JP2002115791A - Electric fusion joint - Google Patents

Electric fusion joint

Info

Publication number
JP2002115791A
JP2002115791A JP2000306382A JP2000306382A JP2002115791A JP 2002115791 A JP2002115791 A JP 2002115791A JP 2000306382 A JP2000306382 A JP 2000306382A JP 2000306382 A JP2000306382 A JP 2000306382A JP 2002115791 A JP2002115791 A JP 2002115791A
Authority
JP
Japan
Prior art keywords
joint
temperature
fusion
resistance wire
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000306382A
Other languages
Japanese (ja)
Inventor
Koichi Kitao
幸市 北尾
Masatoshi Kobayashi
正俊 小林
Katsuhiko Nishino
克彦 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000306382A priority Critical patent/JP2002115791A/en
Publication of JP2002115791A publication Critical patent/JP2002115791A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/342Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3468Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the means for supplying heat to said heated elements which remain in the join, e.g. special electrical connectors of windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3476Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8126General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/81262Electrical and dielectric properties, e.g. electrical conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91641Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
    • B29C66/91643Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • B29C66/91655Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating by controlling or regulating the current intensity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/967Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving special data inputs or special data outputs, e.g. for monitoring purposes
    • B29C66/9672Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving special data inputs or special data outputs, e.g. for monitoring purposes involving special data inputs, e.g. involving barcodes, RFID tags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • B29C66/91653Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating by controlling or regulating the voltage, i.e. the electric potential difference or electric tension

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Resistance Heating (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate necessity to correct weld time according to temperature. SOLUTION: In an electric fusion joint 2 having an electric resistance wire on the internal surface side thereof, and controlling weld time by reading a bar code 1 attached thereto, into which weld time has been inputted, such an electric resistance wire that the average temperature coefficient (10-6/K) between 20 deg.C and 100 deg.C of volume resistivity is 1,000 or above is used as the electric resistance wire 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、熱可塑性樹脂管
同士を溶融接合するため、内部に電気抵抗線を具備した
熱可塑性樹脂製の電気融着継手に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrofusion joint made of a thermoplastic resin having an electric resistance wire inside for melting and joining thermoplastic resin tubes to each other.

【0002】[0002]

【従来の技術】ポリエチレンやポリブテン等の材料から
なる合成樹脂管同士を、内部に電気抵抗線を具備した熱
可塑性樹脂製の電気融着継手で融着して接合すること
は、従来から行われている。このように合成樹脂管同士
を電気融着継手により融着接合するときの通電時間の制
御方法としては、特公平3−27014号公報に開示さ
れた抵抗識別方式の通電時間制御方法がある。この通電
時間制御方法においては、電気融着継手の内部に電気抵
抗線とは別に埋設した識別抵抗体に電流を流すか、電圧
をかけて電気抵抗値を把握し、この抵抗値と予め継手の
品種(ソケットやキャップ等の種類)と口径(接続口の
呼び径)別に設定されている標準通電時間との関係から
通電時間が決定され、この時間分だけ自動的に通電され
るようになっている。また、他の通電時間制御方法とし
て、特公平7−45185号公報に開示されたバ−コ−
ド方式の通電時間制御方法がある。この通電時間制御方
法においては、予め継手毎に見合った通電時間を入力し
たバ−コ−ドを継手本体に取り付け、通電時にはバ−コ
−ドをバ−コ−ドリ−ダ−またはバ−コ−ドスキャナ−
によって、通電時間を含む通電制御の情報を読みとり、
自動的に通電時間を決定するようにしている。
2. Description of the Related Art Conventionally, a synthetic resin pipe made of a material such as polyethylene or polybutene has been fused and joined by an electrofusion joint made of a thermoplastic resin having an electric resistance wire inside. ing. As a method for controlling the energizing time when the synthetic resin pipes are fusion-bonded to each other by the electric fusion joint, there is an energizing time control method of a resistance identification method disclosed in Japanese Patent Publication No. 3-27014. In this energization time control method, a current is applied to an identification resistor embedded separately from the electric resistance wire inside the electric fusion joint, or a voltage is applied to grasp the electric resistance value. The energization time is determined from the relationship between the type (type of socket and cap, etc.) and the standard energization time set for each bore (nominal diameter of the connection port), and the energization is automatically performed for this time. I have. Further, as another energization time control method, a bar code disclosed in Japanese Patent Publication No. 7-45185 is disclosed.
There is an energization time control method of the power supply type. In this energization time control method, a bar code in which an energization time appropriate for each joint is input in advance is attached to the joint body, and the bar code is energized with a bar code reader or bar code. -Scanner-
By reading the information of energization control including energization time,
The energization time is automatically determined.

