
図である。まず図3aにおいて、モールド樹脂9の界面
とレンズ部38を形成する樹脂型40を用意し、第2の
光反射部材39,光反射部材6、リードフレーム3にダ
イボンドされた発光素子1、その発光素子1と他のリー
ドフレーム5を接続したボンディングワイヤ4等を挿入
し、位置決めする。そして図3bにおいて、モールド樹
脂9を注入し、熱硬化させる。そして図3cにおいて、
樹脂型40から取り出すことで、図3dに示した図2に
おける第2の実施形態の光素子用光学デバイスを用いた
発光デバイスが完成する。
FIG. 3 is a view for explaining a procedure for producing the optical device for an optical element according to the second embodiment shown in FIG. First, in FIG. 3A, a resin mold 40 for forming an interface between the mold resin 9 and the lens portion 38 is prepared, and the second light reflecting member 39, the light reflecting member 6, the light emitting element 1 die-bonded to the lead frame 3, and the light emission thereof. The bonding wire 4 connecting the element 1 and another lead frame 5 is inserted and positioned. Then, in FIG. 3B, the mold resin 9 is injected and thermally cured. And in FIG. 3c,
By taking out from the resin mold 40, a light emitting device using the optical device for an optical element of the second embodiment in FIG. 2 shown in FIG. 3D is completed.

【0033】なおこの図3に示した作成手順において
は、第2の光反射部材39を位置決めしやすいように、
図3aにxで示したように樹脂型40に段差を設け、樹
脂界面とレンズ部38の間に存在する第2の光反射部材
39が、図3dに示したようにxだけはみ出すようにし
ている。このようにして図2に示した光素子用光学デバ
イスを作成することで、一体成形が一回ででき、図11
に示す従来品と較べても生産コストをほぼ同じに製作で
きる。
In the manufacturing procedure shown in FIG. 3, the second light reflecting member 39 is easily positioned.
As shown by x in FIG. 3A, a step is provided in the resin mold 40, and the second light reflecting member 39 existing between the resin interface and the lens portion 38 protrudes only by x as shown in FIG. 3D. I have. In this way, by forming the optical device for an optical element shown in FIG.
The production cost can be made almost the same as compared with the conventional product shown in FIG.

【0034】図4は、本発明における第3の実施形態の
光素子用光学デバイスを用いた発光デバイスの概略断面
図で、図2に示した第2の実施形態における第2の光反
射部材39をハーフミラーにしたものであり、それによ
って樹脂界面から出射される光の境目を目立たなくする
ようにした。この図4において、前記図2と同一の構成
要素には同一番号を付した。
FIG. 4 is a schematic sectional view of a light emitting device using the optical device for an optical element according to the third embodiment of the present invention. The second light reflecting member 39 in the second embodiment shown in FIG. Is a half mirror, so that boundaries of light emitted from the resin interface are made inconspicuous. 4, the same components as those in FIG. 2 are denoted by the same reference numerals.

【0035】図中1は発光素子、2は発光素子1を載置
してダイボンドする受け皿部、3はリードフレーム、4
は発光素子1と他方のリードフレーム5を結ぶボンディ
ングワイヤ、5は他方のリードフレーム、6は光反射部
材、7は直接出射領域、8は全反射領域、9はこれら発
光素子1やリードフレーム3、5、光反射部材6等を覆
う第1のモールド樹脂、35、36、41、42、43
は光の経路、38は直接出射領域7に形成したレンズ部
で、このレンズ部38は前記したように球面レンズ状、
非球面レンズ状、放物面状などの凸レンズ状に形成した
ものである。44はレンズ部38と全反射領域8の間に
ハーフミラーで形成した第2の光反射部材である。
In the figure, reference numeral 1 denotes a light emitting element, 2 denotes a receiving portion on which the light emitting element 1 is mounted and die-bonded, 3 denotes a lead frame,
Is a bonding wire connecting the light emitting element 1 and the other lead frame 5, 5 is the other lead frame, 6 is a light reflecting member, 7 is a direct emission area, 8 is a total reflection area, and 9 is a light emitting element 1 or the lead frame 3 , 5, the first mold resin covering the light reflecting member 6 and the like, 35, 36, 41, 42, 43
Is a light path, and 38 is a lens portion formed in the direct emission area 7. This lens portion 38 has a spherical lens shape as described above.
It is formed in a convex lens shape such as an aspheric lens shape or a parabolic surface shape. Reference numeral 44 denotes a second light reflecting member formed by a half mirror between the lens section 38 and the total reflection area 8.

【0036】このうち第2の光反射部材44は、前記図
11(B)に光の出射しない領域として示した12の部
分を覆う大きさのドーナツ状とし、外径をレンズ部38
の外径とほぼ一致させ、内径と発光素子1の光軸とのな
す角度αを、モールド樹脂9と空気との間の全反射の臨
界角とほぼ等しくなる位置となるよう設定してある。
The second light reflecting member 44 has a donut shape large enough to cover a portion 12 shown as a region from which light is not emitted in FIG.
And the angle α between the inner diameter and the optical axis of the light emitting element 1 is set so as to be substantially equal to the critical angle of total reflection between the mold resin 9 and air.

