JP2002134669A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2002134669A
JP2002134669A JP2000330135A JP2000330135A JP2002134669A JP 2002134669 A JP2002134669 A JP 2002134669A JP 2000330135 A JP2000330135 A JP 2000330135A JP 2000330135 A JP2000330135 A JP 2000330135A JP 2002134669 A JP2002134669 A JP 2002134669A
Authority
JP
Japan
Prior art keywords
lid
insulating substrate
adhesive resin
circuit board
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000330135A
Other languages
Japanese (ja)
Other versions
JP4422883B2 (en
Inventor
Hideto Yonekura
秀人 米倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000330135A priority Critical patent/JP4422883B2/en
Publication of JP2002134669A publication Critical patent/JP2002134669A/en
Application granted granted Critical
Publication of JP4422883B2 publication Critical patent/JP4422883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem of cracks that occur on a connection terminal connecting an insulation board and an outer circuit board in the case that a temperature cycle test is performed, or cracks and peeling that occur on an adhesion resin connecting a cover body and the insulation board. SOLUTION: In a semiconductor device A provided with the plate-like cover body 3 mounting a semiconductor element 2 on the surface of the insulation board 1, attached to the surface of the insulation board 1 so as to cover the semiconductor element 1 and adhering a part thereof through a heat conduction resin 9 on the upper face of the semiconductor element 2 and mounted on the outer circuit board 11 through the connection terminal 10, thermal expansion coefficients lessen in order of the outer circuit board 11, the insulation board 1 and the cover body 3, the cover body 3 and the insulation board 1 are adhered by the adhesion resin different in Young's modulus, the adhesion resin 4b of large Young's modulus is positioned in the inside of the cover body 3 more inward than the adhesion resin 4a of small Young's modulus. The cracks and peeling do not occur on the connection terminal and the adhesion resins 4a, 4b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はコンピュータ等の情
報処理装置等に使用される放熱用の蓋体を有する半導体
装置に関し、より詳細には、半導体装置に温度サイクル
が繰り返し印加された際に、半導体装置と外部回路基板
とを接続する接続端子が破壊することなく、かつ蓋体と
半導体素子とを接続する熱伝導性樹脂が破壊・剥離する
ことがない半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a heat-dissipating lid for use in an information processing device such as a computer, and more particularly, to a semiconductor device having a temperature cycling function when a temperature cycle is repeatedly applied to the semiconductor device. The present invention relates to a semiconductor device in which a connection terminal for connecting a semiconductor device to an external circuit board is not broken and a heat conductive resin for connecting a lid and a semiconductor element is not broken or peeled.

【0002】[0002]

【従来の技術】従来、コンピュータ等の情報処理装置等
に使用される放熱用の蓋体を有する半導体装置は、例え
ば図6に断面図で示すように、略平板状の絶縁基板21と
半導体素子22とキャップ状の蓋体23とから基本的に構成
されている。
2. Description of the Related Art Conventionally, a semiconductor device having a heat-dissipating lid used for an information processing apparatus such as a computer has a substantially flat insulating substrate 21 and a semiconductor element as shown in a sectional view of FIG. It is basically composed of 22 and a cap-shaped lid 23.

【0003】絶縁基板21は、酸化アルミニウム質焼結体
・ガラスセラミックス焼結体等のセラミックス材料から
なり、上面中央部に半導体素子22を搭載するための搭載
部を有するとともに搭載部から下面にかけて導出する複
数個のメタライズ配線層24を有している。
The insulating substrate 21 is made of a ceramic material such as an aluminum oxide sintered body or a glass ceramic sintered body, has a mounting portion for mounting the semiconductor element 22 at the center of the upper surface, and extends from the mounting portion to the lower surface. A plurality of metallized wiring layers 24 to be formed.

【0004】そして半導体素子22を絶縁基板21上面中央
の搭載部に搭載するとともに、半導体素子22の下面に形
成されている各接続用電極25と、絶縁基板21のメタライ
ズ配線層24とを導体バンプ26にて接合することにより半
導体素子22の各接続用電極25とメタライズ配線層24とが
電気的に接続される。
[0004] The semiconductor element 22 is mounted on a mounting portion at the center of the upper surface of the insulating substrate 21, and each connection electrode 25 formed on the lower surface of the semiconductor element 22 and the metallized wiring layer 24 of the insulating substrate 21 are connected to conductive bumps. By joining at 26, each connection electrode 25 of the semiconductor element 22 and the metallized wiring layer 24 are electrically connected.

【0005】しかる後、キャップ状の蓋体23を、半導体
素子22の上面に熱伝導性樹脂27にて接着し、絶縁基板21
の上面の外縁部に接着樹脂28にて取着することにより、
半導体装置Bが製作される。
[0005] Thereafter, a cap-shaped lid 23 is bonded to the upper surface of the semiconductor element 22 with a heat conductive resin 27 to form an insulating substrate 21.
By attaching it to the outer edge of the upper surface with adhesive resin 28,
The semiconductor device B is manufactured.

【0006】この半導体装置Bは、絶縁基板21下面のメ
タライズ配線層24を、ガラスエポキシ樹脂等の樹脂基板
からなるマザーボード等の外部回路基板29の接続用導体
30にハンダ等からなる接続端子31を介して接続させるこ
とにより外部回路基板29上に実装される。
In the semiconductor device B, the metallized wiring layer 24 on the lower surface of the insulating substrate 21 is connected to a connecting conductor of an external circuit board 29 such as a mother board made of a resin substrate such as a glass epoxy resin.
It is mounted on the external circuit board 29 by connecting to 30 via a connection terminal 31 made of solder or the like.

【0007】このような半導体装置は、以下のような温
度サイクル試験を行なう必要があり、その温度サイクル
試験で所定以上の耐久性を有することが確認されて初め
て製品として認められる。即ち、この温度サイクル試験
は、半導体装置の極端な高温または低温に対する耐久
性、また高温と低温の温度に交互に晒した場合の耐久性
を確認する信頼性試験であり、例えば以下の手順[1]
〜[6]により行なわれる。
[0007] Such a semiconductor device needs to be subjected to the following temperature cycle test, and it is recognized as a product only after it has been confirmed that the semiconductor device has durability equal to or higher than a predetermined value in the temperature cycle test. That is, this temperature cycle test is a reliability test for confirming the durability of a semiconductor device against extremely high or low temperatures and the durability when the semiconductor device is alternately exposed to high and low temperatures. For example, the following procedure [1] ]
To [6].

【0008】[1]−40℃の恒温槽と125℃の恒温槽を
用い、まず室温(25℃)から−40℃の恒温槽中に試料を
移し10〜15分間保持する。
[1] Using a thermostat at -40 ° C and a thermostat at 125 ° C, first, the sample is transferred from a room temperature (25 ° C) to a thermostat at -40 ° C and held for 10 to 15 minutes.

【0009】[2]試料を室温(25℃)の大気中に移
す。
[2] The sample is transferred to the air at room temperature (25 ° C.).

【0010】[3]−40℃の恒温槽より取り出してより
1分以内に、試料を室温(25℃)の大気中から125℃の
恒温槽中に移し10〜15分間保持する。
[3] Within 1 minute after taking out from the -40 ° C. constant temperature bath, the sample is transferred from the air at room temperature (25 ° C.) to a 125 ° C. constant temperature bath and held for 10 to 15 minutes.

【0011】[4]試料を室温(25℃)の大気中に移
す。
[4] The sample is transferred to the air at room temperature (25 ° C.).

【0012】[5]125℃の恒温槽より取り出してより
1分以内に、試料を室温(25℃)の大気中から−40℃の
恒温槽中に移す。
[5] The sample is taken out of the thermostat at 125 ° C. and is transferred from the air at room temperature (25 ° C.) to a thermostat at −40 ° C. within one minute.

【0013】[6]上記[1]〜[5]を1サイクルと
して、即ち室温(25℃)→低温(−40℃)→室温(25
℃)→高温(125℃)→室温(25℃)の温度変化を1サ
イクルとして、このサイクルを所定回数(例えば1000サ
イクル)繰り返す。
[6] One cycle of the above [1] to [5], that is, room temperature (25 ° C.) → low temperature (−40 ° C.) → room temperature (25 ° C.)
This cycle is repeated a predetermined number of times (for example, 1000 cycles) with a temperature change of (° C.) → high temperature (125 ° C.) → room temperature (25 ° C.) as one cycle.

【0014】そして、半導体装置Bについて温度サイク
ル試験を行なった際、室温(25℃)から高温(125℃)
までの昇温過程と、室温(25℃)から低温(−40℃)ま
での降温過程の双方で、絶縁基板21と外部回路基板29を
接続する接続端子31は、絶縁基板21と外部回路基板29と
の間に生じる熱応力のためクラックを生じることがある
が、クラックの発生は降温過程で顕著である。それは以
下の理由による。
When a temperature cycle test is performed on the semiconductor device B, the temperature is increased from room temperature (25 ° C.) to a high temperature (125 ° C.).
The connection terminals 31 for connecting the insulating board 21 and the external circuit board 29 are connected to the insulating board 21 and the external circuit board in both the process of raising the temperature to room temperature and the process of lowering the temperature from room temperature (25 ° C.) to low temperature (-40 ° C.). Cracks may occur due to thermal stress generated between them, and the occurrence of cracks is remarkable in the course of cooling. It is for the following reasons.

【0015】即ち、絶縁基板21、蓋体23および外部回路
基板29のヤング率は高温では小さく、低温では大きいた
め、昇温過程では蓋体23、絶縁基板21および外部回路基
板29が蓋体23側が凹となる向きに容易にたわむことがで
き、絶縁基板21と外部回路基板29との間に生じる熱応力
を小さくできる。それに対し、降温過程では、絶縁基板
21、蓋体23および外部回路基板29それぞれのヤング率が
昇温過程より大きいため、蓋体23、絶縁基板21および外
部回路基板29がたわみ難くなる。
That is, since the Young's modulus of the insulating substrate 21, the lid 23 and the external circuit board 29 is small at a high temperature and large at a low temperature, the lid 23, the insulating substrate 21 and the external circuit board 29 are separated from each other during the heating process. It can easily bend in the direction in which the side becomes concave, and the thermal stress generated between the insulating substrate 21 and the external circuit board 29 can be reduced. On the other hand, during the cooling process,
Since the Young's modulus of each of 21, the lid 23, and the external circuit board 29 is larger than the temperature increasing process, the lid 23, the insulating substrate 21, and the external circuit board 29 are hardly bent.

【0016】従って、昇温過程と比べ降温過程では、絶
縁基板21と外部回路基板29との間に生じる熱応力が大き
くなる。よって、絶縁基板21と外部回路基板29を接続す
る接続端子31は、昇温過程と比較して降温過程にて、よ
りクラックを生じやすい。
Therefore, the thermal stress generated between the insulating substrate 21 and the external circuit substrate 29 increases in the temperature lowering process as compared with the temperature increasing process. Therefore, the connection terminals 31 that connect the insulating substrate 21 and the external circuit board 29 are more likely to crack in the temperature decreasing process than in the temperature increasing process.

【0017】従来の半導体装置Bの構造では、温度サイ
クル試験にて、特に降温過程において、熱膨張係数が4
〜8×10-6/℃の絶縁基板21と熱膨張係数が約15〜20×
10-6/℃である外部回路基板29との熱膨張係数差により
接続端子31に生じる熱応力が大きくなるという問題点が
あった。
In the structure of the conventional semiconductor device B, the coefficient of thermal expansion is 4 in a temperature cycle test, especially in a temperature decreasing process.
88 × 10 -6 / ℃ insulating substrate 21 and thermal expansion coefficient about 15-20 ×
There is a problem that thermal stress generated in the connection terminal 31 is increased due to a difference in thermal expansion coefficient between the external circuit board 29 and 10 -6 / ° C.

【0018】また、従来の半導体装置Bの構造では、図
6に示すようにキャップ状の蓋体23が絶縁基板21上面の
外縁部に取着されている。そのため、絶縁基板21が蓋体
23の接着部で拘束され、温度サイクル試験にて、特に降
温過程において、上側が凸となる向きに十分たわむこと
ができないことから、半導体装置Bと外部回路基板29と
を接続する接続端子31に生じる熱応力を小さくすること
ができなくなるという問題点があった。
In the structure of the conventional semiconductor device B, a cap-like lid 23 is attached to the outer edge of the upper surface of the insulating substrate 21 as shown in FIG. Therefore, the insulating substrate 21 is
In the temperature cycle test, especially in the temperature drop process, the connection terminal 31 for connecting the semiconductor device B and the external circuit board 29 cannot bend sufficiently in the direction in which the upper side becomes convex in the temperature cycle test. There has been a problem that the generated thermal stress cannot be reduced.