【0003】ところで、融着に必要なエネルギ−は継手
の温度に依存し、温度が低いほどエネルギ−は多くを必
要とし、温度が高ければエネルギ−は少なくてよい。こ
のため、上述した先行技術における制御方法では、制御
装置に設置された温度センサによって検出された外気温
度(環境温度)を、外気補正情報として融着シ−ケンス
監視部に入力し、この外気補正情報と標準印加電圧およ
び標準通電時間とから、供給すべき通電時間変動させ、
供給するエネルギ−を外気温度により補正している。
[0003] The energy required for fusion depends on the temperature of the joint. The lower the temperature, the more energy is required, and the higher the temperature, the less the energy. Therefore, in the above-described control method in the prior art, the outside air temperature (environmental temperature) detected by the temperature sensor installed in the control device is input to the fusion sequence monitoring unit as outside air correction information, and the outside air correction is performed. From the information and the standard applied voltage and the standard energizing time, the energizing time to be supplied is varied,
The supplied energy is corrected by the outside air temperature.

【0004】しかしながら、温度センサが継手ではなく
制御装置に設置されていると、真夏の炎天下や強風下の
寒冷地等での施工現場においては、制御装置が野ざらし
になっているため、温度センサが設置された制御装置の
温度と継手の実体温度との間に極端な温度差が生じ、極
端に誤った温度補正が行われることになるので、融着不
良が発生するという問題がある。
[0004] However, if the temperature sensor is installed not in the joint but in the control device, the control device is bare in the construction site in the hot summer or in a cold area under strong wind, so that the temperature sensor cannot be used. An extreme temperature difference occurs between the temperature of the installed control device and the actual temperature of the joint, and an extremely incorrect temperature correction is performed.

【0005】このような温度補正にともなう融着不良を
解消するために、特開2000−55280号公報に開
示された方法がある。この通電時間制御方法は、内周面
に加熱用の電熱線を設けた熱可塑性樹脂製の管継手と、
この管継手の内周面に挿入した熱可塑性樹脂製の管と
を、前記電熱線に所定の電力を供給して電気的な通電加
熱により融着接続するに当たり、電熱線に通電する前に
環境温度を測定し、該環境温度に基づいて通電時間を設
定する電気融着継手の通電制御方法において、上限環境
温度における標準通電時間が下限環境温度における下限
通電時間を下回らず、かつ下限環境温度における標準通
電時間が上限環境温度における上限通電時間を上回らな
いにしたものである。
A method disclosed in Japanese Patent Application Laid-Open No. 2000-55280 has been proposed in order to solve such a fusion defect due to the temperature correction. This energization time control method is a pipe joint made of a thermoplastic resin provided with a heating wire for heating on the inner peripheral surface,
When a pipe made of a thermoplastic resin inserted into the inner peripheral surface of the pipe joint is fusion-spliced by supplying predetermined electric power to the heating wire and electrically energizing and heating, an environment before energizing the heating wire is required. The temperature is measured, and in the power supply control method for the electric fusion joint, which sets the power supply time based on the environmental temperature, the standard power supply time at the upper environmental temperature does not fall below the lower power supply time at the lower environmental temperature, and at the lower environmental temperature. The standard energizing time does not exceed the upper limit energizing time at the upper limit environmental temperature.

【0006】図3は上述した通電時間制御方法に使用さ
れる電気融着制御装置のブロック図、図4はこの通電時
間制御方法における電気融着継手の環境温度と通電時間
との関係を示すグラフである。電気融着継手32(以下
単に継手という)にはバ−コ−ド31がラベルまたはタ
グで取り付けられている。このバ−コ−ド31には、継
手32の電熱線に供給する通電制御パラメ−タをコ−ド
化した情報が入力されている。また、継手32にはコイ
ル状の電熱線33が埋設されている。電熱線33の両端
部はタ−ミナルピン34に接続され、継手32の左右の
受け口から略中央までの被接続管35、35を挿入して
おく。継手32の電熱線33に通電して、継手33およ
び被接続管35、35を正常に融着接続させるために、
電気融着制御装置40が設けられている。電気融着制御
装置40は、電源部41、演算制御部42、記憶部4
3、読取手段インタ−フェ−ス44、出力部45、表示
部46、読取手段47を具備している。また、環境温度
を測定するために、温度センサインタ−フェ−ス48を
介して温度センサ49が電気融着制御装置40に取り付
けられている。そして、電源部41は演算制御部42と
出力部45に接続され、出力部45はケ−ブル50、5
0を介して継手32に設けたコネクタ−51、51でタ
−ミナルピン34に接続されている。
FIG. 3 is a block diagram of an electrofusion control device used in the above-described energization time control method. FIG. 4 is a graph showing the relationship between the environmental temperature of the electrofusion joint and the energization time in this energization time control method. It is. A bar code 31 is attached to the electrofusion joint 32 (hereinafter simply referred to as a joint) by a label or a tag. The bar code 31 is input with coded information of energization control parameters supplied to the heating wire of the joint 32. A coil-shaped heating wire 33 is embedded in the joint 32. Both ends of the heating wire 33 are connected to terminal pins 34, and connected pipes 35, 35 extending from the left and right receptacles of the joint 32 to the approximate center are inserted. In order to energize the heating wire 33 of the joint 32 and normally weld and connect the joint 33 and the connected pipes 35, 35,
An electric fusion control device 40 is provided. The electric fusion control device 40 includes a power supply unit 41, an arithmetic control unit 42, and a storage unit 4.
3, a reading means interface 44, an output section 45, a display section 46, and a reading means 47. In order to measure the environmental temperature, a temperature sensor 49 is attached to the electrofusion control device 40 via a temperature sensor interface 48. The power supply unit 41 is connected to the arithmetic control unit 42 and the output unit 45.
The terminal 32 is connected to the terminal pin 34 by connectors 51 and 51 provided on the joint 32 through the connector 0.

【0007】そして、電源コ−ド52を電源に接続する
と、適切な電流が所定時間継手32に通電される。これ
により、電熱線33は発熱し、ポリエチレン等の熱可塑
性樹脂からなる継手32の内面と、同じポリエチレン等
の熱可塑性樹脂からなる被接続管35、35の外面が溶
融され、両者が融着接合される。
When the power supply cord 52 is connected to a power supply, an appropriate current is supplied to the joint 32 for a predetermined time. As a result, the heating wire 33 generates heat, and the inner surface of the joint 32 made of a thermoplastic resin such as polyethylene and the outer surfaces of the connected pipes 35, 35 made of the same thermoplastic resin such as polyethylene are melted and joined. Is done.

【0008】演算制御部42はマイクロプロセッサによ
って構成され、記憶部43に接続されて情報の授受を行
うとともに接続の可否を判定し、出力部45に通電作動
指令を送ることができる。なお、記憶部43は通電制御
デ−タや融着履歴デ−タ等々を記録するようになってい
る。具体的には、演算制御部42には読取手段インタ−
フェ−ス44を介して読取手段47から読み取ったバ−
コ−ドの通電制御パラメ−タのデ−タが取り込まれる。
さらに、演算制御部42には、通電制御デ−タの他に温
度センサインタ−フェ−ス48を介して温度センサ49
からの環境温度デ−タも取り込まれる。
The arithmetic control unit 42 is constituted by a microprocessor, is connected to the storage unit 43 to exchange information, determines whether or not the connection is possible, and sends an energizing operation command to the output unit 45. The storage unit 43 is configured to record energization control data, fusion history data, and the like. Specifically, the arithmetic control unit 42 includes a reading unit interface.
Bar read from reading means 47 through face 44
The data of the energization control parameter of the code is fetched.
Further, the arithmetic and control unit 42 has a temperature sensor 49 via a temperature sensor interface 48 in addition to the power supply control data.
Environmental temperature data from the computer.

【0009】このような電気融着制御装置40を用い
て、継手32の通電時間の温度補正を行う場合には、次
のようにして行う。図4は環境温度と通電時間の関係示
すグラフであり、直線Sは環境温度と標準通電時間との
関係を、直線Uは環境温度と上限通電時間との関係を、
直線Dは環境温度と下限通電時間との関係を示してい
る。継手32の環境温度と通電時間との関係が、上限環
境温度(通常は40℃)における標準通電時間(α点)
が下限環境温度(通常は−5℃)における下限通電時間
(β点)を下回らず、かつ下限環境温度(通常は−5
℃)における標準通電時間(γ点)が上限環境温度(通
常は40℃)における上限通電時間(δ点)を上回らな
いように設定されている。
When the temperature of the power-on time of the joint 32 is corrected by using the electric fusion control device 40, it is performed as follows. FIG. 4 is a graph showing the relationship between the environmental temperature and the energizing time, wherein a straight line S indicates the relationship between the environmental temperature and the standard energizing time, and a straight line U indicates the relationship between the environmental temperature and the upper limit energizing time.
A straight line D indicates the relationship between the environmental temperature and the lower limit energizing time. The relationship between the environmental temperature of the joint 32 and the energizing time is determined by the standard energizing time (α point) at the upper limit environmental temperature (normally 40 ° C.).
Does not fall below the lower limit energization time (β point) at the lower limit environmental temperature (normally −5 ° C.), and the lower limit environmental temperature (normally −5 ° C.)
C.) so that the standard energization time (γ point) does not exceed the upper limit energization time (δ point) at the upper limit environmental temperature (normally 40 ° C.).

【0010】このような特性を有する継手32であれ
ば、電気融着制御装置40が炎天下の戸外に置かれて
も、すなわち環境温度が高く(a′点)なっても、この
環境温度(a′点)から補正式により補正される標準通
電時間(b′点)が実際の継手温度(c′点)における
下限通電時間(d′点)を下回ることがない。その結
果、直線Uと直線Dの間の範囲内で正常な融着接続に必
要ナエネルギ−が電熱線に供給されるため、通電時間が
短くなって融着不足による不良は発生しない。
With the joint 32 having such characteristics, even if the electric fusion control device 40 is placed outdoors under the scorching sun, that is, even if the environmental temperature becomes high (point a '), the environmental temperature (a The standard energization time (point b ') corrected by the correction formula from the point') does not fall below the lower limit energization time (point d ') at the actual joint temperature (point c'). As a result, the energy required for normal fusion splicing is supplied to the heating wire within the range between the straight line U and the straight line D, so that the energization time is shortened and a defect due to insufficient fusion does not occur.

【0011】一方、電気融着制御装置40が寒冷地の戸
外に置かれても、すなわち環境温度が低く(e′点)な
っても、この環境温度(e′点)から補正式により補正
される標準通電時間(f′点)が実際の継手温度(g′
点)における上限通電時間(h′点)を上回ることがな
い。その結果、直線Uと直線Dの間の範囲内で正常な融
着接続に必要ナエネルギ−が電熱線に供給されるため、
過融着が原因で生じる樹脂の劣化や電熱線のショ−トの
恐れはない。
On the other hand, even if the electric fusion control device 40 is placed outdoors in a cold region, that is, even if the environmental temperature becomes low (point e '), it is corrected by a correction formula from this environmental temperature (point e'). The standard energizing time (point f ') is the actual joint temperature (g'
At the point (h '). As a result, the energy required for normal fusion splicing is supplied to the heating wire within the range between the straight line U and the straight line D.
There is no risk of deterioration of the resin or short-circuiting of the heating wire caused by over-fusion.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、上述し
た従来の電気融着継手の通電時間制御方法には、次のよ
うな問題点がある。上限環境温度における標準通電時間
が下限環境温度における下限通電時間を下回らず、かつ
下限環境温度における標準通電時間が上限環境温度にお
ける上限通電時間を上回らない特性を電気融着継手に持
たせるための具体的な方法が開示されておらず、実現性
に乏しい。
However, the above-mentioned conventional method for controlling the energization time of the electrofusion joint has the following problems. A specific method for providing the electrofusion joint with characteristics that the standard energizing time at the upper limit environmental temperature does not fall below the lower limit energizing time at the lower limit environmental temperature and the standard energizing time at the lower limit environmental temperature does not exceed the upper limit energizing time at the upper limit environmental temperature. Method is not disclosed, and the feasibility is poor.

【0013】この発明は、従来技術の上述のような問題
点を解消するためになされたものであり、環境温度が変
化しても通電時間を変更することなしに、継手および被
接続管の溶融が適切に行える電気融着継手を提供するこ
とを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and is capable of melting a joint and a connected pipe without changing the energization time even if the environmental temperature changes. It is an object of the present invention to provide an electrofusion joint that can appropriately perform the above.

【0014】[0014]

【課題を解決するための手段】この発明に係る電気融着
継手は、継手の内面側に電気抵抗線を具備し、該電気抵
抗線に通電して発熱させて継手と管を溶融接合するに際
しては、継手に取り付けた通電時間を入力したバ−コ−
ドを読み取ることにより通電時間を制御する方式の電気
融着継手において、前記電気抵抗線に体積抵抗率の20
〜100℃間の平均温度係数(10-6/K)が1000
以上である電気抵抗線を使用したものである。
An electric fusion joint according to the present invention is provided with an electric resistance wire on the inner surface side of the joint, and when the electric resistance wire is energized to generate heat to melt-join the joint and the pipe. Is the bar code that is the input of the energization time attached to the joint.
In the electrofusion joint of the type in which the energization time is controlled by reading the electric resistance, the electric resistance wire has a volume resistivity of 20%.
The average temperature coefficient (10 -6 / K) between ~ 100 ° C is 1000
The above-described electric resistance wire is used.

【0015】また、前記体積抵抗率の20〜100℃間
の平均温度係数(10-6/K)が1000以上である電
気抵抗線として、銅ニッケル抵抗線、ニッケルアルミニ
ュ−ム抵抗線、ニッケル抵抗線または銅抵抗線を用いた
ものである。
The electric resistance wire having an average temperature coefficient (10 −6 / K) of 1000 or more of the volume resistivity between 20 ° C. and 100 ° C. may be a copper nickel resistance wire, a nickel aluminum resistance wire, a nickel aluminum resistance wire, or the like. A resistance wire or a copper resistance wire is used.

【0016】継手の実体温度が変化すると、図2に実線
Aで示すように、継手の溶着に必要な溶着エネルギ−量
を高温時には小さく、低温時には大きくする必要があ
る。一方、電圧をV、抵抗値をR、通電時間をtとした
ときに発生する融着エネルギ−Enは、定電圧制御の場
合には、次の(1)式のように表される。
When the actual temperature of the joint changes, as shown by the solid line A in FIG. 2, the amount of welding energy required for welding the joint must be small at high temperatures and large at low temperatures. On the other hand, the fusion energy -En generated when the voltage is V, the resistance value is R, and the energizing time is t is expressed by the following equation (1) in the case of constant voltage control.

【0017】En=V2・t/R…………(1) すなわち、電圧V及び通電時間tが同じであれば、抵抗
Rが小さいほど融着エネルギ−Enは大きく、抵抗Rが
大きいほど融着エネルギ−Enは小さくなる。金属の電
気抵抗Rは、金属の長さをlm、断面積am2とする
と、次の(2)式のように表される。
En = V 2 · t / R (1) That is, if the voltage V and the conduction time t are the same, the smaller the resistance R, the larger the fusion energy En and the larger the resistance R. The fusion energy En decreases. The electrical resistance R of a metal is represented by the following equation (2), where the length of the metal is lm and the sectional area is am 2 .

【0018】R=ρ・l/a(Ω)…………(2) (2)式におけるρは体積抵抗率(単位はΩ・m)とい
い、100℃におけるそれをρ100とし、20℃におけ
るそれをρ20とすると、次の(3)式で表されるα20
100を体積抵抗率の20℃、100℃間の平均温度係数
という。
[0018] referred to as R = ρ · l / a ( Ω) ............ (2) (2) ρ in equation volume resistivity (unit: Ω · m), and it at 100 ° C. and [rho 100, 20 Assuming that at ℃ is ρ 20 , α 20 represented by the following equation (3),
100 is called an average temperature coefficient between 20 ° C. and 100 ° C. of the volume resistivity.

【0019】 α20100=(ρ100−ρ20)/80ρ20…………(3) (2)式および(3)式から明らかなように、体積抵抗
率の20℃、100℃間の平均温度係数が大きければ大
きいほど、高温時における抵抗Rと低温時における抵抗
Rとの差は大きくなり、平均温度係数が小さければ小さ
いほど、高温時における抵抗Rと低温時における抵抗R
との差は小さくなる。
Α 20 , 100 = (ρ 100 −ρ 20 ) / 80ρ 20 (3) As is apparent from the equations (2) and (3), the volume resistivity between 20 ° C. and 100 ° C. Is larger, the difference between the resistance R at high temperature and the resistance R at low temperature is larger, and the smaller the average temperature coefficient is, the higher the resistance R at high temperature and the resistance R at low temperature are.
Is smaller.

【0020】従来から電気融着継手の電熱線として使用
されているのは、ニッケルクロム線やニッケルの含有量
が重量%で15%程度のニッケル銅線であるため、体積
抵抗率の20〜100℃間の平均温度係数が0または2
00〜300程度であり、低温時と高温時で抵抗Rはほ
とんど変化がない。したがって、通電時間tが一定であ
ると、図2に点線Bで示すように、発生する融着エネル
ギ−Enは、高温時と低温時で変化がなく、低温時には
必要とする融着エネルギ−が得られずに、融着不足によ
る不良が発生し、高温時には必要とする融着エネルギ−
以上の融着エネルギ−が発生するので、過融着が原因で
生じる樹脂の劣化や電熱線がショ−トする恐れがある。
そのため、従来は高温時には通電時間を短く、低温時に
は通電時間を長くしている。
Conventionally, a nickel chrome wire or a nickel copper wire having a nickel content of about 15% by weight is used as the heating wire of the electrofusion joint, so that the volume resistivity is 20 to 100%. Average temperature coefficient between ° C is 0 or 2
The resistance R is almost the same at low and high temperatures. Therefore, if the energization time t is constant, the generated fusion energy En does not change between high and low temperatures, as indicated by the dotted line B in FIG. Failure to do so results in defects due to insufficient fusion, and the required fusion energy at high temperatures
Since the above fusion energy is generated, there is a possibility that the resin may be degraded due to overfusion and the heating wire may be short-circuited.
For this reason, conventionally, the energization time is shortened at high temperatures, and the energization time is lengthened at low temperatures.

【0021】しかしながら、本発明の電気融着継手にお
いては、電気抵抗線として体積抵抗率の20〜100℃
間の平均温度係数が1000以上である電気抵抗線を使
用しているので、電気抵抗線の抵抗Rが低温時には小さ
く、高温時には大きくなる。そのため、発生する融着エ
ネルギ−Enは、図2に破線Cで示すように、温度に関
係なく必要とする実線で示す融着エネルギ−に近いもの
になる。したがって、温度によって通電時間の制御をす
る必要はない。
However, in the electric fusion joint of the present invention, the electric resistance wire has a volume resistivity of 20 to 100 ° C.
Since an electric resistance line having an average temperature coefficient of 1000 or more is used, the resistance R of the electric resistance line is small at low temperatures and large at high temperatures. Therefore, the generated fusion energy En is close to the required fusion energy indicated by the solid line regardless of the temperature, as shown by the broken line C in FIG. Therefore, it is not necessary to control the energization time depending on the temperature.

【0022】なお、電気抵抗線として体積抵抗率の20
〜100℃間の平均温度係数が1000以上である電気
抵抗線を使用するようにしたのは、1000未満である
と、温度によって通電時間を制御する必要性がでてくる
からである。体積抵抗率の20〜100℃間の平均温度
係数が1000以上である電気抵抗線に該当する電気抵
抗線としては、JIS C 2532(1990)に規
定されている一般用銅ニッケル抵抗線、一般用ニッケル
アルミニュ−ム抵抗線、一般用ニッケル抵抗線および一
般用銅抵抗線がある。
The electric resistance line has a volume resistivity of 20.
The reason for using an electric resistance wire having an average temperature coefficient of 1000 or more between 100 ° C. and 1000 ° C. is that if the average temperature coefficient is less than 1000, it becomes necessary to control the energization time depending on the temperature. Examples of the electric resistance wire corresponding to the electric resistance wire having an average temperature coefficient between 20 to 100 ° C. of the volume resistivity of 1000 or more include general-purpose copper-nickel resistance wires specified in JIS C 2532 (1990), and general-purpose copper nickel resistance wires. There are nickel aluminum resistance wire, general nickel resistance wire and general copper resistance wire.

【0023】[0023]

【発明の実施の形態 】本発明の実施の形態を、図面を
参照して説明する。図1は本発明の電気融着継手の実施
の形態を示す説明図である。電気融着継手2(以下単に
継手という)にはバ−コ−ド1がラベルまたはタグで取
り付けられている。このバ−コ−ド1には、継手2の電
熱線に供給する通電制御パラメ−タをコ−ド化した情報
が入力されている。また、継手2にはコイル状の電熱線
3が埋設されている。電熱線3の両端部はタ−ミナルピ
ン4に接続され、継手2の左右の受け口から略中央まで
の被接続管5、5を挿入しておく。電気融着制御装置1
0は、電源部11、演算制御部12、記憶部13、読取
手段インタ−フェ−ス14、出力部15、表示部16、
読取手段17を具備している。そして、電源部11は演
算制御部12と出力部15に接続され、出力部15はケ
−ブル20、20を介して継手2に設けたコネクタ−2
1、21でタ−ミナルピン4に接続されている。そし
て、電源コ−ド22を電源に接続すると、適切な電流が
所定時間継手2に通電される。これにより、電熱線3は
発熱し、ポリエチレン等の熱可塑性樹脂からなる継手2
の内面と、同じポリエチレン等の熱可塑性樹脂からなる
被接続管5、5の外面が溶融され、両者が融着接合され
る。演算制御部12はマイクロプロセッサによって構成
され、記憶部13に接続されて情報の授受を行うととも
に接続の可否を判定し、出力部15に通電作動指令を送
ることができる。なお、記憶部13は通電制御デ−タや
融着履歴デ−タ等々を記録するようになっている。具体
的には、演算制御部12には読取手段インタ−フェ−ス
14を介して読取手段17から読み取ったバ−コ−ドの
通電制御パラメ−タのデ−タ(メ−カ−名、アイテムの
種類、呼び径、製造番号、設計肉厚、樹脂材質)が取り
込まれる。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing an embodiment of the electrofusion joint of the present invention. A bar code 1 is attached to the electrofusion joint 2 (hereinafter simply referred to as a joint) by a label or a tag. The bar code 1 is input with coded information of energization control parameters supplied to the heating wire of the joint 2. A coil-shaped heating wire 3 is embedded in the joint 2. Both ends of the heating wire 3 are connected to terminal pins 4, and connected pipes 5, 5 from the left and right receptacles of the joint 2 to the approximate center are inserted. Electric fusion control device 1
0 denotes a power supply unit 11, an operation control unit 12, a storage unit 13, a reading unit interface 14, an output unit 15, a display unit 16,
A reading unit 17 is provided. The power supply unit 11 is connected to the arithmetic and control unit 12 and the output unit 15, and the output unit 15 is connected to the connector 2 provided on the joint 2 via cables 20 and 20.
The terminals 1 and 21 are connected to the terminal pins 4. When the power supply cord 22 is connected to the power supply, an appropriate current is supplied to the joint 2 for a predetermined time. As a result, the heating wire 3 generates heat and the joint 2 made of a thermoplastic resin such as polyethylene.
And the outer surfaces of the connected pipes 5 and 5 made of the same thermoplastic resin such as polyethylene, and are fused and joined. The arithmetic control unit 12 is configured by a microprocessor, is connected to the storage unit 13 to exchange information, determines whether or not the connection is possible, and can send an energization operation command to the output unit 15. The storage unit 13 records energization control data, fusion history data, and the like. More specifically, the arithmetic and control unit 12 transmits data (a manufacturer name, a name of a power supply control parameter) of a bar code read from the reading means 17 via the reading means interface 14. Item type, nominal diameter, serial number, design thickness, resin material) are imported.

【0024】上述したような本発明の電気融着継手の電
熱線3には、銅の含有量が重量%で99%で、平均温度
係数が約3900の銅線が用いられている。そして、ボ
ビンにこの銅線をあらかじめ巻き付け、その外側に熱可
塑性樹脂を射出成形して、継手2を形成している。した
がって、本発明の電気融着継手の電熱線3に通電して、
継手2および被接続管5、5を溶融して融着接合させる
に際して、継手2の温度が低いときには、電熱線3の抵
抗が小さいので、発生する融着エネルギ−が大きく、継
手2の温度が高いときには、電熱線3の抵抗が大きいの
で、発生する融着エネルギ−が小さくなり、通電時間を
一定にしても、温度にかかわらず発生する融着エネルギ
−が融着に必要とするエネルギ−に比例することにな
り、温度により通電時間を制御することはない。
As the heating wire 3 of the above-described electrofusion joint of the present invention, a copper wire having a copper content of 99% by weight and an average temperature coefficient of about 3900 is used. Then, this copper wire is wound around a bobbin in advance, and a thermoplastic resin is injection-molded outside the bobbin to form the joint 2. Therefore, electricity is supplied to the heating wire 3 of the electrofusion joint of the present invention,
When the joint 2 and the connected pipes 5 and 5 are fused and joined by fusion, when the temperature of the joint 2 is low, the resistance of the heating wire 3 is small, so that the generated fusion energy is large and the temperature of the joint 2 is low. When the temperature is high, the resistance of the heating wire 3 is large, so that the generated fusion energy is small, and even if the energization time is constant, the generated fusion energy becomes the energy required for fusion regardless of the temperature. This is proportional, and the energization time is not controlled by the temperature.

【0025】[0025]

【実施例】本発明例として、平均温度係数3900の銅
線を抵抗線に用いた差込型呼び径75の電気融着継手を
用いて、継手に挿入した管との間の融着状況を調査し
た。融着開始時の継手の温度は40℃および−5℃を選
び、それぞれの温度で150秒の間通電して、高温側は
過融着の発生の有無を、低温側は融着不足の発生状態を
観察した。過融着の発生の判断は、合成樹脂が融け過ぎ
た場合には抵抗線の短絡が発生するので、電流値をモニ
タ−して電流値の瞬間的な増加があるか否かにより、ま
た融着不足の発生の判断は、JIS K 6775−3
に規定するピ−リング試験方法により行った。その結
果、40℃での過融着は認められず、また−5℃での剥
離率が10%であり、融着不足も認められなかった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As an example of the present invention, an insertion type electrofusion joint having a nominal diameter of 75 using a copper wire having an average temperature coefficient of 3900 as a resistance wire was used to determine the state of fusion between a pipe inserted into the joint. investigated. The temperature of the joint at the start of fusion is selected to be 40 ° C or -5 ° C, and the current is applied for 150 seconds at each temperature. The condition was observed. Judgment of the occurrence of over-fusing is made by monitoring the current value and checking whether there is an instantaneous increase in the current value because the resistance wire is short-circuited when the synthetic resin is melted too much. Judgment of the occurrence of shortage of clothes is made according to JIS K 6775-3.
The test was performed according to the pilling test method specified in the above. As a result, no excessive fusion was observed at 40 ° C., the peeling rate at −5 ° C. was 10%, and insufficient fusion was not observed.

【0026】一方、同時に行った平均温度係数200の
銅−ニッケルGCNを抵抗線に用いた従来例の電気融着
継手の場合には、120秒の通電時間に対して、40℃
で一部に短絡が生じ、−5℃で20%の剥離が認められ
た。
On the other hand, in the case of the conventional electrofusion joint using the copper-nickel GCN having an average temperature coefficient of 200 for the resistance wire, the heating was performed at 40 ° C. for an energizing time of 120 seconds.
, A short-circuit occurred partially, and 20% peeling was observed at -5 ° C.

【0027】[0027]

【発明の効果】この発明により、通電時間を変更するこ
となしに、真夏の炎天下でも、寒冷地でも電気融着継手
を正常に融着させることができる。
According to the present invention, the electro-fusion joint can be normally fused in the hot summer weather or in a cold region without changing the power-on time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電気融着継手の実施の形態を示す説明
図である。
FIG. 1 is an explanatory view showing an embodiment of an electrofusion joint of the present invention.

【図2】温度と融着エネルギ−の関係を示すグラフであ
る。
FIG. 2 is a graph showing a relationship between temperature and fusion energy.

【図3】従来の通電時間制御方法に使用される電気融着
制御装置のブロック図である。
FIG. 3 is a block diagram of an electrofusion control device used in a conventional energization time control method.

【図4】従来の通電時間制御方法における電気融着継手
の環境温度と通電時間との関係を示すグラフである。
FIG. 4 is a graph showing a relationship between an ambient temperature of an electric fusion joint and an energization time in a conventional energization time control method.

【符号の説明 】[Explanation of symbols]

1 バ−コ−ド 2 電気融着継手 3 電熱線 4 タ−ミナルピン 5 被接続管 10 電気融着制御装置 11 電源部 12 演算制御部 13 記憶部 14 読取手段インタ−フェ−ス 15 出力部 16 表示部 17 読取手段 20 ケ−ブル 21 コネクタ− 22 電源コ−ド DESCRIPTION OF SYMBOLS 1 Bar code 2 Electric fusion joint 3 Heating wire 4 Terminal pin 5 Connected pipe 10 Electric fusion control device 11 Power supply unit 12 Operation control unit 13 Storage unit 14 Reading means interface 15 Output unit 16 Display 17 Reading means 20 Cable 21 Connector 22 Power supply code

フロントページの続き (72)発明者 西野 克彦 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 3H019 GA02 3K092 PP20 QA02 QB02 QB27 QC02 QC18 QC37 RA06 RD12 TT37 UA06 UA19 UC07 4F211 AA04 AD05 AD12 AG08 AH11 AK09 AR11 TA01 TC11 TD07 TH02 TH06 TJ22 TN31 TQ10Continuation of front page (72) Inventor Katsuhiko Nishino 1-2-1 Marunouchi, Chiyoda-ku, Tokyo F-term in Nihon Kokan Co., Ltd. 3H019 GA02 3K092 PP20 QA02 QB02 QB27 QC02 QC18 QC37 RA06 RD12 TT37 UA06 UA19 UC19 4F211 AA04 AD05 AD12 AG08 AH11 AK09 AR11 TA01 TC11 TD07 TH02 TH06 TJ22 TN31 TQ10

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 継手の内面側に電気抵抗線を具備し、該
電気抵抗線に通電して発熱させて継手と管を溶融接合す
るに際しては、継手に取り付けた通電時間を入力したバ
−コ−ドを読み取ることにより通電時間を制御する方式
の電気融着継手において、前記電気抵抗線に体積抵抗率
の20〜100℃間の平均温度係数(10-6/K)が1
000以上である電気抵抗線を使用したことを特徴とす
る電気融着継手。
1. An electric resistance wire is provided on the inner surface side of a joint, and when the electric resistance wire is energized to generate heat so as to melt-join the joint and the pipe, a bar code inputting an energizing time attached to the joint is input. The average temperature coefficient (10 −6 / K) between 20 and 100 ° C. of the volume resistivity is 1 in the electric fusion joint of the type in which the energization time is controlled by reading the electric current.
An electro-fusion joint characterized by using an electric resistance wire of 000 or more.
JP2000306382A 2000-10-05 2000-10-05 Electric fusion joint Pending JP2002115791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000306382A JP2002115791A (en) 2000-10-05 2000-10-05 Electric fusion joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000306382A JP2002115791A (en) 2000-10-05 2000-10-05 Electric fusion joint

Publications (1)

Publication Number Publication Date
JP2002115791A true JP2002115791A (en) 2002-04-19

Family

ID=18787082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000306382A Pending JP2002115791A (en) 2000-10-05 2000-10-05 Electric fusion joint

Country Status (1)

Country Link
JP (1) JP2002115791A (en)

Similar Documents

Publication Publication Date Title
US4642155A (en) Thermoplastic fitting electric heat welding method and apparatus
US4602148A (en) Thermoplastic fitting electric heat welding method and apparatus
US4684789A (en) Thermoplastic fitting electric welding method and apparatus
US4978837A (en) Method and apparatus for electrically heat welding thermoplastic fittings
US4631107A (en) Thermoplastic fitting electric heat welding apparatus
JP2002115791A (en) Electric fusion joint
JP2660991B2 (en) Electric welding equipment
JP2578104B2 (en) Electric welding equipment
JP2000055280A (en) Electric fusing joint and its resistance welding control method
JP3731877B2 (en) Electrofusion method and electrofusion apparatus
JPH09210282A (en) Electric fusing joint and its current carrying control method
JP2009068717A (en) Controller for electric welding, and its current-carrying control method
JP3693186B2 (en) Energizing time control method and electrofusion apparatus for electrofusion joint
JP2003320587A (en) Method and apparatus for electric fusion, and electric fusion coupling
JP2008209008A (en) Electrofusion joint
JP2828425B2 (en) How to connect plastic tubes
JP4685268B2 (en) Resin joint energization control device
JP2843894B2 (en) How to connect plastic tubes
JPH079569A (en) Terminal adapter for fusion-bonding joint
JP2000035178A (en) Electric fusing joint and energization control method
JP3056278B2 (en) Measurement method of discrimination resistance of electrofusion joint
JPH09207225A (en) Electro-fusion welder and method for turning on electricity using that
JP2819010B2 (en) Electric welding equipment
JP4313445B2 (en) Fusion fusion control method and fusion control device for electric fusion joint
JP2819011B2 (en) Electric welding equipment