【0037】このように光素子用光学デバイスを構成す
ることにより、発光素子1から出て経路36へ向かった
光は、直接出射領域7に形成したレンズ部38のモール
ド樹脂9と空気の界面で屈折してほぼ平行光化されて直
接出射領域7から出射し、一方、発光素子1から出て経
路41のハーフミラーで構成された第2の光反射部材4
4に向かった光は、この第2の光反射部材44で一部が
透過して経路42へ進み、レンズ部38のモールド樹脂
9と空気の界面で屈折してほぼ平行光化されて直接出射
領域7から出射し、一部が反射されてさらに光反射部材
6で反射され、ほぼ平行光となって直接出射領域7に構
成したレンズ部38の端を通って前方へ出射する。
By configuring the optical device for an optical element in this manner, light that has exited from the light emitting element 1 and traveled to the path 36 is transmitted directly to the interface between the mold resin 9 of the lens portion 38 formed in the direct emission area 7 and the air. The second light reflecting member 4 is refracted and converted into substantially parallel light and exits directly from the exit region 7, and exits from the light emitting element 1 and is constituted by a half mirror on a path 41.
Part of the light directed to 4 is transmitted through the second light reflecting member 44 and proceeds to the path 42, where the light is refracted at the interface between the mold resin 9 of the lens portion 38 and the air, is converted into substantially parallel light, and is directly emitted. The light exits from the area 7, is partially reflected, is further reflected by the light reflecting member 6, and becomes almost parallel light, and directly exits through the end of the lens portion 38 configured in the emission area 7.

【0038】そのため、前記図11(B)に12で示し
た光の出射しない部分がなくなると共に、このハーフミ
ラーで構成した第2の光反射部材44を透過した経路4
2のような光により、樹脂界面から出射される光の境目
がはっきりしなくなるので、この図4に示した発光デバ
イスを正面から見ても、発光状態にムラが無く、非常に
きれいに見える。また、直接出射領域7に形成したレン
ズ部と発光素子1の距離が長くなるので、発光素子1の
位置精度をそれほど高くしなくてもよく、さらにこのレ
ンズ部から出射される配光特性をより狭指向角にできる
点、図1に示した第1の実施形態に較べ、レンズの切れ
込み部34が無くなるので一体成形が一回ででき、図1
1に示す従来品と較べても生産コストをほぼ同じに製作
できる点などは第2の実施形態の効果と同じである。
As a result, the portion from which light is not emitted as indicated by 12 in FIG. 11B is eliminated, and the path 4 passing through the second light reflecting member 44 constituted by this half mirror is used.
Since the boundary between the light emitted from the resin interface becomes unclear due to the light like 2, even when the light emitting device shown in FIG. 4 is viewed from the front, the light emitting state has no unevenness and looks very clear. Further, since the distance between the lens portion formed in the direct emission region 7 and the light emitting element 1 is long, the positional accuracy of the light emitting element 1 does not need to be so high, and the light distribution characteristics emitted from this lens portion can be further improved. As compared with the first embodiment shown in FIG. 1, the lens can be formed in a single time because the cutout portion 34 of the lens is eliminated.
This is the same as the effect of the second embodiment in that the production cost can be made substantially the same as compared with the conventional product shown in FIG.

【0039】図5は、本発明における第4の実施形態の
光素子用光学デバイスを用いた発光デバイスの概略断面
図であり、この第4の実施形態においては、第2の光反
射部材の外径部分と発光素子1の光軸とのなす角度αを
モールド樹脂9と空気との間の全反射の臨界角近辺と
し、使用するモールド樹脂9によって定まる臨界角に左
右されずに全反射領域8を光軸方向に大きくすると共
に、直接出射領域7から出射される光より、全反射領域
8から出射される光の強度割合を大きくできるようにし
たものある。
FIG. 5 is a schematic sectional view of a light emitting device using an optical device for an optical element according to a fourth embodiment of the present invention. In the fourth embodiment, the outside of the second light reflecting member is shown. The angle α between the diameter portion and the optical axis of the light emitting element 1 is set near the critical angle of total reflection between the molding resin 9 and the air, and the total reflection region 8 is not affected by the critical angle determined by the molding resin 9 used. Is increased in the optical axis direction, and the intensity ratio of the light emitted from the total reflection area 8 to the light emitted from the direct emission area 7 can be increased.

【0040】図中1は発光素子、2は発光素子1を載置
してダイボンドする受け皿部、3はリードフレーム、4
は発光素子1と他方のリードフレーム5を結ぶボンディ
ングワイヤ、5は他方のリードフレーム、6は光反射部
材、7は直接出射領域、8は全反射領域、9はこれら発
光素子1やリードフレーム3、5、光反射部材6等を覆
う第1のモールド樹脂、35、36、45、46は光の
経路、38は直接出射領域7に形成したレンズ部で、こ
のレンズ部38は前記したように球面レンズ状、非球面
レンズ状、放物面状などの凸レンズ状に形成したもので
ある。47はレンズ部38と全反射領域8の間に形成し
た第2の光反射部材であるが、この第4の実施形態にお
いて、第2の光反射部材47は、今まで説明してきた第
1から第3の実施形態の場合とは異なり、直接出射領域
7に形成したレンズ部38と、全反射領域8との境界方
向と発光素子1の光軸とのなす角度αより光軸側、すな
わちモールド樹脂9と空気との間の全反射の臨界角より
小さな部分に設けてある。
In the drawing, reference numeral 1 denotes a light emitting element, 2 denotes a receiving portion on which the light emitting element 1 is mounted and die-bonded, 3 denotes a lead frame,
Is a bonding wire connecting the light emitting element 1 and the other lead frame 5, 5 is the other lead frame, 6 is a light reflecting member, 7 is a direct emission area, 8 is a total reflection area, and 9 is a light emitting element 1 or the lead frame 3 5, a first mold resin covering the light reflecting member 6, etc., 35, 36, 45, and 46 are light paths, and 38 is a lens portion formed in the direct emission area 7, and the lens portion 38 is formed as described above. It is formed in a convex lens shape such as a spherical lens shape, an aspherical lens shape, and a parabolic surface shape. Reference numeral 47 denotes a second light reflecting member formed between the lens portion 38 and the total reflection area 8. In the fourth embodiment, the second light reflecting member 47 is formed by the first light reflecting member 47 described above. Unlike the case of the third embodiment, the lens portion 38 formed in the direct emission region 7 and the optical axis side of the angle α between the boundary direction of the total reflection region 8 and the optical axis of the light emitting element 1, that is, the mold It is provided at a portion smaller than the critical angle of total reflection between the resin 9 and the air.

