JP2002079425A - Hydrodynamic groove machining device for hydrodynamic bearing - Google Patents

Hydrodynamic groove machining device for hydrodynamic bearing

Info

Publication number
JP2002079425A
JP2002079425A JP2000269699A JP2000269699A JP2002079425A JP 2002079425 A JP2002079425 A JP 2002079425A JP 2000269699 A JP2000269699 A JP 2000269699A JP 2000269699 A JP2000269699 A JP 2000269699A JP 2002079425 A JP2002079425 A JP 2002079425A
Authority
JP
Japan
Prior art keywords
dynamic pressure
electrode tool
pressure groove
workpiece
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000269699A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kobayashi
康裕 小林
Shinji Matsue
慎二 松榮
Yoshiki Fujii
義樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2000269699A priority Critical patent/JP2002079425A/en
Publication of JP2002079425A publication Critical patent/JP2002079425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrodynamic groove machining device of a hydrodynamic bearing capable of using an electrode tool for a long period in comparison with a conventional one in forming a hydrodynamic groove by electrochemical machining. SOLUTION: As the electrode tool 1 having a structure formed by coating a part excluding a conductive part 13, of a surface of a metallic base 11 with a resin layer 12 by attaching and baking resin fine particles, to expose the conductive part 13 corresponding to a pattern of the hydrodynamic groove, is used for machining the hydrodynamic groove on a surface of a workpiece W, the adhesive strength to the base 11 can be improved, and the life of the electrode tool 1 depending on the separation of the non-conductive material can be remarkably improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、動圧軸受の動圧溝
を電解加工法に基づいて加工する動圧溝加工装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure groove machining apparatus for machining a dynamic pressure groove of a dynamic pressure bearing based on an electrolytic machining method.

【0002】[0002]

【従来の技術】ハードディスク装置等の高速および高精
度の回転が要求される機構に用いられる軸受装置とし
て、近年、動圧軸受装置が多用されている。動圧軸受
は、一般に、軸と軸受の間に作動流体を注入するととも
に、軸および軸受のいずれか一方に動圧溝を形成し、軸
と軸受の相対回転により生じるポンピング作用等によっ
て作動流体の圧力を上昇させ、その動圧力によって軸受
に対して軸を相対回転自在に支持する。
2. Description of the Related Art In recent years, a dynamic pressure bearing device has been widely used as a bearing device used for a mechanism requiring high-speed and high-precision rotation such as a hard disk device. In general, a hydrodynamic bearing injects a working fluid between a shaft and a bearing, forms a hydrodynamic groove in one of the shaft and the bearing, and pumps the working fluid by a pumping action or the like generated by relative rotation between the shaft and the bearing. The pressure is increased, and the dynamic pressure supports the shaft so that it can rotate relative to the bearing.

【0003】動圧溝は、例えばスパイラルパターン、V
パターン、あるいはヘリングボーンパターン等が多用さ
れており、その溝深さを±0.5μm程度の高精度のも
のとするには、従来、主として電解加工が採用されてい
る。
The dynamic pressure grooves are formed, for example, in a spiral pattern, V
A pattern, a herringbone pattern, or the like is frequently used, and in order to achieve a groove with a high precision of about ± 0.5 μm, electrolytic processing has been mainly used conventionally.

【0004】すなわち、この種の動圧溝の形成に際して
は、導電材料からなる被加工物と、動圧溝パターンの導
電部が表面に露出してなる電極工具とを、電解液中に対
向させて浸漬し、その間に電解液を流動させる。そし
て、被加工物を正極に、電極工具を負極にそれぞれ接続
して通電することにより、被加工物表面から、電極工具
の導電部のパターンに対向した部位を溶出させ、そのパ
ターンに対応した動圧溝を形成する。
That is, when forming such a dynamic pressure groove, a workpiece made of a conductive material and an electrode tool having a conductive portion of the dynamic pressure groove pattern exposed on the surface are opposed to each other in an electrolytic solution. Immersion, and during this time, the electrolyte is allowed to flow. Then, the workpiece is connected to the positive electrode and the electrode tool is connected to the negative electrode, and by energizing, the portion of the workpiece facing the conductive part pattern is eluted from the workpiece surface, and the movement corresponding to the pattern is performed. Form pressure grooves.

【0005】このような動圧溝の電解加工に用いられる
電極工具としては、一般に、金属製の基体の表面に、動
圧溝パターンで金属部分が露出するように、そのパター
ンを除く領域を隠蔽すべく非導電性材料で被覆した構造
のものが用いられている。この非導電性材料による被覆
は、従来、基体の表面に一様なレジスト膜を形成した
後、フォトリソグラフィの技術を用いて不要部分を除去
するか、あるいは、基体の表面の動圧溝パターンを除く
領域をエッチング等によって削り落とし、その凹所に合
成樹脂を埋め込んだものが用いられている。
[0005] As an electrode tool used for electrolytic machining of such a dynamic pressure groove, generally, a region excluding the pattern is hidden on the surface of a metal base so that a metal portion is exposed by the dynamic pressure groove pattern. A structure coated with a non-conductive material is used as much as possible. Conventionally, the coating with a non-conductive material is performed by forming a uniform resist film on the surface of the substrate and then removing unnecessary portions using a photolithography technique, or forming a dynamic pressure groove pattern on the surface of the substrate. A region in which a region to be removed is removed by etching or the like and a synthetic resin is embedded in the recess is used.

【0006】[0006]

【発明が解決しようとする課題】ところで、以上のよう
な従来の動圧溝加工用の電極工具においては、非導電性
材料として、基体表面にレジスト膜を形成したものか、
あるいは合成樹脂を埋め込んでだけのものを用いるた
め、非導電性材料と基体との密着力が弱くて剥がれやす
いことに起因して、寿命を長くできないという問題があ
った。
By the way, in the above-mentioned conventional electrode tools for processing a dynamic pressure groove, as a non-conductive material, a resist film is formed on the surface of a substrate,
Alternatively, since a material only having a synthetic resin embedded therein is used, there is a problem that the service life cannot be prolonged due to weak adhesion between the non-conductive material and the substrate and easy peeling.

【0007】本発明はこのような実情に鑑みてなされた
もので、電解加工により動圧溝を形成するに当たり、そ
の電極工具を従来に比してより長期にわたって使用する
ことのできる動圧軸受の動圧溝加工装置の提供を目的と
している。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and in forming a dynamic pressure groove by electrolytic processing, a dynamic pressure bearing in which the electrode tool can be used for a longer time than before. The purpose is to provide a dynamic pressure groove machining device.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、請求項1に係る発明の動圧軸受の動圧溝加工装置
は、表面に動圧溝を形成すべき被加工物と、所定パター
ンの導電部が表面に露出してなる電極工具とを、電解液
中に対向させて浸漬するとともに、これらの被加工物と
電極工具をそれぞれ正極および負極に接続して通電しつ
つその間に電解液を流動させることによって、被加工物
表面に電極工具の導電部の露出パターンに対応した形状
の動圧溝を形成する動圧溝加工装置において、上記電極
工具が、金属製の基体の表面を、樹脂微粒子を付着させ
て焼き付けてなる樹脂層によって上記所定パターン以外
の領域を被覆した構造を有していることによって特徴づ
けられる。
According to a first aspect of the present invention, there is provided a dynamic pressure groove machining apparatus for a dynamic pressure bearing, comprising: a workpiece on which a dynamic pressure groove is to be formed; The electrode tool with the conductive part of the pattern exposed on the surface is immersed in the electrolytic solution so as to be opposed to the electrode tool. In the dynamic pressure groove processing apparatus for forming a dynamic pressure groove having a shape corresponding to the exposed pattern of the conductive portion of the electrode tool on the surface of the workpiece by flowing the liquid, the electrode tool is used to clean the surface of the metal base. It is characterized by having a structure in which a region other than the above-mentioned predetermined pattern is covered with a resin layer formed by attaching and baking resin fine particles.

【0009】また、同じ目的を達成するめ、請求項2に
係る発明の動圧軸受の動圧溝加工装置では、電極工具と
して、金属製の基体の表面に、加工すべき動圧溝パター
ンの孔があらかじめ形成され樹脂シートを固定してなる
構造のものを用いることによって特徴づけられる。
In order to achieve the same object, in the dynamic pressure groove machining apparatus for a dynamic pressure bearing according to the second aspect of the present invention, a hole of a dynamic pressure groove pattern to be machined is formed on a surface of a metal base as an electrode tool. Are formed in advance and a structure in which a resin sheet is fixed is used.

【0010】本発明は、金属製の基体の表面に動圧溝パ
ターンの導電部を露出させるべく当該基体表面の不要領
域を被覆する非導電性材料の、基体に対する密着性を向
上させるものであり、請求項1に係る発明においては、
樹脂微粒子を基体表面に付着させて焼き付けてなる樹脂
層を非導電性材料として用いることにより、従来のレジ
スト膜の形成や樹脂の埋め込みに比して、基体に対する
密着力を大幅に向上させることができる。ここで、この
請求項1に係る発明においては、基体表面に樹脂微粒子
をスラリー状にして所要パターンに吹き付けた状態で焼
き付ける方法と、基体表面の全面に樹脂粒子を焼き付け
た後、レーザ等によって不要部分を除去することによっ
て所要形状にパターニングする方法のいずれをも採用す
ることができる。また、樹脂微粒子の材質としては、高
い絶縁性を有するポリイミド樹脂等を好適に採用するこ
とができる。
The present invention improves the adhesion of a non-conductive material covering an unnecessary area on the surface of a metal substrate to expose a conductive portion of the dynamic pressure groove pattern on the surface of the substrate. In the invention according to claim 1,
By using a resin layer formed by adhering resin particles to the surface of the substrate and baking it as a non-conductive material, the adhesion to the substrate can be greatly improved as compared with the conventional resist film formation and resin embedding. it can. Here, in the invention according to the first aspect, a method of baking the resin fine particles on the substrate surface in a slurry state and spraying the slurry on a required pattern, and a method of baking the resin particles over the entire surface of the substrate and then using a laser or the like, Any of the methods of patterning into a required shape by removing a portion can be adopted. Further, as a material of the resin fine particles, a polyimide resin or the like having a high insulating property can be suitably used.

【0011】一方、請求項2に係る発明においては、あ
らかじめ所要形状にパターニングした樹脂シートを、金
属製の基体の表面に接着剤等によって固定した構造の電
極工具を用いるものであり、この構造の電極工具におい
ても、従来のレジスト膜の形成や樹脂の埋め込みにより
非導電性材料を付着させた従来の電極工具に比して、基
体に対する非導電性材料の密着力を大幅に向上させるこ
とができる。
On the other hand, in the invention according to claim 2, an electrode tool having a structure in which a resin sheet patterned in a required shape in advance is fixed to the surface of a metal base with an adhesive or the like is used. Also in the electrode tool, the adhesion of the non-conductive material to the substrate can be greatly improved compared to the conventional electrode tool in which a non-conductive material is attached by forming a conventional resist film or embedding a resin. .

【0012】また、この請求項2に係る発明によると、
あらかじめパターニングした樹脂シートを基体に貼り付
けるので、貼り付けに失敗しても基体自体は再利用でき
るという利点や、電極工具の製造工程を簡略化できると
いう利点もある。
According to the second aspect of the present invention,
Since the pre-patterned resin sheet is attached to the base, there is also an advantage that the base itself can be reused even if the attachment fails, and that the manufacturing process of the electrode tool can be simplified.

【0013】[0013]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態について説明する。図1は本発明に係る動圧
軸受の動圧溝加工装置の全体構成を示す模式図で、図2
はその電極工具1の縦断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view showing the overall configuration of a dynamic pressure groove machining apparatus for a dynamic pressure bearing according to the present invention.
Is a longitudinal sectional view of the electrode tool 1. FIG.

【0014】被加工物Wは、動圧溝を形成すべき表面に
電極工具1を対向させた状態で加工槽2内に配置され
る。加工槽2には、電解液槽3と通じる配管4a,4b
が施されており、ポンプ5の駆動により、被加工物Wと
電極工具1の間に電解液が流れるようになっている。
The workpiece W is placed in the processing tank 2 with the electrode tool 1 facing the surface on which the dynamic pressure groove is to be formed. In the processing tank 2, pipes 4a and 4b communicating with the electrolyte tank 3 are provided.
The electrolytic solution flows between the workpiece W and the electrode tool 1 by driving the pump 5.

【0015】被加工物Wには加工用電源6の正極が接続
される一方、電極工具1には同じく加工用電源6の負極
が接続され、これらの被加工物Wと電極工具1の間に電
解液を流した状態で例えばパルス状の電流が流される。
The positive electrode of the machining power source 6 is connected to the workpiece W, while the negative electrode of the machining power source 6 is connected to the electrode tool 1. For example, a pulse-shaped current is flowed while the electrolyte is flowing.

【0016】電極工具1の被加工物Wとの対向面には、
後述するように所要のパターンで金属製の基体11が露
出してなる導電パターン13が形成されており、電解液
を介在させた状態で、加工用電源6からの電流が電極工
具1の導電パターン13と被加工物Wとの間に流れるこ
とで、電気化学反応により導電パターン13に対向する
部位の被加工物Wが溶出し、被加工物Wの表面に電極工
具1の導電パターン13と同等のパターンの動圧溝が形
成される。なお、被加工物Wと電極工具1との間に流れ
る電流の大きさは図示しない電流計によって刻々と計測
され、また、その通電時間も同じく図示しないタイマ等
によって計測され、その通電時間は、公知の手法によ
り、あらかじめ測定されている電流密度と溝加工量(深
さ)との関係のデータに基づいて制御され、これによ
り、被加工物Wの表面に所要深さの動圧溝が形成され
る。
On the surface of the electrode tool 1 facing the workpiece W,
As will be described later, a conductive pattern 13 in which the metal base 11 is exposed in a required pattern is formed, and a current from the machining power source 6 is applied to the conductive pattern of the electrode tool 1 with the electrolytic solution interposed therebetween. 13 and the workpiece W, the workpiece W at the portion facing the conductive pattern 13 is eluted by an electrochemical reaction, and is equivalent to the conductive pattern 13 of the electrode tool 1 on the surface of the workpiece W. The dynamic pressure groove of the pattern of FIG. The magnitude of the current flowing between the workpiece W and the electrode tool 1 is measured every moment by an ammeter (not shown), and its energizing time is also measured by a timer (not shown). It is controlled based on data on the relationship between the current density and the groove processing amount (depth) measured in advance by a known method, whereby a dynamic pressure groove having a required depth is formed on the surface of the workpiece W. Is done.

【0017】さて、電極工具1は、図2に示すように、
金属製の基体11の被加工物Wとの対向面に、非導電性
材料である樹脂層12を所要のパターンで形成してその
部位を被覆することにより、残余の領域が外面に露出し
てなる導電パターン13が形成された構造を有してい
る。
Now, the electrode tool 1 is, as shown in FIG.
A resin layer 12, which is a non-conductive material, is formed in a required pattern on the surface of the metal base 11 facing the workpiece W, and the resin layer 12 is covered with the resin layer 12, so that the remaining region is exposed to the outer surface. Having a conductive pattern 13 formed thereon.

【0018】そして、この樹脂層12は、例えばポリイ
ミド樹脂等の絶縁性に優れた樹脂の微粒子を基体11の
表面に吹き付けて付着させた後、焼き付けにより固定し
たものである。すわなち、図3に模式的に示すように、
粒径1ないし数μm程度のポリイミド樹脂微粒子Pをス
ラリー状にして、微細なノズルNを例えばサーボ機構等
によって所要のパターンで移動するように制御しなが
ら、基体11の表面に吹き付ける。この際、前もって基
体11の表面に粘着剤層等を樹脂層12の形成パターン
に合わせて印刷等の手法によって形成しておいてもよ
い。そして、所要のパターンで樹脂の微粒子を基体11
の表面に付着させた後、その全体を加熱して焼き付けに
より樹脂微粒子を基体11の表面に固定し、樹脂層12
を得る。この樹脂層12の厚さは、数十μm程度とされ
る。
The resin layer 12 is formed by spraying fine particles of a resin having excellent insulating properties, such as a polyimide resin, onto the surface of the base 11 and then fixing the fine particles by baking. That is, as schematically shown in FIG.
The polyimide resin fine particles P having a particle size of about 1 to several μm are formed into a slurry and sprayed onto the surface of the base 11 while controlling the fine nozzles N to move in a required pattern by, for example, a servo mechanism. At this time, an adhesive layer or the like may be formed on the surface of the substrate 11 by printing or the like in advance according to the pattern of the resin layer 12. Then, the resin fine particles are applied to the base 11 in a required pattern.
After being adhered to the surface of the substrate 11, the whole is heated and baked to fix the resin fine particles on the surface of the base 11, and the resin layer 12
Get. The thickness of the resin layer 12 is about several tens of μm.

【0019】また、樹脂層12を形成する他の方法とし
て、図4(A)に示すように、基体11の樹脂層12を
形成すべき面の全面に上記と同等の樹脂微粒子Pを付着
させて焼き付けにより固定した樹脂層120を形成した
後、図4(B)に示すように、その樹脂層120の表面
にフォトリソグラフィ技術等によって所要パターンのレ
ジスト膜Rを形成し、その後、ショットブラストやレー
ザ光照射等の手法によって不要部分の樹脂を除去するこ
とによって所要パターンの樹脂層12を得る方法も採用
することができる。
As another method of forming the resin layer 12, as shown in FIG. 4A, the same resin fine particles P as described above are adhered to the entire surface of the substrate 11 on which the resin layer 12 is to be formed. After the resin layer 120 fixed by baking is formed, as shown in FIG. 4B, a resist film R having a required pattern is formed on the surface of the resin layer 120 by a photolithography technique or the like. It is also possible to adopt a method of obtaining the resin layer 12 of a required pattern by removing an unnecessary portion of the resin by a method such as laser light irradiation.

【0020】以上の本発明の実施の形態によると、金属
製の基体11の表面を被覆して動圧溝形状の導電パター
ン13のみを露出させるための非導電性材料が、樹脂の
微粒子を付着させて焼き付けによって基体11に固定し
てなる樹脂層12によって形成されているため、基体1
1に対する密着強度が極めて強固なものとなり、従来の
レジスト膜塗布等により基体11を非導電性材料で被覆
する場合に比して、その剥離寿命を大幅に向上させるこ
とができる。
According to the above-described embodiment of the present invention, the non-conductive material for covering the surface of the metal base 11 and exposing only the dynamic pressure groove-shaped conductive pattern 13 is formed by adhering resin fine particles. The base 1 is formed by the resin layer 12 fixed to the base 11 by baking.
1 becomes extremely strong, and the peeling life can be greatly improved as compared with the case where the substrate 11 is coated with a non-conductive material by conventional resist film coating or the like.

【0021】ここで、以上の電極工具1は、請求項1に
係る発明を適用したものであり、次に、請求項2に係る
発明を適用した電極工具について説明する。この請求項
2に係る発明の動圧溝加工装置は、図1に示したものと
同等であり、電極工具の構造のみが相違する。図5はそ
の電極工具10の縦断面図である。この電極工具10
は、先の例と同様の金属製の基体11の表面に、樹脂シ
ート102を接着剤等によって貼着することによって、
先の例と同様の導電パターン13を形成している点に特
徴がある。
Here, the above electrode tool 1 is one to which the invention according to claim 1 is applied. Next, an electrode tool to which the invention according to claim 2 is applied will be described. The dynamic pressure groove machining apparatus according to the second aspect of the present invention is the same as that shown in FIG. 1 except for the structure of the electrode tool. FIG. 5 is a longitudinal sectional view of the electrode tool 10. This electrode tool 10
Is obtained by attaching a resin sheet 102 to the surface of a metal base 11 similar to that of the previous example using an adhesive or the like.
The feature is that the conductive pattern 13 similar to the previous example is formed.

【0022】この実施の形態における樹脂シート102
は、前もってパターニングされたものであり、図6に示
すように、基体11に貼着する前に導電パターン13と
同じパターンの孔130を厚さ100μm程度の樹脂シ
ート素材102′にショットブラスト等によって穿った
ものであり、このようなあらかじめパターニングされた
樹脂シート102を、適当な接着剤を用いて基体11に
貼り付けることにより、基体11に対する樹脂シート1
02の密着強度を容易に強固なものとすることができ、
この実施の形態によっても、従来のレジスト膜塗布等に
より基体11を非導電性材料で被覆する場合に比して、
その剥離寿命を大幅に向上させることができる。
Resin sheet 102 according to this embodiment
Is patterned in advance. As shown in FIG. 6, before bonding to the base 11, holes 130 having the same pattern as the conductive patterns 13 are formed in a resin sheet material 102 'having a thickness of about 100 μm by shot blasting or the like. Such a pre-patterned resin sheet 102 is adhered to the base 11 using an appropriate adhesive to form the resin sheet 1 on the base 11.
02 can easily have a strong adhesive strength,
Also in this embodiment, compared to the case where the base 11 is coated with a non-conductive material by a conventional resist film coating or the like,
The peeling life can be greatly improved.

【0023】また、この実施の形態においては、樹脂シ
ート102を基体11に対して固定する作業を失敗して
も、基体11自体は再利用することができるとともに、
電極工具1の製造工程を簡略化できるという利点もあ
る。
In this embodiment, even if the operation of fixing the resin sheet 102 to the base 11 fails, the base 11 itself can be reused.
There is also an advantage that the manufacturing process of the electrode tool 1 can be simplified.

【0024】なお、以上の各実施の形態においては、ス
ラスト動圧溝を形成する工程に本発明を適用した例を示
したが、本発明はラジアル動圧溝の形成工程にも等しく
適用し得ることは勿論である。
In each of the above embodiments, an example is shown in which the present invention is applied to the step of forming the thrust dynamic pressure groove. However, the present invention is equally applicable to the step of forming the radial dynamic pressure groove. Of course.

【0025】[0025]

【発明の効果】以上のように、請求項1に係る発明によ
れば、電解加工により被加工物に動圧溝を形成するため
の電極工具として、金属製の基体の表面に動圧溝のパタ
ーンで導電パターンを露出させるべく当該基体の表面の
一部を覆う非導電性材料を、樹脂微粒子を付着させて焼
き付けてなる樹脂層とした構造ものを用いるので、従来
のレジスト膜塗布や樹脂の埋め込みにより基体を非導電
性材料で被覆する場合に比して、基体に対する密着性が
強固なものとなり、その剥離寿命を大幅に向上させるこ
とができる。
As described above, according to the first aspect of the present invention, a dynamic pressure groove is formed on a surface of a metal base as an electrode tool for forming a dynamic pressure groove in a workpiece by electrolytic processing. Since a non-conductive material covering a part of the surface of the substrate to expose the conductive pattern with a pattern is used as a resin layer formed by attaching and baking resin fine particles, a conventional resist film coating or resin coating is used. Compared to the case where the substrate is covered with a non-conductive material by embedding, the adhesion to the substrate becomes stronger, and the peeling life can be greatly improved.

【0026】また、請求項2に係る発明によれば、同じ
く電解加工により被加工物に動圧溝を形成させるための
電極工具として、金属製の基体の表面に動圧溝のパター
ンで導電パターンを露出させるべく当該基体の表面の一
部を覆う非導電性材料を、あらかじめ動圧溝のパターン
の孔を形成した樹脂シートを基体表面に貼着等によって
固定した構造のものを用いるので、上記と同様に従来の
この種の電極工具に比して基体に対する非導電性材料の
密着性がより強固なものとなり、その剥離寿命を大幅に
向上させることができるとともに、基体の再利用や電極
工具の製造工程の簡略化にも効果的である。
According to the second aspect of the present invention, a conductive pattern is formed on a surface of a metal base by using a dynamic pressure groove pattern as an electrode tool for forming a dynamic pressure groove on a workpiece by electrolytic processing. Since a non-conductive material covering a part of the surface of the base is exposed to expose a resin sheet in which a hole of a pattern of a dynamic pressure groove is previously formed is fixed to the surface of the base by sticking or the like, the above-described structure is used. Similar to conventional electrode tools of this type, the adhesion of the non-conductive material to the substrate is stronger than that of conventional electrode tools, and the peeling life can be greatly improved. It is also effective for simplifying the manufacturing process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1に係る発明の実施の形態の動圧溝加工
装置の全体構成を示す模式図である。
FIG. 1 is a schematic diagram showing the entire configuration of a dynamic pressure groove machining apparatus according to an embodiment of the present invention.

【図2】図1における電極工具1の縦断面図である。FIG. 2 is a longitudinal sectional view of the electrode tool 1 in FIG.

【図3】図2の電極工具1の製造方法の一例の説明図で
ある。
FIG. 3 is an explanatory view of an example of a method of manufacturing the electrode tool 1 of FIG.

【図4】図2の電極工具1の製造方法の他の例の説明図
である。
FIG. 4 is an explanatory view of another example of the method for manufacturing the electrode tool 1 of FIG.

【図5】請求項2に係る発明に用いる電極工具10の縦
断面図である。
FIG. 5 is a longitudinal sectional view of an electrode tool 10 used in the invention according to claim 2;

【図6】図5の電極工具10の製造方法の例の説明図で
ある。
6 is an explanatory diagram of an example of a method for manufacturing the electrode tool 10 of FIG.

【符号の説明】[Explanation of symbols]

1 電極工具 11 基体 12 樹脂層 13 導電パターン 2 加工槽 3 電解液槽 4a,4b 配管 5 ポンプ 6 加工用電源 102 樹脂シート 130 孔 Reference Signs List 1 electrode tool 11 base 12 resin layer 13 conductive pattern 2 processing tank 3 electrolyte tank 4a, 4b piping 5 pump 6 processing power supply 102 resin sheet 130 hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 義樹 大阪府大阪市中央区南船場三丁目5番8号 光洋精工株式会社内 Fターム(参考) 3C059 AA02 AB01 DA13 DB02 DC01 HA00 3J011 CA02 DA02  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yoshiki Fujii 3-5-8 Minamisenba, Chuo-ku, Osaka-shi, Osaka F-term (reference) 3C059 AA02 AB01 DA13 DB02 DC01 HA00 3J011 CA02 DA02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面に動圧溝を形成すべき被加工物と、
所定パターンの導電部が表面に露出してなる電極工具と
を、電解液中に対向させて浸漬するとともに、これらの
被加工物と電極工具をそれぞれ正極および負極に接続し
て通電しつつその間に電解液を流動させることによっ
て、被加工物表面に電極工具の導電部の露出パターンに
対応した形状の動圧溝を形成する動圧溝加工装置におい
て、 上記電極工具が、金属製の基体の表面を、樹脂微粒子を
付着させて焼き付けてなる樹脂層によって上記所定パタ
ーン以外の領域を被覆した構造を有していることを特徴
とする動圧軸受の動圧溝加工装置。
1. A workpiece on which a dynamic pressure groove is to be formed on a surface,
An electrode tool having a conductive part of a predetermined pattern exposed on the surface is immersed in the electrolyte so as to face each other, and while the workpiece and the electrode tool are connected to the positive electrode and the negative electrode, respectively, and energized, In a dynamic pressure groove processing apparatus for forming a dynamic pressure groove having a shape corresponding to an exposed pattern of a conductive portion of an electrode tool on a surface of a workpiece by flowing an electrolytic solution, the electrode tool has a surface of a metal base. Characterized by having a structure in which a region other than the above-mentioned predetermined pattern is covered by a resin layer formed by attaching and baking resin fine particles.
【請求項2】 表面に動圧溝を形成すべき被加工物と、
所定パターンの導電部が表面に露出してなる電極工具と
を、電解液中に対向させて浸漬するとともに、これらの
被加工物と電極工具をそれぞれ正極および負極に接続し
て通電しつつその間に電解液を流動させることによっ
て、被加工物表面に電極工具の導電部の露出パターンに
対応した形状の動圧溝を形成する動圧溝加工装置におい
て、 上記電極工具が、金属製の基体の表面に、上記所定パタ
ーンの孔があらかじめ形成され樹脂シートを固定してな
る構造を有していることを特徴とする動圧軸受の動圧溝
加工装置。
2. A workpiece on which a dynamic pressure groove is to be formed on a surface,
An electrode tool having a conductive part of a predetermined pattern exposed on the surface is immersed in the electrolyte so as to face each other, and while the workpiece and the electrode tool are connected to the positive electrode and the negative electrode, respectively, and energized, In a dynamic pressure groove processing apparatus for forming a dynamic pressure groove having a shape corresponding to an exposed pattern of a conductive portion of an electrode tool on a surface of a workpiece by flowing an electrolytic solution, the electrode tool has a surface of a metal base. Wherein the predetermined pattern of holes is formed in advance and has a structure in which a resin sheet is fixed.
JP2000269699A 2000-09-06 2000-09-06 Hydrodynamic groove machining device for hydrodynamic bearing Pending JP2002079425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000269699A JP2002079425A (en) 2000-09-06 2000-09-06 Hydrodynamic groove machining device for hydrodynamic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000269699A JP2002079425A (en) 2000-09-06 2000-09-06 Hydrodynamic groove machining device for hydrodynamic bearing

Publications (1)

Publication Number Publication Date
JP2002079425A true JP2002079425A (en) 2002-03-19

Family

ID=18756260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000269699A Pending JP2002079425A (en) 2000-09-06 2000-09-06 Hydrodynamic groove machining device for hydrodynamic bearing

Country Status (1)

Country Link
JP (1) JP2002079425A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033330A1 (en) * 2004-09-21 2006-03-30 Ntn Corporation Shaft member for hydrodynamic bearing device, method for forming dynamic pressure-generating portion, and fluid dynamic bearing device
JP2006281333A (en) * 2005-03-31 2006-10-19 Minebea Co Ltd Electro-chemical machining electrode tool and manufacturing method thereof
JP2007268705A (en) * 2006-03-15 2007-10-18 Seagate Technology Llc Nano scale processing electrode, workpiece, and its manufacturing method
US7887678B2 (en) 2004-01-23 2011-02-15 Minebea Co., Ltd. Electrode tool for electrochemical machining and method for manufacturing same
US9668704B2 (en) 2003-09-01 2017-06-06 Biosense Webster (Israel) Ltd. Method and device for visually assisting an electrophysiological use of a catheter in the heart
CN110899876A (en) * 2019-11-29 2020-03-24 南京工业大学 Device for electrolytic machining of template

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9668704B2 (en) 2003-09-01 2017-06-06 Biosense Webster (Israel) Ltd. Method and device for visually assisting an electrophysiological use of a catheter in the heart
US7887678B2 (en) 2004-01-23 2011-02-15 Minebea Co., Ltd. Electrode tool for electrochemical machining and method for manufacturing same
WO2006033330A1 (en) * 2004-09-21 2006-03-30 Ntn Corporation Shaft member for hydrodynamic bearing device, method for forming dynamic pressure-generating portion, and fluid dynamic bearing device
JP2006281333A (en) * 2005-03-31 2006-10-19 Minebea Co Ltd Electro-chemical machining electrode tool and manufacturing method thereof
JP2007268705A (en) * 2006-03-15 2007-10-18 Seagate Technology Llc Nano scale processing electrode, workpiece, and its manufacturing method
CN110899876A (en) * 2019-11-29 2020-03-24 南京工业大学 Device for electrolytic machining of template
CN110899876B (en) * 2019-11-29 2020-09-25 南京工业大学 Device for electrolytic machining of template

Similar Documents

Publication Publication Date Title
Coblas et al. Manufacturing textured surfaces: State of art and recent developments
JP3269827B2 (en) Articles, methods and apparatus for electrochemical manufacturing
JP2006281333A (en) Electro-chemical machining electrode tool and manufacturing method thereof
JP2002079425A (en) Hydrodynamic groove machining device for hydrodynamic bearing
US7416652B2 (en) Method for manufacturing an electrode for the electrochemical machining of a workpiece and an electrode manufactured according to this method
JP2006239803A (en) Electrochemical machining electrode tool tool and manufacturing method for it
US20060177569A1 (en) Method of manufacturing master disk for magnetic transfer
JP4792403B2 (en) Circuit board element manufacturing method and circuit board element
CN107999908B (en) Manufacturing method of micro-pit array
JP3206246B2 (en) Method of manufacturing metal member having minute holes
JP2004052850A (en) Bearing device and its manufacturing method
JP3829300B2 (en) Dynamic pressure groove machining method
JP2002079424A (en) Hydrodynamic groove machining device for hydrodynamic bearing
JP5142937B2 (en) Rolling roll and screen printing mesh
JPH04109510A (en) Anisotropic conductive film and manufacture thereof
Kunar et al. Effect of various masked patterned tools during micro-electrochemical texturing
JPH10250032A (en) Metal mask for printing
JPH0610148A (en) Grooving method for dynamic pressure fluid bearing
JP2003027297A (en) Method for processing fine groove
JPS62278313A (en) Manufacture of dynamic pressure group bearing
JPH10151872A (en) Printing mask for particle-containing paste and its manufacture
JP2005231023A (en) Electrode tool for electrochemical machining and its manufacturing method
US20080309716A1 (en) Method of Manufacturing Nozzle Plate
JPS62136588A (en) High-speed electroplating method
JP2004063694A (en) Pattern transfer film, manufacture thereof, functional mask and manufacture of functional mask