JP2002093421A - Positive electrode for alkaline secondary battery and alkaline secondary battery - Google Patents

Positive electrode for alkaline secondary battery and alkaline secondary battery

Info

Publication number
JP2002093421A
JP2002093421A JP2000280703A JP2000280703A JP2002093421A JP 2002093421 A JP2002093421 A JP 2002093421A JP 2000280703 A JP2000280703 A JP 2000280703A JP 2000280703 A JP2000280703 A JP 2000280703A JP 2002093421 A JP2002093421 A JP 2002093421A
Authority
JP
Japan
Prior art keywords
positive electrode
average pore
conductive substrate
current collector
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000280703A
Other languages
Japanese (ja)
Inventor
Katsuyuki Hata
勝幸 秦
Masanori Tamura
雅伯 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2000280703A priority Critical patent/JP2002093421A/en
Publication of JP2002093421A publication Critical patent/JP2002093421A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode for an alkaline secondary battery with improved welding strength between a conductive base and a collector. SOLUTION: This positive electrode has a conductive substrate having a three-dimensional porous structure, in which an average hole diameter of one surface is larger than that of the other surface, and when the number of holes of the surface having a larger average hole diameters is 1, the number of holes of the surface having a smaller average hole diameters is in the range of 1.1 to 2, and the collector 8 welded on a collector welding area 4 of the surface of the conductive substrate having a larger average hole diameter, and a positive mix filled in the conductive substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ二次電池
用正極及びアルカリ二次電池に関する。
TECHNICAL FIELD The present invention relates to a positive electrode for an alkaline secondary battery and an alkaline secondary battery.

【0002】[0002]

【従来の技術】アルカリ二次電池としては、ニッケルカ
ドミウム二次電池や、ニッケル水素二次電池が知られて
いる。近年のPC(パーソナルコンピュータ)や携帯電
話の普及により高容量電池の要求が高まっていること
と、環境問題から、アルカリ二次電池としてはニッケル
水素二次電池が主流になってきている。
2. Description of the Related Art As alkaline secondary batteries, nickel cadmium secondary batteries and nickel hydrogen secondary batteries are known. Due to the increasing demand for high-capacity batteries due to the recent spread of PCs (personal computers) and mobile phones, and environmental issues, nickel-metal hydride secondary batteries have become mainstream as alkaline secondary batteries.

【0003】また、自動車業界においては、環境問題か
らガソリンエンジン車に替わる電気自動車(EV)や、
アシスト形の電気自動車(HEV)の開発が盛んであ
り、一部商品化がなされている。
[0003] In the automobile industry, electric vehicles (EVs) which replace gasoline engine vehicles due to environmental problems,
The development of assist type electric vehicles (HEVs) is active and some of them have been commercialized.

【0004】アルカリ二次電池の正極は、活物質である
水酸化ニッケルを含む正極合剤が三次元構造を有する導
電性基板に充填されたものから構成される。この正極の
導電性基板には、正極と正極端子を電気的に接続するた
めの帯状金属板のような集電体が溶接されている。集電
体を導電性基板へ取り付ける方法は、下記に示す如く各
種提案がなされている。
The positive electrode of an alkaline secondary battery is composed of a positive electrode mixture containing nickel hydroxide as an active material filled in a conductive substrate having a three-dimensional structure. A current collector such as a band-shaped metal plate for electrically connecting the positive electrode and the positive electrode terminal is welded to the conductive substrate of the positive electrode. Various proposals have been made for the method of attaching the current collector to the conductive substrate as described below.

【0005】特開平9−22704号公開公報には、発
泡ニッケルからなる多孔基板の一隅角部をプレス機で圧
縮した後、活物質ペーストを充填し、次いでロールプレ
スを施し、加熱した後、集電体を点溶接することにより
ペースト式ニッケル極を製造することが記載されてい
る。
Japanese Patent Application Laid-Open No. 9-22704 discloses that one corner of a porous substrate made of foamed nickel is compressed by a press machine, filled with an active material paste, then roll-pressed, heated, and collected. It is described that a paste nickel electrode is manufactured by spot welding an electric body.

【0006】また、特開平9−204911号公開公報
には、水酸化ニッケルを主体とする活物質合剤が担持さ
れている三次元網状構造の集電体にタブをスポット溶接
する際に、前記集電体の所定箇所を圧縮してタブ取り付
け箇所を設け、ついで集電体に活物質ペーストを充填し
た後に乾燥し、当該タブ取り付け箇所を複数の針を束ね
た衝撃付与手段で連続的に叩くことによって、正極を製
造することが開示されている。
Japanese Unexamined Patent Publication No. 9-204911 discloses that when a tab is spot-welded to a current collector having a three-dimensional network structure carrying an active material mixture mainly composed of nickel hydroxide. A predetermined portion of the current collector is compressed to provide a tab attaching portion, and then the active material paste is filled into the current collector and then dried, and the tab attaching portion is continuously beaten by an impact applying means in which a plurality of needles are bundled. Thus, it is disclosed that a positive electrode is manufactured.

【0007】一方、特開平8−255611号公開公報
には、活物質を充填した三次元多孔基板の所定部位の少
なくとも片面に超音波振動ホーンを押し当てて前記所定
部位の活物質を除去し、前記活物質が除去された部位に
集電タブを溶接する電池用極板の製造方法であって、前
記超音波振動ホーンに高圧流体噴射孔または粉体吸引孔
を設け、超音波振動により活物質を粉砕すると共に、粉
砕された活物質を、前記噴射孔から高圧流体を噴射する
ことにより除去するか、または前記粉体吸引孔に吸引す
ることにより除去する電池用極板の製造方法が開示され
ている。
On the other hand, Japanese Patent Application Laid-Open No. 8-255611 discloses that an ultrasonic vibration horn is pressed against at least one surface of a predetermined portion of a three-dimensional porous substrate filled with an active material to remove the active material at the predetermined portion. A method for manufacturing a battery electrode plate in which a current collecting tab is welded to a portion where the active material is removed, wherein a high-pressure fluid injection hole or a powder suction hole is provided in the ultrasonic vibration horn, and the active material is ultrasonically vibrated. And a method for manufacturing a battery electrode plate for removing the crushed active material by injecting a high-pressure fluid from the injection hole or removing the active material by suction into the powder suction hole. ing.

【0008】[0008]

【発明が解決しようとする課題】これらペースト式正極
においては、導電性基板の端部の一個所に集電体を溶接
し、この集電体により正極の集電を行っているため、活
物質の充填量を多くしやすいものの、集電体と導電性基
板との接触面積が少なく、わずかな溶接不良により集電
効率が大幅に低下しやすい。よって、より高い集電性能
を得るために、集電体と導電性基板の溶接強度を高くす
る必要がある。
In these paste-type positive electrodes, a current collector is welded to one end of the conductive substrate, and the current is collected by the current collector. Although it is easy to increase the filling amount, the contact area between the current collector and the conductive substrate is small, and the current collection efficiency is apt to be significantly reduced due to slight welding failure. Therefore, in order to obtain higher current collection performance, it is necessary to increase the welding strength between the current collector and the conductive substrate.

【0009】本発明は、導電性基板と集電体との溶接強
度が向上されたアルカリ二次電池用正極を提供しようと
するものである。
An object of the present invention is to provide a positive electrode for an alkaline secondary battery having improved welding strength between a conductive substrate and a current collector.

【0010】本発明は、集電性能に優れる正極を備え、
充放電特性に優れるアルカリ二次電池を提供しようとす
るものである。
[0010] The present invention provides a positive electrode having excellent current collecting performance,
An object is to provide an alkaline secondary battery having excellent charge / discharge characteristics.