【0041】このように光素子用光学デバイスを構成す
ることにより、発光素子1から出て経路36へ向かった
光は、直接出射領域7に形成したレンズ部38のモール
ド樹脂9と空気の界面で屈折してほぼ平行光化されて直
接出射領域7から出射し、一方、以上説明してきた第1
から第3の実施形態においては全反射せずに直接出射領
域7に向かっていた臨界角より小さな角度でモールド樹
脂9の界面方向の経路45へ向かう光は、第2の光反射
部材47で反射され、光反射部材6で反射されて全反射
領域8から出射する。また、発光素子1から出て経路4
6に向かった光は、前記の説明のように全反射領域8で
反射されて光反射部材6で反射され、全反射領域8から
前方へ出射する。
By configuring the optical device for an optical element in this manner, the light exiting from the light emitting element 1 and traveling toward the path 36 is transmitted directly to the interface between the mold resin 9 of the lens portion 38 formed in the direct emission area 7 and the air. The light is refracted and converted into a substantially parallel light, and is emitted directly from the emission region 7. On the other hand, the first
In the third embodiment, light traveling toward the path 45 in the interface direction of the mold resin 9 at an angle smaller than the critical angle directly toward the emission region 7 without total reflection is reflected by the second light reflection member 47. Then, the light is reflected by the light reflecting member 6 and exits from the total reflection area 8. In addition, the path 4
The light traveling toward 6 is reflected by the total reflection area 8 as described above, is reflected by the light reflecting member 6, and is emitted forward from the total reflection area 8.

【0042】そのため、前記図11(B)に12で示し
た光の出射しない部分がなくなると共に、モールド樹脂
9と空気による界面の臨界角より小さな角度で全反射領
域8へ進む光も光反射部材6で制御でき、コリメート光
を出射したい場合は光反射部材6で制御した方が有効で
あるので効果が大きい。そのため、この図5に示した発
光デバイスを正面から見ても発光状態にムラが無く、非
常にきれいに見える。また、直接出射領域7に形成した
レンズ部と発光素子1の距離が長くなるので、発光素子
1の位置精度をそれほど高くなくてもよく、さらにこの
レンズ部から出射される配光特性をより狭指向角にでき
る点、図1に示した第1の実施形態に較べ、レンズの切
れ込み部34が無くなるので一体成形が一回ででき、図
11に示す従来品と較べても生産コストをほぼ同じに製
作できる点などは第2、第3の実施形態の効果と同じで
ある。
Therefore, the portion where light is not emitted as indicated by 12 in FIG. 11B is eliminated, and light traveling to the total reflection area 8 at an angle smaller than the critical angle of the interface between the mold resin 9 and air is also a light reflecting member. 6, and when it is desired to emit collimated light, it is more effective to control the light with the light reflecting member 6. Therefore, even when the light emitting device shown in FIG. 5 is viewed from the front, there is no unevenness in the light emitting state, and the light emitting device looks very beautiful. Further, since the distance between the light emitting element 1 and the lens portion formed in the direct light emitting area 7 is long, the positional accuracy of the light emitting element 1 does not need to be so high, and the light distribution characteristic emitted from this lens part is narrower. In comparison with the first embodiment shown in FIG. 1, the lens can be formed at a single angle because the cutout portion 34 of the lens is eliminated, and the production cost is substantially the same as that of the conventional product shown in FIG. This is the same as the effects of the second and third embodiments.

【0043】以上説明してきた実施形態においては、発
光素子1をモールド樹脂9で封止する場合を説明してき
たが、本発明はこういった一体型に成形するだけでな
く、光反射部材とレンズ部を光学デバイスとして独立し
た発光素子や受光素子と組み合わせて使うことも可能で
ある。この場合の実施形態を示したのが図6から図10
に示した実施形態で、図6は第2の実施形態で示した光
素子用光学デバイスと表面実装タイプ発光素子を組み合
わせたもの、図7は図6に用いた光素子用光学デバイス
を単独で示したもの、図8は砲弾タイプの発光デバイス
と組み合わせた場合の例を示したもの、図9は第1の実
施形態で示した光素子用光学デバイスと受光素子を組み
合わせたもの、図10は第2の実施形態で示した光素子
用光学デバイスと受光素子を組み合わせたものである。
この図6から図10において、前記図1から図5と同様
な構成要素には同一番号を付した。
In the embodiment described above, the case where the light emitting element 1 is sealed with the molding resin 9 has been described. However, the present invention is not limited to such an integral molding, but also includes a light reflecting member and a lens. It is also possible to use the unit in combination with an independent light emitting element or light receiving element as an optical device. FIGS. 6 to 10 show an embodiment in this case.
In the embodiment shown in FIG. 6, FIG. 6 shows a combination of the optical device for an optical device shown in the second embodiment and a surface mount type light emitting device, and FIG. 7 shows the optical device for an optical device used in FIG. FIG. 8 shows an example in combination with a shell type light emitting device, FIG. 9 shows a combination of the optical device for an optical element shown in the first embodiment and a light receiving element, and FIG. This is a combination of the optical device for an optical element shown in the second embodiment and a light receiving element.
In FIGS. 6 to 10, the same components as those in FIGS. 1 to 5 are denoted by the same reference numerals.

