JP2002110986A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2002110986A
JP2002110986A JP2000296126A JP2000296126A JP2002110986A JP 2002110986 A JP2002110986 A JP 2002110986A JP 2000296126 A JP2000296126 A JP 2000296126A JP 2000296126 A JP2000296126 A JP 2000296126A JP 2002110986 A JP2002110986 A JP 2002110986A
Authority
JP
Japan
Prior art keywords
voltage
electrode
power chip
chip
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000296126A
Other languages
Japanese (ja)
Inventor
Naotaka Matsuda
尚孝 松田
Shin Soyano
伸 征矢野
Seiji Momota
聖自 百田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000296126A priority Critical patent/JP2002110986A/en
Publication of JP2002110986A publication Critical patent/JP2002110986A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4846Connecting portions with multiple bonds on the same bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/494Connecting portions
    • H01L2224/4943Connecting portions the connecting portions being staggered
    • H01L2224/49431Connecting portions the connecting portions being staggered on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Electronic Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve detection precision of a VCE voltage by reducing a floating inductance caused by wiring. SOLUTION: Related to a semiconductor device, a power chip 110, a VCE- voltage detecting diode chip 120 which detects a VCE voltage of the power chip 110, and a drive circuit 210 comprising an excessive current detecting circuit are built in the same vessel. A cathode electrode of the VCE-voltage detecting diode chip 120 is connected to the collector electrode of the power chip 110 on the same conductor surface, while an anode electrode is connected to a VCE-voltage detecting terminal DVCE of the drive circuit 210 comprising the excessive current detecting circuit, while being led out with an aluminum wire or the like. Thus, the collector electrode of the power chip 110 is connected to the cathode electrode of the VCE-voltage detecting diode chip 120 by a very short distance on the same conductor surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置に関し、
特に電力変換回路のスイッチング素子として用いられる
パワーチップとその過電流を検出する過電流検出回路を
有する駆動回路とを備えた半導体装置に関する。
The present invention relates to a semiconductor device,
In particular, the present invention relates to a semiconductor device including a power chip used as a switching element of a power conversion circuit and a drive circuit having an overcurrent detection circuit for detecting an overcurrent of the power chip.

【0002】[0002]

【従来の技術】従来、モータの可変速制御や電源装置等
の電力変換回路のスイッチング素子として用いられるI
GBT(Insulated Gate Bipola
r Transistor:絶縁ゲート型バイポーラト
ランジスタ)等のパワーチップを有する半導体装置に
は、パワーチップを含む素子を過電流破壊から保護する
ための過電流保護機能が設けられている。これらの半導
体装置として、IGBTを例にとり、過電流保護機能に
ついて説明する。
2. Description of the Related Art Conventionally, an I / O used as a switching element of a power conversion circuit such as a variable speed control of a motor or a power supply device is conventionally used.
GBT (Insulated Gate Bipola)
A semiconductor device having a power chip such as an rTransistor (insulated gate bipolar transistor) is provided with an overcurrent protection function for protecting an element including the power chip from overcurrent destruction. An overcurrent protection function will be described using an IGBT as an example of these semiconductor devices.

【0003】IGBTを過電流破壊から保護するため、
IGBTのコレクタ電極とエミッタ電極間の電圧(以
下、VCE電圧とする)を測定し、VCE電圧と電流値
との関係から一定のVCE電圧を超えたら過電流状態で
あると判定し、駆動回路の出力電圧を下げるか、または
出力電圧をゼロに下げることにより電流を遮断する方法
がよく知られている。このような例として、特許第29
13699号がある。
In order to protect the IGBT from overcurrent destruction,
The voltage between the collector electrode and the emitter electrode of the IGBT (hereinafter, referred to as VCE voltage) is measured, and if a certain VCE voltage is exceeded from the relationship between the VCE voltage and the current value, it is determined that an overcurrent state has occurred. It is well known how to cut off the current by lowering the output voltage or reducing the output voltage to zero. As such an example, Patent No. 29
No. 13699.

【0004】具体的な実施例について説明する。図7
は、従来の過電流検出機能を有するIGBT及び駆動回
路の回路接続図である。IGBTチップが内蔵されたパ
ワーモジュール310は、IGBTのコレクタ電極、エ
ミッタ電極、及びゲート電極を半導体装置の上面や側面
に設けた金属端子により、装置のケース外部に取り出
す。外部に取り出された金属端子を、それぞれコレクタ
端子C、エミッタ端子E、ゲート端子Gとする。コレク
タ端子Cには、VCE電圧検出用ダイオード320のカ
ソード電極を接続し、ゲート端子Gには、駆動回路21
0のドライブ出力端子DOUTを接続する。VCE電圧
検出用ダイオード320は、上記説明のように、カソー
ド電極はパワーモジュール310のコレクタ端子Cに接
続し、アノード電極は、駆動回路210のVCE電圧検
出端子DVCEに接続する。
A specific embodiment will be described. FIG.
FIG. 2 is a circuit connection diagram of a conventional IGBT having an overcurrent detection function and a drive circuit. The power module 310 with the built-in IGBT chip takes out the collector electrode, the emitter electrode, and the gate electrode of the IGBT out of the case of the device by using metal terminals provided on the upper surface and side surfaces of the semiconductor device. The metal terminals taken out are referred to as a collector terminal C, an emitter terminal E, and a gate terminal G, respectively. The collector terminal C is connected to the cathode electrode of the VCE voltage detecting diode 320, and the gate terminal G is connected to the drive circuit 21.
0 drive output terminal DOUT is connected. As described above, the VCE voltage detection diode 320 has a cathode electrode connected to the collector terminal C of the power module 310 and an anode electrode connected to the VCE voltage detection terminal DVCE of the drive circuit 210.

【0005】このような構成の半導体装置では、駆動回
路210は、VCE電圧検出用ダイオード320により
検出されるVCE電圧を監視し、VCE電圧と電流値と
の関係から一定のVCE電圧を超えたら過電流状態であ
ると判定し、駆動回路210のドライブ出力端子DOU
Tへの出力電圧を下げるか、または出力電圧をゼロに下
げることにより電流を遮断する。
In the semiconductor device having such a configuration, the drive circuit 210 monitors the VCE voltage detected by the VCE voltage detecting diode 320, and if the voltage exceeds a certain VCE voltage based on the relationship between the VCE voltage and the current value, the drive circuit 210 detects an error. It is determined that a current state is present, and the drive output terminal DOU of the drive circuit 210 is determined.
The current is interrupted by reducing the output voltage to T or by reducing the output voltage to zero.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来の過電流
を検出する半導体装置では、コレクタ電極と過電流検出
回路との間の配線インダクタンスがVCE電圧の検出精
度に影響を与えるという問題がある。
However, in the conventional semiconductor device for detecting overcurrent, there is a problem that the wiring inductance between the collector electrode and the overcurrent detection circuit affects the accuracy of detecting the VCE voltage.

【0007】上記説明の従来の半導体装置においては、
通常IGBTチップは、半導体装置の底部にある基板の
導体にコレクタ電極面が固着されている。その導体から
装置上面にあるコレクタ端子までは、金属線または金属
バーを介して接続されており、コレクタ電極からコレク
タ端子までの間に浮遊インダクタンスが存在する。
In the conventional semiconductor device described above,
Normally, an IGBT chip has a collector electrode surface fixed to a conductor of a substrate at the bottom of a semiconductor device. The conductor is connected to the collector terminal on the upper surface of the device via a metal wire or a metal bar, and a stray inductance exists between the collector electrode and the collector terminal.

【0008】近年、IGBTチップ性能が改良され、よ
り低損失化された反面電流変化率(di/dt)が大き
くなってきており、このdi/dtとコレクタ端子まで
のインダクタンスで発生する電圧が高くなっている。こ
の発生電圧は、上記説明のVCE電圧検出による過電流
検出・保護機能を有する回路では、IGBTチップのV
CE電圧が見かけ上高く検出されたり、あるいは低く検
出されたりするように働く。このため、電流変化が大き
いIGBTチップのスイッチング電流変化が終わるまで
VCE検出値を測定しないような方法がとられている。
しかしながら、低オン電圧特性を持つIGBTチップ
は、回路が短絡した場合の過電流が流れやすく、電流の
立ち上がりも早い。このため、過電流現象が発生したら
早く検出し、駆動回路を遮断する必要があり、VCE電
圧の測定が遅くなることは問題である。
In recent years, the IGBT chip performance has been improved and the loss has been reduced, while the current change rate (di / dt) has been increasing, and the voltage generated by this di / dt and the inductance to the collector terminal has been increased. Has become. In the circuit having the overcurrent detection / protection function based on the VCE voltage detection described above, the generated voltage
The CE voltage serves to detect an apparently high or low CE voltage. For this reason, a method is adopted in which the VCE detection value is not measured until the switching current change of the IGBT chip having a large current change ends.
However, an IGBT chip having a low on-voltage characteristic tends to cause an overcurrent when a circuit is short-circuited, and the current rises quickly. For this reason, if an overcurrent phenomenon occurs, it is necessary to detect it early and shut off the drive circuit, and there is a problem that the measurement of the VCE voltage becomes slow.

【0009】また、上記説明のモジュールの外付けVC
E電圧検出方式では、VCE検出点から検出ダイオード
を通り、VCE検出機能付駆動回路までの距離が長く、
ここにも浮遊インダクタンスが存在する。IGBTチッ
プやIGBTチップと逆並列に接続された還流用ダイオ
ードチップ(以下、FWDチップとする)に発生する電
圧変化率(dv/dt)が高いと、VCE電圧検出ダイ
オードの逆方向に電流が流れ、その電流変化と浮遊イン
ダクタンスにより、駆動回路のVCE検出端子電圧を変
えてしまうという問題がある。さらに、この時に駆動回
路に過大な電圧が印加されるという問題もある。
Further, the external VC of the module described above
In the E voltage detection method, the distance from the VCE detection point to the drive circuit with the VCE detection function through the detection diode is long,
There is also a stray inductance here. If the voltage change rate (dv / dt) generated in the IGBT chip or the freewheeling diode chip (hereinafter referred to as FWD chip) connected in antiparallel with the IGBT chip is high, current flows in the reverse direction of the VCE voltage detection diode. There is a problem that the VCE detection terminal voltage of the drive circuit is changed due to the current change and the stray inductance. Further, there is a problem that an excessive voltage is applied to the drive circuit at this time.

【0010】本発明はこのような点に鑑みてなされたも
のであり、配線により生じる浮遊インダクタンスを削減
し、VCE電圧の検出精度を向上させることで、過電流
の検出精度を上げる半導体装置を提供することを目的と
する。
The present invention has been made in view of the above points, and provides a semiconductor device that reduces the stray inductance generated by wiring and improves the accuracy of detecting a VCE voltage, thereby increasing the accuracy of detecting an overcurrent. The purpose is to do.

【0011】[0011]

【課題を解決するための手段】本発明では上記課題を解
決するために、パワーチップとその駆動回路とを備えた
半導体装置において、電力変換回路のスイッチング素子
として用いられるパワーチップと、前記パワーチップが
駆動時に前記パワーチップの入力側主電極の電圧を検出
する検出回路と、前記検出回路の検出した電圧を監視
し、前記電圧が所定の値を超えたことにより前記パワー
チップが過電流状態であることを検出する過電流検出回
路を有し、検出結果に応じて前記パワーチップへの駆動
信号を制御する駆動回路と、を同一容器に内蔵するとと
もに、前記パワーチップの入力側主電極が固着された導
体と同一の導体に前記検出回路の入力電極を固着し、前
記検出回路の電圧出力電極と前記駆動回路の電圧検出電
極とを接続したことを特徴とする半導体装置、が提供さ
れる。
According to the present invention, in order to solve the above-mentioned problems, in a semiconductor device provided with a power chip and a driving circuit thereof, a power chip used as a switching element of a power conversion circuit; A detection circuit that detects the voltage of the input side main electrode of the power chip during driving, monitors the voltage detected by the detection circuit, and when the voltage exceeds a predetermined value, the power chip is in an overcurrent state. And a drive circuit for controlling a drive signal to the power chip according to the detection result in the same container, and the input side main electrode of the power chip is fixed. The input electrode of the detection circuit is fixed to the same conductor as the selected conductor, and the voltage output electrode of the detection circuit is connected to the voltage detection electrode of the drive circuit. The semiconductor device according to claim, is provided.

【0012】このような構成の半導体装置は、電力変換
回路のスイッチング素子として用いられるパワーチップ
と、パワーチップが駆動時におけるパワーチップの入力
側主電極の電圧を検出する検出回路と、検出回路の検出
した電圧を監視して過電流状態を検出する過電流検出回
路を有し、検出結果に応じてパワーチップへの駆動信号
を調整する駆動回路と、が同一の容器内に内蔵されてい
る。パワーチップの入力側主電極と、検出回路の入力電
極と、を同一基板上の同一導体に固着し、検出回路の電
圧出力電極と駆動回路の電圧検出電極とを接続する。検
出回路の入力電極がパワーチップの入力側主電極に近接
するとともに、駆動回路内に設けられた過電流検出部ま
での距離が短くなる。
A semiconductor device having such a configuration includes a power chip used as a switching element of a power conversion circuit, a detection circuit for detecting a voltage of an input-side main electrode of the power chip when the power chip is driven, A drive circuit that has an overcurrent detection circuit that monitors the detected voltage to detect an overcurrent state and that adjusts a drive signal to the power chip according to the detection result is built in the same container. The input side main electrode of the power chip and the input electrode of the detection circuit are fixed to the same conductor on the same substrate, and the voltage output electrode of the detection circuit is connected to the voltage detection electrode of the drive circuit. The input electrode of the detection circuit is close to the input-side main electrode of the power chip, and the distance to the overcurrent detection unit provided in the drive circuit is reduced.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。ここでは、本発明に係る半導体装
置として、パワーチップがIGBTである場合を例にと
って説明する。図1は、本発明の一実施の形態である半
導体装置の回路接続図である。これは、本発明に係る半
導体装置の第1の実施例である。
Embodiments of the present invention will be described below with reference to the drawings. Here, a case where the power chip is an IGBT will be described as an example of the semiconductor device according to the present invention. FIG. 1 is a circuit connection diagram of a semiconductor device according to an embodiment of the present invention. This is a first embodiment of the semiconductor device according to the present invention.

【0014】本発明に係る半導体装置は、パワーチップ
110、パワーチップ110のVCE電圧を検出するV
CE電圧検出用ダイオードチップ120、及び過電流検
出回路を備えた駆動回路210とが、同一の容器に内蔵
されている。
In the semiconductor device according to the present invention, the power chip 110 and the VCE for detecting the VCE voltage of the power chip 110 are provided.
The CE voltage detection diode chip 120 and the drive circuit 210 including the overcurrent detection circuit are built in the same container.

【0015】パワーチップ110は、電力変換回路のス
イッチング素子として用いられるIGBTチップであ
る。パワーチップ110の入力側主電極であるコレクタ
電極は、VCE電圧検出用ダイオードチップ120のカ
ソード電極と同一導体面上で接続している。また、ゲー
ト電極は、駆動回路210のドライブ出力端子DOUT
と接続する。コレクタ電極及びエミッタ電極は、パワー
チップ110より引き出され、装置表面に設けられたコ
レクタ端子C及びエミッタ端子Eに接続する。
The power chip 110 is an IGBT chip used as a switching element of a power conversion circuit. The collector electrode, which is the input-side main electrode of the power chip 110, is connected to the cathode electrode of the diode chip 120 for VCE voltage detection on the same conductor surface. The gate electrode is connected to the drive output terminal DOUT of the drive circuit 210.
Connect with The collector electrode and the emitter electrode are drawn from the power chip 110 and connected to the collector terminal C and the emitter terminal E provided on the surface of the device.

【0016】VCE電圧検出用ダイオードチップ120
は、パワーチップ110が駆動時にパワーチップ110
のコレクタ電極の電圧を検出する。VCE電圧検出用ダ
イオードチップ120のカソード電極は、パワーチップ
110のコレクタ電極と同一導体面上で接続し、アノー
ド電極は、アルミワイヤなどで引き出して過電流検出回
路を備えた駆動回路210のVCE電圧検出端子DVC
Eに接続する。
VCE voltage detecting diode chip 120
Is the power chip 110 when the power chip 110 is driven.
Of the collector electrode is detected. The cathode electrode of the VCE voltage detection diode chip 120 is connected on the same conductor surface as the collector electrode of the power chip 110, and the anode electrode is pulled out with an aluminum wire or the like, and the VCE voltage of the drive circuit 210 having an overcurrent detection circuit is provided. Detection terminal DVC
Connect to E.

【0017】駆動回路210は、VCE電圧検出用ダイ
オードチップ120の検出したVCE電圧を監視し、V
CE電圧が所定の値を超えたことによりパワーチップ1
10が過電流状態であることを検出する過電流検出回路
を有し、検出結果に応じてパワーチップ110への駆動
信号を制御する。駆動回路210に供給される電源のグ
ランド電位はパワーチップ110のエミッタ電位と接続
され、エミッタ電位を基準として、駆動回路210の内
部(パワーチップ110の駆動回路や過電流検出回路
等)が動作する。駆動回路210のドライブ出力端子D
OUTは、パワーチップのゲート電極にアルミワイヤ等
で接続され、ゲート電極に与える電圧によってパワーチ
ップ110をオン/オフ制御する。
The drive circuit 210 monitors the VCE voltage detected by the VCE voltage detection diode chip 120, and
When the CE voltage exceeds a predetermined value, the power chip 1
10 has an overcurrent detection circuit for detecting an overcurrent state, and controls a drive signal to the power chip 110 according to the detection result. The ground potential of the power supply supplied to the drive circuit 210 is connected to the emitter potential of the power chip 110, and the inside of the drive circuit 210 (the drive circuit of the power chip 110, the overcurrent detection circuit, and the like) operates based on the emitter potential. . Drive output terminal D of drive circuit 210
OUT is connected to a gate electrode of the power chip by an aluminum wire or the like, and controls ON / OFF of the power chip 110 by a voltage applied to the gate electrode.

【0018】このような構成の半導体装置の動作につい
て説明する。パワーチップ110のゲート電極に閾値以
上の電圧が与えられるとIGBTがターンオンし、VC
E電圧検出用ダイオードチップ120が順バイアスされ
てオンする。駆動回路210のVCE電圧検出端子DV
CEに発生するVCE電圧は、次の関係になる。
The operation of the semiconductor device having such a configuration will be described. When a voltage equal to or higher than the threshold is applied to the gate electrode of the power chip 110, the IGBT is turned on and VC
The E voltage detection diode chip 120 is forward biased and turned on. VCE voltage detection terminal DV of drive circuit 210
The VCE voltage generated at CE has the following relationship.

【0019】[0019]

【数1】 VCE=Vce+Vf Vce:IGBTのコレクタ−エミッタ間電圧 Vf:VCE検出ダイオードの順電圧 ……(1) ここで、VceはIGBTのコレクタ電流Icに依存
し、過電流に相当するIcが流れた時のVceは前もっ
てわかっているとする。Vfを一定値として、過電流が
流れた時のVCE電圧を式(1)から導くことができ
る。算出された過電流が流れた時のVCE電圧を駆動回
路210の過電流検出回路の比較電圧Vrefとして設
定しておく。駆動回路210の過電流検出回路は、VC
E電圧検出端子DVCEに発生するVCE電圧とVre
fを比較することで過電流を検出することができる。過
電流を検出した場合には、ドライブ出力端子DOUTか
らパワーチップ110のゲート電極への出力電圧を下げ
るか、または出力電圧をゼロに下げることによってパワ
ーチップ110をオフする。
Vce = Vce + Vf Vce: Collector-emitter voltage of IGBT Vf: Forward voltage of VCE detection diode (1) Here, Vce depends on collector current Ic of IGBT, and Ic corresponding to overcurrent is It is assumed that Vce at the time of flowing is known in advance. With Vf being a constant value, the VCE voltage when an overcurrent flows can be derived from equation (1). The VCE voltage at the time when the calculated overcurrent flows is set as the comparison voltage Vref of the overcurrent detection circuit of the drive circuit 210. The overcurrent detection circuit of the drive circuit 210
VCE voltage generated at the E voltage detection terminal DVCE and Vre
By comparing f, an overcurrent can be detected. When an overcurrent is detected, the power chip 110 is turned off by lowering the output voltage from the drive output terminal DOUT to the gate electrode of the power chip 110 or by reducing the output voltage to zero.

【0020】次に、上記説明の半導体装置の構造につい
て説明する。図2は、本発明の一実施の形態である半導
体装置の構造図である。図1と同じものには同じ番号を
付し、説明は省略する。
Next, the structure of the above-described semiconductor device will be described. FIG. 2 is a structural diagram of a semiconductor device according to an embodiment of the present invention. The same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.

【0021】半導体装置は、駆動回路が組み込まれた駆
動IC(ベアチップ)211が搭載された駆動回路部2
00と、パワーチップ110及びVCE電圧検出用ダイ
オードチップ120が搭載されたパワー回路部100と
から構成される。
The semiconductor device has a drive circuit section 2 on which a drive IC (bare chip) 211 in which a drive circuit is incorporated is mounted.
00 and a power circuit section 100 on which a power chip 110 and a VCE voltage detection diode chip 120 are mounted.

【0022】パワー回路部100は、セラミック基板の
金属パターン170上にパワーチップ110及びVCE
電圧検出用ダイオードチップ120が搭載されている。
セラミック基板の裏面には、金属パターン170と同材
料の金属板が設けられており、この金属板がケース(図
示せず)底面より露出するようになっている。
The power circuit section 100 includes a power chip 110 and a VCE on a metal pattern 170 of a ceramic substrate.
The diode chip 120 for voltage detection is mounted.
A metal plate of the same material as the metal pattern 170 is provided on the back surface of the ceramic substrate, and this metal plate is exposed from the bottom of a case (not shown).

【0023】駆動回路部200は、プリント基板上に駆
動ICが搭載され、パワーチップ110及びVCE電圧
検出用ダイオードチップ120の電極と接続する駆動回
路200の電極がプリント基板表面に設けられた金属端
子により、取り出されている。例えば、VCE電圧検出
用ダイオードチップ120と接続するVCE電圧検出端
子DVCE、パワーチップ110と接続するドライブ出
力端子DOUT等である。
The drive circuit section 200 is a metal terminal having a drive IC mounted on a printed circuit board and having electrodes of the drive circuit 200 connected to electrodes of the power chip 110 and the VCE voltage detecting diode chip 120 provided on the surface of the printed circuit board. Has been taken out. For example, a VCE voltage detection terminal DVCE connected to the VCE voltage detection diode chip 120, a drive output terminal DOUT connected to the power chip 110, and the like.

【0024】パワー回路部100のセラミック基板の金
属パターン170上に設けられたパワーチップ110及
びVCE電圧検出用ダイオードチップ120の端子と、
駆動回路部200のプリント基板上に設けられた駆動回
路IC211の金属端子とは、ワイヤ180により接続
する。
Terminals of the power chip 110 and the VCE voltage detecting diode chip 120 provided on the metal pattern 170 of the ceramic substrate of the power circuit section 100;
The metal terminal of the drive circuit IC 211 provided on the printed circuit board of the drive circuit unit 200 is connected by a wire 180.

【0025】このように、パワーチップ110とVCE
電圧検出用ダイオードチップ120を同一の金属パター
ン170に搭載し、パワーチップ110のコレクタ電極
とVCE電圧検出用ダイオードチップ120のカソード
電極とを同一導体面上で接続したことにより、パワーチ
ップ110のIGBTコレクタ電極と、VCE電圧検出
用ダイオードチップ120のカソード電極が極めて短い
距離で接続される。このため、配線インダクタンスL1
の影響を小さくすることができ、電流変化率di/dt
により電圧降下L1・di/dtを小さくすることがで
きる。従って、駆動回路に内蔵した過電流検出回路の検
出精度が増す。
As described above, the power chip 110 and the VCE
The voltage detection diode chip 120 is mounted on the same metal pattern 170, and the collector electrode of the power chip 110 and the cathode electrode of the VCE voltage detection diode chip 120 are connected on the same conductor surface. The collector electrode and the cathode electrode of the VCE voltage detecting diode chip 120 are connected at an extremely short distance. Therefore, the wiring inductance L1
Can be reduced, and the current change rate di / dt can be reduced.
As a result, the voltage drop L1 · di / dt can be reduced. Therefore, the detection accuracy of the overcurrent detection circuit built in the drive circuit increases.

【0026】また、過電流検出回路を内蔵した駆動回路
200を装置内に組み込むことにより、VCE検出用ダ
イオードチップ120のアノード電極と駆動回路200
のVCE電圧検出端子とを短い距離で接続することがで
きる。このため、配線インダクタンスL2の影響を小さ
くでき、VCE検出ダイオードの逆方向に流れる電流の
変化率di/dtによる電圧降下L2・di/dtを小
さくすることができる。従って、駆動回路に内蔵した過
電流検出回路の検出精度が増す効果が得られる。
Further, by incorporating a drive circuit 200 having a built-in overcurrent detection circuit in the device, the anode electrode of the diode chip 120 for VCE detection and the drive circuit 200
VCE voltage detection terminal can be connected at a short distance. Therefore, the effect of the wiring inductance L2 can be reduced, and the voltage drop L2 · di / dt due to the rate of change di / dt of the current flowing in the reverse direction of the VCE detection diode can be reduced. Therefore, the effect of increasing the detection accuracy of the overcurrent detection circuit built in the drive circuit can be obtained.

【0027】次に、本発明の半導体装置における第2の
実施例について説明する。図3は、本発明の第2の実施
例である半導体装置の回路接続図である。図1と同じも
のには同じ番号を付し、説明は省略する。
Next, a description will be given of a second embodiment of the semiconductor device according to the present invention. FIG. 3 is a circuit connection diagram of a semiconductor device according to a second embodiment of the present invention. The same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.

【0028】本発明の第2の実施例である半導体装置
は、パワーチップ110、パワーチップ110のVCE
電圧を検出するVCE電圧検出用ダイオードチップ12
1、及び過電流検出回路を備えた駆動回路210とが、
同一の容器に内蔵されている。
A semiconductor device according to a second embodiment of the present invention includes a power chip 110, a power supply
VCE voltage detecting diode chip 12 for detecting voltage
1 and a drive circuit 210 including an overcurrent detection circuit,
Built in the same container.

【0029】本発明の第2の実施例である半導体装置
は、上記説明の第1の実施例のVCE電圧検出用ダイオ
ードチップ120の代わりに、同じ目的のダイオードを
FWDチップに作り込んだVCE電圧検出用ダイオード
チップ121を用いた構成である。
The semiconductor device according to the second embodiment of the present invention is different from the first embodiment in that the VCE voltage detecting diode chip 120 of the first embodiment is replaced with a VCE voltage having a diode for the same purpose built in the FWD chip. This is a configuration using a detection diode chip 121.

【0030】VCE電圧検出用ダイオードチップ121
は、VCE電圧検出用ダイオード121aと、還流用ダ
イオード121bとから構成される。VCE電圧検出用
ダイオード121aのカソード電極と、還流用ダイオー
ド121bのカソード電極とは、コモン電極としてパワ
ーチップ110のコレクタ電極が固着された導体と同一
の導体に固着される。また、VCE電圧検出用ダイオー
ド121aのアノード電極は、VCE電圧検出用ダイオ
ードチップ121から引き出し、装置内部に設けられた
駆動回路210のVCE電圧検出端子DVCEに接続す
る。還流用ダイオード121bのアノード電極は、パワ
ーチップ110のエミッタ電極に接続する。
VCE voltage detecting diode chip 121
Is composed of a VCE voltage detecting diode 121a and a reflux diode 121b. The cathode electrode of the VCE voltage detection diode 121a and the cathode electrode of the reflux diode 121b are fixed to the same conductor as the common electrode to which the collector electrode of the power chip 110 is fixed. The anode electrode of the VCE voltage detection diode 121a is drawn from the VCE voltage detection diode chip 121 and connected to the VCE voltage detection terminal DVCE of the drive circuit 210 provided inside the device. The anode electrode of the reflux diode 121b is connected to the emitter electrode of the power chip 110.

【0031】このように、VCE電圧検出用ダイオード
チップ121には、VCE電圧検出用ダイオード121
a領域と、還流用ダイオード121b領域とが設けられ
ている。これらの領域は、一導体型の半導体基板に拡散
等の方法により分散して他導電型の領域を設け、個々に
金属電極を設けることで容易に実現できる。
As described above, the VCE voltage detecting diode 121 is mounted on the VCE voltage detecting diode chip 121.
A region and a reflux diode 121b region are provided. These regions can be easily realized by dispersing the semiconductor substrate of one conductor type by a method such as diffusion to provide regions of another conductivity type, and providing individual metal electrodes.

【0032】その他の構成は、上記説明の第1の実施例
の半導体装置と同じである。また、その動作は上記説明
の第1の実施例の半導体装置と同様であるので、説明を
省略する。
The other structure is the same as that of the semiconductor device of the first embodiment described above. Further, the operation is the same as that of the semiconductor device of the first embodiment described above, and the description is omitted.

【0033】次に、上記説明の半導体装置の構造につい
て説明する。図4は、本発明の第2の実施例である半導
体装置の構造図である。図2、図3と同じものには同じ
番号を付し、説明は省略する。
Next, the structure of the above-described semiconductor device will be described. FIG. 4 is a structural diagram of a semiconductor device according to a second embodiment of the present invention. 2 and 3 are denoted by the same reference numerals, and description thereof is omitted.

【0034】第2の半導体装置は、駆動回路が組み込ま
れた駆動IC211が搭載された駆動回路部200と、
パワーチップ110及びVCE電圧検出用ダイオードチ
ップ121が搭載されたパワー回路部100とから構成
される。
The second semiconductor device comprises a drive circuit section 200 on which a drive IC 211 incorporating a drive circuit is mounted;
The power circuit unit 100 includes a power chip 110 and a VCE voltage detecting diode chip 121.

【0035】パワー回路部100は、セラミック基板の
金属パターン170上にパワーチップ110及びVCE
電圧検出用ダイオードチップ121が搭載されている。
その他の構造は、第1の実施例と同様である。
The power circuit section 100 includes a power chip 110 and a VCE on a metal pattern 170 of a ceramic substrate.
The voltage detection diode chip 121 is mounted.
Other structures are the same as those of the first embodiment.

【0036】このように、パワーチップ110とVCE
電圧検出用ダイオードチップ121を同一の金属パター
ン170に搭載し、パワーチップ110のコレクタ電極
とVCE電圧検出用ダイオードチップ120のVCE電
圧検出用ダイオード121aのカソード電極とを同一導
体面上で接続したことにより、パワーチップ110のI
GBTコレクタ電極と、VCE電圧検出用ダイオード1
21aのカソード電極が極めて短い距離で接続される。
このため、配線インダクタンスL1の影響を小さくする
ことができ、駆動回路に内蔵した過電流検出回路の検出
精度が増す。
As described above, the power chip 110 and the VCE
The voltage detection diode chip 121 is mounted on the same metal pattern 170, and the collector electrode of the power chip 110 and the cathode electrode of the VCE voltage detection diode 121a of the VCE voltage detection diode chip 120 are connected on the same conductor surface. As a result, I of the power chip 110
GBT collector electrode and VCE voltage detection diode 1
The cathode electrode 21a is connected at a very short distance.
For this reason, the influence of the wiring inductance L1 can be reduced, and the detection accuracy of the overcurrent detection circuit built in the drive circuit increases.

【0037】また、駆動回路を同一装置内に組み込んだ
ことにより得られる効果は、第1の実施例と同様であ
る。次に、本発明の半導体装置における第3の実施例に
ついて説明する。図5は、本発明の第3の実施例である
半導体装置の回路接続図である。図1と同じものには同
じ番号を付し、説明は省略する。
The effect obtained by incorporating the drive circuit in the same device is the same as that of the first embodiment. Next, a third embodiment of the semiconductor device of the present invention will be described. FIG. 5 is a circuit connection diagram of a semiconductor device according to a third embodiment of the present invention. The same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.

【0038】本発明の第3の実施例である半導体装置
は、VCE電圧検出用ダイオードが組み込まれたダイオ
ード内蔵パワーチップ130と、過電流検出回路を備え
た駆動回路210とが、同一の容器に内蔵されている。
In the semiconductor device according to the third embodiment of the present invention, a power chip 130 with a built-in diode incorporating a VCE voltage detection diode and a drive circuit 210 having an overcurrent detection circuit are provided in the same container. Built-in.

【0039】本発明の第3の実施例である半導体装置
は、上記説明の第1の実施例のVCE電圧検出用ダイオ
ードチップ120の代わりに、同じ目的のダイオードを
パワーチップ110に作り込んだ構成である。パワーチ
ップにダイオードを内蔵するには、半導体基板内に拡散
等により形成するか、あるいは、半導体基板上に絶縁層
を介して形成すればよい。
The semiconductor device according to the third embodiment of the present invention has a structure in which a diode for the same purpose is formed in the power chip 110 instead of the VCE voltage detecting diode chip 120 of the first embodiment described above. It is. In order to incorporate a diode in the power chip, it may be formed in a semiconductor substrate by diffusion or the like, or may be formed on a semiconductor substrate via an insulating layer.

【0040】ダイオード内蔵パワーチップ130は、V
CE電圧検出用ダイオードを内蔵しており、VCE電圧
検出用ダイオードのカソード電極とIGBTコレクタ電
極とは、コモン電極として基板上の導体に固着する。ま
た、VCE電圧検出用ダイオードのアノード電極は、ダ
イオード内蔵パワーチップ130より引き出し、装置内
部に設けられた駆動回路210のVCE電圧検出端子D
VCEと接続する。
The power chip 130 with a built-in diode
A CE voltage detection diode is built in, and the cathode electrode and the IGBT collector electrode of the VCE voltage detection diode are fixed to a conductor on a substrate as a common electrode. Further, the anode electrode of the VCE voltage detecting diode is drawn out from the power chip 130 with a built-in diode, and the VCE voltage detecting terminal D of the driving circuit 210 provided inside the device.
Connect to VCE.

【0041】その他の構成は、上記説明の第1の実施例
の半導体装置と同じである。また、その動作は上記説明
の第1の実施例の半導体装置と同様であるので、説明を
省略する。
The other structure is the same as that of the semiconductor device of the first embodiment described above. Further, the operation is the same as that of the semiconductor device of the first embodiment described above, and the description is omitted.

【0042】次に、上記説明の半導体装置の構造につい
て説明する。図6は、本発明の第3の実施例である半導
体装置の構造図である。図2、図5と同じものには同じ
番号を付し、説明は省略する。
Next, the structure of the above-described semiconductor device will be described. FIG. 6 is a structural diagram of a semiconductor device according to a third embodiment of the present invention. 2 and 5 are denoted by the same reference numerals, and description thereof is omitted.

【0043】半導体装置は、駆動回路が組み込まれた駆
動IC211が搭載された駆動回路部200と、VCE
電圧検出用ダイオードを内蔵するダイオード内蔵パワー
チップ130が搭載されたパワー回路部100とから構
成される。
The semiconductor device includes a driving circuit unit 200 on which a driving IC 211 incorporating a driving circuit is mounted, and a VCE
And a power circuit section 100 on which a diode built-in power chip 130 having a built-in voltage detecting diode is mounted.

【0044】パワー回路部100は、セラミック基板の
金属パターン170上にダイオード内蔵パワーチップ1
30が搭載されている。その他の構造は、第1の実施例
と同様である。
The power circuit section 100 includes a power chip 1 with a built-in diode on a metal pattern 170 on a ceramic substrate.
30 are mounted. Other structures are the same as those of the first embodiment.

【0045】このように、ダイオード内蔵パワーチップ
130にVCE電圧検出用ダイオードチップを作り込
み、IGBTコレクタ電極とVCE電圧検出用ダイオー
ドのカソード電極とを基板上の同一導体で接続したこと
により、IGBTコレクタ電極と、VCE電圧検出用ダ
イオードのカソード電極が極めて短い距離で接続され
る。このため、配線インダクタンスL1の影響を小さく
することができ、駆動回路に内蔵した過電流検出回路の
検出精度が増す。
As described above, the VCE voltage detecting diode chip is formed in the diode built-in power chip 130, and the IGBT collector electrode and the cathode electrode of the VCE voltage detecting diode are connected by the same conductor on the substrate. The electrode and the cathode electrode of the VCE voltage detecting diode are connected at a very short distance. For this reason, the influence of the wiring inductance L1 can be reduced, and the detection accuracy of the overcurrent detection circuit built in the drive circuit increases.

【0046】また、駆動回路を同一装置内に組み込んだ
ことにより得られる効果は、第1の実施例と同様であ
る。
The effect obtained by incorporating the drive circuit in the same device is the same as that of the first embodiment.

【0047】[0047]

【発明の効果】以上説明したように本発明では、パワー
チップと、パワーチップの入力側主電極の電圧を検出す
る検出回路と、検出した電圧を監視してパワーチップが
過電流状態であることを検出し、パワーチップへの駆動
信号を制御する駆動回路と、を同一の容器内に内蔵して
いる。また、検出回路の入力電極は、パワーチップの入
力側主電極と同一基板上の同一導体に固着し、電圧出力
電極は、駆動回路の電圧検出電極と接続する。
As described above, according to the present invention, the power chip, the detection circuit for detecting the voltage of the input-side main electrode of the power chip, and the detection of the detected voltage are such that the power chip is in an overcurrent state. And a drive circuit for detecting a drive signal to the power chip are built in the same container. The input electrode of the detection circuit is fixed to the same conductor on the same substrate as the input main electrode of the power chip, and the voltage output electrode is connected to the voltage detection electrode of the drive circuit.

【0048】これにより、パワーチップの入力側主電極
と、検出回路の入力電極は、同一導体上という極めて短
い距離で接続されることになる。検出回路は、パワーチ
ップの入力側主電極の電圧を直近で測定することが可能
となり、配線インダクタンスの影響を小さくすることが
できる。この結果、駆動回路に内蔵した過電流検出回路
の検出精度が増すという効果が得られる。
As a result, the input-side main electrode of the power chip and the input electrode of the detection circuit are connected at a very short distance on the same conductor. The detection circuit can measure the voltage of the input-side main electrode of the power chip immediately, and can reduce the influence of the wiring inductance. As a result, the effect of increasing the detection accuracy of the overcurrent detection circuit built in the drive circuit can be obtained.

【0049】また、過電流検出回路を内蔵した駆動回路
を組み込むことによって、検出回路の電圧出力電極と駆
動回路の電圧検出電極とを極めて短い距離で接続するこ
とができる。この結果、駆動回路に内蔵した過電流検出
回路の検出精度がさらに増すという効果が得られる。
Further, by incorporating a drive circuit having a built-in overcurrent detection circuit, the voltage output electrode of the detection circuit and the voltage detection electrode of the drive circuit can be connected at a very short distance. As a result, an effect is obtained that the detection accuracy of the overcurrent detection circuit built in the drive circuit is further increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態である半導体装置の回路
接続図である。
FIG. 1 is a circuit connection diagram of a semiconductor device according to an embodiment of the present invention.

【図2】本発明の一実施の形態である半導体装置の構造
図である。
FIG. 2 is a structural diagram of a semiconductor device according to an embodiment of the present invention;

【図3】本発明の第2の実施例である半導体装置の回路
接続図である。
FIG. 3 is a circuit connection diagram of a semiconductor device according to a second embodiment of the present invention.

【図4】本発明の第2の実施例である半導体装置の構造
図である。
FIG. 4 is a structural diagram of a semiconductor device according to a second embodiment of the present invention.

【図5】本発明の第3の実施例である半導体装置の回路
接続図である。
FIG. 5 is a circuit connection diagram of a semiconductor device according to a third embodiment of the present invention.

【図6】本発明の第3の実施例である半導体装置の構造
図である。
FIG. 6 is a structural diagram of a semiconductor device according to a third embodiment of the present invention.

【図7】従来の過電流検出機能を有するIGBT及び駆
動回路の回路接続図である。
FIG. 7 is a circuit connection diagram of a conventional IGBT having an overcurrent detection function and a drive circuit.

【符号の説明】[Explanation of symbols]

110 パワーチップ 120 VCE電圧検出用ダイオードチップ 210 駆動回路 IGBT 絶縁ゲート型バイポーラトランジスタ DVCE VCE電圧検出端子 DOUT ドライブ出力端子 C コレクタ端子 E エミッタ端子 110 Power Chip 120 VCE Voltage Detection Diode Chip 210 Drive Circuit IGBT Insulated Gate Bipolar Transistor DVCE VCE Voltage Detection Terminal DOUT Drive Output Terminal C Collector Terminal E Emitter Terminal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 23/62 H03K 17/08 B H03K 17/08 H01L 21/60 301A 17/60 23/56 A // H01L 21/60 301 H03K 17/60 A (72)発明者 百田 聖自 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 5F044 AA12 FF05 5J055 AX42 AX47 BX16 CX19 CX20 DX09 EX06 EX12 EY12 EZ61 FX05 FX12 FX20 FX33 GX02 GX08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 23/62 H03K 17/08 B H03K 17/08 H01L 21/60 301A 17/60 23/56 A // H01L 21/60 301 H03K 17/60 A (72) Inventor Seiji Momota 1-1, Tanabe-shinda, Kawasaki-ku, Kawasaki-shi, Kanagawa F-term in Fuji Electric Co., Ltd. F-term (reference) 5F044 AA12 FF05 5J055 AX42 AX47 BX16 CX19 CX20 DX09 EX06 EX12 EY12 EZ61 FX05 FX12 FX20 FX33 GX02 GX08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 パワーチップとその駆動回路とを備えた
半導体装置において、 電力変換回路のスイッチング素子として用いられるパワ
ーチップと、 前記パワーチップが駆動時に前記パワーチップの入力側
主電極の電圧を検出する検出回路と、 前記検出回路の検出した電圧を監視し、前記電圧が所定
の値を超えたことにより前記パワーチップが過電流状態
であることを検出する過電流検出回路を有し、検出結果
に応じて前記パワーチップへの駆動信号を制御する駆動
回路と、 を同一容器に内蔵するとともに、前記パワーチップの入
力側主電極が固着された導体と同一の導体に前記検出回
路の入力電極を固着し、前記検出回路の電圧出力電極と
前記駆動回路の電圧検出電極とを接続したことを特徴と
する半導体装置。
1. A semiconductor device comprising a power chip and a drive circuit therefor, comprising: a power chip used as a switching element of a power conversion circuit; and detecting a voltage of an input-side main electrode of the power chip when the power chip is driven. A detection circuit that monitors a voltage detected by the detection circuit and detects that the power chip is in an overcurrent state when the voltage exceeds a predetermined value. And a drive circuit for controlling a drive signal to the power chip in accordance with the following formula: embedded in the same container, and the input electrode of the detection circuit on the same conductor as the conductor to which the input main electrode of the power chip is fixed. And a voltage output electrode of the detection circuit and a voltage detection electrode of the drive circuit are connected.
【請求項2】 前記検出回路は、ダイオードチップであ
り、前記パワーチップの入力側主電極が固着された導体
と同一の導体に前記ダイオードチップのカソード電極を
固着し、前記駆動回路の電圧検出電極と前記ダイオード
チップのアノード電極を接続することを特徴とする請求
項1記載の半導体装置。
2. The voltage detection electrode of the drive circuit, wherein the detection circuit is a diode chip, and the cathode electrode of the diode chip is fixed to the same conductor as the conductor to which the input main electrode of the power chip is fixed. 2. The semiconductor device according to claim 1, wherein the semiconductor device is connected to an anode electrode of the diode chip.
【請求項3】 前記検出回路は、前記パワーチップと逆
並列に接続される還流用ダイオードチップの一部に設け
られ、前記パワーチップの入力側主電極の電圧を検出す
る電圧検出用ダイオードであり、前記電圧検出用ダイオ
ードのカソード電極と前記還流用ダイオードのカソード
電極とをコモン電極として前記パワーチップの入力側主
電極が固着された導体と同一の導体に固着し、前記電圧
検出用ダイオードのアノード電極を前記駆動回路の電圧
検出電極と接続することを特徴とする請求項1記載の半
導体装置。
3. The voltage detection diode is provided on a part of a return diode chip connected in anti-parallel to the power chip and detects a voltage of an input-side main electrode of the power chip. The cathode of the voltage detection diode and the cathode of the reflux diode are fixed to the same conductor as the conductor to which the input-side main electrode of the power chip is fixed, and the anode of the voltage detection diode is 2. The semiconductor device according to claim 1, wherein an electrode is connected to a voltage detection electrode of the driving circuit.
【請求項4】 前記検出回路は、前記パワーチップの
一部に設けられた前記パワーチップの入力側主電極の電
圧を検出する電圧検出用ダイオードであり、前記電圧検
出用ダイオードのカソード電極と前記パワーチップの入
力側主電極とをコモン電極として基板上の導体に固着
し、前記電圧検出用ダイオードのアノード電極を前記駆
動回路の電圧検出電極と接続することを特徴とする請求
項1記載の半導体装置。
4. The detection circuit is a voltage detection diode for detecting a voltage of an input-side main electrode of the power chip provided in a part of the power chip, and a cathode electrode of the voltage detection diode and the voltage detection diode. 2. The semiconductor according to claim 1, wherein an input side main electrode of the power chip is fixed to a conductor on a substrate as a common electrode, and an anode electrode of the voltage detection diode is connected to a voltage detection electrode of the drive circuit. apparatus.
JP2000296126A 2000-09-28 2000-09-28 Semiconductor device Pending JP2002110986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000296126A JP2002110986A (en) 2000-09-28 2000-09-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000296126A JP2002110986A (en) 2000-09-28 2000-09-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2002110986A true JP2002110986A (en) 2002-04-12

Family

ID=18778448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000296126A Pending JP2002110986A (en) 2000-09-28 2000-09-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2002110986A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1503490A1 (en) * 2003-08-01 2005-02-02 Infineon Technologies AG Current sensing circuit
JP2013214597A (en) * 2012-04-02 2013-10-17 Sumitomo Electric Ind Ltd Semiconductor device
JP2015126084A (en) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 Semiconductor device
US10396071B2 (en) 2017-04-06 2019-08-27 Fuji Electric Co., Ltd. Semiconductor device having a sense diode portion
US11855077B2 (en) 2018-02-28 2023-12-26 Fuji Electric Co., Ltd. Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209834A (en) * 1986-03-11 1987-09-16 Toshiba Corp Semiconductor device and manufacture of the same, and substrate for mounting semiconductor element
JPH03183209A (en) * 1988-11-16 1991-08-09 Fuji Electric Co Ltd Drive circuit for voltage driven type semiconductor element
JPH07221265A (en) * 1994-01-28 1995-08-18 Hitachi Ltd Power semiconductor module
JPH08340103A (en) * 1995-04-11 1996-12-24 Toshiba Corp Power semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209834A (en) * 1986-03-11 1987-09-16 Toshiba Corp Semiconductor device and manufacture of the same, and substrate for mounting semiconductor element
JPH03183209A (en) * 1988-11-16 1991-08-09 Fuji Electric Co Ltd Drive circuit for voltage driven type semiconductor element
JPH07221265A (en) * 1994-01-28 1995-08-18 Hitachi Ltd Power semiconductor module
JPH08340103A (en) * 1995-04-11 1996-12-24 Toshiba Corp Power semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1503490A1 (en) * 2003-08-01 2005-02-02 Infineon Technologies AG Current sensing circuit
JP2013214597A (en) * 2012-04-02 2013-10-17 Sumitomo Electric Ind Ltd Semiconductor device
JP2015126084A (en) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 Semiconductor device
US10396071B2 (en) 2017-04-06 2019-08-27 Fuji Electric Co., Ltd. Semiconductor device having a sense diode portion
US11855077B2 (en) 2018-02-28 2023-12-26 Fuji Electric Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
EP0599605A2 (en) Semiconductor device with current-sensing function
JP2837054B2 (en) Insulated gate semiconductor device
JP3243902B2 (en) Semiconductor device
JP5940211B2 (en) Semiconductor device
US8803508B2 (en) Semiconductor device and error detector
JP2006042410A (en) Snubber device
US7102376B2 (en) Power semiconductor module with detector for detecting main circuit current through power semiconductor element
US5530277A (en) Insulated-gate bipolar transistor
JP6245377B2 (en) Semiconductor device and bus bar
JPWO2019038957A1 (en) Control circuit and power conversion device
JP2000124781A (en) Voltage driven type semiconductor device temperature detection circuit and temperature detection method and driving device and voltage driven type semiconductor device using the same
US6445068B1 (en) Semiconductor module
JP2002110986A (en) Semiconductor device
JPH03263363A (en) Semiconductor device
US4339670A (en) Zero voltage switching AC relay circuit
US5559347A (en) Insulated gate-type bipolar transistor
JP2011228934A (en) Power module
JP2022015427A (en) Electronic circuit and semiconductor module
JPH08316472A (en) Current feeding circuit
EP0278086A2 (en) Current limited semiconductor circuit
US5396120A (en) Semiconductor integrated unit
CN111354721A (en) Semiconductor device with a plurality of semiconductor chips
JPH09162391A (en) Insulated gate bipolar transistor
JPH0936356A (en) Application of bipolar semiconductor element comprising temperature detector
JP4517901B2 (en) Power semiconductor module and drive circuit thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315