【0011】[0011]

【課題を解決するための手段】本発明に係わるアルカリ
二次電池用正極は、三次元多孔質構造を有し、一方の面
の平均孔径が他方の面の平均孔径に比べて大きく、前記
平均孔径が大きな面の孔数を1とした際に前記平均孔径
が小さな面の孔数が1.1〜2の範囲内にある導電性基
板と、前記導電性基板の前記平均孔径の大きな面の集電
体溶接領域に溶接された集電体と、前記導電性基板に充
填された正極合剤とを具備することを特徴とするもので
ある。
The positive electrode for an alkaline secondary battery according to the present invention has a three-dimensional porous structure, in which the average pore diameter on one surface is larger than the average pore diameter on the other surface, and When the number of holes on the surface having a large pore diameter is 1, the number of holes on the surface having a small average pore diameter is in the range of 1.1 to 2, and the number of holes on the surface of the conductive substrate having the large average hole diameter is less than 1.1. A current collector welded to a current collector welding region, and a positive electrode mixture filled in the conductive substrate are provided.

【0012】本発明に係わるアルカリ二次電池は、正極
と負極がセパレータを介在して渦巻き状に捲回された電
極群を具備したアルカリ二次電池において、前記正極
は、三次元多孔質構造を有し、捲回時に内側に位置する
面の平均孔径が捲回時に外側に位置する面の平均孔径に
比べて大きく、かつ前記平均孔径が大きな面の孔数を1
とした際に前記平均孔径が小さな面の孔数が1.1〜2
の範囲内にある導電性基板と、前記導電性基板の前記平
均孔径の大きな面の集電体溶接領域に溶接された集電体
と、前記導電性基板に充填された正極合剤とを有するこ
とを特徴とするものである。
An alkaline secondary battery according to the present invention is an alkaline secondary battery comprising an electrode group in which a positive electrode and a negative electrode are spirally wound with a separator interposed therebetween, wherein the positive electrode has a three-dimensional porous structure. The average pore diameter of the surface located on the inside during winding is larger than the average pore diameter of the surface located on the outside during winding, and the number of pores on the surface having a large average pore diameter is 1
When the number of pores on the surface having a small average pore diameter is 1.1 to 2
Having a positive electrode mixture filled in the conductive substrate, a current collector welded to a current collector welding area of the surface having a large average hole diameter of the conductive substrate, and a positive electrode mixture filled in the conductive substrate. It is characterized by the following.

【0013】[0013]

【発明の実施の形態】本発明に係わるアルカリ二次電池
用正極は、三次元多孔質構造を有し、一方の面の平均孔
径が他方の面の平均孔径に比べて大きく、前記平均孔径
が大きな面の孔数を1とした際に前記平均孔径が小さな
面の孔数が1.1〜2の範囲内にある導電性基板と、前
記導電性基板の前記平均孔径の大きな面の集電体溶接領
域に溶接された集電体と、前記導電性基板に充填された
正極合剤とを具備する。
BEST MODE FOR CARRYING OUT THE INVENTION The positive electrode for an alkaline secondary battery according to the present invention has a three-dimensional porous structure, the average pore size of one surface is larger than the average pore size of the other surface, and the average pore size is When the number of holes in the large surface is set to 1, the number of holes in the surface having the small average hole diameter is in the range of 1.1 to 2; and the current collection in the surface of the conductive substrate in which the number of holes is large. A current collector welded to the body welding region; and a positive electrode mixture filled in the conductive substrate.

【0014】本発明に係る正極は、正極と負極をセパレ
ータを介在して渦巻き状に捲回する際に、集電体が溶接
されている面が前記捲回時に内側に位置することが好ま
しい。
In the positive electrode according to the present invention, when the positive electrode and the negative electrode are spirally wound with a separator interposed therebetween, it is preferable that the surface to which the current collector is welded is positioned inside at the time of the winding.

【0015】この導電性基板の一例の模式図を図1に示
す。なお、図1では、導電性基板の骨格の大小関係を理
解しやすくするため、導電性基板の表面構造を円形孔が
均等に開口された構造にしたが、導電性基板の表面構造
は図1に示す構造に限られるものではない。前記導電性
基板1は、平均孔径の大きな三次元多孔質構造の層2
と、平均孔径の小さな三次元多孔質構造の層3とから構
成される。前記導電性基板1は、一方の面2の平均孔径
が他方の面3の平均孔径に比べて大きい。前記平均孔径
が大きな面2の孔数を1とした際に前記平均孔径が小さ
な面3の孔数を1.1以上にすることによって、前記平
均孔径が大きな面2における孔間隔R1(骨格の太さ)
を前記平均孔径が小さな面3における孔間隔R2(骨格
の太さ)に比べて太くすることができ、かつ導電性基板
の見かけの空隙率を高くすることができる。しかしなが
ら、前記平均孔径が大きな面2の孔数を1とした際に前
記平均孔径が小さな面3の孔数を2より大きくすると、
一方の面の骨格の太さと他方の面の骨格の太さの差が大
きくなり、基板強度が低下したり、一方の面側の合剤充
填密度と他方の面側の合剤充填密度とが大きく異なるよ
うになるため、プレス時に基板が反る恐れがある。ま
た、前記平均孔径が小さな面3における孔間隔R 2(骨
格の太さ)が細くなるため、正極と負極の間にセパレー
タを介在して渦巻き状に捲回して電極群を作製する際に
前記平均孔径が小さな面3が破断しやすくなる。このた
め、内部短絡発生率が高くなると共に、正極の電子伝導
性が低下して高率放電特性が損なわれる。前記平均孔径
が大きな面2の孔数を1とした際に前記平均孔径が小さ
な面3の孔数は、1.1〜1.5の範囲内にすることが
好ましい。なお、前記導電性基板1の平均孔径の大きな
面2における長手方向側端部の中央部には、集電体溶接
領域4が存在する。
FIG. 1 shows a schematic view of an example of this conductive substrate.
You. In FIG. 1, the size relationship of the skeleton of the conductive substrate is understood.
Circular holes are used to make the surface structure of the conductive substrate easier to understand.
The structure is evenly opened, but the surface structure of the conductive substrate
Is not limited to the structure shown in FIG. The conductivity
The substrate 1 comprises a layer 2 having a three-dimensional porous structure having a large average pore diameter.
And a layer 3 having a three-dimensional porous structure having a small average pore diameter.
Is done. The conductive substrate 1 has an average pore diameter of one surface 2.
Is larger than the average pore diameter of the other surface 3. The average pore size
The average pore diameter is small when the number of pores on
By making the number of holes in the main surface 3 1.1 or more,
Hole spacing R on surface 2 with large uniform diameter1(Skeleton thickness)
Is the hole interval R in the surface 3 having the small average hole diameter.Two(Skeleton
Thickness), and the conductive substrate
Apparent porosity can be increased. However
When the number of holes of the surface 2 having a large average pore diameter is set to 1,
When the number of holes on the surface 3 having a small average pore diameter is larger than 2,
The difference between the thickness of the skeleton on one side and the thickness of the skeleton on the other side is large.
And the strength of the substrate decreases, or the mixture
The packing density differs greatly from the mixture packing density on the other side.
Therefore, the substrate may be warped at the time of pressing. Ma
In addition, the hole interval R on the surface 3 having the small average hole diameter Two(Bone
(Thickness of the case) is thinner, so the separator between the positive and negative electrodes
When making an electrode group by spirally winding
The surface 3 having a small average pore diameter is easily broken. others
As a result, the internal short-circuiting rate increases,
And the high rate discharge characteristics are impaired. The average pore size
The average pore diameter is small when the number of pores on
The number of holes on the surface 3 should be in the range of 1.1 to 1.5.
preferable. The conductive substrate 1 has a large average pore diameter.
At the center of the longitudinal side end of the surface 2, a current collector weld
Region 4 exists.

【0016】前記導電性基板の表面の孔数は、例えば、
以下に説明する方法で測定される。前記導電性基板の各
面の任意の3個所の顕微鏡写真を撮影する。各顕微鏡像
について、1インチ当りの孔数を測定し、3個所の平均
値を算出し、導電性基板表面の孔数とする。
The number of holes on the surface of the conductive substrate is, for example,
It is measured by the method described below. Photomicrographs are taken at any three locations on each surface of the conductive substrate. For each microscope image, the number of holes per inch is measured, and the average value of three places is calculated to be the number of holes on the surface of the conductive substrate.