【0044】図中6は光反射部材、7は直接出射領域、
8は全反射領域、9はモールド樹脂、35、36、37
は光の経路、38はレンズ部、39は第2の光反射部
材、50は表面実装タイプ発光素子、51は砲弾型発光
素子、52は発光素子、53は直接入射領域、54は全
反射領域、55、56は受光素子である。
In the figure, 6 is a light reflecting member, 7 is a direct emission area,
8 is a total reflection area, 9 is a mold resin, 35, 36, 37
Is a light path, 38 is a lens portion, 39 is a second light reflecting member, 50 is a surface mount type light emitting element, 51 is a shell type light emitting element, 52 is a light emitting element, 53 is a direct incident area, and 54 is a total reflection area. , 55 and 56 are light receiving elements.

【0045】まず図6は、第2の実施形態で示した光素
子用光学デバイスと表面実装タイプ発光素子50を組み
合わせたもので、図7は図6に用いた光素子用光学デバ
イスを単独で示したものである。このように、発光素子
50を図7に示した本発明の第2の実施形態で示した光
素子用光学デバイスと組み合わせることにより、直接出
射領域7に向かった経路36の光は、直接出射領域7に
形成したレンズ部38のモールド樹脂9と空気の界面で
屈折してほぼ平行光化されて出射し、経路37の全反射
領域8に向かった光は、第2の光反射部材39で反射さ
れ、さらに光反射部材6で反射されてほぼ平行光となっ
てレンズ部38の端を通り、前記図11(B)に12で
示した光の出射しない部分がなくなる。そのため、この
図6の光素子用光学デバイスの正面側から見ても、発光
状態にムラが無く、非常にきれいに見える。
First, FIG. 6 shows a combination of the optical device for an optical element shown in the second embodiment and a surface mount type light emitting element 50, and FIG. 7 shows the optical device for an optical element used in FIG. It is shown. Thus, by combining the light emitting element 50 with the optical device for an optical element shown in the second embodiment of the present invention shown in FIG. 7, the light of the path 36 toward the direct emission area 7 is The light that is refracted at the interface between the mold resin 9 and the air of the lens portion 38 formed at 7 and is converted into substantially parallel light and exits, and the light traveling toward the total reflection area 8 of the path 37 is reflected by the second light reflection member 39. Then, the light is reflected by the light reflecting member 6 to become substantially parallel light, passes through the end of the lens portion 38, and the portion where light is not emitted as indicated by 12 in FIG. Therefore, even when viewed from the front side of the optical device for an optical element in FIG. 6, the light emitting state has no unevenness and looks very beautiful.

【0046】また、従来はほぼ点光源として各出射方向
に向かっていた光は、この光素子用光学デバイス前面の
全域から出射し、大面積の発光素子として使用すること
が可能となる。さらに、本発明の光素子用光学デバイス
の発光素子50を装着する部分を半球状にすると、本光
素子用光学デバイスを被せることによる光損失も、発光
素子50を出た光が光素子用光学デバイスに入射して出
射したときのフレネル損、および光反射部材6のわずか
な反射損のみであり、発光素子50を出た光の90%が
光素子用光学デバイスの外部に出射できる。
In addition, the light which has conventionally been directed substantially in each of the emission directions as a point light source is emitted from the entire area on the front surface of the optical device for an optical element, and can be used as a large-area light emitting element. Further, if the portion for mounting the light emitting element 50 of the optical device for an optical element of the present invention is made hemispherical, the light loss caused by covering the optical device for the optical element will be reduced. With only Fresnel loss when entering and exiting the device and slight reflection loss of the light reflecting member 6, 90% of the light exiting the light emitting element 50 can be emitted to the outside of the optical element optical device.

【0047】図8は、第2の実施形態で示した光素子用
光学デバイスと砲弾タイプの発光デバイス51と組み合
わせた場合の例を示したもので、砲弾タイプの発光素子
では、所定外の領域に配光していた光を本発明の光素子
用光学デバイスに再度取り込むことが可能となり、光の
利用率が向上して明るい配光が可能となり、また、光の
出射方向も自由に設計が可能となる。
FIG. 8 shows an example in which the optical device for an optical element shown in the second embodiment is combined with a shell type light emitting device 51. The light that has been distributed to the optical device of the present invention can be re-introduced to the optical device for an optical element of the present invention, and the light utilization rate is improved to enable bright light distribution, and the light emission direction can be freely designed. It becomes possible.

【0048】また、本発明の光素子用光学デバイスを砲
弾タイプの発光デバイス51と近接して装着することが
可能となるため、レンズを用いて同様の効果を得ようと
した場合より空間的に小さくすることができ、また、光
素子用光学デバイスに入射する光の損失も押さえること
ができる。また、光素子用光学デバイスを図8のように
作ることで、砲弾タイプの発光デバイス51の装着時に
おける位置決めがし易く、取り外しも簡単にでき、従来
の指向角の発光デバイスと、本発明の光素子用光学デバ
イスと組み合わせた場合の2種類の配光特性を利用する
ことができる。また、本発明の光素子用光学デバイスに
砲弾タイプの発光デバイス51を装着したときにできる
空気層を、樹脂などによって封止すると、フレネル損な
どによる光の損失を低減することができる。
Further, since the optical device for an optical element of the present invention can be mounted close to the cannonball type light emitting device 51, it is more spatially available than when the same effect is obtained by using a lens. It is possible to reduce the size and also to suppress the loss of light incident on the optical device for an optical element. In addition, by making the optical device for an optical element as shown in FIG. 8, the positioning at the time of mounting the cannonball type light emitting device 51 can be easily performed, and the removal can be easily performed. Two kinds of light distribution characteristics when combined with an optical device for an optical element can be used. In addition, if the air layer formed when the light emitting device 51 of the cannonball type is mounted on the optical device for an optical element of the present invention is sealed with a resin or the like, light loss due to Fresnel loss or the like can be reduced.