【0019】特に、蓋体23と外部回路基板29の熱膨張係
数が絶縁基板21の熱膨張係数より大きい場合は、温度サ
イクル試験にて、特に室温から低温への降温過程におい
て、絶縁基板21は蓋体23との接着部と接続端子31との双
方にて拘束されるため上側が凸となる向きに十分たわむ
ことができず、接続端子31に生じる絶縁基板21の主面方
向の熱応力を小さくすることができなくなる。
In particular, when the coefficient of thermal expansion of the lid 23 and the external circuit board 29 is larger than the coefficient of thermal expansion of the insulating substrate 21, the insulating substrate 21 is subjected to a temperature cycle test, especially during the process of lowering the temperature from room temperature to a low temperature. Since it is constrained by both the bonding portion with the lid 23 and the connection terminal 31, it cannot bend sufficiently in the direction in which the upper side is convex, and the thermal stress generated in the connection terminal 31 in the main surface direction of the insulating substrate 21 is reduced. It cannot be made smaller.

【0020】こうした熱応力が繰り返し印加されると、
接続端子31は熱疲労破壊し、接続端子31の接続部近傍に
クラックが生じるという問題点があった。
When such thermal stress is repeatedly applied,
There has been a problem that the connection terminal 31 is broken by thermal fatigue and cracks are generated near the connection portion of the connection terminal 31.

【0021】これらの問題点を解決するものとして、図
7に示す構造の半導体装置が提案されている(IEEE
主催の50th Electronic Components & Technology Conf
erence要旨集1189−1197頁参照)。
To solve these problems, a semiconductor device having a structure shown in FIG. 7 has been proposed (IEEE).
Sponsored 50th Electronic Components & Technology Conf
erence abstracts, pages 1189-1197).

【0022】図7はこの半導体装置Cの断面図である。
図7に示す通り、半導体装置Cは、略平板状の絶縁基板
41と半導体素子42と平板状の蓋体43とから基本的に構成
されている。
FIG. 7 is a sectional view of the semiconductor device C.
As shown in FIG. 7, the semiconductor device C is a substantially flat insulating substrate.
It is basically composed of 41, a semiconductor element 42, and a flat lid 43.

【0023】絶縁基板41は、上面中央部に半導体素子42
を搭載するための搭載部を有するとともに搭載部から下
面にかけて導出される複数個のメタライズ配線層44を有
している。
An insulating substrate 41 has a semiconductor element 42
And a plurality of metallized wiring layers 44 extending from the mounting portion to the lower surface.

【0024】そして、半導体素子42を絶縁基板41上面中
央の搭載部に搭載するとともに、半導体素子42の下面に
形成されている各接続用電極45と、絶縁基板41のメタラ
イズ配線層44とを導体バンプ46にて接合することにより
半導体素子42の各接続用電極45とメタライズ配線層44と
が電気的に接続される。
Then, the semiconductor element 42 is mounted on the mounting portion at the center of the upper surface of the insulating substrate 41, and each connection electrode 45 formed on the lower surface of the semiconductor element 42 and the metallized wiring layer 44 of the insulating substrate 41 are connected to the conductor. By bonding with the bump 46, each connection electrode 45 of the semiconductor element 42 is electrically connected to the metallized wiring layer 44.

【0025】しかる後、蓋体43を、半導体素子42の上面
に熱伝導性樹脂47にて接着し、絶縁基板41の上面に接着
樹脂48にて取着することにより、半導体装置Cが製作さ
れる。
Thereafter, the semiconductor device C is manufactured by attaching the lid 43 to the upper surface of the semiconductor element 42 with a thermally conductive resin 47 and attaching the lid 43 to the upper surface of the insulating substrate 41 with an adhesive resin 48. You.

【0026】この半導体装置Cは、絶縁基板41下面のメ
タライズ配線層44を、ガラスエポキシ樹脂等の樹脂基板
からなるマザーボード等の外部回路基板49の接続用導体
50にハンダ等からなる接続端子51を介して接続させるこ
とにより外部回路基板49上に実装される。
In this semiconductor device C, the metallized wiring layer 44 on the lower surface of the insulating substrate 41 is connected to a connecting conductor of an external circuit board 49 such as a mother board made of a resin substrate such as glass epoxy resin.
It is mounted on the external circuit board 49 by connecting it to a connection terminal 50 via a connection terminal 51 made of solder or the like.

【0027】ここで、蓋体43はその形状をキャップ状か
ら平板状とすることにより、その剛性が低下し、蓋体43
の絶縁基板41に対する拘束が小さくなるため、温度サイ
クル試験にて、特に降温過程において、絶縁基板41が蓋
体43側(上側)が凸となる向きにたわむことができる。
その結果、半導体装置Cと外部回路基板49とを接続する
接続端子51に生じる熱応力を小さくすることができる。
Here, by changing the shape of the cover 43 from a cap shape to a plate shape, the rigidity of the cover 43 is reduced.
Since the restraint on the insulating substrate 41 is reduced, the insulating substrate 41 can bend in a direction in which the lid 43 side (upper side) is convex in the temperature cycle test, particularly in the temperature decreasing process.
As a result, it is possible to reduce the thermal stress generated in the connection terminal 51 that connects the semiconductor device C and the external circuit board 49.

【0028】また、蓋体43の熱膨張係数を絶縁基板41の
熱膨張係数より小さくしていることから、同じく降温過
程において、蓋体43と絶縁基板41と外部回路基板49が上
側が凸になるようにそれぞれたわむことができ、絶縁基
板41と外部回路基板49との接続端子51に生じる熱応力を
小さくすることができる。
Further, since the thermal expansion coefficient of the lid 43 is smaller than the thermal expansion coefficient of the insulating substrate 41, the lid 43, the insulating substrate 41, and the external circuit board 49 also have convex upper sides in the same temperature decreasing process. Thus, the thermal stress generated in the connection terminals 51 between the insulating substrate 41 and the external circuit board 49 can be reduced.

【0029】そして、蓋体43と絶縁基板41とを接続して
いる接着樹脂48のヤング率を0.011GPaと低くするこ
とにより、特に室温から低温への降温過程において、絶
縁基板41および蓋体43がたわむ際、接着樹脂48をその変
形に追従させることができる。
By lowering the Young's modulus of the adhesive resin 48 connecting the lid 43 and the insulating substrate 41 to 0.011 GPa, the insulating substrate 41 and the lid 43 are particularly reduced in the temperature decreasing process from room temperature to low temperature. When flexing, the adhesive resin 48 can follow the deformation.

【0030】上記改良により、温度サイクル試験の特に
降温過程において、絶縁基板41と外部回路基板49との熱
膨張係数差により生じる熱応力は、蓋体43と絶縁基板41
と外部回路基板49が上側が凸になるようにそれぞれたわ
むことにより小さくでき、この熱応力による絶縁基板41
と外部回路基板49とを接続する接続端子51のクラックは
発生しなくなった。
According to the above-described improvement, the thermal stress generated due to the difference in thermal expansion coefficient between the insulating substrate 41 and the external circuit board 49 during the temperature cycle test, especially during the temperature drop process, is reduced by the lid 43 and the insulating substrate 41.
And the external circuit board 49 can be made smaller by flexing so that the upper side becomes convex.
The connection terminal 51 connecting the external circuit board 49 to the external circuit board 49 is no longer cracked.

【0031】[0031]

【発明が解決しようとする課題】しかしながら、この従
来の半導体装置Cでは、絶縁基板41と外部回路基板49と
を接続する接続端子51にクラックは発生しないものの、
絶縁基板41と蓋体43との熱膨張係数差により絶縁基板41
および蓋体43の外周部にある接着樹脂48に大きい熱応力
が生じ、接着樹脂48が破断するおそれがある。その結
果、半導体素子42で生じた熱を放熱する熱伝導性樹脂47
が蓋体43から剥離する、あるいは熱伝導性樹脂47にクラ
ックを生じることとなるため、半導体素子42の放熱性が
低下するおそれがあるという問題点があった。
However, in this conventional semiconductor device C, cracks do not occur in the connection terminals 51 connecting the insulating substrate 41 and the external circuit board 49, but
Due to the difference in thermal expansion coefficient between the insulating substrate 41 and the lid 43, the insulating substrate 41
In addition, a large thermal stress is generated in the adhesive resin 48 on the outer peripheral portion of the lid 43, and the adhesive resin 48 may be broken. As a result, a heat conductive resin 47 that dissipates heat generated in the semiconductor element 42
Is peeled off from the lid 43 or cracks are generated in the heat conductive resin 47, so that there is a problem that the heat dissipation of the semiconductor element 42 may be reduced.

【0032】本発明は上記事情に鑑みて案出されたもの
であり、その目的は、半導体装置に温度サイクル試験を
実施した際に、絶縁基板と外部回路基板とを接続する接
続端子に絶縁基板と外部回路基板との熱膨張係数差によ
り生じる熱応力を起因とするクラックを生じず、かつ半
導体素子と蓋体とを接着している熱伝導性樹脂が蓋体か
ら剥離しない、放熱性が良好な半導体装置を提供するこ
とにある。
The present invention has been devised in view of the above circumstances, and an object of the present invention is to provide a semiconductor device having a connection terminal for connecting an insulating substrate to an external circuit board when the semiconductor device is subjected to a temperature cycle test. Crack due to thermal stress caused by the difference in thermal expansion coefficient between the semiconductor device and the external circuit board, and the heat conductive resin bonding the semiconductor element and the lid does not peel off from the lid, good heat dissipation To provide a simple semiconductor device.

【0033】[0033]

【課題を解決するための手段】本発明の半導体装置は、
メタライズ配線層が被着形成された絶縁基板の表面に、
接続用電極を備えた半導体素子を載置し、前記メタライ
ズ配線層と前記半導体素子の接続用電極とを接合してな
るとともに、前記半導体素子を覆うようにして前記絶縁
基板表面に取着されかつその一部を前記半導体素子の上
面に熱伝導性樹脂を介して接着してなる平板状の蓋体
と、前記絶縁基板の裏面に設けられ前記半導体素子と電
気的に接続された接続端子とを具備し、前記絶縁基板下
面のメタライズ配線層と外部回路基板上面の接続用導体
とを前記接続端子を介して接合することにより外部回路
基板上に実装された半導体装置において、熱膨張係数が
外部回路基板、絶縁基板、蓋体の順で小さくなるととも
に、前記蓋体と前記絶縁基板とがヤング率の異なる接着
樹脂により取着されており、かつヤング率の大きい接着
樹脂がヤング率の小さい接着樹脂よりも前記蓋体の内側
に位置していることを特徴とするものである。
According to the present invention, there is provided a semiconductor device comprising:
On the surface of the insulating substrate on which the metallized wiring layer is
A semiconductor element provided with a connection electrode is placed, and the metallized wiring layer and the connection electrode of the semiconductor element are joined together, and attached to the insulating substrate surface so as to cover the semiconductor element; A flat lid formed by bonding a part thereof to the upper surface of the semiconductor element via a heat conductive resin, and a connection terminal provided on the back surface of the insulating substrate and electrically connected to the semiconductor element. A semiconductor device mounted on the external circuit board by joining the metallized wiring layer on the lower surface of the insulating substrate and the connection conductor on the upper surface of the external circuit board via the connection terminal; The substrate, the insulating substrate, and the lid become smaller in this order, and the lid and the insulating substrate are attached with adhesive resins having different Young's moduli, and the adhesive resin having a large Young's modulus has a small Young's modulus. And it is characterized in that it is located inside of the lid than the adhesive resin are.

【0034】本発明は、上記の構成により、熱膨張係数
を外部回路基板、絶縁基板、蓋体の順で小さくなるよう
にしていることから、温度サイクル試験にて、特に降温
過程において、蓋体、絶縁基板および外部回路基板が蓋
体側が凸となるようにたわみ、絶縁基板と外部回路基板
と蓋体との間の熱膨張係数差による熱応力を小さくする
ことができる。
According to the present invention, the thermal expansion coefficient is reduced in the order of the external circuit board, the insulating substrate, and the lid by the above configuration. In addition, the insulating substrate and the external circuit board are bent such that the lid side is convex, so that thermal stress due to a difference in thermal expansion coefficient between the insulating substrate, the external circuit board, and the lid can be reduced.

