JP2002108954A - Method for designing shape - Google Patents

Method for designing shape

Info

Publication number
JP2002108954A
JP2002108954A JP2000338369A JP2000338369A JP2002108954A JP 2002108954 A JP2002108954 A JP 2002108954A JP 2000338369 A JP2000338369 A JP 2000338369A JP 2000338369 A JP2000338369 A JP 2000338369A JP 2002108954 A JP2002108954 A JP 2002108954A
Authority
JP
Japan
Prior art keywords
shape
curvature
value
product
shapes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000338369A
Other languages
Japanese (ja)
Inventor
Yasuhiro Sakamoto
康泰 坂元
Fusahito Yoshida
総仁 吉田
Susumu Ohata
前 大畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPACE CONTROL Inc
Original Assignee
SPACE CONTROL Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPACE CONTROL Inc filed Critical SPACE CONTROL Inc
Priority to JP2000338369A priority Critical patent/JP2002108954A/en
Publication of JP2002108954A publication Critical patent/JP2002108954A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Numerical Control (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a general method for preparing a shape between two known shapes or preparing a shape obtained by extrapolating these shapes, to numerically express the provided shape by using the smoothness/complexity of the shape as the quantity of differences from original shapes and to use the prepared shape for evaluating moldability in production or the like. SOLUTION: In a shape changing method for generating an intermediate shape when a product shape A and the plate or cylinder of an initial material shape are given, a change expression to move in the normal direction of the shape is used corresponding to the difference between the curvature values of individual points (or a fixed curvature values) on the product shape and the curvature values of the individual points on the initial material shape. The final shape after repeatedly applying this change expression becomes the initial material shape and a shape gradually changing from the product shape to the initial material shape can be provided. Since the curvature value of the plate or cylinder which are popular as initial material shapes is fixed, the shape is converged to that value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、鍛造品などの加工形
状、ないし形状加工するための金型形状など、物体の面
形状を設計する方法に関する。特にCAD/CAMを用
いた塑性加工面の自動設計に適する形状の設計方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for designing a surface shape of an object, such as a processed shape of a forged product or a die shape for shape processing. In particular, the present invention relates to a shape designing method suitable for automatic design of a plastic working surface using CAD / CAM.

【0002】[0002]

【従来の技術】鍛造品の金型加工において、素材初期形
状から製品形状を一度に成形することが困難なとき、中
間金型が用いられる。その中間金型形状の設計は、過去
に製作した類似製品の製品形状とその時に製造に用いら
れた中間金型形状の中から近い形状を選択しこれに経験
的な方法あるいは何らかの数値処理方法により設計する
方法が行なわれていた。例えば、特開平10−2549
26号公報には、新鍛造品の中間形状を決めるときに、
新鍛造品形状、新鍛造製品に類似の既鍛造品形状、その
既鍛造品の前工程の形状を予め求めておき、これら3者
の合成計算によって新鍛造品の前工程の形状を設計する
方法が開示されている。その場合、参考となる過去の類
似形状が存在することが前提であった。過去の類似形状
がない場合には、中間形状を自動設計することができな
いという課題がある。
2. Description of the Related Art In the processing of a die for a forged product, an intermediate die is used when it is difficult to simultaneously form a product shape from an initial shape of a material. The design of the intermediate mold shape is made by selecting a close shape from the product shape of similar products manufactured in the past and the intermediate mold shape used at the time of manufacture, and using an empirical method or some numerical processing method The way to design was done. For example, Japanese Patent Application Laid-Open No. 10-2549
No. 26 discloses that when determining the intermediate shape of a new forged product,
A method of designing a new forged product shape, a forged product shape similar to the new forged product, and a shape of the pre-process of the pre-forged product in advance, and designing a shape of the pre-process of the new forged product by a synthetic calculation of the three. Is disclosed. In that case, it was assumed that there was a similar shape in the past that served as a reference. If there is no similar shape in the past, there is a problem that an intermediate shape cannot be automatically designed.

【0003】また製品形状の滑らかさ・複雑さは、成形
加工の難易度や成形工程の複雑さに強く影響するが、従
来、加工面の滑らかさ・複雑さ、成形工程のさなど(以
下成形性という)に影響する面形状を統一的な形で表現
し、成形性の推測や、設計される加工面の評価に用いる
ことができる指標がなかった。
[0003] The smoothness and complexity of the product shape has a strong influence on the difficulty of the molding process and the complexity of the molding process. The surface shape that influences the surface characteristics is expressed in a unified form, and there is no index that can be used for estimating the formability or evaluating the machined surface to be designed.

【0004】[0004]

【発明が解決しようとする課題】 本発明は、上記課題
を解決して、過去の経験に基づく類似形状がなくても合
理的な加工中間段階の面形状を作成でき、また生産加工
における成形性の推測や設計される加工面の評価に適す
る面形状の統一的な指標を得ることのできる面形状の設
計方法を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and can create a reasonable surface shape in the intermediate stage of processing without a similar shape based on past experience, and also has a good formability in production processing. It is an object of the present invention to obtain a surface shape designing method capable of obtaining a unified index of a surface shape suitable for estimating a surface to be designed and evaluating a machined surface to be designed.

【0005】[0005]

【発明を解決するための手段】上記課題を解決するため
に、請求項1に記載した第1の発明は、形状を設計する
方法であって、予め与えられた立体形状を構成する面に
基づき、面上の各点が、各点の曲率比例量を含む距離だ
け移動した点をもって新たな面とし、これを繰り返すこ
とによって得られる面を用いて立体形状を作成すること
を特徴とする形状の設計方法、である。
According to a first aspect of the present invention, there is provided a method for designing a shape, the method comprising the steps of: The point where each point on the surface is moved by a distance including the proportionality of curvature of each point is set as a new surface, and a three-dimensional shape is created using the surface obtained by repeating this process. Design method.

【0006】また、請求項2に記載した第2の発明は、
形状を設計する方法であって、立体形状を構成する面を
複数の区間に分割し、該区間毎の面積と曲率に比例する
量との積の演算によって得られる合計値を該立体形状の
設計指標として用いることを特徴とする形状の設計方
法、である。
[0006] The second invention described in claim 2 is a
A method of designing a shape, in which a surface constituting a three-dimensional shape is divided into a plurality of sections, and a total value obtained by calculating a product of an area of each section and an amount proportional to a curvature is defined as a design of the three-dimensional shape. A shape design method characterized by being used as an index.

【0007】[0007]

【作用】第1の発明は、立体形状の設計に、既知の形状
を持つ面が連続的に移動して変化する仮想曲面(以下移
動面という)を用いるという新たな発想に基づいてい
る。移動面の移動を記述する方程式として、形状を構成
する面の局所的な曲率値に応じて移動速度が変化する方
程式を用いる。移動面の移動速度の大きさは、曲面上の
点の曲率をKm,移動速度をV,基準曲率Kのときの
移動速度をVとすると、式(1)となる。V、K
は任意に与える定数であり、Vに他の定数項が含まれて
いても構わない。 移動速度の方向は、面の法線方向であって、曲率半径の
内側(曲率半径の中心向き)方向と外側方向があり、い
ずれか一方を選択する。表面張力の理論解析などから、
断面が曲線であり、初期曲線が滑らかで自己交差してい
なければ、移動面は、(1)式によって移動しても滑ら
かさが持続し、凸形になっていく特徴があることがわか
っている。また、この式によって記述される移動面は、
面全体が連続的に変化するので鍛造のような材料の除去
を伴わない塑性加工に適用することが可能である。
The first invention is based on a new idea of using a virtual curved surface (hereinafter referred to as a moving surface) in which a surface having a known shape continuously moves and changes in designing a three-dimensional shape. As an equation describing the movement of the moving surface, an equation in which the moving speed changes according to the local curvature value of the surface constituting the shape is used. The magnitude of the moving speed of the moving surface is given by Equation (1), where Km is the curvature of a point on the curved surface, V is the moving speed, and V * is the moving speed at the reference curvature K * . V * , K *
Is a constant given arbitrarily, and V may include another constant term. The direction of the moving speed is the direction of the normal to the surface, and there are a direction inside the radius of curvature (toward the center of the radius of curvature) and an outside direction, and either one is selected. From theoretical analysis of surface tension, etc.,
If the cross section is a curve and the initial curve is smooth and does not self-intersect, it can be seen that the moving surface has the characteristic that it continues to be smooth and becomes convex even if it moves according to equation (1). I have. Also, the moving surface described by this equation is
Since the entire surface is continuously changed, it is possible to apply the present invention to plastic working that does not involve material removal such as forging.

【0008】(1)式の定数は、面を移動させる方向
と、移動面が到達する面(以下到達面という)の形状に
応じて決めればよい。移動する前の面が塑性加工によっ
て可能ならば、移動面はいずれも塑性加工によって実現
可能な面であるから、繰り返し計算によって少しづつ移
動した移動面の中から、設計目的に応じた適切な面を選
択することができる。到達面は別手段で設計した理想的
な形状や、その製品の製造に予定されている素材形状な
どから任意に選択することができるので、過去の経験に
基づく類似形状や中間形状がなくとも、予め与えられた
少なくとも1つの既知面(移動面の初期値を与える面)
に基づいて合理的な中間形状が設計できる。
The constant of the equation (1) may be determined according to the direction in which the surface is moved and the shape of the surface that the moving surface reaches (hereinafter referred to as the reaching surface). If the surface before moving is possible by plastic working, the moving surface is a surface that can be realized by plastic working. Can be selected. The reaching surface can be arbitrarily selected from the ideal shape designed by another means or the material shape planned for manufacturing the product, so even if there is no similar shape or intermediate shape based on past experience, At least one known surface that is given in advance (a surface that gives the initial value of the moving surface)
, A reasonable intermediate shape can be designed.

【0009】また、第2の発明は、機械的な加工によっ
て作成される面は平面と曲面で構成されており、曲率が
大きいほど、すなわち曲率半径が小さいほど、また、平
面に比べて曲面が多いほど複雑な面となることに基づい
ている。立体形状を構成する面を曲面と平面の部分区間
からなると見るとき、曲率に比例する量は曲面部分の曲
率が大きいほど、大きな値となり、また、面積との積の
演算によって得られる合計値は、曲面部分の面積が多い
ほど大きな値となる。平面は比較的加工が容易な面であ
り、平面部分の曲率はゼロなので合計値には小さな寄与
しか与えない。従って、面の曲率をその面積との積で合
計演算することによって、面の複雑さに対応して増大す
る特性を持った統一的な指標(面の状態を現わすパラメ
ータ)を得ることができる。一方、加工によって作成さ
れる面には、面毎に得られる産業上の特性値があり、こ
の特性値と指標とを対応させることにより相関を求める
ことができる。これによって、指標によって、設計され
る面の産業上の評価が可能となる。
According to a second aspect of the present invention, the surface created by the mechanical processing is composed of a flat surface and a curved surface. The larger the curvature, that is, the smaller the radius of curvature, and the more the curved surface is compared with the flat surface. It is based on the fact that the more the more, the more complicated the surface. When the surface forming the three-dimensional shape is considered to be composed of a curved surface and a partial section of a plane, the amount proportional to the curvature increases as the curvature of the curved surface portion increases, and the total value obtained by calculating the product of the area and the area is The value increases as the area of the curved surface portion increases. The plane is a surface that is relatively easy to machine and has only a small contribution to the total value because the curvature of the plane is zero. Therefore, by calculating the sum of the curvature of the surface and the product of the area and the area, a uniform index (parameter indicating the state of the surface) having a characteristic that increases in accordance with the complexity of the surface can be obtained. . On the other hand, a surface created by processing has an industrial characteristic value obtained for each surface, and a correlation can be obtained by associating this characteristic value with an index. Thus, the index enables industrial evaluation of the designed surface.

【0010】[0010]

【発明の実施の形態】デジタル計算機を用いて連続移動
する面を設計する場合、微小区間や微小時間に分割した
繰り返し計算によって近似する方法が一般的である。こ
の場合、第1発明の移動面を求めるには、まず形状を構
成する面を小さな区間(以下面素という)に分割するこ
とによって、各面素の位置(代表点)と曲率(面素の平
均曲率)が求められる。次に、小さな時間区間を用い
て、面素の曲率と定数を用いて演算される速度で面素の
法線方向に移動する距離が計算され、各面素代表点の新
たな位置が求められる。次に、移動した代表点を接続す
ることによって、移動前の形状に関連した新たな形状を
持つ移動面を求めることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS When designing a continuously moving surface using a digital computer, a method of approximation by repetitive calculation divided into minute sections or minute times is generally used. In this case, in order to obtain the moving surface according to the first aspect of the present invention, the surface constituting the shape is first divided into small sections (hereinafter, referred to as surface elements) to obtain the position (representative point) and curvature (surface element) of each surface element. Average curvature) is determined. Next, using a small time interval, the distance to move in the normal direction of the surface element at a speed calculated using the curvature and constant of the surface element is calculated, and a new position of each surface element representative point is obtained. . Next, by connecting the moved representative points, a moving surface having a new shape related to the shape before the movement can be obtained.

【0011】本発明の第1の実施の形態を、図1、図3
によって説明する。本実施の形態は、形状を設計する方
法であって、予め与えられた立体形状を構成する2つの
面に基づき、一方の面を移動の開始面とし、他方の面を
到達面とし、面上の各点が、各点の曲率比例量を含む距
離だけ移動した点をもって新たな面とし、これを繰り返
すことによって得られる面を用いて、複数の立体形状を
作成することを特徴とする形状の設計方法である。2つ
の形状は鍛造によって加工される面であって、移動の開
始面は与えられた製品形状面とし、到達面は素材初期形
状面とする。実際の加工は素材の初期形状から製品形状
が形成される方向であるが、本実施形態の形状設計にお
いては、複雑な製品形状から比較的単純な素材形状の方
向に計算するのが容易なので、移動面の計算は逆方向に
行う。
FIGS. 1 and 3 show a first embodiment of the present invention.
It will be explained by. The present embodiment is a method of designing a shape, and based on two surfaces constituting a given three-dimensional shape, one surface is set as a movement start surface, the other surface is set as a reaching surface, and A point where each point has moved by a distance including the curvature proportional amount of each point is defined as a new surface, and a plurality of three-dimensional shapes are created using a surface obtained by repeating this process. It is a design method. The two shapes are surfaces to be processed by forging, the starting surface of movement is a given product shape surface, and the reaching surface is a material initial shape surface. Actual processing is the direction in which the product shape is formed from the initial shape of the material, but in the shape design of the present embodiment, it is easy to calculate from the complicated product shape to the direction of the relatively simple material shape, The calculation of the moving plane is performed in the reverse direction.

【0012】この実施の形態において得られた移動面か
ら複数の面を取り出した形状変化例を図1に示す。両端
点位置を拘束するものとし、図1の左側は、素材初期形
状を平板としたもの、図1の右側は半円筒としたもので
ある。本実施の形態は、2つの形状、即ち製品形状と素
材初期形状用いる。その後、コンピュータ等を用いて以
下の数値処理を行うことにより、中間形状を求める。フ
ローチャートを図3に示す。
FIG. 1 shows an example of a shape change in which a plurality of surfaces are extracted from the moving surface obtained in this embodiment. It is assumed that the positions of both end points are constrained. The left side of FIG. 1 is a plate having an initial material shape, and the right side of FIG. 1 is a half cylinder. This embodiment uses two shapes, namely, a product shape and a material initial shape. Thereafter, an intermediate shape is obtained by performing the following numerical processing using a computer or the like. The flowchart is shown in FIG.

【0013】製品形状から素材初期形状に至るまでの移
動面の計算アルゴリズムは以下である。 素材初期形状(到達面形状)の不等分な通過点による
スプライン曲線を等分の線分ベクトル列で記述し、ベク
トル端点i番目の法線方向と曲率Gi(曲率値一定の場
合もある)を求める。 現在の製品形状の不等分な通過点によるスプライン曲
線を等分の線分ベクトル列で記述し、ベクトル端点i番
目の法線方向と曲率Ki求める 式(2)により、各ベクトル端点i番目の座標を素材
初期形状の曲率値Giとの差に応じて法線方向に△Vi
移動させる
The algorithm for calculating the moving plane from the product shape to the initial material shape is as follows. A spline curve formed by passing points that are unequal to the initial shape of the material (arriving surface shape) is described by a straight line vector sequence, and the i-th normal direction of the vector end point and the curvature Gi (the curvature value may be constant). Ask for. A spline curve formed by unequal passing points of the current product shape is described by a straight line vector sequence, and the i-th normal direction of the vector end point and the curvature Ki are obtained. The coordinates are set in the normal direction according to the difference from the curvature value Gi of the initial shape of the material.
Move

【0014】[0014]

【数1】 (Equation 1)

【0015】(2)式において、C:小さな値を持つ移
動量の単位を持つ定数、Go:素材初期形状の代表的曲
率値(一般には曲率の最大値、あるいは1)である。 移動した線分ベクトル端点の通過によりスプライン曲
線を再生成する なお、面積一定の制御も行う場合は、形状特徴を保持
しながら拡大・縮小する等速成長の式を合わせて実行す
ることになる。これは、(2)式で求めたΔViを
(3)式で補正する。
In the equation (2), C is a constant having a unit of a moving amount having a small value, and Go is a typical curvature value of the material initial shape (generally, the maximum value of the curvature, or 1). A spline curve is regenerated by passing the end point of the moved line segment vector. In addition, in the case of controlling the area to be constant, an equation of constant growth that enlarges / reduces while maintaining the shape feature is also executed. This is done by correcting ΔVi obtained by Expression (2) by Expression (3).

【0016】[0016]

【数2】 (Equation 2)

【0017】(3)式において、Sk:変化する形状の
面積、Sg:素材初期形状の面積である。これを繰り返
すことにより、移動面は、指定した曲率を持つ素材初期
形状(到達面形状)に収束する。
In the equation (3), Sk is the area of the changing shape, and Sg is the area of the material initial shape. By repeating this, the moving surface converges to the material initial shape (attainment surface shape) having the specified curvature.

【0018】2つの形状の各点の曲率の対応付けのた
め、曲線は同一数に多線分化する。ここで、曲線の各点
の曲率値が解析的に求まれば曲線を多線分化する必要は
ない。最終形状の曲率値は平板や円のように一定曲率値
でもよい。図1では2次元的な曲線を示しているが、3
次元曲面でも同様な方法により評価可能である。
For the purpose of associating the curvature of each point of the two shapes, the curves are polylined into the same number. Here, if the curvature value of each point of the curve is obtained analytically, it is not necessary to make the curve multiline. The curvature value of the final shape may be a constant curvature value such as a flat plate or a circle. FIG. 1 shows a two-dimensional curve,
A similar method can be used to evaluate a dimensional curved surface.

【0019】本発明の第2の実施の形態を図2を用いて
説明する。第1発明の方法は、予め与えられた立体形状
を基に、既知形状を外挿する形状を得ることができる。
図2において、最下段の形状を移動開始面(図1の右
C)とし、(2)式を用いて係数Cの符号を反対にする
ことにより、上方向に移動させた面が中段、上段の移動
面である。両端点の位置は固定した条件で、(2)式の
Goは円筒面を使っているので、開始面にくらべ、移動
面は両端側の凸形状が膨らんでいる。これは、製品形状
が持つ特性(図1の場合、曲げ荷重がかかる形状の断面
形状の応力均一性)をさらに向上させて新たな形状を設
計したいときなどに使用できる。なお、形状を外挿する
場合、形状が自己交差しない保証はなく、製品形状の近
傍での形状変化となる。
A second embodiment of the present invention will be described with reference to FIG. According to the method of the first invention, a shape that extrapolates a known shape can be obtained based on a given three-dimensional shape.
In FIG. 2, the shape of the lowermost stage is the movement start surface (right C in FIG. 1), and the sign of the coefficient C is reversed using the equation (2), so that the surface moved upward is the middle stage and the upper stage. It is a moving surface. Under the condition that the positions of both end points are fixed, Go in equation (2) uses a cylindrical surface, so that the moving surface has a convex shape at both ends bulging compared to the starting surface. This can be used, for example, when designing a new shape by further improving the characteristics of the product shape (in FIG. 1, the stress uniformity of the cross-sectional shape of the shape to which a bending load is applied). Note that when extrapolating a shape, there is no guarantee that the shapes will not self-intersect, and the shape will change near the product shape.

【0020】本発明の第3の実施の形態は、第2発明に
よるものであって、式(4)(5)によって説明する。
本実施の形態は、形状を設計する方法であって、立体形
状を構成する面を複数の区間に分割し、該区間毎の面積
と曲率に比例する量との積の演算によって得られる合計
値を該立体形状の設計指標として用いることを特徴とす
る形状の設計方法であり、式(4)、(4)は連続式
の形で、式(5)、(5)は離散式の形で合計値(C
D)を求める式を現わしたものである。
The third embodiment of the present invention is according to the second invention, and will be described with reference to equations (4) and (5).
The present embodiment is a method of designing a shape, in which a surface constituting a three-dimensional shape is divided into a plurality of sections, and a total value obtained by calculating a product of an area of each section and an amount proportional to a curvature is calculated. Is used as a design index of the three-dimensional shape, wherein the formulas (4) and (4) * are continuous formulas, and the formulas (5) and (5) * are discrete formulas. Total value (C
The expression for D) is shown.

【0021】[0021]

【数3】 (Equation 3)

【0022】(4)式において、Area:曲面の面
積、K:微小面積dA上のX方向の曲率、Kx0:X
方向の到達面形状(素材初期形状)の代表曲率値(ある
いは対応する微小面積dA上の曲率値)、K:微小面
積dA上のY方向の曲率、Ky:Y方向の到達面形状
(素材初期形状)の代表曲率値(あるいは対応する微小
面積dA上の曲率値)、L:曲面の代表長さである。
In the formula (4), Area: area of the curved surface, K x : curvature in the X direction on the small area dA, K x0 : X
Representative curvature value of the direction of arrival-sectional shape (Material initial shape) (or curvature values on the corresponding micro-area dA), K y: curvature in the Y direction on the small area dA, Ky 0: Y direction reaches sectional shape ( The representative curvature value of the material initial shape (or the curvature value on the corresponding minute area dA), L: the representative length of the curved surface.

【0023】(4)式は、立体形状を構成する面が直交
座標系で構成されており、曲面の面積を分割して設けた
微小面積dAとを用いて、立体形状を構成する面の曲率
(K、K)を、到達面形状を構成する面の曲率(K
x0、Ky0)との標準偏差の合計値を求める形で現わ
した式である。基準面はCD=0となる面であって、加
工面に比べて比較的単純な平面・円筒面などが適用でき
る。(4)式は(4)式において、CD値を形状の
サイズに依存しないようにするため、曲面の代表長さL
との積をとったものである。
The equation (4) indicates that the surface constituting the three-dimensional shape is constituted by an orthogonal coordinate system, and the curvature of the surface constituting the three-dimensional shape is obtained by using the minute area dA provided by dividing the area of the curved surface. (K x , K y ) is defined by the curvature (K) of the surface constituting the arrival surface shape.
x0 , Ky0 ) in the form of calculating the sum of the standard deviations. The reference surface is a surface where CD = 0, and a relatively simple plane / cylindrical surface or the like as compared with the processed surface can be applied. (4) * expression (4) * in formula, in order to be independent of the CD value in feature sizes, the representative length of the curved surface L
And the product of

【0024】(4)式のCD値は、図1の形状A〜Fに
適用することができ、A〜Fの形状の滑らかさ・複雑さ
という特徴を示すパラメータとして用いることができ
る。(4)式の座標系は、直交座標系を用いて示した
が、形状の特性に基づき任意の座標系を設定可能であ
る。また、2つの座標系を加算した形になっているが、
単独の座標系のみ算出してもよい。
The CD value of the expression (4) can be applied to the shapes A to F in FIG. 1 and can be used as a parameter indicating the characteristics of the smoothness and complexity of the shapes A to F. Although the coordinate system of Expression (4) is shown using the rectangular coordinate system, an arbitrary coordinate system can be set based on the characteristics of the shape. In addition, although it is in the form of adding two coordinate systems,
Only a single coordinate system may be calculated.

【0025】離散データより算出する場合の定式化例と
しては(5)、(5) 式となる。
Formulation example when calculating from discrete data
Then (5), (5)* It becomes an expression.

【0026】[0026]

【数4】 (Equation 4)

【0027】(5)、(5)式において、Div:曲
線の分割数(2分割以上)、L:曲線の代表長さであ
る。
[0027] (5), (5) * formula, Div: division number of the curve (2 or more divisions), L: is a representative length of the curve.

【0028】(5)式は、立体形状を構成する面の断面
形状(2次元上の曲線)について合計値(CD)を求め
る例を与える式の例である。断面形状を現わす曲線は、
基準とする曲線(直線でもよい)と同一の間隔で均一に
Div個に分割されており、i番目の分割点における断
面の曲率Kiを、基準となる面の同じ分割点における曲
率Giとの差を用いて、標準偏差の形で合計値を求める
式である。(5)式は(5)式において形状サイズに
依存しない形にするために、形状の代表長さLとの積を
とったものである。
Equation (5) is an example of an equation that gives an example of obtaining the total value (CD) for the cross-sectional shape (curve on two dimensions) of the surface constituting the three-dimensional shape. The curve showing the cross-sectional shape is
Div is evenly divided at the same interval as the reference curve (which may be a straight line), and the difference between the curvature Ki of the cross section at the i-th division point and the curvature Gi at the same division point of the reference surface is obtained. Is a formula for calculating the total value in the form of a standard deviation using (5) * Eq. (5) is the product of the representative length L of the shape in order to make the shape independent of the shape size in Eq. (5).

【0029】図4は、図1の右側(半円筒に収束する形
状A〜F)に示す形状について、(5)式によるCDを
計算した例を示す。形状が製品形状Aから素材形状Fに
変化するとき、CDは大きな値1から小さな値0に単純
に減少している。(5)式によるCDの値は、曲線の分
割数Divに依存するが、形状の複雑さに応じて十分大
きな分割数を用いることによって、Divの増加ととも
に収束値に漸近する。
FIG. 4 shows an example of calculating the CD by the equation (5) for the shapes shown on the right side (shapes A to F converging on a half cylinder) of FIG. When the shape changes from the product shape A to the material shape F, the CD simply decreases from the large value 1 to the small value 0. The value of CD according to equation (5) depends on the number of divisions Div of the curve, but by using a sufficiently large number of divisions depending on the complexity of the shape, the value approaches CD and approaches the convergence value as the Div increases.

【0030】CD値は最終形状(到達形状)の曲率から
の差としての表現方法、そして形状の大きさに依存しな
い(形状のサイズが違っても形が同一であれば同一のパ
ラメータ値であること)表現方法が好ましい。よって、
形状の滑らかさ・複雑さを表現する方法として、変化さ
せる形状の各点の曲率と最終形状の各点の曲率の偏差あ
るいは分散の形とし、形状のサイズに依存しないで形状
の滑らかさ・複雑さのみの値とするため、(例えば代表
長さL)との積とする。例えば、最終形状が半円の場
合、形状サイズは直径あるいはその1/2である半径r
としてこれとの積とする。Div及び2rとCDの関
係を図5に示す。図5の上図は、図1(右)に示した形
状では、分割数を200以上にとれば、すべての形状が
分割数によらない同じ値になることを示している。下図
は(5)式が形状サイズに依存しない形になっている
ことを示している。
The CD value is expressed as a difference from the curvature of the final shape (attained shape), and does not depend on the size of the shape (the same parameter value if the shape is the same even if the size of the shape is different). That is, the expression method is preferable. Therefore,
As a method of expressing the smoothness / complexity of a shape, the deviation or dispersion of the curvature of each point of the shape to be changed and the curvature of each point of the final shape is used, and the smoothness / complexity of the shape is independent of the size of the shape. In order to obtain a value of only the length, a product with (for example, the representative length L) is used. For example, when the final shape is a semicircle, the shape size is a diameter r or a radius r which is 1 / thereof.
And the product with this. FIG. 5 shows the relationship between Div and 2r and CD * . The upper diagram in FIG. 5 shows that in the shape shown in FIG. 1 (right), if the number of divisions is 200 or more, all the shapes have the same value regardless of the number of divisions. The figure below shows that equation (5) * is not dependent on the shape size.

【0031】このCDは、断面形状が左右に反転しても
同じ値を持つ。
This CD has the same value even if the cross-sectional shape is reversed left and right.

【0032】なお、形状AのCD値を1として正規化し
ているが、その必然性はない。また、式(4)(5)は
標準偏差の形を用いているが、分散あるいは各点の曲率
値の差の絶対値の和の形を用いてもよい。
Although the CD value of the shape A is normalized by setting it to 1, it is not inevitable. Further, although the formulas (4) and (5) use the form of the standard deviation, the form of the variance or the sum of the absolute values of the differences between the curvature values of the points may be used.

【0033】本発明の第4の実施の形態を図6によって
説明する。本実施の形態は、(5)式を用いて求めたC
Dを、鍛造における中間金型の設計において、設計する
面の鍛造荷重の評価に用いた例である。
A fourth embodiment of the present invention will be described with reference to FIG. In the present embodiment, C is calculated by using the equation (5).
This is an example in which D is used for evaluation of a forging load on a surface to be designed in designing an intermediate mold in forging.

【0034】本CD値は形状の複雑さを示しており、基
本的にCDが高い形状は生産性が悪い。例えば鍛造で成
形する場合で1回の成形で製品形状まで成形できないよ
うな複雑な形状の場合、多段で成形することになり中間
形状の金型が必要となる。その好ましい中間形状の選定
にCD値を用いることが可能である。図6は、図1(右
側)に示す断面形状において、加工前後の断面形状から
塑性変形シミュレーションによって求めた成形荷重最大
値PとCD値との関係を示した図である。まず、製品形
状Aと素材である半円筒形状FのCD値の差を(5)式
によって求めCD1(横軸のフルスケール)とし、半円
筒形状Fから製品形状Aに鍛造加工するときの成形荷重
をシミュレーションによって求めP1(縦軸のフルスケ
ール)とする。次に、製品形状と素材初期形状の途中段
階の移動面のB〜Gを含む(2)式で求めたいくつかの
面について(5)式で求めた各面のCD値をCD2、同
じ移動面から製品形状Fに加工するときのシミュレーシ
ョンによって求めた成形荷重をP2としてまとめたもの
である。図6で各点がほぼ直線に乗っていることからC
Dの比は鍛造成形荷重の比の2乗にほぼ比例しているこ
とがわかる。よって、中間形状として選択するCD値か
ら鍛造成形荷重値が推定できることになる。図6を用い
て鍛造荷重値による移動面の評価が可能となり、たとえ
ば、能率を上げるために設備の鍛造荷重を最大限に利用
するには、大きな鍛造荷重の得られる移動面を中間形状
として採用することができ、あるいは、2段階の中間形
状を用いる必要があるときには、横軸を3等分する点の
中間形状を用いることに合理性を与えることができる。
The present CD value indicates the complexity of the shape, and a shape having a high CD basically has low productivity. For example, in the case of molding by forging, in the case of a complicated shape that cannot be molded to a product shape by one molding, molding is performed in multiple stages, and a mold having an intermediate shape is required. It is possible to use the CD value in selecting the preferred intermediate shape. FIG. 6 is a view showing the relationship between the maximum forming load value P and the CD value obtained by the plastic deformation simulation from the cross-sectional shape before and after the processing in the cross-sectional shape shown in FIG. 1 (right side). First, the difference between the CD value of the product shape A and the CD value of the semi-cylindrical shape F, which is the material, is determined by the equation (5) and is set as CD1 (full scale on the horizontal axis). The load is obtained by simulation and set as P1 (full scale on the vertical axis). Next, the CD value of each surface obtained by the expression (5) for several surfaces obtained by the expression (2) including B to G of the moving surfaces in the middle stage of the product shape and the material initial shape is CD2, and the same movement is performed. The forming load obtained by the simulation when the surface is processed into the product shape F is summarized as P2. In FIG. 6, since each point is substantially on a straight line, C
It can be seen that the ratio of D is substantially proportional to the square of the ratio of the forging load. Therefore, the forging load value can be estimated from the CD value selected as the intermediate shape. Using Fig. 6, it is possible to evaluate the moving surface by the forging load value. For example, in order to maximize the forging load of the equipment in order to improve efficiency, a moving surface with a large forging load is adopted as an intermediate shape. Alternatively, if it is necessary to use a two-stage intermediate shape, it can be rational to use an intermediate shape at a point that divides the horizontal axis into three equal parts.

【0035】本発明のCD値は、立体形状を構成する面
形状の滑らかさ・複雑さを示すので、CDを用いた面特
性値の評価によって、中間形状を生成する上での目安と
する方法が得られる。
Since the CD value of the present invention indicates the smoothness and complexity of the surface shape forming the three-dimensional shape, a method for evaluating the surface characteristic value using the CD as a guide for generating the intermediate shape is used. Is obtained.

【0036】本発明のCD値は、その定義方法から形状
の滑らかさを示している。また、製品形状は一般に複雑
であり、素材初期形状は簡単であるため、得られた中間
の形状は素材初期形状からの複雑さを示している。滑ら
かさは製品形状を取り扱う使用者に危害を与えにくい点
や意匠性から、複雑さは、製品形状が複雑で生産上もう
少し簡単な形状を作成したいとき、あるいは製品形状を
素材初期形状から一度に成形することが困難なときで中
間の金型形状を決定する方法など、形状選択のパラメー
タ値として用いることが可能となる。
The CD value of the present invention indicates the smoothness of the shape from the definition method. In addition, since the product shape is generally complicated and the initial material shape is simple, the obtained intermediate shape indicates the complexity from the initial material shape. Smoothness is less harmful to the user who handles the product shape and design, while complexity is more complicated when the product shape is complicated and you want to create a slightly simpler shape for production. It can be used as a parameter value for shape selection, such as a method of determining an intermediate mold shape when molding is difficult.

【0037】また、本発明のCD値は、プレス金型など
の中間プレス形状に対して候補となる移動面のCD値を
求め、これらの候補の中から適切はCD値を与えるもの
を選択することによって中間プレス形状を自動生成する
方法を得ることができる。図7はフック形状の中間形状
生成例(3次元形状)である。初期形状は軽量であるが
複雑であるため鍛造荷重値が高くなる。これを元の形状
とし、CD値を目安として滑らかな(複雑でない)中間
形状を生成することにより、鍛造荷重値を軽減した形状
が得られる。あるいは、薄板プレスの成形性評価の一つ
であるしわの程度をCD値で見積もることが可能とな
る。
As the CD value of the present invention, a CD value of a moving surface which is a candidate for an intermediate press shape such as a press die is obtained, and an appropriate one giving a CD value is selected from these candidates. Thus, a method for automatically generating an intermediate press shape can be obtained. FIG. 7 shows an example of generating a hook-shaped intermediate shape (three-dimensional shape). The initial shape is lightweight but complex, so the forging load value is high. By using this as the original shape and generating a smooth (not complicated) intermediate shape using the CD value as a guide, a shape with a reduced forging load value can be obtained. Alternatively, the degree of wrinkles, which is one of the evaluations of the formability of a thin plate press, can be estimated by the CD value.

【0038】さらには、製品形状を生成する上におい
て、本発明のCD値を基本として立体の複雑さを1つの
単位として扱い設計、製造における積算データとして利
用する方法を得ることができる。
Further, in generating a product shape, it is possible to obtain a method of treating the complexity of a solid as one unit based on the CD value of the present invention and using it as integrated data in design and manufacturing.

【0039】[0039]

【発明の効果】2つの形状、例えば製品形状と素材初期
形状が決まると、中間形状を過去の経験に基づく形状が
なくても決定できる。その中間形状を元の形状との相違
量としての形状の滑らかさ・複雑さを示すパラメータと
して表現することができ、これを生産性、例えば鍛造成
形荷重値を推測することができる。
When two shapes, for example, a product shape and a material initial shape are determined, an intermediate shape can be determined without a shape based on past experience. The intermediate shape can be expressed as a parameter indicating the smoothness / complexity of the shape as a difference from the original shape, and this can be used to estimate productivity, for example, a forging load value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による中間形状の生成の様子(2次元形
状)を示す図である。
FIG. 1 is a diagram showing a state (two-dimensional shape) of generating an intermediate shape according to the present invention.

【図2】本発明の形状を外挿した形状を示した図であ
る。
FIG. 2 is a diagram showing a shape obtained by extrapolating the shape of the present invention.

【図3】本発明の形状を算出する方法をフローチャート
で示した図である。
FIG. 3 is a flowchart showing a method of calculating a shape according to the present invention.

【図4】本発明の断面形状と形状の複雑さを示す曲率偏
差量の関係を示す図である。
FIG. 4 is a diagram illustrating a relationship between a cross-sectional shape and a curvature deviation amount indicating complexity of the shape according to the present invention.

【図5】本発明の曲率偏差量と形状の分割数、及び形状
の大きさの関係を示す図である。
FIG. 5 is a diagram showing the relationship between the curvature deviation amount, the number of shape divisions, and the shape size according to the present invention.

【図6】本発明の曲率偏差量と鍛造成形荷重の関係を示
す図である。
FIG. 6 is a diagram showing a relationship between a curvature deviation amount and a forging load according to the present invention.

【図7】本発明による中間形状の生成の様子(3次元形
状)を示す図である。
FIG. 7 is a diagram showing a state (three-dimensional shape) of generating an intermediate shape according to the present invention.

【符号の説明】[Explanation of symbols]

CD 曲率偏差量(形状の滑らかさ・複雑さを示す量) CD 曲率偏差量(形状の滑らかさ・複雑さを示す量
で、形状サイズに依存しない形式) Div 形状の分割数 L 形状の大きさを示す量(曲面、曲線の代表的長さ) r 円筒形の場合、その半径 CD1 製品形状の曲率偏差量 CD2 中間形状の曲率偏差量 P1 素材初期形状から製品形状までの成形荷重値 P2 素材初期形状から中間形状までの成形荷重値
CD Curvature deviation amount (amount indicating shape smoothness / complexity) CD * Curvature deviation amount (amount indicating shape smoothness / complexity, independent of shape size) Div Number of shapes L Size of shape Depth (representative length of curved surface and curve) r Radius of cylindrical shape CD1 Curvature deviation of product shape CD2 Curvature deviation of intermediate shape P1 Material forming load value from initial shape to product shape P2 Material Molding load value from initial shape to intermediate shape

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 形状を設計する方法であって、予め与え
られた立体形状を構成する面に基づき、面上の各点が、
各点の曲率比例量を含む距離だけ移動した点をもって新
たな面とし、これを繰り返すことによって得られる面を
用いて立体形状を作成することを特徴とする形状の設計
方法。
1. A method for designing a shape, wherein each point on a surface is determined based on a surface constituting a predetermined three-dimensional shape.
A shape designing method, characterized in that a point moved by a distance including a curvature proportional amount of each point is used as a new surface, and a three-dimensional shape is created using a surface obtained by repeating this process.
【請求項2】 形状を設計する方法であって、立体形状
を構成する面を複数の区間に分割し、該区間毎の面積と
曲率に比例する量との積の演算によって得られる合計値
を該立体形状の設計指標として用いることを特徴とする
形状の設計方法。
2. A method for designing a shape, comprising dividing a surface forming a three-dimensional shape into a plurality of sections, and calculating a total value obtained by calculating a product of an area of each section and an amount proportional to a curvature. A shape designing method, which is used as a design index for the three-dimensional shape.
JP2000338369A 2000-09-28 2000-09-28 Method for designing shape Pending JP2002108954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000338369A JP2002108954A (en) 2000-09-28 2000-09-28 Method for designing shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000338369A JP2002108954A (en) 2000-09-28 2000-09-28 Method for designing shape

Publications (1)

Publication Number Publication Date
JP2002108954A true JP2002108954A (en) 2002-04-12

Family

ID=18813584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000338369A Pending JP2002108954A (en) 2000-09-28 2000-09-28 Method for designing shape

Country Status (1)

Country Link
JP (1) JP2002108954A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007535045A (en) * 2004-04-27 2007-11-29 アウトフォルム・エンジニアリング・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Determining process behavior to describe the molding process of molded parts
JP2011022950A (en) * 2009-07-21 2011-02-03 Jsol Corp Device and method for designing metal mold, and program
JP2011085978A (en) * 2009-10-13 2011-04-28 Jtekt Corp Working simulation device and optical process determining device
JP2019185729A (en) * 2018-03-30 2019-10-24 キヤノン株式会社 Image processing apparatus, image processing method, and program
CN111379839A (en) * 2018-12-27 2020-07-07 北京空天技术研究所 Cam and design method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007535045A (en) * 2004-04-27 2007-11-29 アウトフォルム・エンジニアリング・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Determining process behavior to describe the molding process of molded parts
JP2011022950A (en) * 2009-07-21 2011-02-03 Jsol Corp Device and method for designing metal mold, and program
JP2011085978A (en) * 2009-10-13 2011-04-28 Jtekt Corp Working simulation device and optical process determining device
JP2019185729A (en) * 2018-03-30 2019-10-24 キヤノン株式会社 Image processing apparatus, image processing method, and program
JP7278761B2 (en) 2018-03-30 2023-05-22 キヤノン株式会社 Image processing device, image processing method and program
CN111379839A (en) * 2018-12-27 2020-07-07 北京空天技术研究所 Cam and design method

Similar Documents

Publication Publication Date Title
CN105183405B (en) A kind of 3D printing method of self-definition model surface hollow-out
Jin et al. Quantitative analysis of surface profile in fused deposition modelling
Feng et al. Constant scallop-height tool path generation for three-axis sculptured surface machining
US7809455B2 (en) Method of correcting die model data
Kang et al. Preform design in ring rolling processes by the three-dimensional finite element method
CN105550388B (en) Method and device for generating process model of sheet metal process
CN115008818B (en) Stamping process optimization method capable of promoting production efficiency of sheet metal structural part
CN106354900A (en) Three-dimensional curve one-side fairing method
CN114545863A (en) Track smoothing method for numerical control machining based on B spline curve fitting
CN108108582A (en) A kind of method for numerical simulation of curved-surface piece flexible rolling forming process
CN110385855B (en) Additive manufacturing method of part
JP2002108954A (en) Method for designing shape
AMM et al. Fractals and additive manufacturing
ATE221686T1 (en) STEP-FREE REPRESENTATION OF TWO- OR THREE-DIMENSIONAL DATA SETS THROUGH SHIFT OF PIXEL VALUES TO MINIMIZE CURVATION
JP2010211680A (en) Method of correcting model data
GB2569770A (en) Method of blank design for a spin forming process
CN116894308A (en) Stamping die blank holder molded surface multi-curved-surface generation method and system
Peng et al. Transition surface design for blank holder in multi-point forming
CN116089774A (en) Numerical control track data point intersection feature extraction method
CN107301286A (en) The bent jaw clamp relative rotation design method of covering longitudinal stretching shaping
CN111814271B (en) Rolled blade front and rear edge processing curved surface reconstruction method based on curved surface shape regulation
CN108628255B (en) Instruction point correction smoothing processing method
CN109093812A (en) A kind of production method for processing template
JP2008033435A (en) Forging method using shape prediction technique
CN110457755A (en) A kind of quick predicting method of rail vehicle molded piece blank