【0049】なお以上の説明では、光素子用光学デバイ
スとして図2に示した第2の実施形態のものを組み合わ
せる場合を説明したが、図1に示した第1の実施形態の
もの、図4、図5に示した第3、第4の実施形態のもの
と組み合わせると、前記それぞれの実施形態の説明に記
載した効果が得られることは自明である。また、組み合
わせる発光素子も、ベアチップタイプの発光デバイス、
放熱タイプの発光デバイス、フラットパッケージタイプ
の発光デバイスなど、種々のものと組み合わせることが
可能である。
In the above description, the case of combining the optical device for the optical element according to the second embodiment shown in FIG. 2 has been described. However, the optical device for the optical device according to the first embodiment shown in FIG. It is obvious that the effects described in the description of the respective embodiments can be obtained by combining with the third and fourth embodiments shown in FIG. Also, the light emitting elements to be combined are bare chip type light emitting devices,
It can be combined with various devices such as a heat radiation type light emitting device and a flat package type light emitting device.

【0050】図9は、第1の実施形態で示した光素子用
光学デバイスとフォトダイオードや光電変換素子などの
受光素子56と組み合わせて封止した例を示したもの
で、このように構成することで、前方からレンズ部30
に入射した光はこのレンズ部30で屈折して受光素子5
6へ、全反射領域54に入射した光は光反射部材6で反
射され、さらに全反射領域54で反射されて受光素子5
6に達するから、非常に広い範囲からの光を受光素子5
6へ到達させることができ、無駄なく光を受光させるこ
とができる。また、レンズ部30と受光素子56の距離
が長くなるので、受光素子56の設置精度をそれほど高
くしなくても良くなる。
FIG. 9 shows an example in which the optical device for an optical element shown in the first embodiment is sealed with a light receiving element 56 such as a photodiode or a photoelectric conversion element. That is, the lens unit 30
Incident on the light receiving element 5
6, the light incident on the total reflection area 54 is reflected by the light reflection member 6, further reflected by the total reflection area 54, and
6, light from a very wide range is received by the light receiving element 5
6 and light can be received without waste. Further, since the distance between the lens unit 30 and the light receiving element 56 is long, the installation accuracy of the light receiving element 56 does not need to be so high.

【0051】図10は第2の実施形態で示した光素子用
光学デバイスとフォトダイオードや光電変換素子などの
受光素子55を組み合わせたものである。このように構
成することで、前方からレンズ部38に入射した光はこ
のレンズ部38で屈折して受光素子55へ、全反射領域
54に入射した光は光反射部材6で反射され、さらに全
反射領域54、または第2の光反射部材39で反射され
て受光素子56に達するから、非常に広い範囲からの光
を受光素子56へ到達させることができ、無駄なく光を
受光させることができる。また、レンズ部30と受光素
子56の距離が長くなるので、受光素子56の設置精度
をそれほど高くしなくても良くなる。また、レンズ部3
8から入射する光と、光反射部材6で反射されてから受
光素子55に到達する光の強度割合を自由に変化させる
ことができ、また図9に示した実施形態に較べ、レンズ
の切れ込み部が無くなるので一体成形が一回ででき、生
産コストを低く押さえることができる。
FIG. 10 shows a combination of the optical device for an optical element shown in the second embodiment and a light receiving element 55 such as a photodiode or a photoelectric conversion element. With this configuration, light incident on the lens unit 38 from the front is refracted by the lens unit 38 and is incident on the light receiving element 55. Light incident on the total reflection area 54 is reflected on the light reflecting member 6, and Since the light is reflected by the reflection area 54 or the second light reflecting member 39 and reaches the light receiving element 56, light from a very wide range can reach the light receiving element 56, and the light can be received without waste. . Further, since the distance between the lens unit 30 and the light receiving element 56 is long, the installation accuracy of the light receiving element 56 does not need to be so high. Also, the lens unit 3
The intensity ratio between the light incident from the light reflecting member 8 and the light reaching the light receiving element 55 after being reflected by the light reflecting member 6 can be changed freely. Also, as compared with the embodiment shown in FIG. Is eliminated, so that the integral molding can be performed at one time, and the production cost can be kept low.

【0052】また、以上の説明では、光素子用光学デバ
イスとして図1、図2に示した第1、第2の実施形態の
ものを組み合わせる場合を説明したが、図4、図5に示
した第3、第4の実施形態のものと組み合わせると、前
記それぞれの実施形態の説明に記載した効果が得られる
ことは自明である。
In the above description, the case where the first and second embodiments shown in FIGS. 1 and 2 are combined as an optical device for an optical element has been described. It is self-evident that the effects described in the description of each of the above embodiments can be obtained when combined with those of the third and fourth embodiments.

【0053】また本願出願人は、従来例として示した特
願平11−341344号以外に、特願2000−28
330号、特願2000−73058号、特願2000
−74976号、特願2000−89859号などにお
いて、本発明のような光素子用光学デバイスを用いた光
学デバイス例を示したが、本発明の光素子用光学デバイ
スをこれらに示された光素子用光学デバイスの代わりに
用いうることも明らかである。
The applicant of the present invention has disclosed, in addition to Japanese Patent Application No. 11-341344 shown as a conventional example, Japanese Patent Application No. 2000-28
No. 330, Japanese Patent Application No. 2000-73058, Japanese Patent Application No. 2000
No. 7,497,763, Japanese Patent Application No. 2000-89859, etc., examples of optical devices using the optical device for an optical element according to the present invention are shown. Obviously, it can be used in place of the optical device for use.