【0035】また、半導体素子の上面を熱伝導性樹脂に
よって蓋体に接着していることにより、半導体素子で発
生した熱は効果的に蓋体側に伝熱されることから、半導
体素子の発熱に対する熱放散性を良好にすることができ
る。
Further, since the upper surface of the semiconductor element is adhered to the lid with a heat conductive resin, the heat generated in the semiconductor element is effectively transmitted to the lid side. Dispersibility can be improved.

【0036】また、蓋体と絶縁基板とがヤング率の異な
る接着樹脂により取着され、かつヤング率の大きい接着
樹脂がヤング率の小さい接着樹脂よりも蓋体の内側に位
置していることから、同じく降温過程において、蓋体に
よる絶縁基板の拘束は接続部のヤング率の小さい接着樹
脂の変形により小さくすることができ、その結果、絶縁
基板は蓋体側が凸となるようたわみ、絶縁基板と外部回
路基板の熱膨張係数差による熱応力を小さくすることが
できる。また、ヤング率の大きい接着樹脂が蓋体と絶縁
基板との接合を補強することにより、接合の機械的強度
を強固なものとすることができる。そのため、熱伝導性
樹脂が蓋体から剥離することがなくなり半導体素子と蓋
体との熱的な接続を維持し確保することができるため、
熱放散性が良好で蓋体と絶縁基板との接合の長期信頼性
に優れた半導体装置を得ることができる。
Further, since the lid and the insulating substrate are attached with adhesive resins having different Young's moduli, and the adhesive resin having a higher Young's modulus is located inside the lid than the adhesive resin having a lower Young's modulus. In the same manner, in the temperature decreasing process, the restraint of the insulating substrate by the lid can be reduced by the deformation of the adhesive resin having a small Young's modulus at the connection portion. As a result, the insulating substrate bends so that the lid side becomes convex, and the insulating substrate is bent. Thermal stress due to the difference in thermal expansion coefficient of the external circuit board can be reduced. Further, the adhesive resin having a large Young's modulus reinforces the bonding between the lid and the insulating substrate, so that the mechanical strength of the bonding can be increased. Therefore, the thermal conductive resin does not peel off from the lid, so that it is possible to maintain and secure the thermal connection between the semiconductor element and the lid,
A semiconductor device having good heat dissipation properties and excellent long-term reliability of bonding between the lid and the insulating substrate can be obtained.

【0037】ここで、蓋体と絶縁基板との熱応力は蓋体
中心からの距離に比例して大きくなることから、蓋体中
心からの距離が長く熱応力が大きい蓋体外周側には変形
しやすいヤング率の小さい接着樹脂を、蓋体中心からの
距離が短い蓋体内側には強度の大きなヤング率の大きい
接着樹脂をそれぞれ配置している。その結果、ヤング率
の小さい接着樹脂を蓋体外周側に配置したことにより、
ヤング率の小さい接着樹脂は変形しやすいため、温度サ
イクル試験の降温過程において、絶縁基板の外周側でよ
り大きくなる平面方向の熱応力に追従して変形する。ま
た、ヤング率の大きい接着樹脂にを蓋体内側に配置した
ことにより、ヤング率の大きい接着樹脂は機械的強度が
高く変形し難いため、絶縁基板と蓋体との接続を強固に
する。
Here, since the thermal stress between the lid and the insulating substrate increases in proportion to the distance from the center of the lid, the distance from the center of the lid is long and the thermal stress on the lid outer peripheral side is large. An adhesive resin having a small Young's modulus, which is easy to perform, and an adhesive resin having a large strength and a large Young's modulus are arranged inside the lid, which is short from the center of the lid. As a result, by placing the adhesive resin with a small Young's modulus on the outer periphery of the lid,
Since the adhesive resin having a small Young's modulus is easily deformed, the resin is deformed in accordance with the thermal stress in the planar direction which becomes larger on the outer peripheral side of the insulating substrate in the temperature decreasing process of the temperature cycle test. In addition, since the adhesive resin having a large Young's modulus is disposed inside the lid, the adhesive resin having a large Young's modulus has high mechanical strength and is not easily deformed, so that the connection between the insulating substrate and the lid is strengthened.

【0038】また、本発明の半導体装置は、上記構成に
おいて、好ましくは蓋体がアルミニウムと炭化珪素とを
主成分とする複合材料の焼結体からなることを特徴とす
るものである。これにより、蓋体材料の密度が一般に用
いられる銅とタングステン等を主成分とする他の材料の
密度より低くなり、同一形状の蓋体で比較すると半導体
装置の重量が軽くなることから、外部回路基板との接続
端子が半導体装置の重量により変形することによる実装
高さの低下を防止することができる。その結果、温度サ
イクル試験にて、特にその室温から低温への降温過程に
おいて、絶縁基板と外部回路基板との熱膨張係数差によ
り熱応力が生じた場合、外部回路基板に対する半導体装
置の実装高さが低下していないため、絶縁基板と外部回
路基板との接続端子が実装面方向に容易に変形すること
ができ、生じた熱応力を小さくすることができる。従っ
て、半導体装置と外部回路基板との間の接続が破壊され
難くなり、絶縁基板と外部回路基板間の接続信頼性をよ
り一層良好にすることができる。
Further, in the semiconductor device according to the present invention, in the above structure, preferably, the lid is made of a sintered body of a composite material containing aluminum and silicon carbide as main components. As a result, the density of the lid material is lower than the density of other commonly used materials including copper and tungsten as a main component, and the weight of the semiconductor device is reduced as compared with the lid having the same shape. It is possible to prevent the mounting height from being reduced due to the deformation of the connection terminal with the substrate due to the weight of the semiconductor device. As a result, in a temperature cycle test, especially when a thermal stress occurs due to a difference in thermal expansion coefficient between the insulating substrate and the external circuit board during the temperature lowering process from room temperature to a low temperature, the mounting height of the semiconductor device with respect to the external circuit board Is not reduced, the connection terminal between the insulating substrate and the external circuit board can be easily deformed in the mounting surface direction, and the generated thermal stress can be reduced. Therefore, the connection between the semiconductor device and the external circuit board is less likely to be broken, and the connection reliability between the insulating substrate and the external circuit board can be further improved.

【0039】[0039]

【発明の実施の形態】次に、本発明を添付の図面を基に
説明する。
Next, the present invention will be described with reference to the accompanying drawings.

【0040】図1(a)および(b)は、それぞれ本発
明の半導体装置の実施の形態の一例を示す平面図および
断面図である。図1において、1は絶縁基板、2は半導
体素子、3は平板状の蓋体であり、蓋体3と絶縁基板1
とは、ヤング率の異なる接着樹脂、すなわちヤング率の
小さい接着樹脂4aおよびヤング率の大きい接着樹脂4
bを介して接合されて取着されている。
FIGS. 1A and 1B are a plan view and a sectional view, respectively, showing an example of an embodiment of a semiconductor device according to the present invention. In FIG. 1, reference numeral 1 denotes an insulating substrate, 2 denotes a semiconductor element, and 3 denotes a flat lid.
Are adhesive resins having different Young's moduli, that is, adhesive resin 4a having a small Young's modulus and adhesive resin 4 having a large Young's modulus.
b.

【0041】絶縁基板1は、例えばガラスセラミックス
焼結体等のセラミックス系絶縁材料や、ガラスエポキシ
樹脂、ガラスポリイミド樹脂複合材料等の樹脂系絶縁材
料等の電気絶縁材料からなる。
The insulating substrate 1 is made of, for example, a ceramic insulating material such as a glass ceramic sintered body or an electrical insulating material such as a resin insulating material such as a glass epoxy resin or a glass polyimide resin composite material.

【0042】絶縁基板1は、例えばガラスセラミックス
焼結体からなる場合であれば、ガラスと所定のフィラー
とを適宜混合した混合粉末に適宜有機バインダおよび溶
剤を添加しスラリーを得て、そのスラリーをシート状に
成型した後、そのシート状成型体を積層圧着して積層体
を作製し、積層体を大気中あるいは窒素雰囲気中にて80
0℃乃至1000℃で焼成することにより作製される。
When the insulating substrate 1 is made of, for example, a glass ceramic sintered body, an organic binder and a solvent are appropriately added to a mixed powder obtained by appropriately mixing glass and a predetermined filler to obtain a slurry. After being formed into a sheet, the sheet-shaped molded body is laminated and pressed to produce a laminate, and the laminate is subjected to air or nitrogen in an atmosphere.
It is manufactured by firing at 0 ° C. to 1000 ° C.

【0043】絶縁基板1は、その表面から内部を経て裏
面にかけてメタライズ配線層5が配設されている。メタ
ライズ配線層5は、たとえば絶縁基板1がガラスセラミ
ックス焼結体からなる場合であれば、必要に応じてあら
かじめシート状成型体の所定位置にパンチングやレーザ
等により貫通孔を形成しておくとともに、銅または銀を
主成分とする金属粉末に適宜有機バインダおよび溶剤を
添加し混練することにより得た導体ペーストを貫通孔内
およびシート状成型体の表面にスクリーン印刷法等によ
り印刷することにより形成される。またメタライズ配線
層5は、例えば、金・アルミニウム・ニッケル・鉛−錫
合金等を主成分とする金属材料から構成されてもよい。
The insulating substrate 1 is provided with a metallized wiring layer 5 extending from the front surface to the inner surface to the rear surface. If the insulating substrate 1 is made of, for example, a glass ceramic sintered body, the metallized wiring layer 5 is formed with a through hole in advance at a predetermined position of the sheet-like molded body by punching or laser if necessary, It is formed by printing a conductive paste obtained by appropriately adding an organic binder and a solvent to a metal powder containing copper or silver as a main component and kneading the metal paste in a through-hole and on the surface of a sheet-like molded body by a screen printing method or the like. You. In addition, the metallized wiring layer 5 may be made of, for example, a metal material mainly containing gold, aluminum, nickel, lead-tin alloy or the like.

【0044】半導体素子2は、例えばシリコンやガリウ
ム−砒素等の半導体からなり、その下面に複数の接続用
電極6を有している。接続用電極6は、ハンダや金等の
金属からなる導体バンプ7を介して、絶縁基板1表面の
メタライズ配線層5に接合され電気的に接続される。
The semiconductor element 2 is made of a semiconductor such as silicon or gallium-arsenic, and has a plurality of connection electrodes 6 on its lower surface. The connection electrode 6 is joined and electrically connected to the metallized wiring layer 5 on the surface of the insulating substrate 1 via a conductor bump 7 made of a metal such as solder or gold.

【0045】接続用電極6とメタライズ配線層5との導
体バンプ7による接続は、例えば半導体素子2の接続用
電極6に導体バンプ7を溶着や圧着あるいはめっきによ
り予め接着させ、この導体バンプ7を絶縁基板1のメタ
ライズ配線層5に当接させて接合する方法が採用でき
る。
The connection between the connection electrode 6 and the metallized wiring layer 5 by the conductor bump 7 is performed, for example, by bonding the conductor bump 7 to the connection electrode 6 of the semiconductor element 2 by welding, crimping, or plating. A method of contacting and joining the metallized wiring layer 5 of the insulating substrate 1 can be adopted.

【0046】なお、半導体素子2と絶縁基板1の間隙で
導体バンプ7の周りには、通常は熱硬化性樹脂8が充填
され、半導体素子2と絶縁基板1との接合が補強され
る。
The space between the semiconductor element 2 and the insulating substrate 1 around the conductor bump 7 is usually filled with a thermosetting resin 8 to reinforce the bonding between the semiconductor element 2 and the insulating substrate 1.

【0047】絶縁基板1の表面に搭載した半導体素子2
の上面、すなわち、半導体素子2の絶縁基板1への実装
面の反対の面には、熱伝導性樹脂9を介して絶縁基板1
より熱膨張係数が小さい平板状の蓋体3が接着されてい
る。そして、蓋体3と絶縁基板1とをヤング率の異なる
接着樹脂、すなわちヤング率の小さい接着樹脂4aおよ
びその内側に配置されたヤング率の大きい接着樹脂4b
を介して取着することにより半導体装置Aが構成され
る。
Semiconductor element 2 mounted on the surface of insulating substrate 1
, That is, the surface opposite to the surface on which the semiconductor element 2 is mounted on the insulating substrate 1, via the heat conductive resin 9.
A flat lid 3 having a smaller thermal expansion coefficient is bonded. Then, the lid 3 and the insulating substrate 1 are bonded to each other with an adhesive resin having a different Young's modulus, that is, an adhesive resin 4a having a small Young's modulus and an adhesive resin 4b having a large Young's modulus disposed inside thereof.
The semiconductor device A is configured by being attached via the.

【0048】そして、この半導体装置Aは、絶縁基板1
下面のメタライズ配線層5をハンダ等の接続端子10を介
して絶縁基板1より熱膨張係数が大きい外部回路基板11
上面の接続用導体に接合することにより外部回路基板11
上に実装され、搭載した半導体素子2の接続用電極6と
外部回路基板11の接続用導体とが電気的に接続される。
Then, the semiconductor device A includes the insulating substrate 1
An external circuit board 11 having a larger coefficient of thermal expansion than the insulating board 1 is provided on the lower surface of the metallized wiring layer 5 via connection terminals 10 such as solder.
By connecting to the connection conductor on the upper surface, the external circuit board 11
The connection electrode 6 of the semiconductor element 2 mounted and mounted thereon is electrically connected to the connection conductor of the external circuit board 11.

【0049】このような本発明の半導体装置Aによれ
ば、外部回路基板11に実装した際に、熱膨張係数は外部
回路基板11、絶縁基板1、蓋体3の順で小さくしている
ことから、温度サイクル試験にて、特に降温過程におい
て、外部回路基板11と絶縁基板1と蓋体3との熱膨張係
数差により絶縁基板1と蓋体3はいずれも蓋体3側が凸
となる向きにたわむことができるものとなる。このため
絶縁基板1と外部回路基板11とを接続する接続端子10に
生じる平面方向の熱応力はたわみにより小さくすること
ができ、接続端子10が熱応力により破壊され難くなる。
According to the semiconductor device A of the present invention, when mounted on the external circuit board 11, the coefficient of thermal expansion is reduced in the order of the external circuit board 11, the insulating substrate 1, and the cover 3. From the above, in the temperature cycle test, especially in the temperature decreasing process, the insulating substrate 1 and the lid 3 are both convex on the lid 3 side due to the difference in thermal expansion coefficient between the external circuit board 11, the insulating substrate 1 and the lid 3. It can be bent. For this reason, the thermal stress in the plane direction generated in the connection terminal 10 for connecting the insulating substrate 1 and the external circuit board 11 can be reduced by bending, and the connection terminal 10 is less likely to be broken by the thermal stress.

【0050】また、蓋体3と絶縁基板1とを接続する接
着樹脂は、ヤング率の小さい接着樹脂4aとそれより蓋
体3の内側に配置されたヤング率の大きい接着樹脂4b
とから構成されている。このヤング率の小さい接着樹脂
4aは変形し易いものであり、蓋体3および絶縁基板1
の熱変形に追従して変形し、破壊されないものとなる。
例えば、温度サイクル試験の降温過程において、蓋体3
および絶縁基板1は上側が凸となる向きに変形するが、
蓋体3と絶縁基板1とのたわみ量が異なるため、たわみ
量の差は蓋体3の外側へいくほど大きくなる。これに対
し、接着樹脂4bよりも外側に存在する接着樹脂4aは
大きく変形することでたわみ量の差に追従することがで
きるため、蓋体3と絶縁基板1がいずれも上側が凸とな
る向きにたわむことができ、接続端子10に生じる熱応力
を小さくすることができるため、接続端子10が破壊され
難くなる。
The adhesive resin for connecting the lid 3 and the insulating substrate 1 is composed of an adhesive resin 4a having a small Young's modulus and an adhesive resin 4b having a large Young's modulus disposed inside the lid 3 than that.
It is composed of The adhesive resin 4a having a small Young's modulus is easily deformed, and the cover 3 and the insulating substrate 1
Deforms following the thermal deformation of the material and is not destroyed.
For example, in the cooling process of the temperature cycle test,
And the insulating substrate 1 is deformed in a direction in which the upper side is convex,
Since the amount of deflection between the lid 3 and the insulating substrate 1 is different, the difference in the amount of deflection becomes larger toward the outside of the lid 3. On the other hand, the adhesive resin 4a existing outside the adhesive resin 4b can follow the difference in the amount of deflection by being greatly deformed, so that both the lid 3 and the insulating substrate 1 are convex on the upper side. And the thermal stress generated in the connection terminal 10 can be reduced, so that the connection terminal 10 is hardly broken.

【0051】一方、ヤング率の大きい接着樹脂4bは蓋
体3と絶縁基板1とを強固に接続する。また、温度サイ
クル試験の降温過程において、蓋体3および絶縁基板1
は上側が凸となる向きに変形するが、絶縁基板1の上面
には面方向の外側へ向いた熱応力が発生し、それは外側
へいくほど大きくなる。従って、接着樹脂4aよりも内
側に存在する接着樹脂4bにかかる熱応力は小さいもの
となり、熱応力による接着樹脂4bの変形は小さくてよ
いこととなる。その結果、変形し難い接着樹脂4bが熱
応力により破壊され難いものとなる。
On the other hand, the adhesive resin 4b having a large Young's modulus firmly connects the lid 3 and the insulating substrate 1. In addition, during the cooling process of the temperature cycle test, the lid 3 and the insulating substrate 1
Is deformed in a direction in which the upper side is convex, but thermal stress is generated on the upper surface of the insulating substrate 1 outward in the surface direction, and the thermal stress increases toward the outside. Therefore, the thermal stress applied to the adhesive resin 4b existing inside the adhesive resin 4a is small, and the deformation of the adhesive resin 4b due to the thermal stress can be small. As a result, the adhesive resin 4b that is not easily deformed is hardly broken by thermal stress.

【0052】本発明の半導体装置Aは、実装密度を向上
させるため外部回路基板11へ縦向きに実装されることが
あるが、縦向きで使用した場合であっても、蓋体3と絶
縁基板1との接続は接着樹脂4bにより補強されている
ので、蓋体3と絶縁基板1との接続の機械的強度は高
く、何ら問題はない。
The semiconductor device A of the present invention is sometimes mounted vertically on the external circuit board 11 in order to improve the mounting density. 1 is reinforced by the adhesive resin 4b, the mechanical strength of the connection between the lid 3 and the insulating substrate 1 is high, and there is no problem.

【0053】また、ヤング率の大きい接着樹脂4bがヤ
ング率の小さい接着樹脂4aより蓋体3の内側に位置し
ていることにより、接着樹脂4bが接着樹脂4aの変形
を妨げることがなく、絶縁基板1の上面の外周側に大き
な熱応力が発生しても、接着樹脂4aが大きく変形して
絶縁基板1の熱応力による変形に追従することが可能で
ある。
Further, since the adhesive resin 4b having a large Young's modulus is located on the inner side of the lid 3 with respect to the adhesive resin 4a having a small Young's modulus, the adhesive resin 4b does not hinder the deformation of the adhesive resin 4a. Even if a large thermal stress is generated on the outer peripheral side of the upper surface of the substrate 1, the adhesive resin 4a is largely deformed and can follow the deformation of the insulating substrate 1 due to the thermal stress.

【0054】ここで、接着樹脂4aおよび接着樹脂4b
は四角形状の蓋体3の四隅に配置されることが、絶縁基
板1上面に半導体素子2やチップコンデンサ・チップ抵
抗等の電子部品を搭載し得る面積をより広く確保できる
ことから好ましい。
Here, the adhesive resin 4a and the adhesive resin 4b
Are preferably arranged at the four corners of the rectangular lid 3 because a larger area for mounting electronic components such as the semiconductor element 2 and chip capacitors and chip resistors on the upper surface of the insulating substrate 1 can be ensured.

【0055】接着樹脂4aの体積は、蓋体3と絶縁基板
1との間に生じる熱応力による変形に追従して接着樹脂
4aが大きく変形しても破壊されないために、それぞれ
0.3mm3を超え50mm3未満であることが好ましい。ま
た、接着樹脂4bの体積は、蓋体3と絶縁基板1との接
続をより強固にするために、それぞれ0.3mm3を超え20
mm3未満であることが好ましい。
Since the volume of the adhesive resin 4a is not destroyed even if the adhesive resin 4a is largely deformed following the deformation due to the thermal stress generated between the lid 3 and the insulating substrate 1,
Is preferably less than 50 mm 3 exceed 0.3 mm 3. The volume of the adhesive resin 4b is more than 0.3 mm 3 and more than 20 mm in order to make the connection between the lid 3 and the insulating substrate 1 stronger.
It is preferably less than mm 3 .

【0056】さらに、接着樹脂4bの体積と接着樹脂4
aの体積との関係は、接着樹脂4aが蓋体3と絶縁基板
1との間に生じる熱応力による変形に追従して変形し易
くなる効果と、接着樹脂4bが蓋体3と絶縁基板1との
接続をより強固にする効果との双方を同時に発現させる
ために、接着樹脂4bの体積を接着樹脂4aの体積で除
した値で0.5を超え2未満であることが好ましい。
Further, the volume of the adhesive resin 4b and the adhesive resin 4b
The relationship between the adhesive resin 4a and the insulating substrate 1 is such that the adhesive resin 4a is easily deformed following the deformation due to the thermal stress generated between the lid 3 and the insulating substrate 1. It is preferable that the value obtained by dividing the volume of the adhesive resin 4b by the volume of the adhesive resin 4a is more than 0.5 and less than 2 in order to simultaneously exhibit both the effect of strengthening the connection with the adhesive resin 4b.

【0057】また、接着樹脂4aおよび接着樹脂4bの
絶縁基板1あるいは蓋体3との接着面積は、接着樹脂4
aについては、蓋体3と絶縁基板1との熱応力による変
形に追従するのを効果的にするため、それぞれ0.7mm2
を超え80mm2未満であることが好ましく、また接着樹
脂4bについては、蓋体3と絶縁基板1との機械的接続
をより強固にするため、それぞれ0.7mm2を超え35mm
2未満であることが好ましい。
The bonding area of the adhesive resin 4a and the adhesive resin 4b with the insulating substrate 1 or the lid 3 is
a is 0.7 mm 2 to effectively follow the deformation of the lid 3 and the insulating substrate 1 due to thermal stress.
And less than 80 mm 2 , and the adhesive resin 4 b is more than 0.7 mm 2 and 35 mm, respectively, in order to strengthen the mechanical connection between the lid 3 and the insulating substrate 1.
Preferably it is less than 2 .

【0058】さらに、接着樹脂4aの絶縁基板1および
蓋体3の接着面積については、絶縁基板1との接着面積
が蓋体3との接着面積よりも大きいことが好ましい。こ
の場合、温度サイクル試験の降温過程において、蓋体3
よりも熱変形量が大きい絶縁基板1の上面に、蓋体3の
下面よりも大きな、面方向で外側向きの熱応力が発生す
るが、その大きな熱応力によるせん断応力を大きな接着
面積により吸収緩和して、絶縁基板1との接着面が剥が
れるのを防ぐことができる。より好ましくは、1≧(蓋
体3との接着面積)/(絶縁基板1との接着面積)>1
/4がよい。(蓋体3との接着面積)/(絶縁基板1と
の接着面積)が1/4以下では、接着樹脂4aの高さ方
向の中間部分に大きな括れ部が形成され、何度も温度サ
イクルがかかると、その括れ部が繰り返し変形すること
で接着樹脂4aが括れ部で破壊され易くなる傾向があ
る。
Further, regarding the bonding area of the adhesive resin 4a between the insulating substrate 1 and the lid 3, it is preferable that the bonding area with the insulating substrate 1 is larger than the bonding area with the lid 3. In this case, during the cooling process of the temperature cycle test, the lid 3
A larger thermal stress is generated on the upper surface of the insulating substrate 1 than the lower surface of the lid 3, and the shear stress due to the large thermal stress is absorbed and reduced by the large bonding area. Thus, it is possible to prevent the adhesive surface with the insulating substrate 1 from peeling off. More preferably, 1 ≧ (adhesive area with lid 3) / (adhesive area with insulating substrate 1)> 1
/ 4 is good. If (the bonding area with the lid 3) / (the bonding area with the insulating substrate 1) is 1/4 or less, a large constricted portion is formed at the intermediate portion in the height direction of the adhesive resin 4a, and the temperature cycle is repeated many times. In such a case, the adhesive resin 4a tends to be easily broken at the constricted portion by repeatedly deforming the constricted portion.

【0059】接着樹脂4bについても、上記と同様に絶
縁基板1との接着面積が蓋体3との接着面積よりも大き
いものとすることにより同様の効果が得られるが、接着
樹脂4bにかかる熱応力は接着樹脂4aよりも小さいた
め、必ずしも上記の構成とする必要はない。よって、接
着樹脂4bは、絶縁基板1との接着面積と蓋体3との接
着面積が略同じである例えば略円柱状等のものでよい。
As for the adhesive resin 4b, the same effect can be obtained by making the adhesive area with the insulating substrate 1 larger than the adhesive area with the lid 3 as described above. Since the stress is smaller than that of the adhesive resin 4a, the above configuration is not necessarily required. Therefore, the adhesive resin 4b may be, for example, a substantially columnar resin having an adhesive area with the insulating substrate 1 and an adhesive area with the lid 3 substantially the same.

【0060】また、接着樹脂4aおよび接着樹脂4bの
高さは、絶縁基板1からの蓋体1の高さであり、この高
さは、半導体素子2の厚み・導体バンプ7の高さ・熱伝
導性樹脂9の厚みの和で定まり、通常は0.2mmが下限
値である。他方、接着樹脂4aおよび接着樹脂4bの高
さがあまり高くなると、半導体素子2と蓋体3の間隔が
広くなってそれらを接着する熱伝導性樹脂9の厚みが厚
くなり、半導体素子2で生じた熱が放熱され難くなって
半導体素子2が熱暴走・誤作動するおそれがあるため、
3mm未満であることが好ましい。
The heights of the adhesive resin 4a and the adhesive resin 4b are the height of the lid 1 from the insulating substrate 1, and the height is the thickness of the semiconductor element 2, the height of the conductive bumps 7, and the heat. It is determined by the sum of the thicknesses of the conductive resin 9, and usually 0.2 mm is the lower limit. On the other hand, if the height of the adhesive resin 4a and the height of the adhesive resin 4b are too high, the gap between the semiconductor element 2 and the lid 3 is widened, and the thickness of the heat conductive resin 9 for bonding them is increased. The semiconductor device 2 may be thermally runaway or malfunction,
Preferably, it is less than 3 mm.

【0061】蓋体3と半導体素子2とを接着する熱伝導
性樹脂9は、その熱伝導率が低い場合、半導体素子2に
て発熱した熱が効果的に放熱され難くなり、半導体素子
2の温度が上昇し、熱暴走するおそれがある。従って、
熱伝導性樹脂9の熱伝導率は高いことが好ましく、具体
的には1W/(m・K)以上であることが好ましい。
When the thermal conductivity of the heat conductive resin 9 for bonding the lid 3 and the semiconductor element 2 is low, the heat generated by the semiconductor element 2 is difficult to be effectively radiated, and the heat generated by the semiconductor element 2 is hardly radiated. The temperature may rise and thermal runaway may occur. Therefore,
The thermal conductivity of the thermally conductive resin 9 is preferably high, specifically, 1 W / (m · K) or more.

【0062】なお、放熱フィン12を蓋体3の上面に接続
するのがよく、これにより放熱面の表面積が増加するた
め熱放散性がさらに改善される。
It is preferable to connect the radiating fins 12 to the upper surface of the lid 3, which increases the surface area of the radiating surface, thereby further improving heat dissipation.

【0063】本発明の半導体装置Aにおいて、絶縁基板
1の40〜400℃における熱膨張係数が8×10-6/℃未満で
ある場合、外部回路基板11の熱膨張係数15〜20×10-6
℃との熱膨張係数差が大きくなり、温度サイクル試験の
特に室温から低温への降温過程において、絶縁基板1と
外部回路基板11との接続端子10の熱応力がきわめて大き
くなり接続端子10が破断し易くなる傾向がある。
In the semiconductor device A of the present invention, when the coefficient of thermal expansion of the insulating substrate 1 at 40 to 400 ° C. is less than 8 × 10 −6 / ° C., the coefficient of thermal expansion of the external circuit board 11 is 15 to 20 × 10 −. 6 /
The difference in thermal expansion coefficient from C.C. increases, and in the temperature cycle test, especially in the process of lowering the temperature from room temperature to a low temperature, the thermal stress of the connection terminal 10 between the insulating substrate 1 and the external circuit board 11 becomes extremely large, and the connection terminal 10 breaks It tends to be easier.

【0064】他方、絶縁基板1の40〜400℃における熱
膨張係数が14×10-6/℃を超えると、絶縁基板1の熱膨
張係数が蓋体3および外部回路基板11の熱膨張係数より
大きくなる場合があり、絶縁基板1が蓋体3側に凸とな
る向きにたわむことができなくなり、その結果、絶縁基
板1と外部回路基板11との間に生じる熱応力を小さくす
ることができず、同じく特に室温から低温への降温過程
において、絶縁基板1と外部回路基板11とを接続する接
続端子10にかかる熱応力が大きくなり接続端子10が破断
するおそれがある。
On the other hand, when the thermal expansion coefficient of the insulating substrate 1 at 40 to 400 ° C. exceeds 14 × 10 −6 / ° C., the thermal expansion coefficient of the insulating substrate 1 becomes smaller than the thermal expansion coefficients of the lid 3 and the external circuit board 11. In some cases, the insulating substrate 1 cannot bend in the direction in which the insulating substrate 1 is convex toward the lid 3, and as a result, the thermal stress generated between the insulating substrate 1 and the external circuit board 11 can be reduced. In the same manner, particularly in the process of lowering the temperature from room temperature to a low temperature, the thermal stress applied to the connection terminal 10 connecting the insulating substrate 1 and the external circuit board 11 increases, and the connection terminal 10 may be broken.

【0065】従って、絶縁基板1の熱膨張係数は8×10
-6/℃〜14×10-6/℃の範囲が好ましい。
Therefore, the thermal expansion coefficient of the insulating substrate 1 is 8 × 10
Range of -6 / ℃ ~14 × 10 -6 / ℃ is preferred.

【0066】本発明の半導体装置Aにおける蓋体3に
は、絶縁基板1よりも熱膨張係数が小さい蓋体材料であ
れば各種の材料を使用することができるが、好ましく
は、蓋体3として必要な強度を備えつつその熱伝導率が
100W/m・Kを超えるような熱伝導性に優れた材料を
用いるとよい。そのような材料としては、例えばアルミ
ニウムと炭化珪素とを主成分とする複合材料の焼結体、
銅とタングステンとを主成分とする複合材料、銅とモリ
ブデンとを主成分とする複合材料、または無酸化銅を主
成分とする材料、窒化アルミニウム焼結体等が挙げられ
る。
For the lid 3 in the semiconductor device A of the present invention, various materials can be used as long as the lid has a smaller thermal expansion coefficient than the insulating substrate 1. While having the necessary strength, its thermal conductivity
It is preferable to use a material having excellent thermal conductivity exceeding 100 W / m · K. As such a material, for example, a sintered body of a composite material containing aluminum and silicon carbide as main components,
A composite material mainly containing copper and tungsten, a composite material mainly containing copper and molybdenum, a material mainly containing copper-free oxide, a sintered aluminum nitride, and the like can be given.

【0067】中でも、本発明の半導体装置Aは、蓋体3
をアルミニウムと炭化珪素とを主成分とする複合材料の
焼結体から成るものとした場合は、十分な強度を有しつ
つ蓋体3の密度が約3g/cm3となり、これは例えば
一般的に用いられる銅とタングステンとを主成分とする
複合材料の密度である14〜17g/cm3より低いため、
半導体装置Aの重量が軽くなって半導体装置Aと外部回
路基板11とを接続する接続端子10が大きく変形しなくな
るため、半導体装置Aの外部回路基板11への実装高さの
低下を小さくすることができる。その結果、絶縁基板1
と外部回路基板11間の接続信頼性をより一層良好にする
ことができる。
In particular, the semiconductor device A of the present invention has a cover 3
Is made of a sintered body of a composite material containing aluminum and silicon carbide as main components, the density of the lid 3 is about 3 g / cm 3 while having sufficient strength. Since the density of the composite material containing copper and tungsten as the main components used for is lower than 14 to 17 g / cm 3 ,
Since the weight of the semiconductor device A is reduced and the connection terminals 10 connecting the semiconductor device A and the external circuit board 11 are not greatly deformed, a reduction in the mounting height of the semiconductor device A on the external circuit board 11 is reduced. Can be. As a result, the insulating substrate 1
And the external circuit board 11 can further improve the connection reliability.

【0068】次に、本発明の半導体装置の実施の形態の
他の例を図2、図3、図4および図5に示す。これらの
図は、半導体装置を蓋体3側から見た図1(a)と同様
の平面図である。ただし、これらの図において、図1に
示した例と同様の部位には同じ符号を付し、それらにつ
いての詳細な説明は省略する。なお、図示していない部
位は図1に示した例と同様の構成である。また、接着樹
脂4a・4bについてはその配置を示すために透視した
状態を示しており、図5においては絶縁基板1も透視し
た状態を示している。
Next, another example of the embodiment of the semiconductor device of the present invention is shown in FIGS. 2, 3, 4 and 5. FIG. These figures are the same plan views as FIG. 1A in which the semiconductor device is viewed from the lid 3 side. However, in these figures, the same parts as those in the example shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. Parts not shown have the same configuration as the example shown in FIG. Further, the adhesive resins 4a and 4b are shown in a see-through state to show the arrangement thereof, and FIG. 5 also shows the insulating substrate 1 in a see-through state.

【0069】図2に示す例では、接着樹脂4aを四角形
状の蓋体3の外周領域の四辺の中央部の4箇所に蓋体3
の中心からほぼ等距離に配置し、接着樹脂4bを外周領
域の四辺の中央部で接着樹脂4aより蓋体3の中心から
の距離が短いほぼ等距離である4箇所に配置している。
このように、接着樹脂4aおよび接着樹脂4bの接着位
置が蓋体3の四辺の中央部と中心との中間にあると、そ
れらの接着位置と蓋体3の中心との距離が短いため、蓋
体3と絶縁基板1との熱膨張係数差による変形量が小さ
くなり、ヤング率の小さい接着樹脂4aの変形による追
従性が向上するとともに、ヤング率の大きい接着樹脂4
bによる蓋体3と絶縁基板1との接合補強効果がより効
果的になる。
In the example shown in FIG. 2, the adhesive resin 4a is provided at four places at the center of four sides of the outer peripheral region of the rectangular lid 3.
And the adhesive resin 4b is arranged at the center of the four sides of the outer peripheral region at four locations which are substantially equidistant from the center of the lid 3 than the adhesive resin 4a.
As described above, if the bonding position of the adhesive resin 4a and the bonding resin 4b is located between the center and the center of the four sides of the lid 3, the distance between the bonding position and the center of the lid 3 is short. The amount of deformation due to the difference in the coefficient of thermal expansion between the body 3 and the insulating substrate 1 is reduced, the followability due to the deformation of the adhesive resin 4 a having a small Young's modulus is improved, and the adhesive resin 4 having a large Young's modulus is improved.
The effect of reinforcing the joint between the lid 3 and the insulating substrate 1 by b is more effective.

【0070】図3に示す例では、接着樹脂4aを四角形
状の蓋体3の四隅のほぼ対角線上の4箇所に蓋体3の中
心からほぼ等距離にくの字形状に配置し、接着樹脂4b
を蓋体3の四隅のほぼ対角線上で蓋体3の中心からの距
離を接着樹脂4aより短くして蓋体3の中心からほぼ等
距離の4箇所に配置している。このように、接着樹脂4
aをくの字形状にしておくと、この接着樹脂4aが蓋体
3の下面面内の図3における縦方向と横方向(くの字形
状の各辺の方向に相当する)のそれぞれに変形すること
により、蓋体3の平面方向での縦方向と横方向それぞれ
において熱応力による変形に追従することができる。
In the example shown in FIG. 3, the adhesive resin 4a is arranged in a rectangular shape at substantially four corners of the four corners of the rectangular lid 3 at substantially the same distance from the center of the lid 3, and 4b
The distance from the center of the lid 3 to the center of the lid 3 is shorter than the adhesive resin 4a on substantially the diagonal of the four corners of the lid 3, and the four corners are arranged at substantially the same distance from the center of the lid 3. Thus, the adhesive resin 4
If a is formed in a U-shape, the adhesive resin 4a is deformed in the vertical direction and the horizontal direction (corresponding to the direction of each side of the U-shape) in FIG. By doing so, it is possible to follow the deformation due to thermal stress in each of the vertical direction and the horizontal direction of the lid 3 in the plane direction.

【0071】図4に示す例では、接着樹脂4aを、四角
形状の蓋体3の外周領域の四辺の中央部の4箇所に蓋体
3の中心からほぼ等距離に、接着樹脂4aの接着面が蓋
体3の四辺の方向が長辺となる長方形状に配置し、接着
樹脂4bを四辺の中央部で接着樹脂4aより蓋体3の中
心からの距離が短くほぼ等距離である4箇所に配置して
いる。このように、接着樹脂4aの接着面を蓋体3の四
辺の方向が長辺となる長方形状にしておくと、この接着
樹脂4aが蓋体3の四辺の方向にそれぞれ変形すること
により、蓋体3の四辺のそれぞれの方向の熱応力を吸収
することができ熱応力による変形に追従することができ
る。
In the example shown in FIG. 4, the adhesive resin 4a is applied to the center of the four sides of the outer peripheral area of the rectangular lid 3 at substantially the same distance from the center of the lid 3 so that the adhesive surface of the adhesive resin 4a is Are arranged in a rectangular shape in which the directions of the four sides of the lid 3 are long sides, and the adhesive resin 4b is disposed at four central portions of the center of the four sides where the distance from the center of the lid 3 is shorter than the adhesive resin 4a and almost equal to each other. Have been placed. As described above, if the bonding surface of the adhesive resin 4a is formed in a rectangular shape in which the four sides of the lid 3 are long sides, the adhesive resin 4a is deformed in the directions of the four sides of the lid 3 so that the lid 3 is deformed. It can absorb the thermal stress in each direction of the four sides of the body 3 and can follow the deformation due to the thermal stress.

【0072】図5に示す例では、円形状の蓋体3と四角
形状の絶縁基板1とが、絶縁基板1の四隅のほぼ対角線
上で蓋体3の中心からほぼ等距離の4箇所にて接着樹脂
4aにより接着され、絶縁基板1の四隅のほぼ対角線上
で接着樹脂4aより蓋体3の中心からの距離が短くほぼ
等距離である4箇所で接着樹脂4bにより接着されてい
る。このようにして、蓋体3をその半径が絶縁基板1の
対角線の長さの2分の1に略等しい円形とすることによ
り、蓋体3の放熱面積をより広くとることができるとと
もに、放熱面積を広げるために絶縁基板1よりも大面積
で四角形状の蓋体を設ける場合よりも小型化することが
できる。
In the example shown in FIG. 5, the circular lid 3 and the quadrangular insulating substrate 1 are placed at four locations substantially equidistant from the center of the lid 3 on substantially diagonal lines of the four corners of the insulating substrate 1. The adhesive resin 4a is used for bonding, and the adhesive resin 4a is used for bonding at four locations on the diagonal of the four corners of the insulating substrate 1 which are shorter than the adhesive resin 4a from the center of the lid 3 and are almost equidistant. In this manner, by forming the lid 3 into a circle whose radius is substantially equal to one half of the length of the diagonal line of the insulating substrate 1, the heat radiation area of the lid 3 can be made larger, and In order to increase the area, the size can be reduced as compared with a case where a rectangular lid having a larger area than the insulating substrate 1 is provided.

【0073】なお、本発明は上記の実施の形態の例に限
られるものではなく、本発明の要旨を逸脱しない範囲で
種々の変更・改良を加えることは何ら差し支えない。例
えば、蓋体の四隅のほぼ対角線上の4箇所に、蓋体の中
心からの距離が大きい順に、それぞれヤング率が小さい
接着樹脂、ヤング率が中間の接着樹脂およびヤング率の
大きい接着樹脂を配置した構成としてもよい。
The present invention is not limited to the above-described embodiment, and various changes and improvements can be made without departing from the scope of the present invention. For example, an adhesive resin having a small Young's modulus, an adhesive resin having an intermediate Young's modulus, and an adhesive resin having a large Young's modulus are arranged at four positions on a diagonal line of the four corners of the lid in order of increasing distance from the center of the lid. The configuration may be as follows.

【0074】[0074]

【実施例】次に、本発明の実施例を以下に説明する。Next, embodiments of the present invention will be described below.

【0075】絶縁基板用のセラミック材料として表1に
示すセラミック材料AおよびBを用いて、絶縁基板を以
下のように試作した。各原料粉末の混合粉末に適宜有機
バインダおよび溶剤を添加しスラリーを得て、そのスラ
リーを厚み0.25mmのシート状に成型した後、20枚のシ
ート状成型体を積層圧着して積層体を作製し、その積層
体を窒素雰囲気中で900〜1000℃の最高温度にて焼成
し、5mm×4mm×40mmの寸法の焼結体を作製し
た。得られた各焼結体について、そのヤング率と熱膨張
係数を測定した結果を表1に示す。
Using ceramic materials A and B shown in Table 1 as ceramic materials for an insulating substrate, an insulating substrate was experimentally manufactured as follows. An organic binder and a solvent are appropriately added to the mixed powder of each raw material powder to obtain a slurry, the slurry is molded into a sheet having a thickness of 0.25 mm, and then 20 sheet-like molded bodies are laminated and pressed to form a laminated body. Then, the laminate was fired at a maximum temperature of 900 to 1000 ° C. in a nitrogen atmosphere to produce a sintered body having a size of 5 mm × 4 mm × 40 mm. Table 1 shows the results of measuring the Young's modulus and the coefficient of thermal expansion of each of the obtained sintered bodies.

【0076】[0076]

【表1】 [Table 1]

【0077】次に、図1に示した構造の半導体装置を以
下の工程[1]〜[10]により作製した。
Next, a semiconductor device having the structure shown in FIG. 1 was manufactured by the following steps [1] to [10].

【0078】[1]表1に示すセラミック材料Aおよび
Bの原料粉末に適宜有機バインダおよび溶剤を添加しス
ラリーを得て、そのスラリーを厚み0.1mmのシート状
に成型した。
[1] An organic binder and a solvent were appropriately added to the raw material powders of the ceramic materials A and B shown in Table 1 to obtain a slurry, and the slurry was formed into a sheet having a thickness of 0.1 mm.

【0079】[2]シート状成型体の貫通孔形成位置に
金型を用いて穿孔を打ち抜いた。
[2] A perforation was punched out at a position where a through-hole was formed in the sheet-like molded product using a mold.

【0080】[3]シート状成型体の表面および内層に
配線導体層を形成するために、銅を主成分とする導体ペ
ーストをスクリーン印刷法にて印刷塗布した。また、最
上面にあたるシート状成型体には、半導体素子が接続さ
れる箇所に導体ペーストを印刷塗布し、さらに底面にあ
たるシート状成型体には外部回路基板と接続する箇所に
導体ペーストを印刷塗布した。
[3] In order to form a wiring conductor layer on the surface and the inner layer of the sheet-like molded body, a conductor paste containing copper as a main component was printed and applied by a screen printing method. In addition, a conductive paste was printed and applied to the sheet-shaped molded body corresponding to the uppermost surface at a portion where the semiconductor element was connected, and further a conductive paste was printed and applied to a portion connected to the external circuit board to the sheet-shaped molded body corresponding to the bottom surface. .

【0081】[4]20枚のシート状成型体を積層圧着し
て積層体を作製し、その積層体を窒素雰囲気中で900〜1
000℃の最高温度にて焼成して絶縁基板を作製した。こ
の絶縁基板は、縦×横×厚みが40mm×40mm×1mm
の寸法であった。
[4] Twenty sheet-shaped moldings are laminated and pressed to form a laminate, and the laminate is placed in a nitrogen atmosphere at 900 to 1
It was fired at a maximum temperature of 000 ° C. to produce an insulating substrate. This insulating substrate has a length x width x thickness of 40 mm x 40 mm x 1 mm
It was the size of.

【0082】[5]絶縁基板の底面のメタライズ配線層
に、錫−鉛合金から成る高融点ハンダ(重量比で錫:鉛
=10:90)からなる球状の接続端子を、低融点ハンダ
(重量比で錫:鉛=63:37)により取り付けた。
[5] On the metallized wiring layer on the bottom surface of the insulating substrate, a spherical connection terminal made of a high-melting solder made of a tin-lead alloy (tin: lead = 10: 90 by weight) and a low-melting solder (weight) (The ratio of tin: lead = 63: 37).

【0083】[6]絶縁基板上面のメタライズ配線層の
表面にニッケルメッキを施した後、0〜100℃における
熱膨張係数が2.8×10-6/℃のSiからなる半導体素子
を準備し、半導体素子の底面の接続用電極を絶縁基板上
面のメタライズ配線層に低融点ハンダにより接続して実
装した。
[6] After nickel plating is applied to the surface of the metallized wiring layer on the upper surface of the insulating substrate, a semiconductor element made of Si having a thermal expansion coefficient of 2.8 × 10 −6 / ° C. at 0 to 100 ° C. is prepared. The connection electrode on the bottom surface of the element was mounted on the metallized wiring layer on the upper surface of the insulating substrate by connecting it with low melting point solder.

【0084】[7]半導体素子と絶縁基板との間の空隙
に熱硬化性樹脂(エポキシ樹脂)を注入し、180℃で2
時間熱処理して硬化させて半導体素子を絶縁基板上面に
固着した。
[7] A thermosetting resin (epoxy resin) is injected into the gap between the semiconductor element and the insulating substrate.
The semiconductor element was fixed on the upper surface of the insulating substrate by heat treatment and curing for a time.

【0085】[8]絶縁基板の上面に実装された半導体
素子の上面に、熱伝導性樹脂としてのシリコーン樹脂を
塗布した。
[8] A silicone resin as a heat conductive resin was applied to the upper surface of the semiconductor element mounted on the upper surface of the insulating substrate.

【0086】[9]アルミニウムと炭化珪素とを主成分
とする複合材料の焼結体は、その混合比率で熱膨張係数
が変化し、その混合比率が重量比で炭化珪素が70重量%
とアルミニウムが30重量%の場合は熱膨張係数が8×10
-6/℃であり、混合比率が炭化珪素が50重量%とアルミ
ニウムが50重量%の場合は熱膨張係数は12×10-6/℃と
なる。所定の混合比率の蓋体と絶縁基板との接着部に、
ヤング率の大きい接着樹脂(エポキシ樹脂)およびヤン
グ率の小さい接着樹脂(エポキシ樹脂)を、自重により
絶縁基板に達するような量を蓋体の下面に塗布した後、
絶縁基板上に蓋体を位置合わせして配置し、150℃で接
着樹脂を硬化させて接合し、半導体装置を作製した。
[9] In a sintered body of a composite material containing aluminum and silicon carbide as main components, the coefficient of thermal expansion changes according to the mixing ratio, and the mixing ratio is such that the weight ratio of silicon carbide is 70% by weight.
And when aluminum is 30% by weight, the coefficient of thermal expansion is 8 × 10
−6 / ° C., and when the mixing ratio is 50% by weight of silicon carbide and 50% by weight of aluminum, the coefficient of thermal expansion is 12 × 10 −6 / ° C. At the bonding portion between the lid and the insulating substrate with a predetermined mixing ratio,
After applying an adhesive resin having a large Young's modulus (epoxy resin) and an adhesive resin having a small Young's modulus (epoxy resin) to the insulating substrate by its own weight on the lower surface of the lid,
The lid was positioned and placed on the insulating substrate, and the adhesive resin was cured at 150 ° C. and joined to produce a semiconductor device.

【0087】[10]これらの半導体装置を、ガラスエポ
キシ基板から成り、−40〜125℃における熱膨張係数が1
5×10-6/℃である絶縁基板の表面に銅箔からなる配線
導体が形成された外部回路基板に対して、絶縁基板下面
の球状の接続端子と外部回路基板上面の配線導体とが接
続されるように位置合わせして、低融点ハンダを用いて
窒素雰囲気中にて240℃で3分間熱処理して接続し、半
導体装置を外部回路基板の上面に実装した。
[10] These semiconductor devices are made of a glass epoxy substrate and have a thermal expansion coefficient of 1 at -40 to 125 ° C.
A spherical connection terminal on the lower surface of the insulating board and a wiring conductor on the upper surface of the external circuit board are connected to an external circuit board on which a wiring conductor made of copper foil is formed on the surface of the insulating substrate at 5 × 10 -6 / ° C. The semiconductor device was mounted on the upper surface of the external circuit board by connecting with heat treatment at 240 ° C. for 3 minutes in a nitrogen atmosphere using low melting point solder.

【0088】このように作製した半導体装置について、
以下の温度サイクル試験を施し、絶縁基板と外部回路基
板との接続信頼性および接着樹脂の接続をそれぞれ調べ
た。
The semiconductor device thus manufactured is
The following temperature cycle test was performed to examine the connection reliability between the insulating substrate and the external circuit board and the connection of the adhesive resin.

【0089】ここでは、上記の半導体装置について、温
度サイクル試験前に外部回路基板の配線導体と絶縁基板
との間の電気抵抗を測定し、その後、以下の[1]〜
[6]の手順で温度サイクル試験を行なった。
Here, for the above semiconductor device, the electric resistance between the wiring conductor of the external circuit board and the insulating substrate was measured before the temperature cycle test, and then the following [1] to
A temperature cycle test was performed according to the procedure of [6].

【0090】[1]−40℃の恒温槽と125℃の恒温槽を
用い、まず室温(25℃)から−40℃の恒温槽中に試料を
移し10〜15分間保持した。
[1] Using a thermostat at -40 ° C and a thermostat at 125 ° C, the sample was first transferred from a room temperature (25 ° C) to a thermostat at -40 ° C and held for 10 to 15 minutes.

【0091】[2]試料を室温(25℃)の大気中に移し
た。
[2] The sample was transferred to the air at room temperature (25 ° C.).

【0092】[3]−40℃の恒温槽より取り出してより
1分以内に、試料を室温(25℃)の大気中から125℃の
恒温槽中に移し10〜15分間保持した。
[3] Within 1 minute after being taken out of the -40 ° C. constant temperature bath, the sample was transferred from the air at room temperature (25 ° C.) to a 125 ° C. constant temperature bath and held for 10 to 15 minutes.

【0093】[4]試料を室温(25℃)の大気中に移し
た。
[4] The sample was transferred to the air at room temperature (25 ° C.).

【0094】[5]125℃の恒温槽より取り出してより
1分以内に、試料を室温(25℃)の大気中から−40℃の
恒温槽中に移した。
[5] Within 1 minute after being taken out of the thermostat at 125 ° C., the sample was transferred from the air at room temperature (25 ° C.) to a thermostat at −40 ° C.

【0095】[6]上記[1]〜[5]を1サイクルと
して、即ち室温(25℃)→低温(−40℃)→室温(25
℃)→高温(125℃)→室温(25℃)の温度変化を1サ
イクルとして、このサイクルを最高1000サイクル繰り返
した。
[6] One cycle of the above [1] to [5], that is, room temperature (25 ° C.) → low temperature (−40 ° C.) → room temperature (25 ° C.)
This cycle was repeated up to 1000 cycles with a temperature change of (° C.) → high temperature (125 ° C.) → room temperature (25 ° C.) as one cycle.

【0096】温度サイクル試験の間、50サイクル毎に外
部回路基板の配線導体と絶縁基板との間の電気抵抗を測
定し、電気抵抗が温度サイクル試験前に測定した電気抵
抗値の2倍以上になるまで継続した。そのサイクル数を
表2に示す。また、蓋体の外側に配置した接着樹脂の接
続状態を調べた。その結果も表2に示す。
During the temperature cycle test, the electric resistance between the wiring conductor of the external circuit board and the insulating substrate was measured every 50 cycles, and the electric resistance was twice or more the electric resistance measured before the temperature cycle test. Continued until it became. Table 2 shows the number of cycles. The connection state of the adhesive resin disposed outside the lid was examined. Table 2 also shows the results.

【0097】[0097]

【表2】 [Table 2]

【0098】表2から判るように、熱膨張係数が外部回
路基板、絶縁基板、蓋体の順に小さくなり、外側の接着
樹脂のヤング率が1GPa未満と小さく、かつ内側の接
着樹脂のヤング率が1GPa以上と大きい場合である本
発明の半導体装置、即ち、試料Noが5〜7、9、10、12
〜14、20〜22、24、25、27〜29では、1000回までの温度
サイクル試験において、半導体装置と外部回路基板との
間の接続端子にクラック等は生じず、電気抵抗変化も見
られず、極めて安定で良好な電気的接続が維持された。
また蓋体と絶縁基板とを接合する接着樹脂の接着状態は
良好に維持された。これに対し、熱膨張係数は外部回路
基板、絶縁基板、蓋体の順に小さくなるが、外側の接着
樹脂のヤング率および内側の接着樹脂のヤング率がいず
れも1GPa未満と小さい場合、即ち、試料Noが4、
8、11、19、23、26では、1000回までの温度サイクル試
験において、接続端子にクラック等は生じず、外部回路
基板と絶縁基板との間に電気抵抗変化は見られなかった
が、蓋体と絶縁基板を接合する接着樹脂の全体としての
強度が不十分となり、外側の接着樹脂にクラックが生じ
剥離し易くなる傾向があった。
As can be seen from Table 2, the thermal expansion coefficient decreases in the order of the external circuit board, the insulating substrate, and the lid, the Young's modulus of the outer adhesive resin is smaller than 1 GPa, and the Young's modulus of the inner adhesive resin is lower. The semiconductor device of the present invention, which is a case where the sample number is as large as 1 GPa or more, that is, sample numbers 5 to 7, 9, 10, 12
In ~ 14, 20 ~ 22, 24, 25, 27 ~ 29, in the temperature cycle test up to 1000 times, no crack etc. occurred in the connection terminal between the semiconductor device and the external circuit board, and a change in electric resistance was observed. And very stable and good electrical connection was maintained.
Further, the adhesion state of the adhesive resin for joining the lid and the insulating substrate was favorably maintained. On the other hand, the thermal expansion coefficient decreases in the order of the external circuit board, the insulating substrate, and the lid, but when the Young's modulus of the outer adhesive resin and the inner adhesive resin are both smaller than 1 GPa, No is 4,
In 8, 11, 19, 23, and 26, in the temperature cycle test up to 1000 times, cracks did not occur in the connection terminals, and no change in electric resistance was observed between the external circuit board and the insulating board. The strength of the entire adhesive resin for joining the body and the insulating substrate is insufficient, and the outer adhesive resin tends to be cracked and easily peeled off.

【0099】また、熱膨張係数は外部回路基板、絶縁基
板、蓋体の順に小さくなるが、外側の接着樹脂のヤング
率が1GPa以上と大きく、内側の接着樹脂のヤング率
も1GPa以上と大きい場合、即ち、試料Noが1、3、
16、18では、蓋体と絶縁基板を接合する接着樹脂の接着
は良好に維持されたが、温度サイクル試験1000サイクル
未満で接続端子にクラック等が生じ、絶縁基板と外部回
路基板との間の電気抵抗が上昇する傾向があった。
The coefficient of thermal expansion decreases in the order of the external circuit board, the insulating substrate, and the lid, but when the Young's modulus of the outer adhesive resin is higher than 1 GPa and the Young's modulus of the inner adhesive resin is higher than 1 GPa. That is, sample Nos. 1, 3,
In 16 and 18, the adhesion of the adhesive resin joining the lid and the insulating substrate was maintained well, but cracks etc. occurred in the connection terminals in less than 1000 cycles of the temperature cycle test, and the connection between the insulating substrate and the external circuit board Electric resistance tended to increase.

【0100】また、熱膨張係数は外部回路基板、絶縁基
板、蓋体の順に小さくなるが、外側の接着樹脂のヤング
率が1GPa以上と大きく、内側の接着樹脂のヤング率
が1GPa未満と小さい場合、即ち、試料Noが2、17で
は、蓋体と絶縁基板を接合する接着樹脂の接着状態は良
好に維持されたが、温度サイクル試験1000サイクル未満
で接続端子にクラック等が生じ、絶縁基板と外部回路基
板との間の電気抵抗が上昇する傾向があった。
The coefficient of thermal expansion decreases in the order of the external circuit board, the insulating substrate, and the lid, but when the Young's modulus of the outer adhesive resin is as large as 1 GPa or more and the Young's modulus of the inner adhesive resin is as small as less than 1 GPa. That is, in Sample Nos. 2 and 17, the adhesion state of the adhesive resin for joining the lid and the insulating substrate was maintained well, but cracks and the like occurred in the connection terminals in less than 1000 cycles of the temperature cycle test, and There was a tendency for the electrical resistance between the external circuit board and the external circuit board to increase.

【0101】また、外側の接着樹脂のヤング率が1GP
a未満と小さく、内側の接着樹脂のヤング率が1GPa
以上と大きいが、熱膨張係数が外部回路基板、蓋体、絶
縁基板の順で小さくなる場合、即ち、試料Noが15では、
蓋体と絶縁基板を接合する接着樹脂の接着は良好に維持
されたが、温度サイクル試験1000回未満で接続端子にク
ラック等が生じ、絶縁基板と外部回路基板との間の電気
抵抗が上昇する傾向があった。
The outer adhesive resin has a Young's modulus of 1 GP.
a, less than a, the Young's modulus of the inner adhesive resin is 1 GPa
Although the above is large, when the coefficient of thermal expansion decreases in the order of the external circuit board, the lid, and the insulating substrate, that is, in the case of the sample No. 15,
The adhesion of the adhesive resin joining the lid and the insulating substrate was maintained well, but cracks etc. occurred in the connection terminals after less than 1000 temperature cycle tests, and the electrical resistance between the insulating substrate and the external circuit board increased There was a tendency.

【0102】[0102]

【発明の効果】本発明の半導体装置によれば、メタライ
ズ配線層が被着形成された絶縁基板の表面に、接続用電
極を備えた半導体素子を載置し、メタライズ配線層と半
導体素子の接続用電極とを接合してなるとともに、半導
体素子を覆うようにして絶縁基板表面に取着されかつそ
の一部を半導体素子の上面に熱伝導性樹脂を介して接着
してなる平板状の蓋体と、絶縁基板の裏面に設けられ半
導体素子と電気的に接続された接続端子とを具備し、絶
縁基板下面のメタライズ配線層と外部回路基板上面の接
続用導体とを接続端子を介して接合することにより外部
回路基板上に実装された半導体装置において、熱膨張係
数が外部回路基板、絶縁基板、蓋体の順で小さくなると
ともに、蓋体と絶縁基板とがヤング率の異なる接着樹脂
により取着されており、かつヤング率の大きい接着樹脂
がヤング率の小さい接着樹脂よりも蓋体の内側に位置し
ていることを特徴とするものであり、熱膨張係数を外部
回路基板、絶縁基板、蓋体の順で小さくなるようにして
いることにより、温度サイクル試験にて、特に降温過程
において、蓋体、絶縁基板および外部回路基板が蓋体側
が凸となるようにたわみ、絶縁基板と外部回路基板と蓋
体との間の熱膨張係数差による熱応力を小さくすること
ができる。
According to the semiconductor device of the present invention, a semiconductor element having connection electrodes is placed on the surface of an insulating substrate on which a metallized wiring layer is formed, and the metallized wiring layer is connected to the semiconductor element. And a flat cover body attached to the surface of the insulating substrate so as to cover the semiconductor element and a part of which is bonded to the upper surface of the semiconductor element via a heat conductive resin. And a connection terminal provided on the back surface of the insulating substrate and electrically connected to the semiconductor element. The metallized wiring layer on the lower surface of the insulating substrate and the connection conductor on the upper surface of the external circuit board are joined via the connection terminal. As a result, in the semiconductor device mounted on the external circuit board, the coefficient of thermal expansion decreases in the order of the external circuit board, the insulating substrate, and the lid, and the lid and the insulating substrate are attached to each other with an adhesive resin having a different Young's modulus. Been And the adhesive resin having a large Young's modulus is located on the inner side of the lid than the adhesive resin having a small Young's modulus, and the thermal expansion coefficient of the external circuit board, the insulating substrate, and the lid is reduced. In the temperature cycle test, especially in the temperature decreasing process, the lid, the insulating substrate, and the external circuit board bend so that the lid side becomes convex, and the insulating substrate, the external circuit board, and the lid are bent. Thermal stress due to a difference in thermal expansion coefficient between the body and the body can be reduced.

【0103】また、半導体素子の上面を熱伝導性樹脂に
よって蓋体に接着していることにより、半導体素子で発
生した熱は効果的に蓋体側に伝熱されることから、半導
体素子の発熱に対する熱放散性を良好にすることができ
る。
Further, since the upper surface of the semiconductor element is adhered to the lid with a heat conductive resin, the heat generated in the semiconductor element is effectively transmitted to the lid side. Dispersibility can be improved.

【0104】また、蓋体と絶縁基板とがヤング率の異な
る接着樹脂により取着され、かつヤング率の大きい接着
樹脂がヤング率の小さい接着樹脂よりも蓋体の内側に位
置していることから、同じく降温過程において、蓋体に
よる絶縁基板の拘束は接続部のヤング率の小さい接着樹
脂の変形により小さくすることができ、その結果、絶縁
基板は蓋体側が凸となるようたわみ、絶縁基板と外部回
路基板の熱膨張係数差による熱応力を小さくすることが
できる。また、ヤング率の大きい接着樹脂が蓋体と絶縁
基板との接合を補強することにより、接合の機械的強度
を強固なものとすることができる。そのため、熱伝導性
樹脂が蓋体から剥離することがなくなり半導体素子と蓋
体との熱的な接続を維持し確保することができるため、
熱放散性が良好で蓋体と絶縁基板との接合の長期信頼性
に優れた半導体装置を得ることができる。
In addition, since the lid and the insulating substrate are attached with adhesive resins having different Young's moduli, and the adhesive resin having a higher Young's modulus is located inside the lid than the adhesive resin having a lower Young's modulus. In the same manner, in the temperature decreasing process, the restraint of the insulating substrate by the lid can be reduced by the deformation of the adhesive resin having a small Young's modulus at the connection part. As a result, the insulating substrate bends so that the lid side becomes convex, and the insulating substrate is bent. Thermal stress due to the difference in thermal expansion coefficient of the external circuit board can be reduced. Further, the adhesive resin having a large Young's modulus reinforces the bonding between the lid and the insulating substrate, so that the mechanical strength of the bonding can be increased. Therefore, the thermal conductive resin does not peel off from the lid, so that it is possible to maintain and secure the thermal connection between the semiconductor element and the lid,
A semiconductor device having good heat dissipation properties and excellent long-term reliability of bonding between the lid and the insulating substrate can be obtained.

【0105】また、本発明の半導体装置によれば、蓋体
がアルミニウムと炭化珪素とを主成分とする複合材料の
焼結体からなるものとした場合には、蓋体が強度を確保
しつつその密度が低くなり、半導体装置の重量を軽くで
きることから、外部回路基板との接続端子が半導体装置
の重量により変形することによる実装高さの低下を防止
することができ、温度サイクル試験にて絶縁基板と外部
回路基板との接続端子が実装面方向に容易に変形するこ
とができるため、生じた熱応力を小さくすることができ
る。その結果、半導体装置と外部回路基板との間の接続
が破壊され難くなり、絶縁基板と外部回路基板間の接続
信頼性をより一層良好にすることができる。
Further, according to the semiconductor device of the present invention, when the lid is made of a sintered body of a composite material containing aluminum and silicon carbide as main components, the lid keeps the strength while securing the strength. Since the density is reduced and the weight of the semiconductor device can be reduced, the mounting height can be prevented from being reduced due to the deformation of the connection terminal with the external circuit board due to the weight of the semiconductor device, and insulation can be performed in a temperature cycle test. Since the connection terminals between the board and the external circuit board can be easily deformed in the direction of the mounting surface, the generated thermal stress can be reduced. As a result, the connection between the semiconductor device and the external circuit board is less likely to be broken, and the connection reliability between the insulating substrate and the external circuit board can be further improved.

【0106】以上により、本発明によれば、温度サイク
ル試験を実施した際に、絶縁基板と外部回路基板とを接
続する接続端子に絶縁基板と外部回路基板との熱膨張係
数差により生じる熱応力を起因とするクラックを生じ
ず、かつ半導体素子と蓋体とを接着している熱伝導性樹
脂が蓋体から剥離しない、放熱性が良好な半導体装置を
提供することができた。
As described above, according to the present invention, when the temperature cycle test is performed, the thermal stress generated due to the difference in the thermal expansion coefficient between the insulating substrate and the external circuit board is applied to the connection terminal connecting the insulating substrate and the external circuit board. Thus, a semiconductor device having good heat dissipation, which does not cause cracks due to the above and does not peel off the heat conductive resin bonding the semiconductor element and the lid from the lid, can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)および(b)は、それぞれ本発明の半導
体装置の実施の形態の一例を示す平面図および断面図で
ある。
FIGS. 1A and 1B are a plan view and a cross-sectional view, respectively, illustrating an example of an embodiment of a semiconductor device of the present invention.

【図2】本発明の半導体装置の実施の形態の他の例を示
す平面図である。
FIG. 2 is a plan view showing another example of the embodiment of the semiconductor device of the present invention.

【図3】本発明の半導体装置の実施の形態の他の例を示
す平面図である。
FIG. 3 is a plan view showing another example of the embodiment of the semiconductor device of the present invention.

【図4】本発明の半導体装置の実施の形態の他の例を示
す平面図である。
FIG. 4 is a plan view showing another example of the embodiment of the semiconductor device of the present invention.

【図5】本発明の半導体装置の実施の形態の他の例を示
す平面図である。
FIG. 5 is a plan view showing another example of the embodiment of the semiconductor device of the present invention.

【図6】従来の半導体装置の例を示す断面図である。FIG. 6 is a cross-sectional view illustrating an example of a conventional semiconductor device.

【図7】従来の半導体装置の他の例を示す断面図であ
る。
FIG. 7 is a sectional view showing another example of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1:絶縁基板 2:半導体素子 3:蓋体 4a:ヤング率の小さい接着樹脂 4b:ヤング率の大きい接着樹脂 5:メタライズ配線層 6:接続用電極 9:熱伝導性樹脂 10:接続端子 11:外部回路基板 12:放熱フィン A:半導体装置 1: Insulating substrate 2: Semiconductor element 3: Lid 4a: Adhesive resin with small Young's modulus 4b: Adhesive resin with large Young's modulus 5: Metallized wiring layer 6: Connection electrode 9: Thermal conductive resin 10: Connection terminal 11: External circuit board 12: Heat radiation fin A: Semiconductor device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 メタライズ配線層が被着形成された絶縁
基板の表面に、接続用電極を備えた半導体素子を載置
し、前記メタライズ配線層と前記半導体素子の接続用電
極とを接合してなるとともに、前記半導体素子を覆うよ
うにして前記絶縁基板表面に取着されかつその一部を前
記半導体素子の上面に熱伝導性樹脂を介して接着してな
る平板状の蓋体と、前記絶縁基板の裏面に設けられ前記
半導体素子と電気的に接続された接続端子とを具備し、
前記絶縁基板下面のメタライズ配線層と外部回路基板上
面の接続用導体とを前記接続端子を介して接合すること
により外部回路基板上に実装された半導体装置におい
て、熱膨張係数が外部回路基板、絶縁基板、蓋体の順で
小さくなるとともに、前記蓋体と前記絶縁基板とがヤン
グ率の異なる接着樹脂により取着されており、かつヤン
グ率の大きい接着樹脂がヤング率の小さい接着樹脂より
も前記蓋体の内側に位置していることを特徴とする半導
体装置。
1. A semiconductor device having a connection electrode is mounted on a surface of an insulating substrate on which a metallized wiring layer is formed, and the metallized wiring layer and a connection electrode of the semiconductor device are joined. A flat lid attached to the surface of the insulating substrate so as to cover the semiconductor element and a part of which is adhered to the upper surface of the semiconductor element via a thermally conductive resin; A connection terminal provided on the back surface of the substrate and electrically connected to the semiconductor element;
In a semiconductor device mounted on an external circuit board by joining a metallized wiring layer on the lower surface of the insulating substrate and a connection conductor on the upper surface of the external circuit board via the connection terminal, the coefficient of thermal expansion of the external circuit board is reduced. The substrate and the lid become smaller in this order, and the lid and the insulating substrate are attached by an adhesive resin having a different Young's modulus, and the adhesive resin having a large Young's modulus is more than the adhesive resin having a small Young's modulus. A semiconductor device, which is located inside a lid.
【請求項2】 前記蓋体がアルミニウムと炭化珪素とを
主成分とする複合材料の焼結体からなることを特徴とす
る請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein said lid is made of a sintered body of a composite material containing aluminum and silicon carbide as main components.
JP2000330135A 2000-10-30 2000-10-30 Semiconductor device Expired - Fee Related JP4422883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000330135A JP4422883B2 (en) 2000-10-30 2000-10-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000330135A JP4422883B2 (en) 2000-10-30 2000-10-30 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2002134669A true JP2002134669A (en) 2002-05-10
JP4422883B2 JP4422883B2 (en) 2010-02-24

Family

ID=18806706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000330135A Expired - Fee Related JP4422883B2 (en) 2000-10-30 2000-10-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4422883B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554191B2 (en) 2006-01-05 2009-06-30 Nec Electronics Corporation Semiconductor device having a heatsink plate with bored portions
JP2013164334A (en) * 2012-02-10 2013-08-22 Alps Green Devices Co Ltd Magnetic shield structure, current sensor and method for manufacturing magnetic shield structure
JP2013247274A (en) * 2012-05-28 2013-12-09 Fujitsu Ltd Semiconductor package and wiring board unit
JP2021040059A (en) * 2019-09-04 2021-03-11 日産自動車株式会社 Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554191B2 (en) 2006-01-05 2009-06-30 Nec Electronics Corporation Semiconductor device having a heatsink plate with bored portions
JP2013164334A (en) * 2012-02-10 2013-08-22 Alps Green Devices Co Ltd Magnetic shield structure, current sensor and method for manufacturing magnetic shield structure
JP2013247274A (en) * 2012-05-28 2013-12-09 Fujitsu Ltd Semiconductor package and wiring board unit
JP2021040059A (en) * 2019-09-04 2021-03-11 日産自動車株式会社 Semiconductor device
JP7329394B2 (en) 2019-09-04 2023-08-18 日産自動車株式会社 semiconductor equipment

Also Published As

Publication number Publication date
JP4422883B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
EP2763513A1 (en) Wiring substrate, component embedded substrate, and package sructure
JP2001298115A (en) Semiconductor device, manufacturing method for the same, circuit board as well as electronic equipment
KR20160106065A (en) Resistor and production method for resistor
US10985098B2 (en) Electronic component mounting substrate, electronic device, and electronic module
JP4422883B2 (en) Semiconductor device
JP3631638B2 (en) Mounting structure of semiconductor device package
JP2001338999A (en) Semiconductor element storing package
JP4667154B2 (en) Wiring board, electrical element device and composite board
US10388628B2 (en) Electronic component package
JP3325477B2 (en) Package for storing semiconductor elements
JP4398223B2 (en) Semiconductor device
JP3279844B2 (en) Semiconductor device and manufacturing method thereof
JP2013012720A (en) Electronic apparatus
JP3441194B2 (en) Semiconductor device and manufacturing method thereof
JPH11251497A (en) Electronic circuit module
JPH07211822A (en) Package for accommodating semiconductor element
JP2001244390A (en) Package for semiconductor device and mounting structure
JP6818457B2 (en) Wiring boards, electronics and electronic modules
JP3659304B2 (en) Package for storing semiconductor elements
JP6258768B2 (en) Wiring board and electronic device
JPH075642Y2 (en) Integrated circuit package with fixing member
JP3314139B2 (en) Semiconductor device
JP6030419B2 (en) Wiring board and electronic device
JP2001102492A (en) Wiring board and mounting structure thereof
JP3420362B2 (en) Semiconductor device mounting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees