JP2002129172A - Method for removing mercury from liquid hydrocarbon - Google Patents

Method for removing mercury from liquid hydrocarbon

Info

Publication number
JP2002129172A
JP2002129172A JP2000330871A JP2000330871A JP2002129172A JP 2002129172 A JP2002129172 A JP 2002129172A JP 2000330871 A JP2000330871 A JP 2000330871A JP 2000330871 A JP2000330871 A JP 2000330871A JP 2002129172 A JP2002129172 A JP 2002129172A
Authority
JP
Japan
Prior art keywords
mercury
liquid hydrocarbon
sulfur compound
liquid
removing mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000330871A
Other languages
Japanese (ja)
Inventor
Tsunenori Sakai
凡徳 堺
Hajime Ito
一 伊藤
Atsushi Mase
淳 間瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP2000330871A priority Critical patent/JP2002129172A/en
Priority to US10/148,184 priority patent/US6806398B2/en
Priority to CN01803347A priority patent/CN1394230A/en
Priority to AU90330/01A priority patent/AU777082B2/en
Priority to KR1020027008467A priority patent/KR100809192B1/en
Priority to PCT/JP2001/008641 priority patent/WO2002036717A1/en
Priority to TW090124718A priority patent/TWI243850B/en
Priority to MYPI20014823A priority patent/MY136739A/en
Publication of JP2002129172A publication Critical patent/JP2002129172A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for continuously removing mercury from a liquid hydrocarbon containing the same at about normal temperature and pressure in a simple and easy way. SOLUTION: Mercury is removed from a liquid hydrocarbon containing the same by causing the hydrocarbon to successively pass through (A) an ionization treatment zone wherein the hydrocarbon is brought into contact with a substance capable of ionizing free mercury contained in the hydrocarbon and (B) a sulfur compound treatment zone wherein the hydrocarbon is brought into contact with a sulfur compound represented by the formula: MM'S (wherein M and M' are each hydrogen, an alkali metal or an ammonium group) (e.g. hydrogen sulfide) or a liquid containing the sulfur compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水銀を含有する液
状炭化水素中の水銀を除去する方法に関する。
The present invention relates to a method for removing mercury in a liquid hydrocarbon containing mercury.

【0002】[0002]

【従来の技術】天然ガス田から産出されるNGL(天然
ガス液)、すなわち、液化石油ガス,コンデンセート等
の液状の炭化水素中には、産地により異なるが、2〜数
千ppbに達する水銀が含まれているものがあり、これ
らのNGLを蒸留処理して得られた軽質炭化水素にも水
銀が含まれることがあった。このような炭化水素を化学
用の原料として用いようとする場合、含まれる水銀が装
置材料として使用されるアルミニウムのアマルガム腐食
や、改質触媒の劣化原因などとなっており、水銀の除去
技術の開発が強く望まれてきた。この開発を図ったもの
として、特開平10−251667号公報には、水銀を
含有する炭化水素留分を水素化処理に供し、水素化処理
後の炭化水素留分を多孔性炭素材料と接触させることか
らなる水素化処理と吸着処理との組合せによる炭化水素
留分中の微量水銀の吸着除去方法が開示されている。こ
の方法では、水素化処理の反応条件として、反応温度1
00〜400℃,好ましくは250〜350℃、反応圧
力1〜5MPa,好ましくは2.5〜3.5MPaと高
温高圧の条件を必要とし、加温加圧のためのエネルギー
を必要としていた。また、吸着剤である多孔性炭素材料
として、比表面積が100〜2500m2 /g,好まし
くは500〜1500m2 /g、平均細孔半径が5〜3
0オングストローム、細孔半径50オングストローム以
下の細孔の容積が0.2〜1.2ml/gと、吸着剤の
調製には非常に煩雑な工程を必要としていた。
2. Description of the Related Art In NGL (natural gas liquid) produced from a natural gas field, that is, liquid hydrocarbons such as liquefied petroleum gas and condensate, mercury reaching 2 to several thousand ppb varies depending on the producing area. Some of them are contained, and light hydrocarbons obtained by distilling these NGLs sometimes contain mercury. If such hydrocarbons are to be used as a raw material for chemicals, the mercury contained in them will cause amalgam corrosion of aluminum used as equipment material and cause deterioration of the reforming catalyst. Development has been strongly desired. As a device for this development, JP-A-10-251667 discloses that a hydrocarbon fraction containing mercury is subjected to a hydrogenation treatment, and the hydrocarbon fraction after the hydrogenation treatment is brought into contact with a porous carbon material. A method for adsorbing and removing trace amounts of mercury in a hydrocarbon fraction by a combination of the above-mentioned hydrogenation treatment and adsorption treatment is disclosed. In this method, a reaction temperature of 1
It required conditions of 00 to 400 ° C., preferably 250 to 350 ° C., and a reaction pressure of 1 to 5 MPa, preferably 2.5 to 3.5 MPa, and high temperature and high pressure, and required energy for heating and pressurizing. Further, as the porous carbon material is a sorbent, a specific surface area of 100~2500m 2 / g, preferably from 500 to 1500 2 / g, an average pore radius of 5 to 3
The volume of pores having a diameter of 0 Å and a pore radius of 50 Å or less was 0.2 to 1.2 ml / g, which required an extremely complicated process for preparing the adsorbent.

【0003】[0003]

【発明が解決しようとする課題】本発明は、水銀を含有
する液状の炭化水素から水銀を常温、常圧付近で連続的
かつ簡便に効率よく除去しうる方法を提供することを目
的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for removing mercury from a liquid hydrocarbon containing mercury continuously, easily and efficiently at about normal temperature and pressure.

【0004】[0004]

【課題を解決するための手段】本発明者らは、鋭意研究
の結果、水銀を含有する炭化水素を、水銀のイオン化処
理帯域及び硫黄化合物処理帯域に順次供給することによ
って、上記課題を達成しうることを見出した。本発明
は、このような知見に基づいて完成したものである。す
なわち、本発明は、水銀を含有する液状炭化水素から水
銀を除去するにあたり、(A)前記液状炭化水素に含ま
れる単体の水銀に対するイオン化能を有する物質と接触
させるイオン化処理帯域、及び(B)一般式MM’S
(式中、M及びM’は同一又は異なり、それぞれ独立
に、水素,アルカリ金属又はアンモニウム基である。)
で表される硫黄化合物又は該硫黄化合物を含む液体と接
触させる硫黄化合物処理帯域に、前記液状炭化水素を順
次供給することを特徴とする液状炭化水素中の水銀の除
去方法を提供するものである。
Means for Solving the Problems As a result of intensive studies, the present inventors have achieved the above object by sequentially supplying mercury-containing hydrocarbons to a mercury ionization treatment zone and a sulfur compound treatment zone. I found out. The present invention has been completed based on such findings. That is, in the present invention, in removing mercury from a liquid hydrocarbon containing mercury, (A) an ionization treatment zone in which the liquid hydrocarbon is brought into contact with a substance capable of ionizing single mercury contained in the liquid hydrocarbon; and (B) General formula MM'S
(Wherein, M and M ′ are the same or different and are each independently a hydrogen, an alkali metal or an ammonium group.)
And a method for removing mercury in a liquid hydrocarbon, comprising sequentially supplying the liquid hydrocarbon to a sulfur compound treatment zone contacted with a sulfur compound represented by the formula (1) or a liquid containing the sulfur compound. .

【0005】[0005]

【発明の実施の形態】本発明において処理される水銀を
含む液状炭化水素としては、常温で液体の炭化水素であ
ればよく、特に限定されない。例えば原油,直留ナフ
サ,灯油,軽油,減圧留出油,常圧残渣油又は天然ガス
コンデンセートなどを挙げることができるが、特に天然
ガスコンデンセート(NGL)が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The liquid hydrocarbon containing mercury to be treated in the present invention is not particularly limited as long as it is a liquid hydrocarbon at ordinary temperature. For example, crude oil, straight run naphtha, kerosene, light oil, vacuum distillate, atmospheric residue, natural gas condensate and the like can be mentioned, but natural gas condensate (NGL) is particularly preferable.

【0006】本発明の方法で除去される水銀の形態は、
単体状水銀,イオン状水銀どちらでも良い。液状炭化水
素中の水銀濃度は、特に限定されるものではないが、通
常2〜1,000W/Vppb,好ましくは5〜100
W/Vppbである。
The form of mercury removed by the method of the present invention is
Either simple mercury or ionic mercury may be used. The concentration of mercury in the liquid hydrocarbon is not particularly limited, but is usually 2 to 1,000 W / Vppb, preferably 5 to 100 W / Vppb.
W / Vppb.

【0007】上記原油は、特に限定されるものでなく、
例えばサウジアラビア産原油,アラブ首長連邦産原油,
ナイジェリア産原油,カナダ産原油,メキシコ産原油,
イラン産原油,イラク産原油,中国産原油,クウェート
産原油,マレーシア産原油,ベネズエラ産原油,アメリ
カ産原油,オーストラリア産原油,ロシア産原油,リビ
ア産原油,フィリッピン産原油,インドネシア産原油,
ノルウェー産原油,タイ産原油,カタール産原油,アル
ゼンチン産原油,イギリス産原油,日本産原油及びこれ
らの混合原油が挙げられる。また、上記直留ナフサ,灯
油,軽油,減圧留出油又は常圧残渣油は、特に限定され
るものでなく、上記原油を常法により処理したものが挙
げられる。
[0007] The crude oil is not particularly limited.
For example, Saudi crude oil, UAE crude oil,
Nigeria crude oil, Canadian crude oil, Mexican crude oil,
Iranian crude, Iraqi crude, Chinese crude, Kuwaiti crude, Malaysian crude, Venezuela crude, American crude, Australian crude, Russian crude, Libyan crude, Philippine crude, Indonesian crude,
These include Norwegian crude oil, Thai crude oil, Qatar crude oil, Argentine crude oil, British crude oil, Japanese crude oil and mixtures thereof. The straight-run naphtha, kerosene, light oil, reduced-pressure distillate or normal-pressure residue is not particularly limited, and examples thereof include those obtained by treating the above-mentioned crude oil by an ordinary method.

【0008】本発明においては、上記のような液状の炭
化水素を、前記液状炭化水素に含まれる単体の水銀に対
するイオン化能を有する物質と接触させるイオン化処理
帯域に供給する。ここで、単体の水銀に対するイオン化
能を有する物質(以下、水銀イオン化処理物質というこ
とがある。)は、例えば、硫酸鉄,塩化鉄,硫化鉄,酸
化鉄,硝酸鉄,しゅう酸鉄などの鉄化合物(好ましくは
3価の鉄の化合物)、硫酸銅,塩化銅,酸化銅,硝酸
銅,硫化銅などの銅化合物、バナジウム化合物、マンガ
ン化合物(好ましくは二酸化マンガン)、ニッケル化合
物、過酸化水素、過酢酸などの有機あるいは無機の過酸
化物、原油用タンクに存在するスラッジなどが挙げられ
る。これらは単独で用いても二種以上混合して用いても
良い。ここで、原油用タンクに存在するスラッジの元素
分析の一例を挙げれば、Fe 36wt%、Si 1.
3wt%、Na 3600wtppm、Al 2700
wtppm、P2200wtppm、Zn 2100w
tppm、Cu 950wtppm、Ca 720wt
ppm、Mg 550wtppm、V 350wtpp
m、K350wtppm、Cr 290wtppm、M
n 230wtppm、Ni120wtppm、C 3
2.0wt%、H 3.0wt%、N 0.9wt%、
S 3.0wt%、Cl 0.4wt%である。
In the present invention, the liquid hydrocarbon as described above is supplied to an ionization treatment zone in which the liquid hydrocarbon is brought into contact with a substance capable of ionizing single mercury contained in the liquid hydrocarbon. Here, a substance capable of ionizing mercury alone (hereinafter, sometimes referred to as a mercury ionized substance) is, for example, iron sulfate, iron chloride, iron sulfide, iron oxide, iron nitrate, iron oxalate, or the like. Compounds (preferably trivalent iron compounds), copper compounds such as copper sulfate, copper chloride, copper oxide, copper nitrate, and copper sulfide, vanadium compounds, manganese compounds (preferably manganese dioxide), nickel compounds, hydrogen peroxide, Organic or inorganic peroxides such as peracetic acid, sludge present in crude oil tanks, and the like. These may be used alone or in combination of two or more. Here, as an example of elemental analysis of sludge present in a crude oil tank, Fe 36 wt%, Si 1.
3 wt%, Na 3600 wtppm, Al 2700
wtppm, P2200wtppm, Zn2100w
tppm, Cu 950wtppm, Ca 720wt
ppm, Mg 550wtppm, V 350wtpp
m, K350wtppm, Cr 290wtppm, M
n 230 wtppm, Ni 120 wtppm, C 3
2.0 wt%, H 3.0 wt%, N 0.9 wt%,
S is 3.0 wt% and Cl is 0.4 wt%.

【0009】なお、二酸化マンガンなどのマンガン化合
物は、粉末状,破砕状,円柱状,球状,繊維状,ハニカ
ム状など、いずれの形状でも用いることがでる。また、
シリカ,アルミナ,シリカ−アルミナ,ゼオライト,セ
ラミック,ガラス,樹脂又は活性炭などに担持させた形
として用いることもできる。担持量は、特に限定されな
いが、担体に対して0.1〜30重量%が好ましい。
The manganese compound such as manganese dioxide can be used in any form such as powder, crushed, cylindrical, spherical, fibrous, and honeycomb. Also,
It can also be used as a form supported on silica, alumina, silica-alumina, zeolite, ceramic, glass, resin or activated carbon. The loading amount is not particularly limited, but is preferably 0.1 to 30% by weight based on the carrier.

【0010】本発明の方法では、上記のように、液状の
炭化水素をイオン化処理帯域に供給して水銀イオン化処
理物質と接触させて単体の水銀をイオン状の水銀に変換
させる。このとき、反応温度は−50℃〜100℃,好
ましくは0〜60℃であり、圧力は0〜2MPaであ
り、基本的には用いる反応温度において液状を保持する
圧力であればよい。
In the method of the present invention, as described above, the liquid hydrocarbon is supplied to the ionization treatment zone, and is brought into contact with the mercury ionization treatment substance to convert single mercury into ionic mercury. At this time, the reaction temperature is −50 ° C. to 100 ° C., preferably 0 ° C. to 60 ° C., and the pressure is 0 MPa to 2 MPa.

【0011】本発明においては、イオン化処理帯域を通
過した炭化水素を、続いて一般式MM’S(式中、M及
びM’は同一又は異なり、それぞれ独立に、水素,アル
カリ金属又はアンモニウム基である。)で表される硫黄
化合物又は該硫黄化合物を含む液体(特に水溶液)と接
触させる硫黄化合物処理帯域に供給する。一般式MM’
Sで表される硫黄化合物としては、例えば、硫化水素、
水硫化ナトリウム、水硫化カリウム、硫化ナトリウム、
硫化カリウム及び硫化アンモニウム等が挙げられる。そ
のうち特に硫化水素が好ましい。このような硫黄化合物
を含む液体の硫黄化合物濃度としては、特に限定するも
のではないが、好ましくは0.1〜100,000W/
Wppm、さらに好ましくは1〜1,000W/Wpp
mである。
In the present invention, the hydrocarbons which have passed through the ionization zone are separated by the general formula MM'S (where M and M 'are the same or different and each independently represents a hydrogen, alkali metal or ammonium group). ) Or a liquid containing the sulfur compound (particularly an aqueous solution). General formula MM '
Examples of the sulfur compound represented by S include hydrogen sulfide,
Sodium bisulfide, potassium bisulfide, sodium sulfide,
Potassium sulfide and ammonium sulfide; Of these, hydrogen sulfide is particularly preferred. The concentration of the sulfur compound in the liquid containing the sulfur compound is not particularly limited, but is preferably 0.1 to 100,000 W /
Wppm, more preferably 1 to 1,000 W / Wpp
m.

【0012】硫化水素は、気体又は圧力を加えることに
より液体の状態で供給することができる。また、硫化水
素を含んだ水や有機溶剤の形で供給してもよいし、水、
有機溶剤混合液の形で供給してもよい。上記の一般式で
表される硫黄化合物の供給割合は、液状の炭化水素に含
まれる水銀1モルに対して、硫黄化合物1〜10000
倍モル,好ましくは100〜5000倍モルが適当であ
る。硫黄化合物と液状炭化水素との混合は、特に限定さ
れるものではないが、ミキサーによる撹拌,ラインミキ
サーによる撹拌などを選択することができる。硫黄化合
物を用いる処理帯域では、反応温度は−50℃〜100
℃,好ましくは0〜60℃とし、圧力は0〜2MPaと
する。
The hydrogen sulfide can be supplied in a liquid state by applying a gas or pressure. Further, it may be supplied in the form of water or an organic solvent containing hydrogen sulfide,
It may be supplied in the form of an organic solvent mixture. The supply ratio of the sulfur compound represented by the above general formula is 1 to 10000 of the sulfur compound per 1 mol of mercury contained in the liquid hydrocarbon.
The molar ratio is suitably 100 times, preferably 100 to 5000 times. Mixing of the sulfur compound with the liquid hydrocarbon is not particularly limited, and stirring with a mixer, stirring with a line mixer, or the like can be selected. In the treatment zone using sulfur compounds, the reaction temperature is between -50 ° C and 100 ° C.
° C, preferably 0 to 60 ° C, and the pressure is 0 to 2 MPa.

【0013】本発明の方法により水銀のイオン化処理
後、上記のように、硫黄化合物と接触させると、水銀の
固形物を得ることができる。生成した水銀の固形物は、
濾過,沈降処理等、通常の固液分離手段により液状の炭
化水素から除去することができる。
After the mercury ionization treatment according to the method of the present invention, when the mercury is contacted with a sulfur compound as described above, a solid product of mercury can be obtained. The mercury solid produced is
It can be removed from liquid hydrocarbons by ordinary solid-liquid separation means such as filtration and sedimentation.

【0014】[0014]

【実施例】次に、本発明を実施例によりさらに詳しく説
明するが、本発明はこれらの例によってなんら限定され
るものではない。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0015】実施例1 水銀含有量37W/Vppb(単体状:イオン状=77
%:23%)のコンデンセートA〔密度(g/cm3
15℃);0.7363〕の液状炭化水素を、下記の水
銀イオン化処理物質を0.3リットル充填したイオン化
処理塔に供給し、次の条件で水銀をイオン化した。 反応温度 : 25℃ 反応圧力 : 0.1MPa(絶対圧) 液空間速度: 10hr-1 水銀イオン化処理物質:二酸化マンガン その結果、水銀含有量37W/Vppb(単体状:イオ
ン状=0%:100%)のコンデンセートAを得た。こ
のようにして得られたコンデンセートA〔水銀含有量3
7W/Vppb(単体状:イオン状=0%:100
%)〕及び硫化水素を撹拌機のついた内容積3リットル
の反応器に供給し、次の条件で水銀を固形化させた。 反応温度 : 25℃ 反応圧力 : 0.1MPa(絶対圧) 滞留時間 : 1hr 硫化水素/水銀 : 1000(モル比) その結果、水銀が固形物として存在するコンデンセート
Aを得た。水銀が固形物として存在するコンデンセート
Aを、孔径5μmのフィルターで連続的に固液分離した
ところ、コンデンセートAの水銀濃度は1.2W/Vp
pbであった。
Example 1 Mercury content: 37 W / Vppb (simple: ionic = 77)
%: 23%) of condensate A [density (g / cm 3 ,
0.7363] was supplied to an ionization tower filled with 0.3 liter of the following mercury ionization substance, and mercury was ionized under the following conditions. Reaction temperature: 25 ° C. Reaction pressure: 0.1 MPa (absolute pressure) Liquid space velocity: 10 hr −1 Mercury ionized substance: manganese dioxide As a result, the mercury content is 37 W / Vppb (simple: ionic = 0%: 100%) ) Was obtained. The condensate A thus obtained [mercury content 3
7W / Vppb (simple: ionic = 0%: 100
%)] And hydrogen sulfide were supplied to a reactor having an internal volume of 3 liters equipped with a stirrer to solidify mercury under the following conditions. Reaction temperature: 25 ° C. Reaction pressure: 0.1 MPa (absolute pressure) Residence time: 1 hr Hydrogen sulfide / mercury: 1000 (molar ratio) As a result, condensate A containing mercury as a solid was obtained. When condensate A, in which mercury is present as a solid, was continuously solid-liquid separated using a filter having a pore size of 5 μm, the mercury concentration of condensate A was 1.2 W / Vp.
pb.

【0016】実施例2 実施例1と同様にして、コンデンセートAを水銀イオン
化処理帯域に供給し、硫化水素処理することにより、水
銀が固形物として存在するコンデンセートAを得た。こ
のコンデンセートAを容器に静置することにより固体の
水銀化合物を沈降させ、その上澄みを採取し、水銀濃度
を測定したところ1.0W/Vppbであった。
Example 2 Condensate A was supplied to the mercury ionization treatment zone and treated with hydrogen sulfide in the same manner as in Example 1 to obtain condensate A in which mercury was present as a solid. The condensate A was allowed to stand in a container to precipitate a solid mercury compound, and the supernatant was collected and the mercury concentration was measured to be 1.0 W / Vppb.

【0017】実施例3 実施例1のイオン化処理条件の反応温度を2℃に変更し
たこと以外は、実施例1と同様に操作して、イオン化処
理後の水銀含有量が37W/Vppb(単体状:イオン
状=1%:99%)のコンデンセートAを得た。続い
て、実施例1と同様の硫化水素処理を行い、孔径5μm
のフィルターで固液分離したところ、コンデンセート中
の水銀濃度は、1.4W/Vppbであった。
Example 3 The same operation as in Example 1 was carried out except that the reaction temperature under the ionization treatment conditions in Example 1 was changed to 2 ° C., and the mercury content after the ionization treatment was 37 W / Vppb (simple form). : Ionic = 1%: 99%). Subsequently, the same hydrogen sulfide treatment as in Example 1 was performed, and the pore diameter was 5 μm.
As a result of performing solid-liquid separation with a filter, the mercury concentration in the condensate was 1.4 W / Vppb.

【0018】実施例4 実施例1のイオン化処理条件の反応温度を40℃に変更
したこと以外は、実施例1と同様に操作して、イオン化
処理後の水銀含有量が37W/Vppb(単体状:イオ
ン状=0%:100%)のコンデンセートAを得た。続
いて、実施例1と同様の硫化水素処理を行い、孔径5μ
mのフィルターで固液分離したところ、コンデンセート
中の水銀濃度は、0.9W/Vppbであった。
Example 4 The same operation as in Example 1 was carried out except that the reaction temperature under the ionization treatment conditions of Example 1 was changed to 40 ° C., and the mercury content after the ionization treatment was 37 W / Vppb (simple form). : Ionic = 0%: 100%) condensate A was obtained. Subsequently, the same hydrogen sulfide treatment as in Example 1 was performed, and the pore size was 5 μm.
As a result of solid-liquid separation with a filter of m, the mercury concentration in the condensate was 0.9 W / Vppb.

【0019】実施例5 実施例1の硫化水素処理条件の硫化水素/水銀を100
(モル比)に変更したこと以外は、実施例1と同様に操
作して、孔径5μmのフィルターで固液分離したとこ
ろ、コンデンセート中の水銀濃度は、1.8W/Vpp
bであった。
Example 5 Hydrogen sulfide / mercury under the hydrogen sulfide treatment conditions of Example 1 was 100
(Molar ratio), except that the solid-liquid separation was performed using a filter having a pore size of 5 μm, except that the mercury concentration in the condensate was 1.8 W / Vpp.
b.

【0020】実施例6 実施例1の硫化水素処理条件の硫化水素/水銀を100
00(モル比)に変更したこと以外は、実施例1と同様
に操作して、孔径5μmのフィルターで固液分離したと
ころ、コンデンセート中の水銀濃度は、0.9W/Vp
pbであった。
Example 6 The hydrogen sulfide / mercury under the hydrogen sulfide treatment conditions of Example 1 was 100
The same operation as in Example 1 was carried out except that the molar ratio was changed to 00 (molar ratio), and solid-liquid separation was performed with a filter having a pore size of 5 μm. The mercury concentration in the condensate was 0.9 W / Vp
pb.

【0021】実施例7 水銀含有量37W/Vppb(単体状:イオン状=77
%:23%)のコンデンセートA〔密度(g/cm3
15℃);0.7363〕の液状炭化水素と、下記の水
銀イオン化処理物質を、撹拌機のついた内容積300m
lのイオン化処理容器に供給し、次の条件で水銀をイオ
ン化した。 反応温度 : 25℃ 反応圧力 : 0.1MPa(絶対圧) 水銀イオン化処理物質 : 0.9wt%硫酸第二鉄水
溶液 コンデンセートA供給速度:1.5リットル/hr 硫酸第二鉄水溶液供給速度:1.5リットル/hr その結果、水銀含有量37W/Vppb(単体状:イオ
ン状=0%:100%)のコンデンセートAを得た。こ
のようにして得られたコンデンセートA〔水銀含有量3
7W/Vppb(単体状:イオン状=0%:100
%)〕及び硫化水素を撹拌機のついた内容積3リットル
の反応器に供給し、次の条件で水銀を固形化させた。 反応温度 : 25℃ 反応圧力 : 0.1MPa(絶対圧) 滞留時間 : 1hr 硫化水素/水銀 : 1000(モル比) その結果、水銀が固形物として存在するコンデンセート
Aを得た。水銀が固形物として存在するコンデンセート
Aを、孔径5μmのフィルターで連続的に固液分離した
ところ、コンデンセートAの水銀濃度は1.3W/Vp
pbであった。
Example 7 A mercury content of 37 W / Vppb (simple: ionic = 77)
%: 23%) of condensate A [density (g / cm 3 ,
0.7363], and the following mercury ionization-treated substance in an internal volume of 300 m with a stirrer.
1 and the mercury was ionized under the following conditions. Reaction temperature: 25 ° C. Reaction pressure: 0.1 MPa (absolute pressure) Mercury ionization treatment substance: 0.9 wt% ferric sulfate aqueous solution Condensate A supply rate: 1.5 liter / hr Ferric sulfate aqueous solution supply rate: 1. As a result, condensate A having a mercury content of 37 W / Vppb (simple: ionic = 0%: 100%) was obtained. The condensate A thus obtained [mercury content 3
7W / Vppb (simple: ionic = 0%: 100
%)] And hydrogen sulfide were supplied to a reactor having an internal volume of 3 liters equipped with a stirrer to solidify mercury under the following conditions. Reaction temperature: 25 ° C. Reaction pressure: 0.1 MPa (absolute pressure) Residence time: 1 hr Hydrogen sulfide / mercury: 1000 (molar ratio) As a result, condensate A containing mercury as a solid was obtained. When condensate A, in which mercury exists as a solid, was continuously solid-liquid separated using a filter having a pore size of 5 μm, the mercury concentration of condensate A was 1.3 W / Vp.
pb.

【0022】[0022]

【発明の効果】本発明によれば、水銀を含有する液状の
炭化水素から水銀を常温、常圧付近で連続的かつ簡便
に、2W/Vppb以下に低減することができる。
According to the present invention, mercury can be reduced from liquid hydrocarbons containing mercury to 2 W / Vppb or less at room temperature and near normal pressure continuously and easily.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 水銀を含有する液状炭化水素から水銀を
除去するにあたり、(A)前記液状炭化水素に含まれる
単体の水銀に対するイオン化能を有する物質と接触させ
るイオン化処理帯域、及び(B)一般式MM’S(式
中、M及びM’は同一又は異なり、それぞれ独立に、水
素,アルカリ金属又はアンモニウム基である。)で表さ
れる硫黄化合物又は該硫黄化合物を含む液体と接触させ
る硫黄化合物処理帯域に、前記液状炭化水素を順次供給
することを特徴とする液状炭化水素中の水銀の除去方
法。
1. A method for removing mercury from a liquid hydrocarbon containing mercury, comprising: (A) an ionization treatment zone in which the liquid hydrocarbon is brought into contact with a substance capable of ionizing single mercury contained in the liquid hydrocarbon; A sulfur compound represented by the formula MM ′S (where M and M ′ are the same or different and each independently represents a hydrogen, an alkali metal or an ammonium group) or a sulfur compound to be brought into contact with a liquid containing the sulfur compound A method for removing mercury from a liquid hydrocarbon, comprising sequentially supplying the liquid hydrocarbon to a treatment zone.
【請求項2】 前記イオン化能を有する物質が、3価の
鉄イオンを含んだ水溶液である請求項1記載の液状炭化
水素中の水銀の除去方法。
2. The method for removing mercury in a liquid hydrocarbon according to claim 1, wherein the substance having an ionizing ability is an aqueous solution containing trivalent iron ions.
【請求項3】 前記イオン化能を有する物質が、二酸化
マンガン及び/又は二酸化マンガンを担持させてなるも
のである請求項1記載の液状炭化水素中の水銀の除去方
法。
3. The method for removing mercury in a liquid hydrocarbon according to claim 1, wherein the substance having an ionizing ability is manganese dioxide and / or manganese dioxide supported thereon.
【請求項4】 前記硫黄化合物が、硫化水素である請求
項1記載の液状炭化水素中の水銀の除去方法。
4. The method for removing mercury in a liquid hydrocarbon according to claim 1, wherein the sulfur compound is hydrogen sulfide.
【請求項5】 イオン化処理条件を温度−50℃〜10
0℃,圧力0〜2MPaとする請求項1記載の液状炭化
水素中の水銀の除去方法。
5. An ionization treatment condition at a temperature of −50 ° C. to 10 ° C.
2. The method for removing mercury in a liquid hydrocarbon according to claim 1, wherein the temperature is 0 ° C. and the pressure is 0 to 2 MPa.
【請求項6】 硫黄化合物処理条件を温度−50℃〜1
00℃,圧力0〜2MPaとする請求項1記載の液状炭
化水素中の水銀の除去方法。
6. The sulfur compound treatment condition is a temperature of -50.degree.
2. The method for removing mercury in a liquid hydrocarbon according to claim 1, wherein the temperature is set to 00 ° C. and the pressure is set to 0 to 2 MPa.
【請求項7】 硫黄化合物処理帯域において、前記硫黄
化合物を、液状炭化水素中の水銀に対して1〜1000
0モル倍供給する請求項1記載の液状炭化水素中の水銀
の除去方法。
7. In a sulfur compound treatment zone, the sulfur compound is added in an amount of 1 to 1000 with respect to mercury in a liquid hydrocarbon.
2. The method for removing mercury in a liquid hydrocarbon according to claim 1, wherein the liquid hydrocarbon is supplied in a molar ratio of 0.
【請求項8】 前記硫黄化合物処理帯域の後で、(C)
生成した水銀固形物を固液分離することにより除去する
請求項1記載の液状炭化水素中の水銀の除去方法。
8. After the sulfur compound treatment zone, (C)
2. The method for removing mercury in a liquid hydrocarbon according to claim 1, wherein the produced mercury solids are removed by solid-liquid separation.
JP2000330871A 2000-10-30 2000-10-30 Method for removing mercury from liquid hydrocarbon Pending JP2002129172A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2000330871A JP2002129172A (en) 2000-10-30 2000-10-30 Method for removing mercury from liquid hydrocarbon
US10/148,184 US6806398B2 (en) 2000-10-30 2001-10-01 Process for removing mercury from liquid hydrocarbon
CN01803347A CN1394230A (en) 2000-10-30 2001-10-01 Process for removing mercury from liquid hydrocarbon
AU90330/01A AU777082B2 (en) 2000-10-30 2001-10-01 Process for removing mercury from liquid hydrocarbon
KR1020027008467A KR100809192B1 (en) 2000-10-30 2001-10-01 Process for removing mercury from liquid hydrocarbon
PCT/JP2001/008641 WO2002036717A1 (en) 2000-10-30 2001-10-01 Process for removing mercury from liquid hydrocarbon
TW090124718A TWI243850B (en) 2000-10-30 2001-10-05 Process for removing mercury from liquid hydrocarbon
MYPI20014823A MY136739A (en) 2000-10-30 2001-10-17 Process for removing mercury from liquid hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000330871A JP2002129172A (en) 2000-10-30 2000-10-30 Method for removing mercury from liquid hydrocarbon

Publications (1)

Publication Number Publication Date
JP2002129172A true JP2002129172A (en) 2002-05-09

Family

ID=18807309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000330871A Pending JP2002129172A (en) 2000-10-30 2000-10-30 Method for removing mercury from liquid hydrocarbon

Country Status (1)

Country Link
JP (1) JP2002129172A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212576A (en) * 1998-11-16 2000-08-02 Idemitsu Petrochem Co Ltd Removal of mercury in liquid hydrocarbon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212576A (en) * 1998-11-16 2000-08-02 Idemitsu Petrochem Co Ltd Removal of mercury in liquid hydrocarbon

Similar Documents

Publication Publication Date Title
KR100809192B1 (en) Process for removing mercury from liquid hydrocarbon
KR100825152B1 (en) Method for removing mercury from liquid hydrocarbon
US8992769B2 (en) Process, method, and system for removing heavy metals from fluids
EP2969956B1 (en) Method for removing heavy metals from fluids
US10179880B2 (en) Process, method, and system for removing heavy metals from fluids
JP2002129172A (en) Method for removing mercury from liquid hydrocarbon
JP2002212572A (en) Method for removing mercury from liquid hydrocarbon
US20180251688A1 (en) Liquid-phase decomposition of particulate mercury from hydrocarbon streams
JPH0819422B2 (en) Method for removing trace amounts of mercury in hydrocarbon oils
JPH01188586A (en) Removing method for mercury in hydrocarbon base oil
JPH01289894A (en) Method of removing trace quantity of mercury contained in hydrocarbon oil
JP2000212576A (en) Removal of mercury in liquid hydrocarbon
JP3824460B2 (en) How to remove mercury
JP4170476B2 (en) How to remove mercury
JPH0428040B2 (en)
GB2573870A (en) Liquid-phase decomposition of particulate mercury from hydrocarbon streams
JPS63218791A (en) Hydrotreatment of heavy oil
JPH1128305A (en) Method for recovering oil in heavy metal-containing adsorbent
JPH0791547B2 (en) Method for removing mercury in hydrocarbon oils
JPH0586373A (en) Removal of heavy metal from hydrocarbon oil
JPH0823024B2 (en) Method for removing mercury in hydrocarbon oils
JPH01188584A (en) Removing method for mercury in hydrocarbon base oil
JPH05247472A (en) Removal of heavy metal from hydrocarbon oil
JPH1150065A (en) Removal of heavy metal in liquid hydrocarbon

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525