【0054】[0054]

【発明の効果】以上記載の如く請求項1に記載した本発
明によれば、樹脂界面に第2の光反射部材を持たせ、レ
ンズ部外形近傍を通過した光がこの第2の光反射部材と
光反射部材のおのおので少なくとも1回以上反射する経
路を経由するようにしたから、ドーナツ状の光が出射し
ない、または入射した光がロスする部分を無くし、発光
デバイスの場合は正面から見て発光状態にムラが無く、
非常にきれいに見えると共に、効率よく光を出射、若し
くは受光できる光素子用光学デバイスを提供することが
できる。
As described above, according to the first aspect of the present invention, the second light reflecting member is provided at the resin interface so that the light passing through the vicinity of the outer shape of the lens portion is reflected by the second light reflecting member. And each of the light reflecting members passes through a path that reflects at least once, so that a donut-shaped light is not emitted or a part where the incident light is lost is eliminated. There is no unevenness in the light emission state,
It is possible to provide an optical device for an optical element, which looks very clear and can efficiently emit or receive light.

【0055】そして請求項2に記載した発明によれば、
全反射領域より光軸側に第2の光反射部材を形成するこ
とで樹脂界面の臨界角より小さな角度で樹脂界面に向か
った光を反射でき、光反射部材で反射させる面積を大き
くすることができる。そのため、コリメート範囲を大き
くしたり、光の出射特性を反射板の形状で制御できるよ
うにすると共に、全反射領域から出射される光、または
全反射領域に入射する光の強度割合を大きくできる。そ
のため、コリメート光を出射したい場合は光反射部材で
制御した方が有効であるので効果が大きい。
According to the second aspect of the present invention,
By forming the second light reflecting member on the optical axis side from the total reflection area, light directed toward the resin interface can be reflected at an angle smaller than the critical angle of the resin interface, and the area reflected by the light reflecting member can be increased. it can. Therefore, the collimation range can be increased, the light emission characteristics can be controlled by the shape of the reflector, and the intensity ratio of light emitted from the total reflection area or light incident on the total reflection area can be increased. Therefore, when it is desired to emit collimated light, it is more effective to control the light with a light reflecting member, so that the effect is large.

【0056】そして請求項3に記載した発明によれば、
第2の光反射部材を、ハーフミラー面とすることで、ド
ーナツ状の光の出射しない部分がなくなると共に、この
ハーフミラーで構成した第2の光反射面を透過した光に
より、樹脂界面から出射される光の境目がはっきりしな
くなるので、発光デバイスを正面から見ても、発光状態
にムラが無く、非常にきれいに見える。
According to the third aspect of the present invention,
By making the second light reflecting member a half mirror surface, there is no portion where the donut-shaped light is not emitted, and the light is transmitted from the resin interface by the light transmitted through the second light reflecting surface formed by the half mirror. Since the boundaries of the light to be emitted are not clear, even when the light emitting device is viewed from the front, there is no unevenness in the light emitting state and the light emitting device looks very beautiful.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明における第1の実施形態に係る要部構
成を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view illustrating a configuration of a main part according to a first embodiment of the present invention.

【図2】 本発明における第2の実施形態に係る要部構
成を示す概略断面図である。
FIG. 2 is a schematic cross-sectional view illustrating a configuration of a main part according to a second embodiment of the present invention.

【図3】 本発明における第2の実施形態の光素子用光
学デバイスを用いた発光デバイスの成形方法を説明する
ための図である。
FIG. 3 is a view for explaining a method for forming a light emitting device using the optical device for an optical element according to the second embodiment of the present invention.

【図4】 本発明における第3の実施形態に係る要部構
成を示す概略断面図である。
FIG. 4 is a schematic sectional view showing a configuration of a main part according to a third embodiment of the present invention.

【図5】 本発明における第4の実施形態に係る要部構
成を示す概略断面図である。
FIG. 5 is a schematic sectional view showing a configuration of a main part according to a fourth embodiment of the present invention.

【図6】 本発明における第2の実施形態で示した光素
子用光学デバイスと表面実装タイプ発光素子を組み合わ
せた場合の概略断面図である。
FIG. 6 is a schematic cross-sectional view of a case where the optical device for an optical element according to the second embodiment of the present invention is combined with a surface-mount type light emitting element.

【図7】 本発明における第2の実施形態で示した光素
子用光学デバイスを単独で示した概略断面図である。
FIG. 7 is a schematic sectional view showing the optical device for an optical element shown in the second embodiment of the present invention alone.

【図8】 本発明における第2の実施形態で示した光素
子用光学デバイスと砲弾タイプ発光素子を組み合わせた
場合の概略断面図である。
FIG. 8 is a schematic cross-sectional view of a case where the optical device for an optical element shown in the second embodiment of the present invention and a shell type light emitting element are combined.

【図9】 本発明における第1の実施形態で示した光素
子用光学デバイスと受光素子を組み合わせた場合の概略
断面図である。
FIG. 9 is a schematic sectional view when the optical device for an optical element and the light receiving element shown in the first embodiment of the present invention are combined.

【図10】 本発明における第2の実施形態で示した光
素子用光学デバイスと受光素子を組み合わせた場合の概
略断面図である。
FIG. 10 is a schematic cross-sectional view when the optical device for an optical element and the light receiving element shown in the second embodiment of the present invention are combined.