【0017】この導電性基板は、例えば、以下に説明す
る方法で作製される。まず、平均孔径が大きな発泡樹脂
シートと、平均孔径が小さな発泡樹脂シートとを用意す
る。平均孔径の大きな発泡樹脂シートの表面の孔数を1
とした際、平均孔径の小さな発泡樹脂シートの表面の孔
数は1.1〜2の範囲内である。この2枚の発泡樹脂シ
ートを熱融着により一体化した後、無電解メッキ(例え
ば、無電解ニッケルメッキ)を施し、ひきつづき電気メ
ッキ(例えば、ニッケル電気メッキ)を施し、これを加
熱焼成することによりニッケルメッキ内の樹脂を熱分解
除去し、さらに還元雰囲気で焼成することにより作製さ
れる。得られた導電性基板は三次元多孔質構造を有する
ものであるが、この構造は原料の発泡樹脂シートの構造
が転写されたものである。
This conductive substrate is produced, for example, by the method described below. First, a foamed resin sheet having a large average pore size and a foamed resin sheet having a small average pore size are prepared. The number of holes on the surface of the foamed resin sheet having a large average pore diameter is 1
In this case, the number of pores on the surface of the foamed resin sheet having a small average pore diameter is in the range of 1.1 to 2. After the two foamed resin sheets are integrated by heat fusion, electroless plating (for example, electroless nickel plating) is performed, and then electroplating (for example, nickel electroplating) is performed, followed by heating and firing. Is produced by thermally decomposing and removing the resin in the nickel plating, followed by firing in a reducing atmosphere. The obtained conductive substrate has a three-dimensional porous structure. This structure is obtained by transferring the structure of a foamed resin sheet as a raw material.

【0018】前記導電性基板としては、平均孔径の異な
る三次元多孔質構造を有する層が二層以上積層された構
造にしても良いが、平均孔径の大きな三次元多孔質構造
を有する層と平均孔径の小さな三次元多孔質構造を有す
る層の間に二次元基板を配置しても良い。このように二
次元基板を介在させると、導電性基板にテンションを加
えた際に孔が伸びるのを抑制することができるため、導
電性基板の合剤充填密度を高くすることができ、かつ量
産性を向上することができる。また、このような導電性
基板は、例えば、以下に説明する方法で作製される。ま
ず、平均孔径が大きな発泡樹脂シートと、平均孔径が小
さな発泡樹脂シートとを用意する。平均孔径の大きな発
泡樹脂シートの表面の孔数を1とした際、平均孔径の小
さな発泡樹脂シートの表面の孔数は1.1〜2の範囲内
である。この2枚の発泡樹脂シートの間に同じ材質のシ
ートを介在させ、これらを熱融着により一体化した後、
無電解メッキ(例えば、無電解ニッケルメッキ)を施
し、ひきつづき電気メッキ(例えば、ニッケル電気メッ
キ)を施し、これを加熱焼成することによりニッケルメ
ッキ内の樹脂を熱分解除去し、さらに還元雰囲気で焼成
することにより作製される。
The conductive substrate may have a structure in which two or more layers having a three-dimensional porous structure having different average pore diameters are laminated. A two-dimensional substrate may be arranged between layers having a three-dimensional porous structure having a small pore diameter. When the two-dimensional substrate is interposed in this way, the hole can be prevented from expanding when tension is applied to the conductive substrate, so that the mixture filling density of the conductive substrate can be increased, and mass production can be performed. Performance can be improved. Further, such a conductive substrate is manufactured by, for example, a method described below. First, a foamed resin sheet having a large average pore size and a foamed resin sheet having a small average pore size are prepared. When the number of holes on the surface of the foamed resin sheet having a large average pore diameter is 1, the number of holes on the surface of the foamed resin sheet having a small average pore diameter is in the range of 1.1 to 2. After interposing a sheet of the same material between the two foamed resin sheets and integrating them by heat fusion,
Electroless plating (for example, electroless nickel plating) is applied, followed by electroplating (for example, nickel electroplating), which is heated and fired to thermally decompose and remove the resin in the nickel plating, and then fired in a reducing atmosphere. It is produced by doing.

【0019】前記正極は、例えば、以下に説明する方法
で作製される。
The positive electrode is produced, for example, by the method described below.

【0020】まず、活物質、導電剤及び結着剤を水の存
在下で混練することによりペーストを調製する。三次元
多孔質構造を有し、一方の面の平均孔径が他方の面の平
均孔径に比べて大きく、前記平均孔径が大きな面の孔数
を1とした際に前記平均孔径が小さな面の孔数が1.1
〜2の範囲内にある導電性基板に前記ペーストを充填し
た後、乾燥させ、プレスを施すことにより、正極合剤が
充填された導電性基板を得る。
First, a paste is prepared by kneading an active material, a conductive agent and a binder in the presence of water. It has a three-dimensional porous structure, the average pore size of one surface is larger than the average pore size of the other surface, and the average pore size is smaller when the number of pores on the larger surface is 1. Number 1.1
After filling the paste into the conductive substrates in the range of ~ 2, the paste is dried and pressed to obtain a conductive substrate filled with the positive electrode mixture.

【0021】この合剤充填基板5の集電体溶接領域4に
充填された正極合剤を、例えば超音波振動により除去す
る。この超音波振動による除去は、例えば、図2に示す
方法で行うことができる。まず、合剤充填基板5の導電
性基板の平均孔径の小さな面側にホーン6を配置すると
共に、平均孔径の大きな面側にアンビル7を配置する。
前記集電体溶接領域4と反対側の面から前記ホーン6に
より超音波振動を加え、前記集電体溶接領域4に充填さ
れている正極合剤を粉砕する。正極合剤の粉砕物を前記
アンビル7により吸引することによって、前記集電体溶
接領域4に充填されている正極合剤を除去する。このよ
うな方法で合剤の除去を行うと、合剤の粉砕物をアンビ
ルで速やかに吸引することができるため、導電性基板の
損傷を最小限に抑えることができる。また、集電体溶接
領域4に合剤が残留するのを防止することができるた
め、溶接時のスプラッシュの発生率を低くすることがで
きる。
The positive electrode mixture filled in the current collector welding area 4 of the mixture-filled substrate 5 is removed by, for example, ultrasonic vibration. The removal by the ultrasonic vibration can be performed, for example, by the method shown in FIG. First, the horn 6 is arranged on the surface of the conductive substrate of the mixture-filled substrate 5 having the smaller average hole diameter, and the anvil 7 is arranged on the surface of the mixture substrate 5 having the larger average hole diameter.
Ultrasonic vibration is applied from the surface opposite to the current collector welding area 4 by the horn 6 to crush the positive electrode mixture filled in the current collector welding area 4. The positive electrode mixture filled in the current collector welding area 4 is removed by sucking the pulverized material of the positive electrode mixture by the anvil 7. When the mixture is removed by such a method, the pulverized material of the mixture can be quickly sucked by the anvil, so that damage to the conductive substrate can be minimized. Further, since the mixture can be prevented from remaining in the current collector welding region 4, the rate of occurrence of splash at the time of welding can be reduced.

【0022】ひきつづき、導電性基板の平均孔径の大き
な面の集電体溶接領域4に帯状金属板からなる集電体8
を溶接することにより、図3に示す構造を有するペース
ト式ニッケル正極を得る。かかる集電体は、例えば、ニ
ッケルから形成することができる。
Next, a current collector 8 made of a strip-shaped metal plate is provided on the current collector welding area 4 on the surface of the conductive substrate having a large average hole diameter.
To obtain a paste-type nickel positive electrode having the structure shown in FIG. Such a current collector can be formed, for example, from nickel.

【0023】集電体8の溶接面積は、集電体8の幅をL
1とし、集電体8の下端から正極上端までの長さをL2
した際、L1×L2で算出される。この溶接面積は、導電
性基板の平均孔径の大きな面の集電体溶接領域4の面積
(前記面積は、長さL3×長さL4で算出される)の30
%〜80%の範囲内にすることが好ましい。溶接面積を
集電体溶接面積の30%未満にすると、導電性基板と集
電体との溶接強度を十分に向上させることが困難になる
恐れがある。また、集電体溶接面積が過剰であるため、
高い正極容量を得られなくなる恐れがある。さらに、正
極と負極の間にセパレータを介在して渦巻き状に捲回す
る際に、集電体溶接領域に亀裂が生じやすくなる。一
方、溶接面積が集電体溶接面積の80%を超えると、集
電体の位置精度が低下して溶接の際にスプラッシュを生
じやすくなる。溶接面積のより好ましい範囲は、40〜
70%である。
The welding area of the current collector 8 is determined by setting the width of the current collector 8 to L.
1, and when the length from the lower end of the current collector 8 to the positive electrode terminal was L 2, it is calculated by L 1 × L 2. This welding area is 30 times the area of the current collector welding area 4 on the surface of the conductive substrate having a large average hole diameter (the area is calculated by length L 3 × length L 4 ).
% To 80%. If the welding area is less than 30% of the current collector welding area, it may be difficult to sufficiently improve the welding strength between the conductive substrate and the current collector. Also, because the current collector welding area is excessive,
There is a possibility that a high positive electrode capacity cannot be obtained. Furthermore, when the separator is interposed between the positive electrode and the negative electrode and spirally wound, a crack is easily generated in the current collector welding area. On the other hand, if the welding area exceeds 80% of the current collector welding area, the position accuracy of the current collector is reduced and splash is likely to occur during welding. A more preferable range of the welding area is 40 to
70%.

【0024】前記正極合剤に含有される活物質、導電剤
及び結着剤について説明する。
The active material, conductive agent and binder contained in the positive electrode mixture will be described.

【0025】前記活物質としては、例えば、亜鉛、コバ
ルト、ビスマス及び銅から選ばれる1種以上の金属が共
晶された水酸化ニッケル粉末か、無共晶の水酸化ニッケ
ル粉末を用いることができる。
As the active material, for example, nickel hydroxide powder in which at least one metal selected from zinc, cobalt, bismuth and copper is eutectic or non-eutectic nickel hydroxide powder can be used. .

【0026】前記導電剤としては、例えば金属コバル
ト、コバルト化合物(例えば、CoOのようなコバルト
酸化物、Co(OH)2のようなコバルト水酸化物)等
を挙げることができる。前記導電剤としては、前述した
種類の中から選ばれる1種または2種以上を用いること
ができる。前記導電剤は、粉末か、前記活物質の表面を
被覆する層状物の形態で後述するペースト中に添加する
ことができる。ペーストには、表面が導電剤で被覆され
た水酸化ニッケル粉末及び導電剤の粉末の双方を添加し
ても良い。
Examples of the conductive agent include metal cobalt, cobalt compounds (for example, cobalt oxide such as CoO, and cobalt hydroxide such as Co (OH) 2 ). As the conductive agent, one or more selected from the above-described types can be used. The conductive agent may be added to a paste described below in the form of a powder or a layered material covering the surface of the active material. To the paste, both a nickel hydroxide powder whose surface is coated with a conductive agent and a powder of a conductive agent may be added.

【0027】前記結着剤としては、例えばカルボキシメ
チルセルロース、メチルセルロース、ポリアクリル酸ナ
トリウム、ポリテトラフルオロエチレン等を挙げること
ができる。
Examples of the binder include carboxymethylcellulose, methylcellulose, sodium polyacrylate, polytetrafluoroethylene and the like.

【0028】以下、本発明に係る正極を備えたアルカリ
二次電池について説明する。
Hereinafter, an alkaline secondary battery provided with the positive electrode according to the present invention will be described.

【0029】このアルカリ二次電池は、本発明に係る正
極と負極がセパレータを介在して渦巻き状に捲回された
電極群と、アルカリ電解液とを具備する。
This alkaline secondary battery comprises an electrode group in which the positive electrode and the negative electrode according to the present invention are spirally wound with a separator interposed therebetween, and an alkaline electrolyte.

【0030】前記正極の捲回時に内側に位置する面側
に、前記導電性基板の平均孔径の大きな面が配置されて
いる。前記正極の捲回時に外側に位置する面側に前記導
電性基板の平均孔径の大きな面を配置すると、捲回時に
集電体のエッジが撥ね返ってセパレータを突き破り負極
と接触する可能性があるからである。
The surface of the conductive substrate having a large average pore diameter is disposed on the side located inside when the positive electrode is wound. When a surface having a large average pore diameter of the conductive substrate is arranged on the surface located outside at the time of winding the positive electrode, there is a possibility that the edge of the current collector rebounds at the time of winding and breaks through the separator to come into contact with the negative electrode. Because.

【0031】以下、負極、セパレータ及びアルカリ電解
液について説明する。
Hereinafter, the negative electrode, the separator, and the alkaline electrolyte will be described.

【0032】1)負極 負極は、水素吸蔵合金を含む。1) Negative electrode The negative electrode contains a hydrogen storage alloy.

【0033】この負極は、例えば、水素吸蔵合金粉末、
導電性材料及び結着剤を水の存在下で混練することによ
りペーストを調製し、前記ペーストを導電性基板に充填
し、乾燥した後、プレスを施すことにより作製される。
This negative electrode is made of, for example, hydrogen storage alloy powder,
The paste is prepared by kneading a conductive material and a binder in the presence of water to prepare a paste, filling the paste into a conductive substrate, drying, and then pressing.

【0034】前記水素吸蔵合金としては、例えば、La
Ni5 、MmNi5 (Mmはミッシュメタル)、LmN
5 (LmはLa富化したミッシュメタル)、これら合
金のNiの一部をAl、Mn、Co、Ti、Cu、C
a、Mg、Zr、Cr及びBから選ばれる少なくとも1
種の元素で置換した多元素系のものに代表される希土類
系水素吸蔵合金を挙げることができる。中でも、一般式
LnNivCowMnxAlyZrz (ただし、Lnは1種
類または2種類以上の希土類元素で、Laを含むものが
好ましく、原子比v,w,x,y及びzの合計値が5.
1≦v+w+x+y+z≦5.4を示す)で表されるも
のを用いることが好ましい。
As the hydrogen storage alloy, for example, La
Ni 5, MmNi 5 (Mm is misch metal), LmN
i 5 (Lm is a La-enriched misch metal), and part of Ni of these alloys is Al, Mn, Co, Ti, Cu, C
at least one selected from a, Mg, Zr, Cr and B
Rare earth-based hydrogen storage alloys represented by multi-element-based alloys substituted with various elements can be given. Above all, the general formula LnNi v Co w Mn x Al y Zr z ( However, Ln is one or more kinds of rare earth elements, preferably those containing La, total atomic ratio v, w, x, y and z Value is 5.
1 ≦ v + w + x + y + z ≦ 5.4) is preferably used.

【0035】前記導電性材料としては、例えば、黒鉛、
カーボンブラック等を用いることができる。
As the conductive material, for example, graphite,
Carbon black or the like can be used.

【0036】前記結着剤としては、例えばカルボキシメ
チルセルロース、メチルセルロース、ポリアクリル酸ナ
トリウム、ポリテトラフルオロエチレン、ポリビニルア
ルコール(PVA)、スチレンブタジエンゴム(SB
R)等を挙げることができる。
Examples of the binder include carboxymethylcellulose, methylcellulose, sodium polyacrylate, polytetrafluoroethylene, polyvinyl alcohol (PVA), and styrene butadiene rubber (SB).
R) and the like.

【0037】前記導電性基板としては、パンチドメタ
ル、エキスパンデッドメタル、ニッケルネットなどの二
次元基板や、フェルト状金属多孔体や、スポンジ状金属
基板などの三次元基板を挙げることができる。
Examples of the conductive substrate include a two-dimensional substrate such as a punched metal, an expanded metal, and a nickel net, and a three-dimensional substrate such as a felt-like metal porous body and a sponge-like metal substrate.

【0038】2)セパレータ このセパレータとしては、例えばポリアミド繊維製不織
布、ポリエチレン、ポリプロピレンなどのポリオレフィ
ン繊維製不織布、またはこれらの不織布に親水性官能基
を付与したものを挙げることができる。
2) Separator Examples of the separator include a nonwoven fabric made of a polyamide fiber, a nonwoven fabric made of a polyolefin fiber such as polyethylene and polypropylene, or a nonwoven fabric provided with a hydrophilic functional group.

【0039】3)アルカリ電解液 このアルカリ電解液としては、例えば水酸化ナトリウム
(NaOH)と水酸化リチウム(LiOH)の混合液、
水酸化カリウム(KOH)とLiOHの混合液、KOH
とLiOHとNaOHの混合液等を用いることができ
る。
3) Alkaline Electrolyte As the alkaline electrolyte, for example, a mixed solution of sodium hydroxide (NaOH) and lithium hydroxide (LiOH),
A mixture of potassium hydroxide (KOH) and LiOH, KOH
And a mixed solution of LiOH and NaOH.

【0040】この円筒形アルカリ二次電池の一例を図1
に示す。
FIG. 1 shows an example of this cylindrical alkaline secondary battery.
Shown in

【0041】すなわち、有底円筒状の容器10内には、
正極9とセパレータ11と負極12とを積層してスパイ
ラル状に捲回することにより作製された電極群13が収
納されている。前記正極9の捲回時に内側に位置する面
14側に、前記導電性基板の平均孔径の大きな面が配置
されている。前記負極12は、前記電極群13の最外周
に配置されて前記容器10と電気的に接触している。ア
ルカリ電解液は、前記容器10内に収容されている。中
央に孔15を有する円形の封口板16は、前記容器10
の上部開口部に配置されている。リング状の絶縁性ガス
ケット17は、前記封口板16の周縁と前記容器10の
上部開口部内面の間に配置され、前記上部開口部を内側
に縮径するカシメ加工により前記容器10に前記封口板
16を前記ガスケット17を介して気密に固定してい
る。正極リード8は、一端が前記正極9に接続、他端が
前記封口板16の下面に接続されている。帽子形状をな
す正極端子18は、前記封口板16上に前記孔15を覆
うように取り付けられている。ゴム製の安全弁19は、
前記封口板16と前記正極端子18で囲まれた空間内に
前記孔15を塞ぐように配置されている。中央に穴を有
する絶縁材料からなる円形の押え板20は、前記正極端
子18上に前記正極端子18の突起部がその押え板20
の前記穴から突出されるように配置されている。外装チ
ューブ21は、前記押え板20の周縁、前記容器10の
側面及び前記容器10の底部周縁を被覆している。
That is, in the bottomed cylindrical container 10,
An electrode group 13 produced by laminating the positive electrode 9, the separator 11, and the negative electrode 12 and winding them in a spiral shape is stored. The surface of the conductive substrate having a large average pore diameter is disposed on the side of the surface 14 located inside when the positive electrode 9 is wound. The negative electrode 12 is arranged at the outermost periphery of the electrode group 13 and is in electrical contact with the container 10. The alkaline electrolyte is contained in the container 10. A circular sealing plate 16 having a hole 15 in the center is
Is arranged in the upper opening. A ring-shaped insulating gasket 17 is disposed between the peripheral edge of the sealing plate 16 and the inner surface of the upper opening of the container 10, and the sealing plate is attached to the container 10 by caulking to reduce the diameter of the upper opening inward. 16 is hermetically fixed via the gasket 17. The positive electrode lead 8 has one end connected to the positive electrode 9 and the other end connected to the lower surface of the sealing plate 16. The hat-shaped positive electrode terminal 18 is mounted on the sealing plate 16 so as to cover the hole 15. The rubber safety valve 19
The hole 15 is disposed so as to close the hole 15 in a space surrounded by the sealing plate 16 and the positive electrode terminal 18. A circular holding plate 20 made of an insulating material having a hole in the center is provided on the positive terminal 18 with a protrusion of the positive terminal 18.
Are arranged to protrude from the holes. The outer tube 21 covers the periphery of the holding plate 20, the side surface of the container 10, and the periphery of the bottom of the container 10.

【0042】以上説明した本発明に係るアルカリ二次電
池用正極は、三次元多孔質構造を有し、一方の面の平均
孔径が他方の面の平均孔径に比べて大きく、前記平均孔
径が大きな面の孔数を1とした際に前記平均孔径が小さ
な面の孔数が1.1〜2の範囲内にある導電性基板と、
前記導電性基板の前記平均孔径の大きな面の集電体溶接
領域に溶接された集電体と、前記導電性基板に充填され
た正極合剤とを具備する。
The positive electrode for an alkaline secondary battery according to the present invention described above has a three-dimensional porous structure, and the average pore diameter on one side is larger than the average pore diameter on the other side, and the average pore diameter is large. A conductive substrate in which the number of holes on the surface having a small average pore diameter is 1.1 to 2 when the number of holes on the surface is 1;
A current collector welded to the current collector welding area on the surface of the conductive substrate having the large average hole diameter; and a positive electrode mixture filled in the conductive substrate.

【0043】このような正極は、導電性基板の骨格の太
い面に集電体が溶接されているため、導電性基板と集電
体との溶接強度を向上することができ、正極の集電性能
を高くすることができる。また、前記正極を、活物質を
含むペーストを導電性基板に充填した後、乾燥し、プレ
スすることにより正極合剤が充填された導電性基板を得
た後、集電体溶接領域に充填されている正極合剤を除去
し、前記集電体溶接領域に集電体を溶接することにより
作製する際、集電体溶接領域に充填されている正極合剤
を容易に除去することができる。すなわち、正極容量を
向上させるために合剤充填密度を高くする程、導電性基
板から正極合剤を除去し難くなる。例えば超音波振動に
より合剤の除去を行う場合、振動数を高くしたり、ある
いは振動を与える時間を長くする必要が生じ、導電性基
板に割れ等の損傷を与える可能性が高くなる。本願発明
によれば、集電体が溶接される面の平均孔径が大きいた
め、合剤の除去を容易に行うことができる。
In such a positive electrode, since the current collector is welded to the thick surface of the skeleton of the conductive substrate, the welding strength between the conductive substrate and the current collector can be improved, and the current collection of the positive electrode can be improved. Performance can be improved. Further, the positive electrode, after filling a conductive substrate with a paste containing an active material, drying and pressing to obtain a conductive substrate filled with a positive electrode mixture by pressing, and then filled in the current collector welding area. When the positive electrode mixture is removed and the current collector is welded to the current collector welding area, the positive electrode mixture filled in the current collector welding area can be easily removed. That is, the higher the mixture filling density is to increase the positive electrode capacity, the more difficult it is to remove the positive electrode mixture from the conductive substrate. For example, when the mixture is removed by ultrasonic vibration, it is necessary to increase the frequency or lengthen the time for applying the vibration, which increases the possibility of damaging the conductive substrate such as cracks. According to the present invention, the mixture can be easily removed because the average hole diameter of the surface to which the current collector is welded is large.

【0044】さらに、本発明に係る正極と負極をセパレ
ータを介在させて渦巻き状に捲回する際、正極の捲回時
に内側に位置する面側に導電性基板の平均孔径の大きな
面を配置することによって、正極の捲回時に外側に位置
する面は変形量が大きいものの、この面側に柔軟性の高
い平均孔径の小さな面が配置されているため、捲回時に
外側に位置する面に大きなクラックが生じるのを回避す
ることができる。また、正極の捲回時に内側に位置する
面に集電体が溶接されているため、捲回時に集電体のエ
ッジが撥ね返るのを回避することができる。その結果、
電極群作製時の内部短絡発生率を低くすることができ
る。また、このような電極群を備えたアルカリ二次電池
は、正極利用率と高率放電特性のような充放電特性を向
上することができる。
Further, when the positive electrode and the negative electrode according to the present invention are spirally wound with a separator interposed therebetween, a surface having a large average pore diameter of the conductive substrate is arranged on the side located inside when the positive electrode is wound. Thereby, although the surface located outside when the positive electrode is wound has a large amount of deformation, the surface having a small average pore diameter having high flexibility is arranged on this surface side, so that the surface located outside during the winding is large. Cracks can be avoided. In addition, since the current collector is welded to the inner surface when the positive electrode is wound, it is possible to prevent the edge of the current collector from rebounding during the winding. as a result,
The internal short-circuit occurrence rate at the time of manufacturing the electrode group can be reduced. In addition, an alkaline secondary battery including such an electrode group can improve charge / discharge characteristics such as positive electrode utilization and high-rate discharge characteristics.

【0045】[0045]

【実施例】以下、本発明の好ましい実施例を図面を参照
して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings.

【0046】(実施例1) <ペースト式正極の作製>平均孔径の異なる2種類の発
泡樹脂シートの間にニッケルネットを配置した後、これ
らを熱融着により一体化させた。ひきつづき、ニッケル
無電解メッキに次いでニッケル電気メッキを施し、焼成
によりニッケルメッキ層内部の樹脂を熱分解除去するこ
とにより、目付量が400g/m2で、空隙率が98%
で、厚さが1.5mmで、一方の面の平均孔径が500
μmで、他方の面の平均孔径が300μmで、平均孔径
の大きな面の孔数を1とした際に平均孔径の小さな面の
孔数が1.2である三次元多孔質構造の導電性基板を用
意した。
Example 1 <Preparation of Paste-Type Positive Electrode> After a nickel net was placed between two types of foamed resin sheets having different average pore sizes, these were integrated by heat fusion. Subsequently, nickel electroplating was applied after nickel electroless plating, and the resin inside the nickel plating layer was thermally decomposed and removed by firing, whereby the basis weight was 400 g / m 2 and the porosity was 98%.
And the thickness is 1.5 mm and the average pore diameter on one side is 500
A conductive substrate having a three-dimensional porous structure in which the average number of pores on the other surface is 300 μm, and the number of holes on the surface having a small average diameter is 1.2 when the number of holes on the surface having a large average diameter is 1 Was prepared.

【0047】一方、水酸化ニッケル粉末90質量%及び
一酸化コバルト粉末(D50が3μm、10μmの分布
が7%)10質量%からなる混合粉体に、カルボキシメ
チルセルロース(CMC)3質量%及びポリテトラフル
オロエチレン5質量%を添加し、これらに水45質量%
添加して混練することによりペーストを調製した。つづ
いて、このペーストを前述した導電性基板に充填し、乾
燥した後、ローラプレスして圧延成形することにより、
正極合剤が充填された導電性基板を得た。この合剤充填
基板の導電性基板の平均孔径の小さな面側にホーンを配
置し、平均孔径の大きな面側にアンビルを配置した。合
剤充填基板にホーンにより超音波振動を加えて合剤を粉
砕し、合剤の粉砕物をアンビルにより吸引し、合剤充填
基板の長手方向側端部の中央部の4mm×4mmに導電
性基板の平均孔径の大きな面を露出させ、集電体溶接領
域を形成した。
On the other hand, 3% by mass of carboxymethylcellulose (CMC) and polytetrafluoroethylene were added to a mixed powder consisting of 90% by mass of nickel hydroxide powder and 10% by mass of cobalt monoxide powder (D50: 3 μm, distribution of 7 μm at 7 μm). 5% by mass of fluoroethylene was added, and 45% by mass of water was added thereto.
A paste was prepared by adding and kneading. Subsequently, by filling this paste into the above-described conductive substrate, drying it, and then performing roller pressing and rolling molding,
A conductive substrate filled with the positive electrode mixture was obtained. The horn was arranged on the side of the conductive substrate of the mixture-filled substrate having the smaller average hole diameter, and the anvil was arranged on the side of the larger average hole diameter of the conductive substrate. Ultrasonic vibration is applied to the mixture-filled substrate with a horn to pulverize the mixture, the pulverized mixture is suctioned by the anvil, and the mixture is electrically conductive to 4 mm x 4 mm at the center of the longitudinal end of the substrate. A surface of the substrate having a large average hole diameter was exposed to form a current collector welding region.

【0048】次いで、前記集電体溶接領域に幅が3mm
の帯状ニッケル板からなる集電体を抵抗溶接し、前述し
た図3に示す構造を有するAAサイズ用のペースト式ニ
ッケル正極を得た。集電体溶接面積(L1×L2)は、集
電体溶接領域面積(L3×L4)の50%とした。
Next, a width of 3 mm was applied to the current collector welding area.
The current collector made of the strip-shaped nickel plate was subjected to resistance welding to obtain a paste-type nickel positive electrode for AA size having the structure shown in FIG. 3 described above. The current collector welding area (L 1 × L 2 ) was 50% of the current collector welding area (L 3 × L 4 ).

【0049】<ペースト式水素吸蔵合金負極の作製>水
素吸蔵合金粉末100質量%に、ポリアクリル酸ナトリ
ウム0.5質量%、カルボキシメチルセルロース(CM
C)0.12質量%、ポリテトラフルオロエチレン1.
5質量%及びカーボンブラック1質量%を添加し、水5
0質量%と共に混練することによりペーストを調製し
た。このペーストを導電性基板としてパンチドメタルの
両面に塗布し、乾燥させた後、ローラプレスで圧延成形
することにより、負極を作製した。
<Preparation of Paste Type Hydrogen Storage Alloy Negative Electrode> 100% by mass of hydrogen storage alloy powder, 0.5% by mass of sodium polyacrylate, carboxymethyl cellulose (CM
C) 0.12% by mass, polytetrafluoroethylene
5% by mass and 1% by mass of carbon black,
A paste was prepared by kneading with 0% by mass. This paste was applied on both sides of a punched metal as a conductive substrate, dried, and then roll-formed by a roller press to produce a negative electrode.

【0050】次いで、親水化処理が施されたポリオレフ
ィン製不織布からなるセパレータを正極と負極の間に介
在し、渦巻き状に捲回することにより、電極群を作製し
た。この際、正極の捲回時に内側に位置する面側に導電
性基板の平均孔径の大きな面を配置した。このような電
極群を負極端子を兼ねる有底円筒状の金属製容器内に収
納した。次いで、前記容器内にKOHを主体とするアル
カリ電解液を注入し、封口処理等を施すことにより、前
述した図1に示す構造を有し、理論容量が1200mA
hで、AAサイズの円筒形ニッケル水素二次電池を製造
した。
Next, a separator made of a nonwoven fabric made of polyolefin subjected to a hydrophilic treatment was interposed between the positive electrode and the negative electrode and spirally wound to form an electrode group. At this time, the surface of the conductive substrate having a large average pore diameter was arranged on the side located inside when the positive electrode was wound. Such an electrode group was housed in a bottomed cylindrical metal container also serving as a negative electrode terminal. Next, an alkaline electrolyte mainly composed of KOH is injected into the container, and the container is subjected to a sealing treatment or the like, thereby having the above-described structure shown in FIG. 1 and a theoretical capacity of 1200 mA.
h, an AA-size cylindrical nickel-metal hydride secondary battery was manufactured.

【0051】(比較例1)両面の平均孔径が等しい(3
00μm)三次元多孔質構造の導電性基板を用意した。
この導電性基板に前述した実施例1で説明したのと同様
なペーストを充填し、乾燥した後、ローラプレスして圧
延成形することにより、正極合剤が充填された導電性基
板を得た。この合剤充填基板の一方の面側にホーンを配
置し、他方の面側にアンビルを配置した。合剤充填基板
にホーンにより超音波振動を加えて合剤を粉砕し、合剤
の粉砕物をアンビルにより吸引し、合剤充填基板の長手
方向側端部の中央部に導電性基板を露出させ、集電体溶
接領域を形成した。
(Comparative Example 1) The average pore diameter on both surfaces was equal (3
00 μm) A conductive substrate having a three-dimensional porous structure was prepared.
This conductive substrate was filled with a paste similar to that described in Example 1 described above, dried, and then roll-pressed to obtain a conductive substrate filled with a positive electrode mixture. A horn was arranged on one side of the mixture-filled substrate, and an anvil was arranged on the other side. Ultrasonic vibration is applied to the mixture-filled substrate with a horn to pulverize the mixture, the pulverized mixture is sucked by the anvil, and the conductive substrate is exposed at the center of the longitudinal end of the mixture-filled substrate. Thus, a current collector welding area was formed.

【0052】次いで、前記集電体溶接領域に幅が3mm
の帯状ニッケル板からなる集電体を抵抗溶接し、AAサ
イズ用のペースト式ニッケル正極を得た。集電体溶接面
積は、集電体溶接領域面積の50%とした。
Next, a width of 3 mm was applied to the current collector welding area.
The current collector formed of the strip-shaped nickel plate was resistance-welded to obtain a paste-type nickel positive electrode for AA size. The current collector welding area was 50% of the current collector welding area area.

【0053】このような正極と前述した実施例1で説明
したのと同様な負極の間に前述した実施例1で説明した
のと同様なセパレータを介在し、渦巻き状に捲回するこ
とにより、電極群を作製した。この際、集電体が溶接さ
れている面を捲回時に内側に位置する面とした。この電
極群から前述した実施例1で説明したのと同様にして円
筒形ニッケル水素二次電池を組み立てた。
A separator similar to that described in the first embodiment is interposed between such a positive electrode and a negative electrode similar to the one described in the first embodiment, and spirally wound. An electrode group was prepared. At this time, the surface to which the current collector was welded was defined as a surface located inside during winding. From this electrode group, a cylindrical nickel-metal hydride secondary battery was assembled in the same manner as described in Example 1 above.

【0054】(比較例2)前述した実施例1で説明した
のと同様な導電性基板に前述した実施例1で説明したの
と同様なペーストを充填し、乾燥した後、ローラプレス
して圧延成形することにより、正極合剤が充填された導
電性基板を得た。この合剤充填基板の平均孔径の大きな
面側にホーンを配置し、平均孔径の小さな面側にアンビ
ルを配置した。合剤充填基板にホーンにより超音波振動
を加えて合剤を粉砕し、合剤の粉砕物をアンビルにより
吸引し、合剤充填基板の長手方向側端部の中央部に導電
性基板の平均孔径の小さな面を露出させ、集電体溶接領
域を形成した。
Comparative Example 2 A conductive substrate similar to that described in Example 1 was filled with a paste similar to that described in Example 1 above, dried, and then rolled by roller pressing. By molding, a conductive substrate filled with the positive electrode mixture was obtained. The horn was arranged on the side of the mixture-filled substrate having the larger average pore diameter, and the anvil was arranged on the side of the smaller average pore diameter. Ultrasonic vibration is applied to the mixture-filled substrate with a horn to pulverize the mixture, the pulverized material of the mixture is suctioned by the anvil, and the average pore diameter of the conductive substrate is provided at the center of the longitudinal end of the mixture-filled substrate. Was exposed to form a current collector welded area.

【0055】次いで、前記集電体溶接領域に幅が3mm
の帯状ニッケル板からなる集電体を抵抗溶接し、AAサ
イズ用のペースト式ニッケル正極を得た。集電体溶接面
積は、集電体溶接領域面積の50%とした。
Next, a width of 3 mm was applied to the current collector welding area.
The current collector formed of the strip-shaped nickel plate was resistance-welded to obtain a paste-type nickel positive electrode for AA size. The current collector welding area was 50% of the current collector welding area area.

【0056】このような正極と前述した実施例1で説明
したのと同様な負極の間に前述した実施例1で説明した
のと同様なセパレータを介在し、渦巻き状に捲回するこ
とにより、電極群を作製した。この際、正極の捲回時に
内側に位置する面側に導電性基板の平均孔径の小さな面
を配置した。この電極群から前述した実施例1で説明し
たのと同様にして円筒形ニッケル水素二次電池を組み立
てた。
A separator similar to that described in Example 1 is interposed between such a positive electrode and a negative electrode similar to that described in Example 1 described above, and is spirally wound. An electrode group was prepared. At this time, the surface of the conductive substrate having a small average pore diameter was arranged on the side located inside when the positive electrode was wound. From this electrode group, a cylindrical nickel-metal hydride secondary battery was assembled in the same manner as described in Example 1 above.

【0057】得られた実施例1及び比較例1,2の二次
電池をそれぞれ100個ずつ用意し、短絡試験を行い、
内部短絡による不良率を測定し、その結果を下記表1に
示す。
100 secondary batteries of Example 1 and Comparative Examples 1 and 2 were prepared and subjected to a short-circuit test.
The failure rate due to an internal short circuit was measured, and the results are shown in Table 1 below.

【0058】また、実施例1及び比較例1,2の正極を
100個ずつ用意し、引っ張り試験を行い、引っ張り強
度の平均値を算出し、その結果を下記表1に示す。
Also, 100 positive electrodes of Example 1 and Comparative Examples 1 and 2 were prepared and subjected to a tensile test, and the average value of the tensile strength was calculated. The results are shown in Table 1 below.

【0059】[0059]

【表1】 [Table 1]

【0060】表1から明らかなように、一方の面の平均
孔径が他方の面の平均孔径に比べて大きく、前記平均孔
径が大きな面の孔数を1とした際に前記平均孔径が小さ
な面の孔数が1.1〜2の範囲内にある導電性基板の平
均孔径の大きな面に集電体を溶接した実施例1の二次電
池は、比較例1,2の二次電池に比べて、内部短絡発生
率を低減することができると共に、正極の導電性基板と
集電体の引っ張り強度を高くすることができる。
As is clear from Table 1, the average pore diameter on one surface is larger than the average pore diameter on the other surface, and the average pore size is smaller when the number of pores on the surface with the larger average pore diameter is 1. The secondary battery of Example 1 in which the current collector was welded to the surface of the conductive substrate having a large average hole diameter in the range of 1.1 to 2 in the conductive substrate in comparison with the secondary batteries of Comparative Examples 1 and 2 As a result, the internal short-circuit occurrence rate can be reduced, and the tensile strength between the positive electrode conductive substrate and the current collector can be increased.

【0061】(実施例2〜5)集電体溶接領域の面積を
変更することにより、集電体溶接領域面積に対する集電
体溶接面積の比率を20%、30%、80%、90%に
すること以外は、前述した実施例1と同様にして円筒形
ニッケル水素二次電池を製造した。
(Examples 2 to 5) The ratio of the current collector welding area to the current collector welding area was changed to 20%, 30%, 80%, and 90% by changing the area of the current collector welding area. A cylindrical nickel-metal hydride secondary battery was manufactured in the same manner as in Example 1 except for the above.

【0062】得られた実施例2〜5の二次電池をそれぞ
れ100個ずつ用意し、短絡試験を行い、内部短絡によ
る不良率を測定し、その結果を下記表2に示す。
Each of the obtained secondary batteries of Examples 2 to 5 was prepared, and a short-circuit test was carried out, and a defective rate due to an internal short-circuit was measured. The results are shown in Table 2 below.

【0063】また、実施例2〜5の正極を100個ずつ
用意し、引っ張り試験を行い、引っ張り強度の平均値を
算出し、その結果を下記表2に示す。
Also, 100 positive electrodes of Examples 2 to 5 were prepared, and a tensile test was performed to calculate an average value of tensile strength. The results are shown in Table 2 below.

【0064】[0064]

【表2】 [Table 2]

【0065】表2から明らかなように、溶接面積を集電
体溶接領域面積の30〜80%にすることによって、正
極の導電性基板と集電体の引っ張り強度を向上すること
ができる。
As is apparent from Table 2, the tensile strength between the positive electrode conductive substrate and the current collector can be improved by setting the welding area to 30 to 80% of the current collector welding area.

【0066】[0066]

【発明の効果】以上説明したように本発明によれば、導
電性基板と集電体との溶接強度が向上された集電性能に
優れるアルカリ二次電池用正極を提供することができ
る。また、本発明によれば、集電性能に優れる正極を備
えた充放電特性に優れるアルカリ二次電池を提供するこ
とができる。
As described above, according to the present invention, it is possible to provide a positive electrode for an alkaline secondary battery which has improved welding strength between a conductive substrate and a current collector and has excellent current collecting performance. Further, according to the present invention, it is possible to provide an alkaline secondary battery having excellent charge / discharge characteristics including a positive electrode having excellent current collecting performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るアルカリ二次電池用正極の導電性
基板の一例を示す模式図。
FIG. 1 is a schematic view showing an example of a conductive substrate of a positive electrode for an alkaline secondary battery according to the present invention.

【図2】本発明に係るアルカリ二次電池用正極の製造工
程における合剤除去工程を示す斜視図。
FIG. 2 is a perspective view showing a mixture removing step in a manufacturing step of the positive electrode for an alkaline secondary battery according to the present invention.

【図3】本発明に係るアルカリ二次電池用正極の一例を
示す平面図。
FIG. 3 is a plan view showing an example of a positive electrode for an alkaline secondary battery according to the present invention.

【図4】本発明に係るアルカリ二次電池の一例を示す部
分切欠斜視図。
FIG. 4 is a partially cutaway perspective view showing an example of the alkaline secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1…導電性基板、 2…平均孔径の大きい三次元多孔質構造の層、 3…平均孔径の小さい三次元多孔質構造の層、 4…集電体溶接領域、 5…正極合剤充填基板、 8…集電体、 9…正極。 DESCRIPTION OF SYMBOLS 1 ... Conductive board | substrate, 2 ... Layer of a three-dimensional porous structure with a large average pore diameter, 3 ... Layer of a three-dimensional porous structure with a small average pore diameter, 4 ... Current collector welding area, 5 ... Positive electrode mixture filled substrate, 8: current collector, 9: positive electrode.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H017 AA02 AS02 BB11 CC01 CC20 CC28 DD03 EE04 HH03 5H028 AA01 BB05 BB07 CC05 CC12 5H050 AA14 BA14 CA03 CB17 DA04 DA20 FA09 FA12 FA13 GA07 GA23 HA06  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H017 AA02 AS02 BB11 CC01 CC20 CC28 DD03 EE04 HH03 5H028 AA01 BB05 BB07 CC05 CC12 5H050 AA14 BA14 CA03 CB17 DA04 DA20 FA09 FA12 FA13 GA07 GA23 HA06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 三次元多孔質構造を有し、一方の面の平
均孔径が他方の面の平均孔径に比べて大きく、前記平均
孔径が大きな面の孔数を1とした際に前記平均孔径が小
さな面の孔数が1.1〜2の範囲内にある導電性基板
と、 前記導電性基板の前記平均孔径の大きな面の集電体溶接
領域に溶接された集電体と、 前記導電性基板に充填された正極合剤とを具備すること
を特徴とするアルカリ二次電池用正極。
1. An average pore size having a three-dimensional porous structure, wherein the average pore size on one surface is larger than the average pore size on the other surface, and when the number of pores on the surface having the larger average pore size is 1, A conductive substrate having a small number of holes in a range of 1.1 to 2; a current collector welded to a current collector welding region of the large average hole diameter of the conductive substrate; And a positive electrode mixture filled in a functional substrate.
【請求項2】 正極と負極がセパレータを介在して渦巻
き状に捲回された電極群を具備したアルカリ二次電池に
おいて、 前記正極は、三次元多孔質構造を有し、捲回時に内側に
位置する面の平均孔径が捲回時に外側に位置する面の平
均孔径に比べて大きく、かつ前記平均孔径が大きな面の
孔数を1とした際に前記平均孔径が小さな面の孔数が
1.1〜2の範囲内にある導電性基板と、前記導電性基
板の前記平均孔径の大きな面の集電体溶接領域に溶接さ
れた集電体と、前記導電性基板に充填された正極合剤と
を有することを特徴とするアルカリ二次電池。
2. An alkaline secondary battery comprising an electrode group in which a positive electrode and a negative electrode are spirally wound with a separator interposed therebetween, wherein the positive electrode has a three-dimensional porous structure, and has a three-dimensional porous structure. The average pore diameter of the surface located is larger than the average pore diameter of the surface located outside at the time of winding, and when the number of pores of the surface having the larger average pore diameter is 1, the number of pores of the surface having the smaller average pore diameter is 1 A current collector welded to a current collector welding area on the surface of the conductive substrate having the large average pore diameter, and a positive electrode filled in the conductive substrate. Alkaline secondary battery comprising:
JP2000280703A 2000-09-14 2000-09-14 Positive electrode for alkaline secondary battery and alkaline secondary battery Pending JP2002093421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000280703A JP2002093421A (en) 2000-09-14 2000-09-14 Positive electrode for alkaline secondary battery and alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000280703A JP2002093421A (en) 2000-09-14 2000-09-14 Positive electrode for alkaline secondary battery and alkaline secondary battery

Publications (1)

Publication Number Publication Date
JP2002093421A true JP2002093421A (en) 2002-03-29

Family

ID=18765487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000280703A Pending JP2002093421A (en) 2000-09-14 2000-09-14 Positive electrode for alkaline secondary battery and alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP2002093421A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277477A (en) * 2008-05-14 2009-11-26 Sanyo Electric Co Ltd Cylindrical alkaline secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277477A (en) * 2008-05-14 2009-11-26 Sanyo Electric Co Ltd Cylindrical alkaline secondary battery

Similar Documents

Publication Publication Date Title
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP4342160B2 (en) Storage battery and manufacturing method thereof
JP2003317694A (en) Nickel hydride storage battery
JP2002279964A (en) Alkaline secondary battery and manufacturing method therefor
JP2002260628A (en) Positive electrode for alkaline secondary battery, manufacturing method of positive electrode for the alkaline secondary battery, and the alkaline secondary battery
JPH11185767A (en) Manufacture of nickel-hydrogen secondary battery and electrode
JP2002025604A (en) Alkaline secondary battery
JP3849478B2 (en) Alkaline storage battery and method of manufacturing the same
JP3893856B2 (en) Square alkaline storage battery
JP2002093421A (en) Positive electrode for alkaline secondary battery and alkaline secondary battery
JP2000251871A (en) Alkaline secondary battery
JP2006196207A (en) Alkaline storage battery and manufacturing method of its electrode group
JP3330263B2 (en) Alkaline secondary battery and manufacturing method thereof
JP4413294B2 (en) Alkaline secondary battery
JP2001006688A (en) Nickel-hydrogen secondary battery
JP2002100396A (en) Cylindrical alkaline secondary cell
JP2001202969A (en) Alkaline secondary battery
JP2005071964A (en) Alkaline accumulator
JP2002093460A (en) Manufacturing method for alkaline secondary battery
JP2002093410A (en) Positive electrode for alkaline secondary battery, manufacturing method of positive electrode for alkaline secondary battery, and alkaline secondary battery
JP2001307764A (en) Alkaline secondary battery and its production
JP2001068145A (en) Rectangular alkaline secondary battery
JP4168578B2 (en) Square alkaline storage battery and manufacturing method thereof
JP2002083592A (en) Positive electrode for alkaline secondary battery and alkaline secondary battery
JPH103928A (en) Nickel-hydrogen secondary battery