JP2002095084A - Directivity reception system - Google Patents

Directivity reception system

Info

Publication number
JP2002095084A
JP2002095084A JP2000315844A JP2000315844A JP2002095084A JP 2002095084 A JP2002095084 A JP 2002095084A JP 2000315844 A JP2000315844 A JP 2000315844A JP 2000315844 A JP2000315844 A JP 2000315844A JP 2002095084 A JP2002095084 A JP 2002095084A
Authority
JP
Japan
Prior art keywords
phase
channel
channels
microphone
arbitrary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000315844A
Other languages
Japanese (ja)
Inventor
Ryuichi Fujita
龍一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OEI SERVICE KK
Original Assignee
OEI SERVICE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OEI SERVICE KK filed Critical OEI SERVICE KK
Priority to JP2000315844A priority Critical patent/JP2002095084A/en
Publication of JP2002095084A publication Critical patent/JP2002095084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

PROBLEM TO BE SOLVED: To largely improve directional characteristics when external noises deteriorating the articulation of a hearing aid are eliminated by the direction characteristics of a microphone. SOLUTION: A reception array 5 composed of microphones 1, 2, 3 and 4 having a plurality of channels is arranged on the frame of a spectacle type fixture or a supporting beam for a headphone type fixture. Outputs from each microphone are wavelet-transformed 6 and amplitude and phase spectra are obtained, and the next operation is conducted at every frequency band. Difference is expanded 11 by multiplying phase difference among each channel by an arbitrary coefficient, and amplitude and phase among each channel are interpolated and the number of the channels is multiplied 16 in arbitrary size. These outputs are multiplied 21 by an arbitrary weighting function and phase adjust addition 26 is conducted, and the result is used as a conventional amplifier input by wavelet inverse transformation 27. Phase difference among each channel is expanded, and directional width is reduced by multiplying the number of the channels, and external-noise elimination performance is improved largely.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は主として補聴器に関する
ものである。
BACKGROUND OF THE INVENTION The present invention relates to hearing aids.

【0002】[0002]

【従来の技術】補聴器の明瞭度を低下させる要因の一つ
として外来雑音があるが、従来の補聴器では、難聴耳の
入出力特性および周波数特性を補聴器の特性によって補
償し、信号対雑音比の更なる劣化を防ごうとするものが
主流となっている。増幅器を周波数帯域に分割し、雑音
帯域の増幅度を制御することによって雑音を抑圧してい
るものもあるが、信号帯域と重なる場合は問題となる。
この場合、マイクロホンおよびアレイの指向性によって
雑音を低減することができるが、波長に比して装置の規
模に制限があるため、指向性の尖鋭度に関しては充分で
はない。
2. Description of the Related Art External noise is one of the factors that reduce the clarity of a hearing aid. However, in a conventional hearing aid, the input / output characteristics and frequency characteristics of a hearing-impaired ear are compensated by the characteristics of the hearing aid, and the signal-to-noise ratio is reduced. The mainstream is to prevent further deterioration. Some amplifiers are divided into frequency bands to suppress noise by controlling the degree of amplification in the noise band. However, there is a problem when the amplifier overlaps with the signal band.
In this case, noise can be reduced by the directivity of the microphone and the array, but the sharpness of the directivity is not sufficient because the size of the device is limited as compared with the wavelength.

【0003】[0003]

【発明が解決しようとする課題】補聴器の明瞭度を劣化
させる外来雑音を、マイクロホンの指向特性によって除
去しようとする場合、マイクロホンアレイの大きさに対
する制限から、従来の方法では尖鋭な指向特性が得られ
ない。本発明は、この指向特性を大幅に改善するもので
ある。
When external noise that degrades the clarity of a hearing aid is to be removed by the directional characteristics of a microphone, a sharp directional characteristic is obtained by the conventional method due to the limitation on the size of the microphone array. I can't. The present invention significantly improves this directional characteristic.

【0004】[0004]

【課題を解決するための手段】複数チャネルのマイクロ
ホンで構成される受信アレイを、眼鏡型装着具のフレー
ムもしくはヘッドホン型装着具の支持梁上に配置する。
各マイクロホンの出力をウェーブレット変換して振幅ス
ペクトルおよび位相スペクトルを求め、各周波数帯域ご
とに次ぎの操作を行なう。各チャネル間の位相差に任意
の係数を乗じて差を拡大し、さらに各チャネル間の振幅
および位相を補間して補間チャネル出力を計出し、補間
チャネルを含めたチャネル数を任意の大きさに増倍す
る。これらの出力に任意の重み関数を乗じて整相加算
(正面方向にビームをつくる場合は単に加算)し、ウェ
ーブレット逆変換して従来の増幅器入力とする。
A receiving array comprising microphones of a plurality of channels is arranged on a frame of an eyeglass-type wearing device or a support beam of a headphone-type wearing device.
The output of each microphone is wavelet transformed to obtain an amplitude spectrum and a phase spectrum, and the following operation is performed for each frequency band. The difference between the channels is expanded by multiplying the phase difference between the channels by an arbitrary coefficient, and further interpolating the amplitude and phase between the channels to calculate the interpolation channel output. Multiply. These outputs are multiplied by an arbitrary weighting function, subjected to phasing addition (or simply added when a beam is formed in the front direction), and subjected to inverse wavelet transform to obtain a conventional amplifier input.

【0005】[0005]

【発明の実施の形態】図1は本発明の実施例を示す系統
図である。1,2,3および4のM,M,Mおよ
びM(i=1,2,…m)はmチャネルのマイクロホ
ンで、眼鏡型装着具のフレームまたはヘッドホンの支持
梁にdなる水平距離間隔で配置され、5のマイクロホン
アレイを構成する。
FIG. 1 is a system diagram showing an embodiment of the present invention. M 1 , M 2 , M i, and M m (i = 1, 2,... M) of 1 , 2 , 3, and 4 are m-channel microphones, which become d on the frame of the eyeglass-type wearing device or the support beam of the headphones. The microphone arrays are arranged at horizontal distance intervals and constitute five microphone arrays.

【0006】f(t)(i=1,2,…,m)は各マ
イクロホンの出力で、6のウェーブレット変換器によっ
てmチャネルの周波数スペクトルF(ω)(i=1,
2,…,m)に変換される。7,8,9および10のA
(ω)(i=1,2,…,m)およびα(ω)(i
=1,2,…m)は、それぞれF(ω)(i=1,
2,…,m)の振幅スペクトルおよび位相スペクトルで
ある。また、ωは角周波数である。これらの出力に対し
て、11では、各周波数帯域ごとに次ぎの操作を行な
う。α(ω)(i=1,2,…,m)より各チャネル
間の位相差を求め、この差に任意の係数Kを乗じてチ
ャネル間の位相差を拡大し、新たな位相スペクトルβ
(ω)(i=1,2,…,m)を得る。周波数スペクト
ルはG(ω)(i=1,2,…,m)となり、12,
13,14および15に、その振輻スペクトルA
(ω)(i=1,2,…,m)および位相スペクトル
β(ω)(i=1,2,…,m)を示す。次ぎに16
では各周波数帯域ごとに、A(ω)(i=1,2,
…,m)およびβ(ω)(i=1,2,…m)より各
チャネル間の振幅および位相を任意の数だけ補間して、
補間チャネルのスペクトルを計出し、補間チャネルを含
めたチャネル数を任意の大きさn=Kmに増倍して新
たな周波数スペクトルH(ω)(k=1,2,…,
n)を得る。17,18,19および20に、その振幅
スペクトルB(ω)(k=1,2,…,n)および位
相スペクトルγ(ω)(k=1,2,…n)を示す。
次ぎに21では各チャネルの振幅B(ω)(k=1,
2,…,n)に任意の重み関数W(k=1,2,…,
n)を乗じてシェーデイングを行ない、新たな周波数ス
ペクトルJ(ω)(k=1,2,…,n)を得る。2
2,23,24および25に、その振輻スペクトルC
(ω)(k=1,2,…,n)および位相スペクトルγ
(ω)(k=1,2,…,n)を示す。26では、こ
れらの入力を任意の方向に整相加算(正面方向にビーム
をつくる場合は単に加算)して指向性出力J(ω)を得
る。27では、J(ω)をウェーブレット逆変換して指
向性出力j(t)とし、従来の増幅器入力とする。
F i (t) (i = 1, 2,..., M) is the output of each microphone, and the m-channel frequency spectrum F i (ω) (i = 1,
2,..., M). A of 7, 8, 9 and 10
i (ω) (i = 1, 2,..., m) and α i (ω) (i
= 1, 2,... M) are F i (ω) (i = 1,
2,..., M). Ω is an angular frequency. At 11, the following operations are performed on these outputs for each frequency band. α i (ω) (i = 1,2, ..., m) determine the phase difference between channels than to enlarge the phase difference between channels is multiplied by the arbitrary coefficient K p to the difference, new phase spectrum β i
(Ω) (i = 1, 2,..., M). Frequency spectrum G i (ω) (i = 1,2, ..., m) , and the 12,
13, 14, and 15 show the radiation spectrum A
i (ω) (i = 1, 2,..., m) and the phase spectrum β i (ω) (i = 1, 2,..., m). Next 16
Then, for each frequency band, A i (ω) (i = 1, 2, 2)
.., M) and β i (ω) (i = 1, 2,... M), by interpolating an arbitrary number of amplitudes and phases between channels,
Out a total spectrum of the interpolation channel, new frequency spectra by multiplying the number of channels including the interpolation channel arbitrary size n = K c m H k ( ω) (k = 1,2, ...,
n). 17, 18, 19 and 20 show the amplitude spectrum B k (ω) (k = 1, 2,..., N) and the phase spectrum γ k (ω) (k = 1, 2,... N).
Next, at 21, the amplitude B k (ω) of each channel (k = 1,
2,..., N) have an arbitrary weighting function W k (k = 1, 2,.
n) to perform shading to obtain a new frequency spectrum J k (ω) (k = 1, 2,..., n). 2
2, 23, 24 and 25 have their radiation spectra C k
(Ω) (k = 1, 2,..., N) and phase spectrum γ
k (ω) (k = 1, 2,..., n). In step 26, these inputs are subjected to phasing addition in an arbitrary direction (or simply adding when forming a beam in the front direction) to obtain a directional output J (ω). At 27, J (ω) is inversely wavelet transformed to a directional output j (t), which is used as a conventional amplifier input.

【0007】直線アレイの場合について、以下に計算例
を示す。アレイ長をal、マイクロホン間隔をd、マイ
クロホンチャネル数をm、音波到来方向をアレイ正面方
向より測ってθ、位相差拡大係数をK、チャネル増倍
係数をK、波長をλとする。上記よりマイクロホン間
隔dはd=al/(m−1)、増倍チャネル数nはn=
m、増倍チャネル間隔sはs=al・K/(n−
1)となる。位相スペクトルβ(ω)は(1)式で与
えられる。 β(ω)=Kα(ω)−(α(ω)+α(ω))(K−1)/ 2……(1) 整相方位が0度のとき、加算出力の指向特性R(θ)は
各条件により下記となる。 1.無指向性マイクロホンの場合 R(θ)=R
(θ)。 2.単一指向性マイクロホンの場合 R(θ)=R(θ) R(θ)=R(θ)(1+cos(θ))/2……(3) 3.2次音圧傾度マイクロホンの場合 R(θ)=R(θ) R(θ)=R(θ)((1+cos(θ))/2)sin(πa co s(θ)/λ)/sin(πa/λ)……(4) ただし、aは音圧傾度マイクロホンの前後距離である。 4 シェーデイングを行なわない場合 W=1の場合で、(2)、(3)および(4)式のR
(θ)は(5)式となる。 R(θ)=sin(πn al Ksin(θ)/(n−1)/λ)/s in(π al Ksin(θ)/(n−1)/λ)/n ……(5)
A calculation example is shown below for a linear array. The array length is al, the microphone interval is d, the number of microphone channels is m, the sound wave arrival direction is measured from the front of the array, θ, the phase difference expansion coefficient is K p , the channel multiplication coefficient is K c , and the wavelength is λ. From the above, the microphone interval d is d = al / (m-1), and the number n of multiplied channels is n =
K c m, multiplication channel spacing s is s = al · K p / ( n-
1). The phase spectrum β i (ω) is given by equation (1). β i (ω) = K p α i (ω) − (α 1 (ω) + α m (ω)) (K p −1) / 2 (1) Addition output when the phasing direction is 0 degrees Is as follows depending on each condition. 1. In the case of a non-directional microphone R (θ) = R
(Θ). 2. In the case of a unidirectional microphone R (θ) = R (θ) c R (θ) c = R (θ) o (1 + cos (θ)) / 2 (3) 3. of the secondary sound pressure gradient microphone Case R (θ) = R (θ) g R (θ) g = R (θ) o ((1 + cos (θ)) / 2) sin (πa cos (θ) / λ) / sin (πa / λ) (4) where a is the distance before and after the sound pressure gradient microphone. 4 When Shading is not Performed When W k = 1, R in Expressions (2), (3) and (4)
(Θ) o is given by equation (5). R (θ) o = sin ( πn al K p sin (θ) / (n-1) / λ) / s in (π al K p sin (θ) / (n-1) / λ) / n ...... (5)

【0008】[0008]

【発明の効果】図2以降に指向特性の計算結果を示す。
図2、図3および図4は、位相差拡大係数K=1、チ
ャネル増倍係数K=1の場合で、それぞれ無指向性素
子、単一指向性素子および2次音圧傾度素子を用いてい
る。これに対して図5、図6および図7では、K
5、K=5として指向幅を減少させている。上記指向
幅の改善に対して、図8、図9および図10では、さら
にシェーデイングを追加してサイドローブを減哀させて
いる。しかし、これによって指向幅が若干増加するた
め、図11、図12および図13では、さらにK
8、K=8として再び指向幅を減少させている。ここ
でアレイ長al=15cm,マイクロホンチャネル数m
=2、周波数f=1000Hz、波長λ=34cm,2
次音圧傾度素子のセンサー間前後距離a=5cmであ
る。また、シェーデイング係数W=0.54+0.4
6cos(π(2k−n−1)/(n−1))である。
「図2、図3および図4」と「図5、図6および図7」
並びに「図8、図9および図10」と「図11、図12
および図13」を比較すると、KおよびKを大きく
することによって指向幅が大輻に減少していることが分
かる。ヘッドホン型装着具のようにマイクロホンを上下
方向にも配列できる場合は、同様にして、さらに垂直方
向の指向特性についても改善することが可能である。
The calculation results of the directional characteristics are shown in FIG. 2 and subsequent figures.
FIGS. 2, 3 and 4 show the case where the phase difference expansion coefficient K p = 1 and the channel multiplication coefficient K c = 1, and the omnidirectional element, the unidirectional element and the secondary sound pressure gradient element are respectively shown. Used. In contrast, in FIGS. 5, 6 and 7, K p =
5, K c = 5 to reduce the directivity width. In FIGS. 8, 9 and 10, with respect to the improvement of the directivity width, shading is added to reduce the side lobe. However, since this increases the directivity width slightly, in FIGS. 11, 12 and 13, K p =
8, K c = 8 to reduce the directivity width again. Here, array length al = 15 cm, number of microphone channels m
= 2, frequency f = 1000 Hz, wavelength λ = 34 cm, 2
The distance a between the sensors of the next sound pressure gradient element is a = 5 cm. Also, the shading coefficient W k = 0.54 + 0.4
6 cos (π (2k−n−1) / (n−1)).
"FIGS. 2, 3, and 4" and "FIGS. 5, 6, and 7"
And FIGS. 8, 9 and 10 and FIGS.
And Comparing Figure 13 ", it can be seen that the directivity width by increasing the K p and K c is reduced to a large congestion. When the microphones can be arranged in the vertical direction as in the case of a headphone-type wearing device, the directional characteristics in the vertical direction can be further improved in the same manner.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の系統図。FIG. 1 is a system diagram of an embodiment of the present invention.

【図2】、FIG.

【図3】およびFIG. 3 and

【図4】位相拡大係数K=1、チャネル増倍係数K
=1の場合の指向特性。
FIG. 4 shows a phase multiplication factor K p = 1 and a channel multiplication factor K c
Directivity characteristics when = 1.

【図5】、FIG.

【図6】およびFIG. 6 and

【図7】K=5、K=5として指向幅を減少させた
場合の指向特性。
FIG. 7 shows directivity characteristics when the directivity width is reduced with K p = 5 and K c = 5.

【図8】、FIG.

【図9】およびFIG. 9 and

【図10】K=5、K=5として指向幅を減少さ
せ、さらに各チャネル出力にシェーデイングを施してサ
イドローブを減衰させた場合の指向特性。
FIG. 10 shows directivity characteristics when the directivity width is reduced with K p = 5 and K c = 5, and the output of each channel is shaded to attenuate the side lobe.

【図11】、FIG.

【図12】およびFIG. 12 and

【図13】シェーデイングによって若干増加した指向幅
をK=8、K=8とすることによって、再び減少さ
せた場合の指向特性。
FIG. 13 shows directivity characteristics when the directivity width slightly increased by shading is reduced again by setting K p = 8 and K c = 8.

【符号の説明】[Explanation of symbols]

1,2,3,4…マイクロホン 5…マイクロホンアレイ 6…ウェーブレット変換部 7,8,9,10…振幅および位相スペクトル 11…位相差拡大部 12,13,14,15…位相差拡大後のスペクトル 16…チャネル増倍部 17,18,19,20…チャネル増倍後のスペクトル 21…シェーデイング部 22,23,24,25…シエーデイング後のスペクト
ル 26…整相加算部 27…ウェーブレット逆変換部
1, 2, 3, 4 ... microphone 5 ... microphone array 6 ... wavelet transform unit 7, 8, 9, 10 ... amplitude and phase spectrum 11 ... phase difference enlargement unit 12, 13, 14, 15 ... spectrum after phase difference enlargement Reference Signs List 16: Channel multiplying unit 17, 18, 19, 20 ... Spectrum after channel multiplication 21 ... Shading unit 22, 23, 24, 25 ... Spectrum after shading 26 ... Phasing and adding unit 27 ... Wavelet inverse transform unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】受信アレイを構成する複数マイクロホンの
ウェーブレット変換出力について、各出力間の位相差を
拡大し、さらに各出力間の補間出力を計出した後、これ
ら出力の加算出力を得る機能を有する指向性受信方式。
1. A function of enlarging a phase difference between outputs of a plurality of microphones constituting a receiving array, calculating an interpolated output between the outputs, and obtaining an added output of these outputs. Directional receiving system.
JP2000315844A 2000-09-11 2000-09-11 Directivity reception system Pending JP2002095084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000315844A JP2002095084A (en) 2000-09-11 2000-09-11 Directivity reception system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000315844A JP2002095084A (en) 2000-09-11 2000-09-11 Directivity reception system

Publications (1)

Publication Number Publication Date
JP2002095084A true JP2002095084A (en) 2002-03-29

Family

ID=18794883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000315844A Pending JP2002095084A (en) 2000-09-11 2000-09-11 Directivity reception system

Country Status (1)

Country Link
JP (1) JP2002095084A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007414A1 (en) * 2005-07-14 2007-01-18 Rion Co., Ltd. Delay sum type sensor array
JP2009506683A (en) * 2005-08-26 2009-02-12 ステップ・コミュニケーションズ・コーポレーション Method and apparatus for improving noise discrimination using enhanced phase difference values
JP2009506672A (en) * 2005-08-26 2009-02-12 ステップ・コミュニケーションズ・コーポレーション Method and apparatus for improving noise discrimination using attenuation factors
US8111192B2 (en) 2005-08-26 2012-02-07 Dolby Laboratories Licensing Corporation Beam former using phase difference enhancement
US8155927B2 (en) 2005-08-26 2012-04-10 Dolby Laboratories Licensing Corporation Method and apparatus for improving noise discrimination in multiple sensor pairs
US8155926B2 (en) 2005-08-26 2012-04-10 Dolby Laboratories Licensing Corporation Method and apparatus for accommodating device and/or signal mismatch in a sensor array
US8611554B2 (en) 2008-04-22 2013-12-17 Bose Corporation Hearing assistance apparatus
US9078077B2 (en) 2010-10-21 2015-07-07 Bose Corporation Estimation of synthetic audio prototypes with frequency-based input signal decomposition
US9842599B2 (en) 2013-09-20 2017-12-12 Fujitsu Limited Voice processing apparatus and voice processing method
CN114598983A (en) * 2022-01-24 2022-06-07 北京航空航天大学 Method for testing noise microphone array of civil aircraft lift-increasing device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007414A1 (en) * 2005-07-14 2007-01-18 Rion Co., Ltd. Delay sum type sensor array
US8155927B2 (en) 2005-08-26 2012-04-10 Dolby Laboratories Licensing Corporation Method and apparatus for improving noise discrimination in multiple sensor pairs
JP2009506672A (en) * 2005-08-26 2009-02-12 ステップ・コミュニケーションズ・コーポレーション Method and apparatus for improving noise discrimination using attenuation factors
JP4782201B2 (en) * 2005-08-26 2011-09-28 ドルビー・ラボラトリーズ・ライセンシング・コーポレーション Method and apparatus for improving noise discrimination using attenuation factors
JP4782202B2 (en) * 2005-08-26 2011-09-28 ドルビー・ラボラトリーズ・ライセンシング・コーポレーション Method and apparatus for improving noise discrimination using enhanced phase difference values
US8111192B2 (en) 2005-08-26 2012-02-07 Dolby Laboratories Licensing Corporation Beam former using phase difference enhancement
JP2009506683A (en) * 2005-08-26 2009-02-12 ステップ・コミュニケーションズ・コーポレーション Method and apparatus for improving noise discrimination using enhanced phase difference values
US8155926B2 (en) 2005-08-26 2012-04-10 Dolby Laboratories Licensing Corporation Method and apparatus for accommodating device and/or signal mismatch in a sensor array
USRE47535E1 (en) 2005-08-26 2019-07-23 Dolby Laboratories Licensing Corporation Method and apparatus for accommodating device and/or signal mismatch in a sensor array
US8611554B2 (en) 2008-04-22 2013-12-17 Bose Corporation Hearing assistance apparatus
US9078077B2 (en) 2010-10-21 2015-07-07 Bose Corporation Estimation of synthetic audio prototypes with frequency-based input signal decomposition
US9842599B2 (en) 2013-09-20 2017-12-12 Fujitsu Limited Voice processing apparatus and voice processing method
CN114598983A (en) * 2022-01-24 2022-06-07 北京航空航天大学 Method for testing noise microphone array of civil aircraft lift-increasing device

Similar Documents

Publication Publication Date Title
US8000481B2 (en) Speaker array and microphone array
US8577055B2 (en) Sound source signal filtering apparatus based on calculated distance between microphone and sound source
US6983055B2 (en) Method and apparatus for an adaptive binaural beamforming system
US7336793B2 (en) Loudspeaker system for virtual sound synthesis
Doclo et al. Design of far-field and near-field broadband beamformers using eigenfilters
US8942387B2 (en) Noise-reducing directional microphone array
US9237391B2 (en) Low noise differential microphone arrays
US9363618B2 (en) Method and device for controlling speaker array sound field based on quadratic residue sequence combinations
US20060198537A1 (en) Ultra-directional microphones
EP3576426B1 (en) Low complexity multi-channel smart loudspeaker with voice control
CN105590631A (en) Method and apparatus for signal processing
JP2002095084A (en) Directivity reception system
US8275147B2 (en) Selective shaping of communication signals
JP4491081B2 (en) antenna
JP2008048294A (en) Directional array microphone and directional array speaker
US8532319B2 (en) Filter bank configuration for a hearing device
JP4928382B2 (en) Specific direction sound collection device, specific direction sound collection method, specific direction sound collection program, recording medium
EP1986464A1 (en) Highly directive endfire loudspeaker array
JP3362338B2 (en) Directional receiving method
JP5240026B2 (en) Device for correcting sensitivity of microphone in microphone array, microphone array system including the device, and program
CN111052763B (en) Speaker apparatus, method for processing input signal thereof, and audio system
JP6567216B2 (en) Signal processing device
JP4292327B2 (en) Speaker array and microphone array
Li et al. Beamforming based on null-steering with small spacing linear microphone arrays
Atkins et al. Robust superdirective beamformer with optimal regularization