【図11】 従来の光素子用光学デバイスを用いた発光
デバイス説明するための図である。
FIG. 11 is a diagram for explaining a light emitting device using a conventional optical device for an optical element.

【図12】 従来の光素子用光学デバイスを用いた受光
デバイス説明するための図である。
FIG. 12 is a view for explaining a light receiving device using a conventional optical device for an optical element.

【符号の説明】[Explanation of symbols]

1 発光素子 2 受け皿部 3 リードフレーム 4 ボンディングワイヤ 5 他方のリードフレーム 6 光反射部材 7 直接出射領域 8 全反射領域 9 モールド樹脂 35、36、37 光の経路 38 レンズ部 39 第2の光反射部材 DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Receiving part 3 Lead frame 4 Bonding wire 5 The other lead frame 6 Light reflection member 7 Direct emission area 8 Total reflection area 9 Mold resin 35, 36, 37 Light path 38 Lens part 39 Second light reflection member

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F041 AA06 DA16 DA26 DA43 DA57 EE17 EE23 5F073 AB26 AB29 FA28 FA29 FA30 5F088 AA01 BA16 JA02 JA06 JA12 JA18 JA20  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F041 AA06 DA16 DA26 DA43 DA57 EE17 EE23 5F073 AB26 AB29 FA28 FA29 FA30 5F088 AA01 BA16 JA02 JA06 JA12 JA18 JA20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光素子から外部に至る出射光、あるいは
外部から光素子に至る入射光の光路を制御する光素子用
光学デバイスであって、 光反射部材と、前記光反射部材の少なくとも光反射面を
覆い、前記光素子前方の所定領域を外れた光を樹脂界面
でほぼ全反射させる全反射領域と、前記光素子前方の所
定領域に達した光を出射あるいは集光するレンズ部と、
を形成する樹脂とからなり、 前記光素子前方の所定領域を外れた光の、前記光素子と
光素子用光学デバイスの外部とを結ぶ光経路が、前記樹
脂界面あるいは前記樹脂界面近傍に設けられた第2の光
反射部材のうち少なくともいずれか1方と、前記光反射
部材の各々で、少なくとも1回以上反射する経路を経由
するように前記樹脂界面、第2の光反射部材、あるいは
前記光反射部材の配置が定められ、 かつ前記レンズ部外形近傍を通過した光は前記光経路を
経由するように、レンズ部、あるいは第2の光反射部材
の形状あるいは配置を定めたことを特徴とする、光素子
用光学デバイス。
An optical device for an optical element for controlling an optical path of outgoing light from an optical element to the outside or incident light from the outside to the optical element, comprising: a light reflecting member; A surface that covers the surface, a total reflection area that almost completely reflects light outside the predetermined area in front of the optical element at the resin interface, and a lens unit that emits or condenses light that reaches the predetermined area in front of the optical element,
A light path connecting the optical element and the outside of the optical element for an optical element is provided near the resin interface or the resin interface. The resin interface, the second light-reflecting member, or the light so as to pass through at least one of the second light-reflecting members and a path that reflects at least once at each of the light-reflecting members. The arrangement or position of the reflection member is determined, and the shape or arrangement of the lens portion or the second light reflection member is determined so that light that has passed near the outer shape of the lens portion passes through the optical path. , Optical devices for optical elements.
【請求項2】 前記全反射領域より前記所定領域側に前
記第2の光反射部材を形成し、前記樹脂界面の臨界角よ
り小さな角度で樹脂界面に向かった光を反射できるよう
にしたことを特徴とする請求項1に記載した光素子用光
学デバイス。
2. The method according to claim 1, wherein the second light reflecting member is formed on the predetermined area side of the total reflection area so that light directed to the resin interface can be reflected at an angle smaller than a critical angle of the resin interface. The optical device for an optical element according to claim 1.
【請求項3】 前記第2の光反射部材からなる反射面
を、ハーフミラー面としたことを特徴とする請求項1、
または2に記載した光素子用光学デバイス。
3. The reflection surface of the second light reflection member is a half mirror surface.
Or the optical device for optical elements as described in 2.
【請求項4】 前記光反射部材の中央近辺に、発光素子
を封止するか、または配置できるようにしたことを特徴
とする請求項1、または2、または3に記載した光素子
用光学デバイス。
4. The optical device for an optical element according to claim 1, wherein the light emitting element is sealed or arranged near the center of the light reflecting member. .
JP2000327683A 2000-10-26 2000-10-26 Optical device for optical elements Expired - Fee Related JP3791323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000327683A JP3791323B2 (en) 2000-10-26 2000-10-26 Optical device for optical elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000327683A JP3791323B2 (en) 2000-10-26 2000-10-26 Optical device for optical elements

Publications (2)

Publication Number Publication Date
JP2002134794A true JP2002134794A (en) 2002-05-10
JP3791323B2 JP3791323B2 (en) 2006-06-28

Family

ID=18804656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000327683A Expired - Fee Related JP3791323B2 (en) 2000-10-26 2000-10-26 Optical device for optical elements

Country Status (1)

