JP2002079499A - Method of manufacturing needle-like article, and manufactured needle - Google Patents

Method of manufacturing needle-like article, and manufactured needle

Info

Publication number
JP2002079499A
JP2002079499A JP2000272924A JP2000272924A JP2002079499A JP 2002079499 A JP2002079499 A JP 2002079499A JP 2000272924 A JP2000272924 A JP 2000272924A JP 2000272924 A JP2000272924 A JP 2000272924A JP 2002079499 A JP2002079499 A JP 2002079499A
Authority
JP
Japan
Prior art keywords
needle
single crystal
substrate
crystal substrate
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000272924A
Other languages
Japanese (ja)
Inventor
Hideji Imuda
秀司 井無田
Takeshi Kudo
剛 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2000272924A priority Critical patent/JP2002079499A/en
Publication of JP2002079499A publication Critical patent/JP2002079499A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00111Tips, pillars, i.e. raised structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/055Microneedles

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Anesthesiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Dermatology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • ing And Chemical Polishing (AREA)
  • Weting (AREA)
  • Micromachines (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a need-like article with a through hole for supplying a chemical via a small number of steps, and a manu factured needle. SOLUTION: The method of manufacturing for a needlelike article forms a needlelike article by forming a plurality of grooves in one surface of a single- crystal substrate of metal, a metal compound or a semiconductor with both surfaces provided with a protective film against wet etching, to form a polygonal prism on the one surface of the substrate, and then immersing the single- crystal substrate in an etchant to etch the single-crystal material in an unnecessary portion. The needle is manufactured by this method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、針形状物の作製方
法および作製された針に関するものである。詳しく述べ
ると、針形状物の根元付近に液体を供給するための貫通
孔を有する針形状物の作製方法および作製された針に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a needle-shaped object and a produced needle. More specifically, the present invention relates to a method for manufacturing a needle-shaped object having a through-hole for supplying a liquid near the base of the needle-shaped object, and a manufactured needle.

【0002】[0002]

【従来の技術】近年、ヒトの皮膚を経由して薬剤を体内
に投与する技術がさかんに研究され、例えば、特開平8
−150147号公報のように、円形薄板状の皮膚針板
を用いて皮膚に傷をつけ、その傷から薬液を投与するも
のが開示されている。しかしながら、該発明によれば、
皮膚に形成した傷が大きく、それだけ侵襲が大きいた
め、薄板状針ではなく、通常の形状の針を用いた機器が
望ましい。
2. Description of the Related Art In recent years, techniques for administering drugs into the body via human skin have been actively studied.
Japanese Patent Application Laid-Open No. -150147 discloses a technique in which a skin is wounded using a circular thin skin needle plate, and a medicinal solution is administered from the wound. However, according to the invention,
Since the wound formed on the skin is large and the invasion is large, it is desirable to use a device using a needle having a normal shape instead of a thin needle.

【0003】また、特表平9−504974号公報に
は、そのような針を用いた皮膚内薬剤供給装置が開示さ
れている。しかしながら、該装置は、1本の針を用いた
ものであるため、単位時間当りの薬液の投与量が少ない
という問題があった。
[0003] Japanese Patent Publication No. 9-504974 discloses an intradermal drug supply device using such a needle. However, since the device uses one needle, there is a problem that the dose of the drug solution per unit time is small.

【0004】そこで、微小な針形状を多数本形成する方
法として、例えば、「Microfabricated
Microneedles: A Novel Ap
proach to Transdermal Dru
g Delivery」,J.Phamaceutic
al Sciences, vol.87,No.8,
1998.や「Micromachined Need
les for the Transdermal D
elivery of Drugs」,Proceed
ings of MEMS98,1998.に報告され
ているように、特殊な反応性イオンエッチング装置を用
いたもの、あるいはECRプラズマエッチング装置を用
いたものなど、いわゆるドライブプロセスを利用した方
法が知られている。これらの方法によれば、高アスペク
ト比加工を活用した、いわゆるするどく細長いシリコン
針の加工が出来る反面、専用の特殊な半導体プロセス装
置が必要である。さらに、薬液が通るための貫通孔を有
した針形状を作製するためには(前記文献には開示され
ていない)、前述した技術で作製した針形状のものに金
属蒸着、めっきなどを施すなどの方法も知られている
が、工程が複雑になり、工程数も増える。
Accordingly, as a method of forming a large number of minute needles, for example, “Microfabricated”
Microneedles: A Novel Ap
proch to Transdermal Dru
g Delivery ", J. Pharm. Pharmaceutical
al Sciences, vol. 87, no. 8,
1998. And "Micromachined Need
les for the Transdermal D
elyvery of Drugs ", Proceed
ins of MEMS 98, 1998. A method using a so-called drive process, such as a method using a special reactive ion etching apparatus or a method using an ECR plasma etching apparatus, is known. According to these methods, it is possible to process a so-called long and thin silicon needle utilizing high aspect ratio processing, but a special semiconductor processing device for exclusive use is required. Furthermore, in order to produce a needle shape having a through hole through which a chemical solution passes (not disclosed in the above-mentioned literature), the needle shape produced by the above-described technique is subjected to metal deposition, plating, or the like. Is also known, but the process becomes complicated and the number of processes increases.

【0005】[0005]

【発明が解決しようとする課題】したがって、本発明の
目的は、新規な針形状物の作製方法および作製された針
を提供することにある。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a novel method for producing a needle-shaped article and a produced needle.

【0006】本発明の他の目的は、少ない工程数で簡便
に針形状物の根元付近に薬液を供給するための貫通孔を
有する針形状物の作製方法および作製された針を提供す
ることにある。
Another object of the present invention is to provide a method of manufacturing a needle-shaped object having a through-hole for supplying a chemical solution near the base of the needle-shaped object easily with a small number of steps, and to provide a manufactured needle. is there.

【0007】[0007]

【課題を解決するための手段】上記諸目的は、下記
(1)〜(6)により達成される。
The above objects are achieved by the following (1) to (6).

【0008】(1) ウェットエッチングに対する保護
膜を両面に施した金属もしくは金属化合物または半導体
の単結晶基板の片面に複数本の溝を形成することにより
多角柱を形成し、該単結晶基板をエッチング剤液中に浸
漬して不要な部分の単結晶材料をエッチングすることに
より、針形状物を形成させることを特徴とする針形状物
の製造方法。
(1) A polygonal column is formed by forming a plurality of grooves on one side of a single crystal substrate of a metal, a metal compound or a semiconductor having a protective film for wet etching on both sides, and etching the single crystal substrate. A method for producing a needle-shaped object, characterized in that a needle-shaped object is formed by immersing the single-crystal material in an unnecessary portion by immersing it in a chemical solution.

【0009】(2) ウェットエッチングに対する保護
膜を両面に施した金属もしくは金属化合物または半導体
の単結晶基板の片面に針形状を形成するための第1のパ
ターニングを施し、別の片面に該単結晶基板に貫通孔を
形成するための第2のパターニングを施し、該単結晶基
板の該第1のパターニングが施された面に溝を形成する
ことにより多角柱を形成し、該単結晶基板をエッチング
剤液中に浸漬して不要な部分の単結晶材料をエッチング
することにより針形状と貫通孔とを同時に形成させるこ
とを特徴とする針形状物の作製方法。
(2) A first patterning for forming a needle shape is performed on one surface of a single crystal substrate of a metal, a metal compound or a semiconductor having a protection film against wet etching on both surfaces, and the single crystal is formed on another surface. The substrate is subjected to a second patterning for forming a through hole, and a groove is formed on the surface of the single crystal substrate on which the first patterning has been performed to form a polygonal prism, and the single crystal substrate is etched. A method for producing a needle-shaped object, wherein a needle-shaped object and a through-hole are formed simultaneously by immersing the single-crystal material in an unnecessary portion by immersing in a liquid agent.

【0010】(3) 該針形状物の針形状部分の高さは
10〜500μmであり、該針形状部分の頂点からの垂
線と側辺との間の先端角度が2〜60°であり、かつ一
つの単結晶基板上に形成される該針形状部分が1個また
は複数個である前記(1)または(2)に記載の方法。
(3) The height of the needle-shaped portion of the needle-shaped product is 10 to 500 μm, and the tip angle between the perpendicular from the vertex of the needle-shaped portion and the side is 2 to 60 °; The method according to (1) or (2), wherein the number of the needle-shaped portions formed on one single crystal substrate is one or more.

【0011】(4) 該針形状部分の高さおよび個数
が、該単結晶基板の面方位、大きさおよび厚さ、単結晶
基板に形成した前記複数本の溝の深さと間隔およびエッ
チング時間を変えることにより種々に設定できるもので
ある前記(1)〜(3)のいずれか一つに記載の方法。
(4) The height and number of the needle-shaped portions are determined by the plane orientation, the size and the thickness of the single crystal substrate, the depth and interval of the plurality of grooves formed in the single crystal substrate, and the etching time. The method according to any one of the above (1) to (3), which can be set variously by changing.

【0012】(5) 該単結晶基板はシリコン単結晶で
ある前記(1)〜(4)のいずれか一つに記載の方法。
(5) The method according to any one of (1) to (4), wherein the single crystal substrate is a silicon single crystal.

【0013】(6) 前記(1)〜(5)のいずれか一
つに記載の方法により作成した針であり、かつ単結晶材
料からなり、少なくとも針先から所定長にかけては多角
錐形状を呈する針。
(6) A needle prepared by the method according to any one of the above (1) to (5), which is made of a single crystal material and has a polygonal pyramid shape at least from the needle tip to a predetermined length. needle.

【0014】[0014]

【発明の実施の形態】つぎに、図面を参照しながら、本
発明の実施の形態を詳細に説明する。
Next, an embodiment of the present invention will be described in detail with reference to the drawings.

【0015】基板としては、シリコン(Si)、シリコ
ンカーバイド(SiC)、ゲルマニウム(Ge)などの
金属もしくは金属化合物または半導体の単結晶のウェハ
等が使用されるが、つぎにシリコンウェハを使用した場
合を例にとって説明する。
As the substrate, a metal or metal compound such as silicon (Si), silicon carbide (SiC), or germanium (Ge), or a semiconductor single crystal wafer is used. Will be described as an example.

【0016】まず、両方位(100)のシリコンウェハ
の片面または両面を研摩したものを用意し、保護膜成膜
前の洗浄として、例えば硫酸と過酸化水素との2:1の
割合の混合液で10〜20分間洗浄を行ない、ついで超
純水洗浄を行なう。さらに、希フッ酸(フッ酸と超純水
とを1:50の割合で混合した液)で15〜30秒間洗
浄したのち超純水で洗浄し、さらに乾燥を行なう。
First, a silicon wafer having both sides (100) polished on one or both sides is prepared, and as a cleaning before forming a protective film, for example, a mixed solution of sulfuric acid and hydrogen peroxide at a ratio of 2: 1 is used. For 10 to 20 minutes, and then ultrapure water cleaning. Further, the substrate is washed with dilute hydrofluoric acid (a mixture of hydrofluoric acid and ultrapure water at a ratio of 1:50) for 15 to 30 seconds, washed with ultrapure water, and further dried.

【0017】つぎに、熱拡散炉を用いて、800〜11
00℃で40〜60分間の条件で熱処理を行ない、図1
に示すように基板1の両面にエッチング時の保護膜とな
る約0.1〜0.5μmの酸化膜2a,2bが形成され
る(図1A参照)。
Next, 800 to 11 using a heat diffusion furnace.
Heat treatment was performed at 00 ° C. for 40 to 60 minutes, and FIG.
As shown in FIG. 1, oxide films 2a and 2b having a thickness of about 0.1 to 0.5 .mu.m are formed on both surfaces of the substrate 1 to serve as protective films during etching (see FIG. 1A).

【0018】さらに、このシリコン酸化膜2a,2bが
形成された基板1の片方の面にレジスト、例えばネガレ
ジストをレジスト塗布装置(図示せず)を用いて塗布
し、0.5〜1.5μmの厚さのレジスト層3aを形成
させ(図1B参照)、70〜80℃の温度でプリベーク
したのち、ダイシング溝形成用マスク4を用いて露光す
る(図1C参照)。なお、上記マスクの形状は、該マス
ク4の使用によってシリコン酸化膜に形成されるパター
ンが後述するダイシング工程におけるダイシング位置
(溝形成位置)の目印になるダイシング用として機能す
るものであれば、いかなるものでもよい。
Further, a resist, for example, a negative resist is applied to one surface of the substrate 1 on which the silicon oxide films 2a and 2b are formed by using a resist coating device (not shown), and the resist is coated to a thickness of 0.5 to 1.5 μm. Is formed (see FIG. 1B), prebaked at a temperature of 70 to 80 ° C., and then exposed using a dicing groove forming mask 4 (see FIG. 1C). The shape of the mask may be any shape as long as the pattern formed on the silicon oxide film by use of the mask 4 functions as a mark for dicing positions (groove forming positions) in a dicing step described later. It may be something.

【0019】ついで、現像装置を用いて現像することに
より溝形成位置5aのシリコン酸化膜が除去される(図
1D参照)。
Next, the silicon oxide film at the groove forming position 5a is removed by developing using a developing device (see FIG. 1D).

【0020】つぎに、該基板1の反対側の面についても
レジスト塗布装置(図示せず)を用いて同様な厚さのレ
ジスト層3bを形成させ、同様な条件下でプリベーク
し、ついでダイシング溝形成用マスク(図示せず)を用
いて露光し、現像装置(図示せず)を用いて現像して溝
形成位置5bのシリコン酸化膜を除去する(図1E参
照)。ただし、露光の際、後述のエッチングにおいて形
成される貫通孔の形成位置が、針形状物の形成位置から
ずれないように、シリコン酸化膜2a,2bに形成され
るダイシング溝形成のパターンを裏側(基板1の針形状
物が形成される面)のパターンと合わせる必要があるた
め、基板1の表側と裏側の両方を認識できる両面マスク
ライナーを用いて露光する。
Next, a resist layer 3b having a similar thickness is formed on a surface on the opposite side of the substrate 1 by using a resist coating device (not shown), prebaked under similar conditions, and then a dicing groove is formed. Exposure is performed using a forming mask (not shown), and development is performed using a developing device (not shown) to remove the silicon oxide film at the groove formation position 5b (see FIG. 1E). However, at the time of exposure, the pattern of the dicing groove formation formed in the silicon oxide films 2a and 2b is set on the back side (so that the formation position of the through hole formed in the later-described etching does not deviate from the formation position of the needle-shaped object. Since it is necessary to match the pattern of the substrate 1 (the surface on which the needle-shaped object is formed), exposure is performed using a double-sided mask liner that can recognize both the front side and the back side of the substrate 1.

【0021】その後、100〜120℃の温度でポスト
ベークが行なわれる。なお、パターニングの順番は、ど
ちらのマスクからでもよい。
Thereafter, post baking is performed at a temperature of 100 to 120.degree. The order of patterning may be from either mask.

【0022】つぎに、図2に示すように、緩衝フッ酸
(フッ酸とフッ化アンモニウムの混合液)で、パターニ
ングによって露出した部分のシリコン酸化膜を除去6
a,6bし、ついでレジスト3a,3bを剥離する(図
2F参照)。レジストの剥離は、100〜120℃に加
熱した剥離液(例えば502A、東京応化工業株式会社
製)の中に浸漬しておく。取り出してジエチレングリコ
ールモノブチルエーテルまたはモノエタノールアミン液
が入ったストリップリンス(商品名)に入れ、超音波を
かけながらレジスト剥離液を置換し、その後イソプロパ
ノールでさらに置換する。ついで超純水で洗浄し、さら
に乾燥する。
Next, as shown in FIG. 2, the silicon oxide film in the portion exposed by patterning is removed with buffered hydrofluoric acid (a mixed solution of hydrofluoric acid and ammonium fluoride).
Then, the resists 3a and 3b are peeled off (see FIG. 2F). To remove the resist, the resist is immersed in a remover heated to 100 to 120 ° C. (for example, 502A, manufactured by Tokyo Ohka Kogyo Co., Ltd.). It is taken out and placed in a strip rinse (trade name) containing a diethylene glycol monobutyl ether or monoethanolamine solution, and the resist stripping solution is replaced while applying ultrasonic waves, and then further replaced with isopropanol. Then, it is washed with ultrapure water and further dried.

【0023】パターニングを終了した基板1は、ダイシ
ングされる(図2G参照)。シリコンウェハ(基板)1
をダイシングソーにセットする際、ダイシング用のパタ
ーンが表にくるようにセットする。ダイシングブレード
とウェハ(基板)のオリエンテーションフラット(この
場合(110)面)が平行になるように、ウェハ(基
板)を所定のダイシング装置に対しアライメント(位置
合わせ)する。ウェハ(基板)を切断しない高さにダイ
シングブレードをセットし、ダイシング用のパターンに
対してダイシングブレードが所定のダイシングを行なう
ように、ダイシング装置をプログラミングしてダイシン
グを行なう。碁盤目状にダイシングするので、最初のダ
イシングが終了したらウェハを90度回転させ、同様に
ダイシングする。これにより、図3に示すように角柱状
のウェハ(基板)の構造物が作製される。
The substrate 1 after the patterning is diced (see FIG. 2G). Silicon wafer (substrate) 1
Is set on the dicing saw so that the dicing pattern comes to the front. The wafer (substrate) is aligned (positioned) with a predetermined dicing apparatus such that the orientation flat (the (110) plane in this case) of the dicing blade and the wafer (substrate) is parallel. The dicing blade is set at a height that does not cut the wafer (substrate), and the dicing apparatus is programmed to perform dicing so that the dicing blade performs predetermined dicing on the dicing pattern. Since dicing is performed in a grid pattern, when the first dicing is completed, the wafer is rotated 90 degrees and dicing is performed in the same manner. Thus, a prismatic wafer (substrate) structure is manufactured as shown in FIG.

【0024】つぎに、ダイシング終了後のウェハ(基
板)1を、90〜130℃、好ましくは100〜110
℃に加温したエッチング液中に20〜80分間、好まし
くは40〜60分間浸漬して基板のエッチングを行な
う。その後、該基板を取出し、水洗し、さらに乾燥を行
なう。
Next, the wafer (substrate) 1 after completion of the dicing is heated to 90 to 130 ° C., preferably 100 to 110 ° C.
The substrate is etched by immersing it in an etching solution heated to ° C. for 20 to 80 minutes, preferably 40 to 60 minutes. Thereafter, the substrate is taken out, washed with water, and further dried.

【0025】エッチング液としては、基板がシリコンウ
ェハの場合には、例えばテトラメチルアンモニウムヒド
ロキサイドの25重量%水溶液、水酸化カリウムの20
重量%程度の水溶液、エチレンジアミンとピロカテコー
ルと水との混合液等がある。また、基板がゲルマニウム
の場合にも、シリコンと同様のエッチング液が用いられ
得る。
When the substrate is a silicon wafer, for example, a 25% by weight aqueous solution of tetramethylammonium hydroxide and a 20% aqueous solution of potassium hydroxide are used.
There is an aqueous solution of about weight%, a mixed solution of ethylenediamine, pyrocatechol and water, and the like. Also, when the substrate is germanium, the same etchant as silicon can be used.

【0026】このようなエッチング工程において、基板
1は、図2Gの破線より上および下の部分がエッチング
され、図2Hに示すような基板の底部から形成される平
板部10に貫通孔8がある剣山タイプの微小針9が形成
される。このような、基板1において、針状形状が残っ
てエッチングされるとともに、貫通孔8の部分がエッチ
ングされるのは、単結晶ウェハの異方性エッチングによ
るものと思われる。例えばシリコンウェハの場合、エッ
チングの開始とともにエッチング保護膜の四隅に(10
0)面よりエッチ速度の大きな結晶面(nn1)が現わ
れ、島の形状崩れは急速に進行する。nはエッチング液
の条件に依存し、n=2〜4の範囲で変化する。エッチ
ングが進行すると、角柱状の構造物(図4A参照)の真
ん中付近がくびれてゆき(図4B参照)、ついにはエッ
チング保護膜側の侵蝕がシリコンが基板1から分離し、
基板1側に残った構造物が最終的には針形状となる(図
4C参照)。
In such an etching step, the portion of the substrate 1 above and below the broken line in FIG. 2G is etched, and there is a through hole 8 in the flat plate portion 10 formed from the bottom of the substrate as shown in FIG. 2H. A sword-yama type microneedle 9 is formed. The reason why the needle-like shape remains and is etched in the substrate 1 and the portion of the through hole 8 is etched in the substrate 1 is considered to be due to anisotropic etching of the single crystal wafer. For example, in the case of a silicon wafer, (10
A crystal plane (nn1) having a higher etch rate than the 0) plane appears, and the shape collapse of the island proceeds rapidly. n depends on the conditions of the etchant and varies in the range of n = 2-4. As the etching progresses, the vicinity of the center of the prism-shaped structure (see FIG. 4A) narrows (see FIG. 4B), and eventually the erosion on the etching protective film side separates the silicon from the substrate 1,
The structure remaining on the substrate 1 eventually becomes a needle shape (see FIG. 4C).

【0027】このようにして得られた基板を、例えば矢
印方向に切断することより、図2I、図5および図6
(顕微鏡写真)に示す針形状物が得られる。すなわち、
基板1(平板部1a)上に、四角錐状の針形状物9が形
成されているとともに該針形状物9の斜面の基部付近に
は、該基板1(平板部1a)を貫通してなる貫通孔8が
形成されている。
The substrate thus obtained is cut, for example, in the direction of the arrow to obtain the substrate shown in FIGS. 2I, 5 and 6.
The needle-shaped object shown in (micrograph) is obtained. That is,
A quadrangular pyramid-shaped needle-shaped object 9 is formed on the substrate 1 (flat portion 1a), and penetrates the substrate 1 (flat portion 1a) near the base of the slope of the needle-shaped object 9. A through hole 8 is formed.

【0028】つぎに、別の実施態様としては、図7に示
すように、1個の基板上に複数本の針形状物を形成する
方法について説明する。
Next, as another embodiment, a method for forming a plurality of needle-shaped objects on one substrate as shown in FIG. 7 will be described.

【0029】まず、図1A〜図1Eおよび図2F〜図2
Iの工程と同様に、面方位(100)のシリコンウェハ
11の両面を研磨したものを同様に処理したのち、両面
に同様な酸化膜12a,12bを形成し、レジストを塗
布し、ついでマスキングしかつ露光を行なったのち、現
像し、溝形成位置16a,16bのシリコン酸化膜12
a,12bを除去する。
First, FIGS. 1A to 1E and FIGS. 2F to 2
In the same manner as in the step I, the silicon wafer 11 having a plane orientation of (100) is polished on both sides and treated similarly, and then the same oxide films 12a and 12b are formed on both sides, a resist is applied, and then masking is performed. After exposure, development is performed, and the silicon oxide film 12 at the groove formation positions 16a and 16b is formed.
a and 12b are removed.

【0030】つぎに、パターニングによって露出した部
分のシリコン酸化膜12a,12bを除去したのち、レ
ジストを剥離する(図7A参照)。パターニングを終了
した基板(ウェハ)11はダイシングされる(図7B参
照)。図1A〜図1Eおよび図2F〜図2Iの工程と同
様にダイシング装置に対しアライメントし、ダイシング
して凹没部17を形成させる(図7B参照)。
Next, after the portions of the silicon oxide films 12a and 12b exposed by patterning are removed, the resist is removed (see FIG. 7A). The substrate (wafer) 11 after the patterning is diced (see FIG. 7B). Similar to the steps of FIGS. 1A to 1E and FIGS. 2F to 2I, alignment with a dicing apparatus is performed, and dicing is performed to form a recessed portion 17 (see FIG. 7B).

【0031】つぎに、ダイシング終了後のウェハ(基
板)11を、前記と同様にしてエッチングを行ない、そ
の後該基板11を取出し、水洗し、さらに乾燥を行な
う。
Next, the wafer (substrate) 11 after completion of dicing is etched in the same manner as described above, and then the substrate 11 is taken out, washed with water, and further dried.

【0032】このようなエッチング工程において、基板
11は、図7Bの破線により上および下の部分がエッチ
ングされ、図7Cに示すような基板11の底部から形成
される平板部11aに貫通孔18がある剣山タイプの複
数個の微小針19が形成される。このように、基板11
において、針状形状が残ってエッチングされるととも
に、貫通孔18の部分がエッチングされるのは、単結晶
ウェハの異方性エッチングによるものと思われる。
In such an etching step, the upper and lower portions of the substrate 11 are etched by broken lines in FIG. 7B, and the through holes 18 are formed in the flat plate portion 11a formed from the bottom of the substrate 11 as shown in FIG. 7C. A plurality of micro needles 19 of a certain sword mountain type are formed. Thus, the substrate 11
In, it is considered that the reason why the needle-like shape remains and is etched and the portion of the through hole 18 is etched is due to the anisotropic etching of the single crystal wafer.

【0033】このようにして得られた基板を、例えば矢
印方向に切断することにより、図7Dに示す針形状物が
得られる。すなわち、基板11上に、四角錐状の針形状
物19が形成されているとともに該針形状物19の斜面
の基部付近には、該基板11を貫通してなる貫通孔18
が形成される。
By cutting the substrate thus obtained, for example, in the direction of the arrow, the needle-shaped object shown in FIG. 7D is obtained. That is, a quadrangular pyramid-shaped needle-shaped object 19 is formed on the substrate 11, and a through hole 18 penetrating through the substrate 11 is provided near the base of the slope of the needle-shaped object 19.
Is formed.

【0034】上記の実施態様においては、針形状物の形
成と貫通孔の形成とを同一のエッチング工程で同時に形
成する製造例について説明したが、本発明はこれに限定
されず、図8に示すように、針形状物形成工程と貫通孔
形成工程とを別々にしてもよい。また、貫通孔形成工程
を省けば、中実針の製造となる。
In the above embodiment, a description has been given of a production example in which the formation of the needle-shaped object and the formation of the through-hole are simultaneously performed in the same etching step. However, the present invention is not limited to this, and is shown in FIG. As described above, the needle-shaped object forming step and the through-hole forming step may be performed separately. If the step of forming a through hole is omitted, a solid needle is manufactured.

【0035】すなわち、前記実施態様と同様に、シリコ
ンウェハ(基板)21の両面に保護膜として酸化膜22
a,22bを形成させ、ついで、ダイシング後パターニ
ングを用い(図8A参照)、シリコンウェハ(基板)2
1のエッチングを行なって、約70°の先端角度を有す
る凹没部30を形成させる(図8B参照)。その後、ダ
イシングを行ない(図8C参照)、さらにシリコンウェ
ハのエッチングを行なうことにより貫通孔28を有する
針状突起29が形成される(図8D参照)。ついで、所
定個所を矢印方向に切断することにより図8Eに示され
る針状物が得られる。
That is, similarly to the above embodiment, an oxide film 22 is formed on both surfaces of a silicon wafer (substrate) 21 as a protective film.
a and 22b, and then using dicing and patterning (see FIG. 8A), a silicon wafer (substrate) 2
Etching 1 is performed to form a recess 30 having a tip angle of about 70 ° (see FIG. 8B). Thereafter, dicing is performed (see FIG. 8C), and the silicon wafer is further etched to form needle-like projections 29 having through holes 28 (see FIG. 8D). Next, the needle-shaped object shown in FIG. 8E is obtained by cutting a predetermined portion in the direction of the arrow.

【0036】以上の方法により得られる針形状物の基板
1の表面からの高さHは10〜500μm、好ましくは
150〜300μmであり、底辺の幅D6.5〜325
μm、好ましくは100〜195μmである(図5参
照)。また、該針状部分の頂点からの平板部に向かって
の垂線Aと側辺Bの傾斜との間の先端角度θは2〜60
°である。また平板部の厚さは100μm以上である。
The height H from the surface of the substrate 1 of the needle-shaped object obtained by the above method is 10 to 500 μm, preferably 150 to 300 μm, and the width D6.5 to 325 of the bottom side.
μm, preferably 100 to 195 μm (see FIG. 5). The tip angle θ between the perpendicular A from the vertex of the needle portion toward the flat plate portion and the inclination of the side B is 2 to 60.
°. The thickness of the flat portion is 100 μm or more.

【0037】以上は、図3に示すように溝を碁盤目状に
形成して四角柱を形成した場合には、底面が四辺形のピ
ラミッド状の針形状物が形成される。なお、四角柱より
形成する場合でも、ダイシングブレードの形状、エッチ
ング条件等によっては、図10に示すように、針先39
と反対の側においては八角錐形状31を呈する場合もあ
り、また貫通孔38を有していてもよい。
As described above, when the grooves are formed in a grid pattern as shown in FIG. 3 to form a quadrangular prism, a pyramid-like needle-shaped object having a quadrilateral bottom surface is formed. In addition, even when it is formed from a square pole, as shown in FIG.
On the opposite side, an octagonal pyramid shape 31 may be exhibited, and a through hole 38 may be provided.

【0038】このようにして得られる針形状物は、例え
ば米国特許第3,964,482号、特表平9−504
974号、特表平10−510175号等に記載されて
いるように、薬剤供給装置に取付けて、患者の皮膚に該
針形状物を押圧し皮膚内に挿入させることにより患者の
皮膚を通して体内に必要な薬剤を無痛で投与することが
できる。
The needle-shaped product thus obtained is described, for example, in US Pat. No. 3,964,482, Japanese Patent Application Laid-Open No. 9-504.
No. 974, Japanese Patent Application Laid-Open No. 10-510175, etc., the needle-shaped object is attached to a drug supply device, and the needle-shaped object is pressed into the skin of the patient and inserted into the skin, thereby allowing the body to pass through the skin of the patient and into the body. The necessary drugs can be administered painlessly.

【0039】[0039]

【実施例】つぎに、実施例を挙げて本発明をさらに詳細
に説明する。
Next, the present invention will be described in more detail with reference to examples.

【0040】実施例1 エッチングマスク用SiO2成膜 厚さ450μmの片面研磨の直径3インチのシリコンウ
ェハ〔Si(100)n型〕を用意し、硫酸と過酸化水
素との2:1の割合の混合液で120℃の温度で20分
間洗浄したのち、超純水で洗浄を行なった。ついで、ア
ンモニア:過酸化水素水:水が1:1:5の割合の混合
水溶液で80℃の温度で15分間洗浄したのち、超純水
で洗浄した。さらに、塩酸:過酸化水素水:水が1:
1:5の割合の混合水溶液で80℃の温度で15分間洗
浄したのち、超純水で洗浄した。さらに、フッ酸と水と
の1:50の割合の混合水溶液で30秒間洗浄したの
ち、超純水で洗浄し、スプンドライを行なった。
Example 1 Formation of SiO 2 film for etching mask A silicon wafer [Si (100) n-type] having a thickness of 450 μm and single-side polishing and having a diameter of 3 inches was prepared, and a 2: 1 ratio of sulfuric acid to hydrogen peroxide was used. Was washed at a temperature of 120 ° C. for 20 minutes, and then washed with ultrapure water. Next, the substrate was washed with a mixed aqueous solution of ammonia: hydrogen peroxide: water at a ratio of 1: 1: 5 at a temperature of 80 ° C. for 15 minutes, and then washed with ultrapure water. Furthermore, hydrochloric acid: hydrogen peroxide water: water is 1:
After washing with a mixed aqueous solution at a ratio of 1: 5 at a temperature of 80 ° C. for 15 minutes, it was washed with ultrapure water. Further, the substrate was washed with a mixed aqueous solution of hydrofluoric acid and water at a ratio of 1:50 for 30 seconds, washed with ultrapure water, and spun-dried.

【0041】このようにして処理されたシリコンウェハ
を挿入温度400℃で炉内に挿入し、1100℃の温度
で60分間処理してシリコンウェハの両面に厚さ0.5
μmのシリコン酸化膜を形成させた(図1A参照)。
The silicon wafer thus processed is inserted into a furnace at an insertion temperature of 400 ° C., and is processed at a temperature of 1100 ° C. for 60 minutes to form a film having a thickness of 0.5 on both surfaces of the silicon wafer.
A μm silicon oxide film was formed (see FIG. 1A).

【0042】SiO2パターニングフォトリソ(裏窓形
成) 前記ウェハ1の研磨面に、ネガレジスト(東京応化工業
株式会社製OMR8360CP)を、厚さ1.5μmに
塗布し、プログラムNo.1(CanonCDS−63
0)により80℃でプリベイクし、さらに120℃で5
分間ポストベイクして表面保護コートを行なった(図1
B参照)。
SiO2 patterning photolithography (formation of back window) A negative resist (OMR8360CP manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to a polished surface of the wafer 1 to a thickness of 1.5 μm. 1 (Canon CDS-63
0) pre-baked at 80 ° C and further 5 ° C at 120 ° C.
After that, post-baking was performed for a surface protection coat (Fig. 1).
B).

【0043】つぎに、ネガレジスト(東京応化株式会社
製OMR83 60CP)を、厚さ1.5μmに塗布
し、プログラムNo.1(Canon CDS−63
0)により80℃でプリベイクし、さらにマスク(UR
MD−2)を用いてマスキングしてミカサアライナーに
より7秒間露光し、プログラムNo.5(Canon
CDS−630)で140℃でポストベイクして合わせ
フォトリソグラフィーを行なった(図1C参照)。
Next, a negative resist (OMR8360CP manufactured by Tokyo Ohka Co., Ltd.) was applied to a thickness of 1.5 μm, and the program No. 1 (Canon CDS-63)
0) and pre-bake at 80 ° C.
Masking using MD-2) and exposure for 7 seconds with Micasa Aligner. 5 (Canon
Post-baking was performed at 140 ° C. with CDS-630) to perform photolithography (see FIG. 1C).

【0044】さらに、フッ酸とフッ化アンモニウムの
1:4のBHFエッチング液で10分間エッチングした
のち、超純水で洗浄し、スピンドライしてSiO2エッ
チングを行なった。
Further, after etching with a BHF etching solution of hydrofluoric acid and ammonium fluoride at a ratio of 1: 4 for 10 minutes, the substrate was washed with ultrapure water, spin-dried, and subjected to SiO 2 etching.

【0045】つぎに、剥離液(東京応化工業株式会社製
502A)を120℃で6分間にわたって3分間毎に揺
動を施したのち、ストリップリンス(東京応化工業株式
会社製ストリップリンス)を用いて置換超音波洗浄を1
分間行ない、ついでイソプロパノール置換を1分間行な
い、さらにダンプリンスを行ない、さらにスピンドライ
を行なってレジスト剥離を行なった。
Next, the stripper (502A, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was rocked at 120 ° C. every 3 minutes for 6 minutes, and then strip rinse (strip rinse, manufactured by Tokyo Oka Kogyo Co., Ltd.) was performed. Replacement ultrasonic cleaning 1
For 1 minute, followed by isopropanol replacement for 1 minute, further dump rinse, and spin dry to remove the resist.

【0046】SiO2パターニングフォトリソ(表面合
わせマーク形成) 前記ウェハ1の非研磨面に、ネガレジスト(東京応化株
式会社製OMR8360CP)を、厚さ1.5μmに塗
布し、プログラムNo.1(Canon CDS−63
0)により80℃でプリベイクし、さらに140℃で5
分間ポストベイクして表面保護コートを行なった。
SiO2 patterning photolithography (formation of surface alignment mark) A negative resist (OMR8360CP manufactured by Tokyo Ohka Co., Ltd.) was applied to a non-polished surface of the wafer 1 to a thickness of 1.5 μm. 1 (Canon CDS-63)
0) prebaking at 80 ° C,
After that, post-baking was performed for a surface protection coat.

【0047】つぎに、ネガレジスト(東京応化工業株式
会社製OMR83 60CP)を、厚さ1.5μmに塗
布し、プログラムNo.1(Canon CDS−63
0)により80℃でプリベイクし、さらにマスク(AW
SM−2)を用いてマスキングしてユニオン光学社製マ
スクアライナーにより100mj露光し、プログラムN
o.5(Canon CDS−630)で140℃でポ
ストベイクして合わせフォトリソグラフィーを行なっ
た。
Next, a negative resist (OMR8360CP manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to a thickness of 1.5 μm, and the program No. 1 (Canon CDS-63)
0) at 80 ° C. and a mask (AW
Masking using SM-2) and exposure of 100 mj using a mask aligner manufactured by Union Optical Co., Ltd.
o. 5 (Canon CDS-630) and post-baking at 140 ° C. to perform photolithography.

【0048】さらに、フッ酸とフッ化アンモニウムの
1:4のBHFエッチング液で10分間エッチングした
のち、超純水で洗浄し、スピンドライしてSiO2エッ
チングを行なった。
Further, after etching with a BHF etching solution of hydrofluoric acid and ammonium fluoride at a ratio of 1: 4 for 10 minutes, the substrate was washed with ultrapure water, spin-dried, and subjected to SiO 2 etching.

【0049】つぎに、剥離液(東京応化工業株式会社製
502A)を120℃で6分間にわたって3分毎に揺動
を施したのち、ストリップリンス(東京応化工業株式会
社製ストリップリンス)を用いて置換超音波洗浄を1分
間行ない、ついでイソプロパノール置換を1分間行な
い、さらにダンプリンスを行ない、さらにスピンドライ
を行なってレジスト剥離を行なった。(図1F参照) Si異方性エッチング(裏窓−表面合わせマーク形) 前記ウェハの裏窓面を上にして、ヒドラジン中にオイル
バス設定温度135℃で60分間浸漬したのち、超純水
で洗浄し、イソプロパノールで30秒間置換し、ついで
50℃で炉内で乾燥した(図2G参照)。
Next, the stripper (502A, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was rocked at 120 ° C. every 3 minutes for 6 minutes, and then strip rinse (strip rinse, manufactured by Tokyo Oka Kogyo Co., Ltd.) was performed. Substitution ultrasonic cleaning was performed for 1 minute, then isopropanol substitution was performed for 1 minute, dump rinse was performed, and spin drying was performed to remove the resist. (See FIG. 1F) Si anisotropic etching (back window-surface alignment mark type) After immersing in hydrazine at an oil bath set temperature of 135 ° C. for 60 minutes with the back window surface of the wafer facing up, the wafer is washed with ultrapure water. Was replaced with isopropanol for 30 seconds and then dried in an oven at 50 ° C. (see FIG. 2G).

【0050】ダイシング(マイクロニードルの形成) 前記ウェハをダイシングソー(DISCO DAD−3
21,ブレードハイト0.19mm)にセットした。 Si異方性エッチング(マイクロニードル形成) 前記ウェハを研磨面を上にしてテトラメチルアンモニウ
ムヒドロキサイド25重量%水溶液中にオイルバス設定
温度110℃で45分間浸漬したのち、超純水で洗浄
し、イソプロパノールで30秒間置換し、ついで炉内で
50℃で乾燥した(図2H参照)。
Dicing (Formation of Micro Needles) The wafer is diced with a dicing saw (DISCO DAD-3).
21, blade height 0.19 mm). Si anisotropic etching (microneedle formation) The wafer is immersed in a 25% by weight aqueous solution of tetramethylammonium hydroxide at an oil bath set temperature of 110 ° C. for 45 minutes with the polished surface facing up, and then washed with ultrapure water. Replaced with isopropanol for 30 seconds and then dried in an oven at 50 ° C. (see FIG. 2H).

【0051】形状観察 得られたマイクロニードルを走査型電子顕微鏡で観察
し、THS(非接触厚さ測定機、ユニオン光学社製)に
より高さを測定したところ、基板からマイクロニードル
までの高さHは約120μm、ニードル底辺の幅Dは約
80μm、該針形状部分の頂点からの垂線と側辺面との
間の先端角度θ(図5参照)は約25°であり、斜面の
基部付近には一辺が約40μmの貫通孔が形成されてい
た。また、ニードル下部の平板部の厚さは約150μm
であった。これを図2Hの矢印方向に切断してマイクロ
ニードルを得た。
Observation of Shape The obtained microneedles were observed with a scanning electron microscope, and the height was measured with a THS (non-contact thickness measuring device, manufactured by Union Optical Co., Ltd.). Is about 120 μm, the width D of the base of the needle is about 80 μm, the tip angle θ (see FIG. 5) between the vertical line from the vertex of the needle-shaped part and the side surface is about 25 °, and near the base of the slope. Had a through hole of about 40 μm on each side. The thickness of the flat plate below the needle is about 150μm
Met. This was cut in the direction of the arrow in FIG. 2H to obtain a microneedle.

【0052】[0052]

【発明の効果】以上述べたように、本発明によれば、少
ない工程で金属または金属化合物の単結晶基板から簡便
に針形状物を作製でき、また該針形状物としては、針形
状物の根元付近に薬液等を供給するための貫通孔を有す
るものが作製できる。したがって、このような針形状物
は、無痛の経皮注射針として使用できるという利点があ
る。
As described above, according to the present invention, a needle-shaped object can be easily produced from a single crystal substrate of a metal or a metal compound in a small number of steps. One having a through hole for supplying a chemical solution or the like near the root can be manufactured. Therefore, such a needle-shaped article has an advantage that it can be used as a painless percutaneous injection needle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による針形状物の作製工程の一部を示
す断面図である。
FIG. 1 is a cross-sectional view showing a part of a process for producing a needle-shaped object according to the present invention.

【図2】 図1に示す製造工程の残りの工程を示す断面
図である。
FIG. 2 is a cross-sectional view showing the remaining steps of the manufacturing process shown in FIG.

【図3】 本発明による作製工程の途中で形成する角柱
部を示す斜視図である。
FIG. 3 is a perspective view showing a prism portion formed during the manufacturing process according to the present invention.

【図4】 本発明による作製工程における針状部分の形
状状態の変化を示す概略斜視図である。
FIG. 4 is a schematic perspective view showing a change in a shape state of a needle-like portion in a manufacturing process according to the present invention.

【図5】 本発明により作製される針形状物を示す斜視
図である。
FIG. 5 is a perspective view showing a needle-shaped object manufactured according to the present invention.

【図6】 本発明により作製される針形状物の走査型顕
微鏡写真である。
FIG. 6 is a scanning micrograph of a needle-shaped article produced according to the present invention.

【図7】 本発明による針形状物の他の実施態様の工程
を示す断面図である。
FIG. 7 is a sectional view showing the steps of another embodiment of the needle-shaped article according to the present invention.

【図8】 本発明による針形状物のさらに他の実施態様
の工程を示す断面図である。
FIG. 8 is a cross-sectional view showing the steps of still another embodiment of the needle-shaped article according to the present invention.

【図9】 本発明による針形状物の他の実施態様を示す
斜視図である。
FIG. 9 is a perspective view showing another embodiment of the needle-shaped object according to the present invention.

【符号の説明】[Explanation of symbols]

1,11,21…基板、 2a,2b,12a,12b,22a,22b…酸化
膜、 3a,3b,13a,13b,23a,23b…レジス
ト層、 4…マスク、 5a,5b…溝形成位置、 6a,6b…酸化膜除去部、 7…凹没部、 8,18,28…貫通孔、 9,19,29…微小針。
1, 11, 21 ... substrate, 2a, 2b, 12a, 12b, 22a, 22b ... oxide film, 3a, 3b, 13a, 13b, 23a, 23b ... resist layer, 4 ... mask, 5a, 5b ... groove formation position, 6a, 6b: oxide film removed portion, 7: concave portion, 8, 18, 28: through hole, 9, 19, 29: microneedles.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/306 H01L 21/306 B Fターム(参考) 4C060 MM01 MM22 4K057 WA19 WB06 WC06 WE07 WG01 WG02 WM03 WN10 5F043 AA02 AA31 BB02 BB22 DD02 FF01 GG10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/306 H01L 21/306 BF Term (Reference) 4C060 MM01 MM22 4K057 WA19 WB06 WC06 WE07 WG01 WG02 WM03 WN10 5F043 AA02 AA31 BB02 BB22 DD02 FF01 GG10

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ウェットエッチングに対する保護膜を両
面に施した金属もしくは金属化合物または半導体の単結
晶基板の片面に複数本の溝を形成することにより多角柱
を形成し、該単結晶基板をエッチング剤液中に浸漬して
不要な部分の単結晶材料をエッチングすることにより、
針形状物を形成させることを特徴とする針形状物の製造
方法。
1. A polygonal column formed by forming a plurality of grooves on one side of a metal or metal compound or semiconductor single crystal substrate provided with a protective film on both surfaces for wet etching, and forming the single crystal substrate with an etchant. By immersing in the liquid and etching the unnecessary part of the single crystal material,
A method for producing a needle-shaped object, comprising forming a needle-shaped object.
【請求項2】 ウェットエッチングに対する保護膜を両
面に施した金属もしくは金属化合物または半導体の単結
晶基板の片面に針形状を形成するための第1のパターニ
ングを施し、別の片面に該単結晶基板に貫通孔を形成す
るための第2のパターニングを施し、該単結晶基板の該
第1のパターニングが施された面に溝を形成することに
より多角柱を形成し、該単結晶基板をエッチング剤液中
に浸漬して不要な部分の単結晶材料をエッチングするこ
とにより針形状と貫通孔とを同時に形成させることを特
徴とする針形状物の作製方法。
2. A first patterning for forming a needle shape on one surface of a metal or metal compound or semiconductor single crystal substrate having both surfaces provided with a protective film against wet etching, and another single surface of the single crystal substrate Is subjected to a second patterning for forming a through hole, and a groove is formed on the surface of the single crystal substrate on which the first patterning has been performed, thereby forming a polygonal prism, and etching the single crystal substrate with an etching agent. A method for producing a needle-shaped object, wherein a needle-shaped object and a through-hole are simultaneously formed by immersing the single crystal material in an unnecessary portion by dipping in a liquid.
【請求項3】 該針形状物の針形状部分の高さは10〜
500μmであり、該針形状部分の頂点からの垂線と側
辺との間の先端角度が2〜60°であり、かつ一つの単
結晶基板上に形成される該針形状部分が1個または複数
個である請求項1または2に記載の方法。
3. The needle-shaped part of the needle-shaped object has a height of 10 to 10.
500 μm, a tip angle between a perpendicular from a vertex of the needle-shaped portion and a side is 2 to 60 °, and one or more needle-shaped portions formed on one single crystal substrate are provided. The method according to claim 1, wherein the number is one.
【請求項4】 該針形状部分の高さおよび個数が、該単
結晶基板の面方位、大きさおよび厚さ、単結晶基板に形
成した前記複数本の溝の深さと間隔およびエッチング時
間を変えることにより種々に設定できるものである請求
項1〜3のいずれか一つに記載の方法。
4. The height and number of said needle-shaped portions change the plane orientation, size and thickness of said single crystal substrate, depth and interval of said plurality of grooves formed in said single crystal substrate, and etching time. The method according to any one of claims 1 to 3, wherein the method can be set in various ways.
【請求項5】 該単結晶基板はシリコン単結晶である請
求項1〜4のいずれか一つに記載の方法。
5. The method according to claim 1, wherein said single crystal substrate is a silicon single crystal.
【請求項6】 請求項1〜5のいずれか一つに記載の方
法により作成した針であり、かつ単結晶材料からなり、
少なくとも針先から所定長にかけては多角錐形状を呈す
る針。
6. A needle prepared by the method according to claim 1 and made of a single crystal material,
A needle having a polygonal pyramid shape at least from the needle tip to a predetermined length.
JP2000272924A 2000-09-08 2000-09-08 Method of manufacturing needle-like article, and manufactured needle Pending JP2002079499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000272924A JP2002079499A (en) 2000-09-08 2000-09-08 Method of manufacturing needle-like article, and manufactured needle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000272924A JP2002079499A (en) 2000-09-08 2000-09-08 Method of manufacturing needle-like article, and manufactured needle

Publications (1)

Publication Number Publication Date
JP2002079499A true JP2002079499A (en) 2002-03-19

Family

ID=18758965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000272924A Pending JP2002079499A (en) 2000-09-08 2000-09-08 Method of manufacturing needle-like article, and manufactured needle

Country Status (1)

Country Link
JP (1) JP2002079499A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004516868A (en) * 2000-10-16 2004-06-10 ザ プロクター アンド ギャンブル カンパニー Microstructure for delivering the composition through the skin to the skin
JP2005501615A (en) * 2001-09-05 2005-01-20 スリーエム イノベイティブ プロパティズ カンパニー Microneedle array and manufacturing method thereof
WO2005075016A1 (en) * 2004-02-03 2005-08-18 Hisamitsu Pharmaceutical Co., Inc. Interface for transdermal medicine applicator
JP2007535343A (en) * 2004-03-12 2007-12-06 エイジェンシー・フォー・サイエンス,テクノロジー・アンド・リサーチ Method and mold for use in manufacturing microneedles with side holes
WO2008004597A1 (en) 2006-07-04 2008-01-10 Toppan Printing Co., Ltd. Method for manufacturing microneedle
WO2008013282A1 (en) 2006-07-27 2008-01-31 Toppan Printing Co., Ltd. Method for producing microneedle
JP2008114345A (en) * 2006-11-07 2008-05-22 Toppan Printing Co Ltd Manufacturing method of regular array body of fine and sharp needle-like structure and its reproduction
WO2009084436A1 (en) * 2007-12-28 2009-07-09 Mani, Inc. Suture needle and method of producing the same
JPWO2008020633A1 (en) * 2006-08-18 2010-01-07 凸版印刷株式会社 Microneedle and microneedle patch
US7914480B2 (en) 2004-03-24 2011-03-29 Corium International, Inc. Transdermal delivery device
JP2012196547A (en) * 2012-07-23 2012-10-18 Toppan Printing Co Ltd Acicular body and method of manufacturing the same
CN103086321A (en) * 2013-01-25 2013-05-08 中国科学院上海微系统与信息技术研究所 Method for manufacturing monocrystalline silicon nano-long needle point on (111) type silicon chip
US8702726B2 (en) 2000-10-16 2014-04-22 Corium International, Inc. Method of exfoliation of skin using closely-packed microstructures
US8821446B2 (en) 2007-01-22 2014-09-02 Corium International, Inc. Applicators for microneedles
US8911749B2 (en) 2007-04-16 2014-12-16 Corium International, Inc. Vaccine delivery via microneedle arrays
US9114238B2 (en) 2007-04-16 2015-08-25 Corium International, Inc. Solvent-cast microprotrusion arrays containing active ingredient
CN106315503A (en) * 2016-08-23 2017-01-11 中山大学 Ordered array of silicon-based quasi three-dimensional nanostructure and preparation method thereof
US9687641B2 (en) 2010-05-04 2017-06-27 Corium International, Inc. Method and device for transdermal delivery of parathyroid hormone using a microprojection array
JP2018015662A (en) * 2017-11-06 2018-02-01 大日本印刷株式会社 Microneedle device
US9962534B2 (en) 2013-03-15 2018-05-08 Corium International, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
KR20180120909A (en) * 2017-04-28 2018-11-07 (주)엠투엔 Microneedle for drug delivery system and method thereof
US10195409B2 (en) 2013-03-15 2019-02-05 Corium International, Inc. Multiple impact microprojection applicators and methods of use
US10245422B2 (en) 2013-03-12 2019-04-02 Corium International, Inc. Microprojection applicators and methods of use
US10384045B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray with polymer-free microstructures, methods of making, and methods of use
US10384046B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
US10624843B2 (en) 2014-09-04 2020-04-21 Corium, Inc. Microstructure array, methods of making, and methods of use
CN111362225A (en) * 2020-03-17 2020-07-03 中国科学院半导体研究所 Nano needle tip structure, composite structure and preparation method thereof
US10857093B2 (en) 2015-06-29 2020-12-08 Corium, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
US11052231B2 (en) 2012-12-21 2021-07-06 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256643A (en) * 1992-01-17 1993-10-05 Olympus Optical Co Ltd Cantilever chip for scanning type probe microscope
JPH06508435A (en) * 1991-06-13 1994-09-22 ビーティージー・インターナショナル・リミテッド Microprobe for surface scanning microscope
JPH0748349B2 (en) * 1990-07-25 1995-05-24 インターナショナル・ビジネス・マシーンズ・コーポレイション Precision mechanical sensor for AFM / STM / MFM profile measurement and manufacturing method thereof
JPH0762258B2 (en) * 1989-08-16 1995-07-05 インターナショナル・ビジネス・マシーンズ・コーポレーション Manufacturing method of micromechanical sensor for AFM / STM profilometry
JPH07508369A (en) * 1992-03-04 1995-09-14 エムシーエヌシー Vertical microelectronic field emitter and its manufacturing method
JP2962775B2 (en) * 1989-06-20 1999-10-12 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ Cantilever needle having integral conical tip and method of manufacturing the same
WO1999064580A1 (en) * 1998-06-10 1999-12-16 Georgia Tech Research Corporation Microneedle devices and methods of manufacture and use thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2962775B2 (en) * 1989-06-20 1999-10-12 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ Cantilever needle having integral conical tip and method of manufacturing the same
JPH0762258B2 (en) * 1989-08-16 1995-07-05 インターナショナル・ビジネス・マシーンズ・コーポレーション Manufacturing method of micromechanical sensor for AFM / STM profilometry
JPH0748349B2 (en) * 1990-07-25 1995-05-24 インターナショナル・ビジネス・マシーンズ・コーポレイション Precision mechanical sensor for AFM / STM / MFM profile measurement and manufacturing method thereof
JPH06508435A (en) * 1991-06-13 1994-09-22 ビーティージー・インターナショナル・リミテッド Microprobe for surface scanning microscope
JPH05256643A (en) * 1992-01-17 1993-10-05 Olympus Optical Co Ltd Cantilever chip for scanning type probe microscope
JPH07508369A (en) * 1992-03-04 1995-09-14 エムシーエヌシー Vertical microelectronic field emitter and its manufacturing method
WO1999064580A1 (en) * 1998-06-10 1999-12-16 Georgia Tech Research Corporation Microneedle devices and methods of manufacture and use thereof

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8702726B2 (en) 2000-10-16 2014-04-22 Corium International, Inc. Method of exfoliation of skin using closely-packed microstructures
JP2004516868A (en) * 2000-10-16 2004-06-10 ザ プロクター アンド ギャンブル カンパニー Microstructure for delivering the composition through the skin to the skin
US8216190B2 (en) 2000-10-16 2012-07-10 Corium International, Inc. Microstructures for delivering a composition cutaneously to skin
JP2005501615A (en) * 2001-09-05 2005-01-20 スリーエム イノベイティブ プロパティズ カンパニー Microneedle array and manufacturing method thereof
JP4832082B2 (en) * 2004-02-03 2011-12-07 久光製薬株式会社 Interface for transdermal drug delivery device
WO2005075016A1 (en) * 2004-02-03 2005-08-18 Hisamitsu Pharmaceutical Co., Inc. Interface for transdermal medicine applicator
JPWO2005075016A1 (en) * 2004-02-03 2007-10-11 久光製薬株式会社 Interface for transdermal drug delivery device
JP2007535343A (en) * 2004-03-12 2007-12-06 エイジェンシー・フォー・サイエンス,テクノロジー・アンド・リサーチ Method and mold for use in manufacturing microneedles with side holes
US7914480B2 (en) 2004-03-24 2011-03-29 Corium International, Inc. Transdermal delivery device
US9238384B2 (en) 2006-07-04 2016-01-19 Toppan Printing Co., Ltd. Method of manufacturing microneedle
WO2008004597A1 (en) 2006-07-04 2008-01-10 Toppan Printing Co., Ltd. Method for manufacturing microneedle
US8377364B2 (en) 2006-07-04 2013-02-19 Toppan Printing Co., Ltd. Method of manufacturing microneedle
EP2047882A1 (en) * 2006-07-27 2009-04-15 Toppan Printing Co., Ltd. Method for producing microneedle
WO2008013282A1 (en) 2006-07-27 2008-01-31 Toppan Printing Co., Ltd. Method for producing microneedle
EP2047882A4 (en) * 2006-07-27 2013-04-17 Toppan Printing Co Ltd Method for producing microneedle
EP2789363A3 (en) * 2006-07-27 2015-03-25 Toppan Printing Co., Ltd. Method of manufacturing microneedle
JPWO2008020633A1 (en) * 2006-08-18 2010-01-07 凸版印刷株式会社 Microneedle and microneedle patch
JP2008114345A (en) * 2006-11-07 2008-05-22 Toppan Printing Co Ltd Manufacturing method of regular array body of fine and sharp needle-like structure and its reproduction
US8821446B2 (en) 2007-01-22 2014-09-02 Corium International, Inc. Applicators for microneedles
US9114238B2 (en) 2007-04-16 2015-08-25 Corium International, Inc. Solvent-cast microprotrusion arrays containing active ingredient
US10238848B2 (en) 2007-04-16 2019-03-26 Corium International, Inc. Solvent-cast microprotrusion arrays containing active ingredient
US8911749B2 (en) 2007-04-16 2014-12-16 Corium International, Inc. Vaccine delivery via microneedle arrays
US9498524B2 (en) 2007-04-16 2016-11-22 Corium International, Inc. Method of vaccine delivery via microneedle arrays
US9452280B2 (en) 2007-04-16 2016-09-27 Corium International, Inc. Solvent-cast microprotrusion arrays containing active ingredient
WO2009084436A1 (en) * 2007-12-28 2009-07-09 Mani, Inc. Suture needle and method of producing the same
US11419816B2 (en) 2010-05-04 2022-08-23 Corium, Inc. Method and device for transdermal delivery of parathyroid hormone using a microprojection array
US9687641B2 (en) 2010-05-04 2017-06-27 Corium International, Inc. Method and device for transdermal delivery of parathyroid hormone using a microprojection array
JP2012196547A (en) * 2012-07-23 2012-10-18 Toppan Printing Co Ltd Acicular body and method of manufacturing the same
US11052231B2 (en) 2012-12-21 2021-07-06 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
CN103086321A (en) * 2013-01-25 2013-05-08 中国科学院上海微系统与信息技术研究所 Method for manufacturing monocrystalline silicon nano-long needle point on (111) type silicon chip
US10245422B2 (en) 2013-03-12 2019-04-02 Corium International, Inc. Microprojection applicators and methods of use
US11110259B2 (en) 2013-03-12 2021-09-07 Corium, Inc. Microprojection applicators and methods of use
US10384045B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray with polymer-free microstructures, methods of making, and methods of use
US10195409B2 (en) 2013-03-15 2019-02-05 Corium International, Inc. Multiple impact microprojection applicators and methods of use
US9962534B2 (en) 2013-03-15 2018-05-08 Corium International, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
US10384046B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
US11565097B2 (en) 2013-03-15 2023-01-31 Corium Pharma Solutions, Inc. Microarray for delivery of therapeutic agent and methods of use
US10624843B2 (en) 2014-09-04 2020-04-21 Corium, Inc. Microstructure array, methods of making, and methods of use
US10857093B2 (en) 2015-06-29 2020-12-08 Corium, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
CN106315503A (en) * 2016-08-23 2017-01-11 中山大学 Ordered array of silicon-based quasi three-dimensional nanostructure and preparation method thereof
KR101985301B1 (en) 2017-04-28 2019-06-05 (주)엠투엔 Microneedle for drug delivery system and method thereof
KR20180120909A (en) * 2017-04-28 2018-11-07 (주)엠투엔 Microneedle for drug delivery system and method thereof
JP2018015662A (en) * 2017-11-06 2018-02-01 大日本印刷株式会社 Microneedle device
CN111362225A (en) * 2020-03-17 2020-07-03 中国科学院半导体研究所 Nano needle tip structure, composite structure and preparation method thereof
CN111362225B (en) * 2020-03-17 2024-01-30 中国科学院半导体研究所 Nano needle point structure, composite structure and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2002079499A (en) Method of manufacturing needle-like article, and manufactured needle
US9283365B2 (en) Patch production
US5851928A (en) Method of etching a semiconductor substrate
JP5028872B2 (en) Manufacturing method of needle-shaped body
US20130072808A1 (en) Structured probes for neural applications
JP2004524172A (en) Micro projection array and method of manufacturing micro projection
TW200842941A (en) Method of forming micro pattern of semiconductor device
US20160264408A1 (en) Manufacture of microneedles
JP4414774B2 (en) Silicon needle manufacturing method
JP4486368B2 (en) Silicon needle manufacturing method
JP4904964B2 (en) Manufacturing method of needle-shaped body
JP4936214B2 (en) Method for producing needle plate and method for producing needle
JP2002299226A (en) Electron beam exposing stencil mask and manufacturing method therefor
CN110279935B (en) Prismatic silicon microneedle and preparation method thereof
KR102373658B1 (en) High density neural probes having various forms and methods of manufacturing the same
US20190366068A1 (en) Microneedle for biosensing and method of fabrication
EP2289843A1 (en) A microneedle device and method for the fabrication thereof
US20100224590A1 (en) Method for producing microneedle structures employing one-sided processing
WO2018086300A1 (en) Method for forming slanting face at surface of substrate
JP4184885B2 (en) Vertical hole machining method on silicon substrate
JP2002299229A (en) Electron beam exposing reticle blank manufacturing method and mask
JPH0122727B2 (en)
TW201007834A (en) Silicon substrate etching method
Lyubarskaya et al. Study of Anisotropic Wet Chemical Etching for Silicon Microneedles Fabrication
JP2004109425A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427