Country Link
JP (1) JP3791323B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536716A (en) * 2002-02-06 2005-12-02 ジェンテクス・コーポレーション Sensor configuration for substantial spacing from small openings
JP2007114459A (en) * 2005-10-20 2007-05-10 Mitsubishi Electric Corp Light source device and video display apparatus using same
JP2009027199A (en) * 2008-11-04 2009-02-05 Toyoda Gosei Co Ltd Light-emitting diode
JP2009224303A (en) * 2008-02-22 2009-10-01 Koito Mfg Co Ltd Vehicular lighting fixture
JP2011176356A (en) * 2004-06-04 2011-09-08 Cree Inc Optical lens for light-emitting diode package
JP2012134505A (en) * 2004-11-15 2012-07-12 Philips Lumileds Lightng Co Llc Overmolded lens over led die
US8446004B2 (en) 2004-06-04 2013-05-21 Cree, Inc. Power light emitting die package with reflecting lens and the method of making the same
US8620523B2 (en) 2011-06-24 2013-12-31 Gentex Corporation Rearview assembly with multiple ambient light sensors
US9207116B2 (en) 2013-02-12 2015-12-08 Gentex Corporation Light sensor
US9224889B2 (en) 2011-08-05 2015-12-29 Gentex Corporation Optical assembly for a light sensor, light sensor assembly using the optical assembly, and vehicle rearview assembly using the light sensor assembly
US9870753B2 (en) 2013-02-12 2018-01-16 Gentex Corporation Light sensor having partially opaque optic
CN110050172A (en) * 2016-12-16 2019-07-23 罗伯特·博世有限公司 For manufacturing the method and laser leveling device of the laser module of laser leveling device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130578A (en) * 1987-11-17 1989-05-23 Iwasaki Electric Co Ltd Light emitting diode
JP2000214356A (en) * 1998-11-20 2000-08-04 Taiyo Yuden Co Ltd Light collector and light receiving device
JP2001237463A (en) * 2000-02-24 2001-08-31 Matsushita Electric Works Ltd Led module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130578A (en) * 1987-11-17 1989-05-23 Iwasaki Electric Co Ltd Light emitting diode
JP2000214356A (en) * 1998-11-20 2000-08-04 Taiyo Yuden Co Ltd Light collector and light receiving device
JP2001237463A (en) * 2000-02-24 2001-08-31 Matsushita Electric Works Ltd Led module

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536716A (en) * 2002-02-06 2005-12-02 ジェンテクス・コーポレーション Sensor configuration for substantial spacing from small openings
US8932886B2 (en) 2004-06-04 2015-01-13 Cree, Inc. Power light emitting die package with reflecting lens and the method of making the same
JP2011176356A (en) * 2004-06-04 2011-09-08 Cree Inc Optical lens for light-emitting diode package
US8446004B2 (en) 2004-06-04 2013-05-21 Cree, Inc. Power light emitting die package with reflecting lens and the method of making the same
JP2012134505A (en) * 2004-11-15 2012-07-12 Philips Lumileds Lightng Co Llc Overmolded lens over led die
US9081167B2 (en) 2004-11-15 2015-07-14 Koninklijke Philips N.V. Lens compression molded over LED die
JP2007114459A (en) * 2005-10-20 2007-05-10 Mitsubishi Electric Corp Light source device and video display apparatus using same
JP2009224303A (en) * 2008-02-22 2009-10-01 Koito Mfg Co Ltd Vehicular lighting fixture
JP2009027199A (en) * 2008-11-04 2009-02-05 Toyoda Gosei Co Ltd Light-emitting diode
US8620523B2 (en) 2011-06-24 2013-12-31 Gentex Corporation Rearview assembly with multiple ambient light sensors
US9224889B2 (en) 2011-08-05 2015-12-29 Gentex Corporation Optical assembly for a light sensor, light sensor assembly using the optical assembly, and vehicle rearview assembly using the light sensor assembly
US9207116B2 (en) 2013-02-12 2015-12-08 Gentex Corporation Light sensor
US9870753B2 (en) 2013-02-12 2018-01-16 Gentex Corporation Light sensor having partially opaque optic
US9961746B2 (en) 2013-02-12 2018-05-01 Gentex Corporation Light sensor
US11006502B2 (en) 2013-02-12 2021-05-11 Gentex Corporation Light sensor
US11017741B2 (en) 2013-02-12 2021-05-25 Gentex Corporation Light sensor having partially opaque optic
CN110050172A (en) * 2016-12-16 2019-07-23 罗伯特·博世有限公司 For manufacturing the method and laser leveling device of the laser module of laser leveling device

Also Published As

Publication number Publication date
JP3791323B2 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
US7781787B2 (en) Light-emitting diode, led light, and light apparatus
US6674096B2 (en) Light-emitting diode (LED) package and packaging method for shaping the external light intensity distribution
JP4182783B2 (en) LED package
JP6141248B2 (en) Lighting device
KR100436302B1 (en) Optical Device for an Optical Element and Apparatus Employing the Device
US7281860B2 (en) Optical transmitter
US20110062470A1 (en) Reduced angular emission cone illumination leds
JP5345358B2 (en) Casing with lower casing
US11128100B2 (en) VCSEL illuminator package including an optical structure integrated in the encapsulant
JP2002314137A (en) Reflection type light emitting diode
JPH10321900A (en) Optical module
JPH0918058A (en) Semiconductor light-emitting device
JP2002134794A (en) Optical device for optical element
US8668365B2 (en) Optoelectronic device
JP2002134793A (en) Optical device for optical element
JP2009027199A (en) Light-emitting diode
JP2556821Y2 (en) Light emitting device
JPH01241184A (en) Reflection type photosensor
KR100779120B1 (en) Side emitting light emitting diode package
JPH0645656A (en) Light emitting device and optical fiber type photoelectric sensor with it
JP2004087630A (en) Light emitting diode and led light
JP2005142447A (en) Light emitting device, light receiving device, electronic apparatus, and manufacturing method of lens
JP4404658B2 (en) Semiconductor light emitting device
JPH03288479A (en) Light emitting element
JP2006332411A (en) Light emitting device, light receiving device and equipment provided with them

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees