JP2002078697A - Body action sensing instrument - Google Patents

Body action sensing instrument

Info

Publication number
JP2002078697A
JP2002078697A JP2000272357A JP2000272357A JP2002078697A JP 2002078697 A JP2002078697 A JP 2002078697A JP 2000272357 A JP2000272357 A JP 2000272357A JP 2000272357 A JP2000272357 A JP 2000272357A JP 2002078697 A JP2002078697 A JP 2002078697A
Authority
JP
Japan
Prior art keywords
acceleration
angular velocity
motion sensor
motion
side device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000272357A
Other languages
Japanese (ja)
Other versions
JP4021137B2 (en
Inventor
Kazutoyo Ichikawa
和豊 市川
Norihiko Shiratori
典彦 白鳥
Tetsuji Moriizumi
哲次 森泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microstone Corp
Original Assignee
Microstone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microstone Corp filed Critical Microstone Corp
Priority to JP2000272357A priority Critical patent/JP4021137B2/en
Publication of JP2002078697A publication Critical patent/JP2002078697A/en
Application granted granted Critical
Publication of JP4021137B2 publication Critical patent/JP4021137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Rehabilitation Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a body action sensing instrument capable of sensing user's body actions including evaluation information of a walk and rehabilitation of a cerebropathic patient, judging whether or not the actions are prescribed actions to display the information, and providing the person himself/herself or a observing person with the information for evaluation. SOLUTION: The body action sensing instrument has a function of judging types and strength of body actions based on a combination of the results of prescribed computation (e.g. dispersion of sensed waveform) on an acceleration output and rotational angular speed which are measured by a device at body side (e.g. wrist watch type) including an action sensor capable of sensing an acceleration in one direction (e.g. vertical direction) and a rotational angular speed in one surface (e.g. including forward/backward direction and vertical direction), and a function of displaying the results.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、身体が行った運動
を検出し、その情報を観測者に提供することができる身
体動作センシング装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a body movement sensing device capable of detecting a movement performed by a body and providing the information to an observer.

【0002】[0002]

【従来の技術】使用者の身体に取付け、身体の運動をセ
ンサで検出してそのデータで使用者の運動状況を判断
し、健康管理等の目的に利用する発明の提案は数多い。
例えば、 (1)特開平10−295651号に開示された技術に
おいて、利用者が身につけた(腰などに)加速度計を持
つ携帯端末は、入力しておいた個人データと自動計測し
た運動量を外部のセンタコンピュータに電話送信し分析
して健康診断させ、その結果を受信し表示する。
2. Description of the Related Art There are many proposals for inventions which are attached to the body of a user, detect the movement of the body with a sensor, judge the exercise state of the user based on the data, and use the data for the purpose of health management and the like.
For example, (1) In the technology disclosed in Japanese Patent Application Laid-Open No. H10-2955651, a portable terminal having an accelerometer worn on the user (for example, at the waist) uses the personal data inputted and the exercise amount automatically measured. A telephone is sent to an external center computer for analysis and health checkup, and the result is received and displayed.

【0003】(2)特開2000−41953号に開示
された技術においては、行動データ収集装置(利用者身
体側)の体動センサが検出した体動を1次加工し、それ
を受信した行動データ出力装置(外部パソコン側)は個
人情報を用いて2次加工したデータを出力する。生体情
報収集機器側での個人情報入力や大量の2次加工情報の
蓄積を不要とし、操作性やメモリ容量の削減を図る。 (3)特開2000−41952号においては、行動情
報検出機器のメモリ容量を低減するため、センサと体動
検出回路の出力より内部MPUを用いて歩数、歩行ペー
ス、行動の種類、運動強度、消費カロリ等の生体情報を
計算し、1分毎に計算結果を記憶、表示、あるいは外部
に送信する。
(2) In the technique disclosed in Japanese Patent Application Laid-Open No. 2000-41953, a body motion detected by a body motion sensor of a behavior data collection device (a user's body side) is primarily processed, and the behavior is received. The data output device (external personal computer side) outputs data that has been subjected to secondary processing using personal information. This eliminates the need for inputting personal information and storing a large amount of secondary processing information on the biological information collection device side, thereby reducing operability and memory capacity. (3) In Japanese Patent Application Laid-Open No. 2000-41952, in order to reduce the memory capacity of the behavior information detection device, the number of steps, walking pace, type of behavior, exercise intensity, Calculate biometric information such as consumed calories, and store, display, or transmit the calculation result every minute.

【0004】(4)その他、歩数計(万歩計(登録商
標))や多機能型の腕時計等に加速度センサを内蔵さ
せ、歩数や運動強度を測定して運動による消費カロリー
等の健康管理情報を知らせるようにした製品や文献もあ
ったようである。 (5)更に医療管理上の目的で、行動に障害を生じた患
者の動作のモニタリング、あるいは緊急自動通報を行う
ため、加速度センサに加えて振動ジャイロスコープ等の
回転角速度センサを追加して、特定の運動の検出を目的
とする研究や実験がなされていることが関連学会におけ
る報告などに見られる。 (6)一方運動センサ技術を見ると、従来加速度と角速
度は別個のセンサで測定されていた。殊に角速度センサ
ではフリーフリーバーや2脚の音叉をコリオリ力を検知
する振動体として利用した振動ジャイロスコープが実用
されつつある。
(4) In addition, a pedometer (pedometer (registered trademark)), a multifunctional wristwatch, or the like has a built-in acceleration sensor, measures the number of steps and exercise intensity, and provides health management information such as calorie consumption by exercise. It seems that there were also products and documents that let them know about the product. (5) In addition to the acceleration sensor, a rotational angular velocity sensor such as a vibrating gyroscope is added and specified for the purpose of monitoring the operation of a patient with a disability in behavior or performing emergency automatic notification for medical management purposes. Studies and experiments aimed at detecting the movement of humans have been reported in related academic societies. (6) On the other hand, looking at the motion sensor technology, the acceleration and the angular velocity are conventionally measured by separate sensors. Particularly in angular velocity sensors, a vibration gyroscope using a free bar or a two-leg tuning fork as a vibrator for detecting Coriolis force is being put into practical use.

【0005】[0005]

【発明が解決しようとする課題】上記従来例(1)、
(2)、(3)における発明の各実施の形態を見るに、
まだ十分に小型で装着による使用者(体が不自由な患者
である場合が多い)の負担が少ない身体側機器が提案さ
れているとは言えないと考えられる。従来例(4)では
機器の小型化の点では進歩があるが、これらの従来例で
は得ようとしている情報が健常者の健康管理の範囲内に
止まっており、例えば患者のリハビリテーションの評価
等の医療目的にも直ちに用いうる技術ではない。
The above conventional example (1),
Looking at each embodiment of the invention in (2) and (3),
It cannot be said that a body-side device that is still sufficiently small and has a small burden on the user (often a patient with a physical disability) due to wearing is small. In the conventional example (4), progress has been made in terms of miniaturization of the device, but in these conventional examples, the information to be obtained is within the range of health management of healthy persons, and for example, such as evaluation of rehabilitation of patients. It is not a technology that can be used immediately for medical purposes.

【0006】上記従来例(5)の研究の目的は医療技術
の改善であることでは本発明と共通する点もあるが、特
定の疾患を対象としそれに関連する動作の検出を具体的
な目的としており(例えば循環器系疾患と心機能に負担
のかかる運動)、脳梗塞による麻痺患者の動作をも視野
に入れようとする本発明に直接適用し難い部分が多い。
また実際に患者に運動センサを装着する具体的な最適技
術についての言及はあまりないようである。
[0006] Although the purpose of the study of the above conventional example (5) is in common with the present invention in that the purpose of the study is to improve medical technology, the specific purpose is to detect a specific disease and detect an action related thereto. There are many parts that are difficult to directly apply to the present invention, in which the movement of a palsy patient due to cerebral infarction is also taken into the field of view (for example, exercise that imposes a burden on the circulatory system disease and cardiac function).
In addition, there seems to be little mention of a specific optimal technique for actually mounting the motion sensor on the patient.

【0007】また従来例(6)に挙げた従来技術におけ
る角速度センサは、角速度が検出できる回転軸が2脚の
音叉または棒状振動体の長手軸に平行、即ち検出可能な
回転面は長手軸に垂直となっている。これは検出可能な
回転面を身体に装着する装置の主な表面と平行とすると
き必然的に身体側装置の厚さを増す。また加速度センサ
と角速度センサが別体であると身体側装置を大型にして
しまう。これらの事情により装着の負担感を軽減するた
め薄型・小型にすることが現状では困難である。なお他
の形態のセンサが提案された例も多い。
In the angular velocity sensor of the prior art cited in the prior art (6), the rotation axis capable of detecting the angular velocity is parallel to the longitudinal axis of the two-leg tuning fork or the rod-shaped vibrating body, that is, the rotational plane capable of being detected is the longitudinal axis. It is vertical. This necessarily increases the thickness of the bodyside device when the detectable plane of rotation is parallel to the main surface of the device worn on the body. Further, if the acceleration sensor and the angular velocity sensor are separate bodies, the body-side device becomes large. Under these circumstances, it is difficult at present to reduce the size and thickness of the device in order to reduce the burden of mounting. In many cases, other types of sensors have been proposed.

【0008】本発明の目的は、使用者の身体の動作を検
出し、それが所定の動作であることを判別してその情報
を表示し、本人あるいは観察者に提供することができる
実用性の高い身体動作センシング装置を提供することで
ある。また、少なくとも歩行の計測とリハビリテーショ
ンの評価を可能にした身体動作センシング装置を提供す
ることである。
[0008] An object of the present invention is to detect the movement of the body of a user, determine that the movement is a predetermined movement, display the information, and provide the information to the person or the observer. It is to provide a high body motion sensing device. Another object of the present invention is to provide a body movement sensing device that enables at least walking measurement and rehabilitation evaluation.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明の身体動作センシング装置は次の特徴を備え
る。 (1)1つの方向の加速度と1つの軸の回りの回転角速
度を測定できる運動センサと、該運動センサによって前
記1つの方向の加速度と1つの軸の回りの回転角速度と
を所定の期間測定する測定回路手段とを含み、身体の所
定の部位に装着される身体側装置と、該測定回路手段の
加速度出力と角速度出力とにそれぞれ所定の演算を施す
演算回路手段と、前記所定の演算が施された加速度出力
と角速度出力との組み合わせによって前記所定の期間に
おける身体運動の種類および強度を判定する判定回路手
段と、前記判定された身体運動の種類および強度あるい
はその評価結果を表示する表示手段とを有すること。
Means for Solving the Problems To achieve the above object, the body movement sensing device of the present invention has the following features. (1) A motion sensor capable of measuring an acceleration in one direction and a rotational angular velocity around one axis, and measuring the acceleration in the one direction and the rotational angular velocity around one axis for a predetermined period by the motion sensor. A body-side device that includes measurement circuit means and is attached to a predetermined part of the body; arithmetic circuit means for performing predetermined arithmetic operations on acceleration output and angular velocity output of the measurement circuit means; Determination circuit means for determining the type and intensity of the physical exercise in the predetermined period by a combination of the obtained acceleration output and angular velocity output, and display means for displaying the determined type and intensity of the physical exercise or the evaluation result thereof Having

【0010】本発明の身体動作センシング装置は更に以
下の特徴の少なくとも一つを備えることがある。 (2)前記運動センサと、前記測定回路手段と、前記演
算回路手段と、前記判定回路手段と、前記表示手段が、
全て身体の所定の部位に装着される身体側装置に内蔵さ
れていること。
[0010] The body movement sensing device of the present invention may further include at least one of the following features. (2) The motion sensor, the measurement circuit means, the arithmetic circuit means, the determination circuit means, and the display means
All must be built into a body-side device that is worn on a prescribed part of the body.

【0011】(3)前記運動センサと、前記測定回路手
段と、前記演算回路手段と、前記判定回路手段と、前記
表示手段のうち、少なくとも前記運動センサと前記測定
回路手段とが身体の所定の部位に装着される身体側装置
に内蔵されており、その他の手段が前記身体に装着され
ない外部装置に内蔵されており、かつ前記身体側装置は
中間データの送信手段を備え、前記外部装置は前記中間
データの受信手段を備えていること。
(3) Of the motion sensor, the measurement circuit means, the arithmetic circuit means, the judgment circuit means, and the display means, at least the motion sensor and the measurement circuit means are provided for a predetermined body. The body-side device attached to the part is built in, the other means is built-in to an external device that is not worn on the body, and the body-side device is provided with intermediate data transmission means, the external device is the Provision of means for receiving intermediate data.

【0012】(4)前記運動センサの検出する1つの方
向の加速度は身体のほぼ上下方向の加速度であり、また
前記運動センサの検出する1つの方向の角速度は身体の
ほぼ鉛直方向および前後方向を含む平面内における回転
運動に対する角速度であること。
(4) The acceleration in one direction detected by the motion sensor is substantially vertical acceleration of the body, and the angular velocity in one direction detected by the motion sensor is substantially vertical and forward and backward directions of the body. Angular velocity for rotational motion in the plane that contains it.

【0013】(5)前記身体側装置は腕に装着される機
器であり、その内部で前記運動センサの角速度センサ部
は厚みの薄い箱型の容器に収納されていて前記身体側装
置の最も広い面にほぼ平行に配置されており、前記角速
度センサ部の検出回転方向は前記箱型の容器の最も広い
表面にほぼ平行な方向であること。
(5) The body-side device is a device to be worn on an arm, in which the angular velocity sensor section of the motion sensor is housed in a thin box-shaped container, and is the widest of the body-side device. The angular velocity sensor is arranged so as to be substantially parallel to the surface, and the rotational direction of detection of the angular velocity sensor is substantially parallel to the widest surface of the box-shaped container.

【0014】(6)前記身体側装置は主な表面に表示装
置を有し、前記運動センサの箱型の容器には一体化され
た構造の加速度センサ部と角速度センサ部とが収納され
ており、また前記運動センサの容器は前記表示装置にほ
ぼ平行に前記身体側装置内に配置されており、前記運動
センサの加速度検出方向は前記箱型の容器の最も広い表
面にほぼ平行な方向であること。
(6) The body-side device has a display device on the main surface thereof, and the box-shaped container of the motion sensor contains an integrated acceleration sensor and an angular velocity sensor. The container of the motion sensor is disposed in the body-side device substantially parallel to the display device, and the direction of acceleration detection of the motion sensor is a direction substantially parallel to the widest surface of the box-shaped container. thing.

【0015】(7)前記所定の演算は、前記加速度出力
と前記角速度出力の少なくとも一方の分散を求めること
であること。
(7) The predetermined calculation is to obtain a variance of at least one of the acceleration output and the angular velocity output.

【0016】(8)前記所定の演算は、前記加速度出力
と前記角速度出力の少なくとも一方の分散を求め、更に
その対数をとることであること。
(8) The predetermined calculation is to obtain a variance of at least one of the acceleration output and the angular velocity output, and further take a logarithm thereof.

【0017】[0017]

【発明の実施の形態】図1は本発明の身体動作センシン
グ装置の第1の実施の形態のブロック図である。本装置
は使用者が身体の所定の部位に取り付ける身体側装置1
と、例えば医療センター的な場所に設置される外部装置
2より成る。身体側装置1の内部構成は、その特定の方
向への加速度を検知する加速度センサ11、特定の面に
平行な回転の角速度を検知する角速度センサ12、それ
ら機械的振動体であるセンサを各々励振し(駆動信号は
P130およびP140)また加速度および角速度の検
出信号P11およびP12を抽出し検波・増幅等の処理
をしてそれぞれ検出値に比例する電圧を出力する加速度
測定回路13および角速度測定回路14を含んでいる。
FIG. 1 is a block diagram of a first embodiment of a body movement sensing device according to the present invention. This device is a body-side device 1 that a user attaches to a predetermined part of the body.
And an external device 2 installed at a location like a medical center, for example. The internal configuration of the body-side device 1 includes an acceleration sensor 11 that detects acceleration in a specific direction, an angular velocity sensor 12 that detects an angular velocity of rotation parallel to a specific surface, and an excitation of these sensors that are mechanical vibrators. (The drive signals are P130 and P140) Also, the acceleration measurement circuit 13 and the angular velocity measurement circuit 14 which extract the detection signals P11 and P12 of the acceleration and the angular velocity, perform processing such as detection and amplification, and output a voltage proportional to the detected value, respectively. Contains.

【0018】所定の期間(使用者自身が決める、あるい
は予め使用者と医療関係者が打合わせて決める、あるい
は装置が自己の時計で決める等種々考えられる)内の加
速度出力P13と角速度出力P14はそれぞれ加速度演
算回路15および角速度演算回路16によって所定の演
算が施される。所定の演算とは信号P13、P14の波
形に加工を施して信号を変換することであり、例えば入
力波形のピーク値を抽出する、整流・平滑化を行って平
均化する、所定期間に現れる波形のピーク値の分散値を
求める、所定期間の信号を細かくサンプリングしてその
分散値を出す、また更にそれらの対数を求める、あるい
はその他の数学的処理を行うことや、振動する波形の周
期を求めること等を意味する。それらの出力である運動
データは加速度演算出力P15および角速度演算出力P
16である。この両出力は通信回路22によって、例え
ば電波出力P22として外部装置2に対して共に送信さ
れる。データの送受信は双方の通信回路22、23が連
携し、互いの動作をチェックしながら双方向的に行われ
る。また制御回路24は身体側装置1内の各回路に作用
し、制御信号P241、P242、P243、P24
4、P245を発生し、各回路の動作タイミングや各回
路間の連携動作を調整する役割を持つ。
The acceleration output P13 and the angular velocity output P14 within a predetermined period (various conceivable, such as being determined by the user himself or by a meeting between the user and a medical staff in advance, or the apparatus being determined by his / her own clock) are respectively considered. A predetermined operation is performed by the acceleration operation circuit 15 and the angular velocity operation circuit 16. The predetermined calculation is to process the waveforms of the signals P13 and P14 to convert the signals. For example, the peak value of the input waveform is extracted, the rectification / smoothing is performed, and the average is obtained. Calculate the variance of the peak value of the above, obtain the variance by sampling the signal in a predetermined period finely, obtain the logarithm thereof, or perform other mathematical processing, and calculate the period of the oscillating waveform And so on. The movement data, which are the outputs, are an acceleration calculation output P15 and an angular velocity calculation output P
Sixteen. These two outputs are transmitted together by the communication circuit 22 to the external device 2 as, for example, a radio wave output P22. Data transmission and reception are performed bidirectionally while the two communication circuits 22 and 23 cooperate and check each other's operations. Further, the control circuit 24 acts on each circuit in the body-side device 1, and controls signals P241, P242, P243, P24
4. Generates P245 and has a role of adjusting the operation timing of each circuit and the cooperative operation between the circuits.

【0019】外部装置2の構成および動作は以下のよう
である。電波信号P22に含まれる運動データを受信し
た通信回路23はそれを復調し内部信号P23に変換す
る。運動判定回路17は内部信号P23を受けて、それ
に含まれる加速度演算出力と角速度演算出力の2種類の
情報と、あらかじめ何種類かの運動について実験的に求
めておいたそれぞれの数値範囲とを比較し、ある期間内
に使用者が行った運動の種類とその強度を判定する。あ
るいは更に判定された運動に対する評価(例えばリハビ
リテーションの進度状況等)の情報も付加する。
The configuration and operation of the external device 2 are as follows. The communication circuit 23 that has received the exercise data included in the radio signal P22 demodulates it and converts it into an internal signal P23. The motion judging circuit 17 receives the internal signal P23, compares the two types of information included in the internal signal P23, that is, the acceleration calculation output and the angular velocity calculation output, with the respective numerical ranges previously obtained experimentally for some types of motion. Then, the type and the intensity of the exercise performed by the user during a certain period are determined. Alternatively, information on the evaluation of the determined exercise (for example, progress of rehabilitation) is also added.

【0020】それらの情報を含む判定結果信号P17は
記憶装置19に記憶されると共に表示装置18(必要な
回路を含む)に送られてその内容(運動の種類、強度、
その評価)等があらかじめ登録されていた使用者の個人
情報と共に表示され、記録装置21にて記録され、医療
担当者など観察者の診断を可能にする。また記憶された
内容を含む記憶信号P19は、再生回路20によって必
要に応じて再生信号P20として随時再生され、表示装
置18により表示される。制御回路26は外部装置2内
の各回路に作用し、受信信号P231を受け、制御信号
P251、P252、P253、P254、P255、
P256を発生し、各回路の動作タイミングや各回路間
の連携動作を調整する役割を持つ。
The determination result signal P17 including the information is stored in the storage device 19 and sent to the display device 18 (including necessary circuits) to transmit the contents (kind of exercise, intensity,
The evaluation) is displayed together with the personal information of the user registered in advance, and is recorded in the recording device 21 to enable diagnosis of an observer such as a medical staff. Further, the storage signal P19 including the stored content is reproduced as needed by the reproduction circuit 20 as the reproduction signal P20, and displayed by the display device 18. The control circuit 26 operates on each circuit in the external device 2, receives the reception signal P231, and controls the control signals P251, P252, P253, P254, P255,
P256 is generated to adjust the operation timing of each circuit and the cooperative operation between the circuits.

【0021】図2は本発明の身体動作センシング装置の
第2の実施の形態のブロック図である。本例では身体側
装置1内に既に説明した必要な各回路および表示装置1
8を有し(通信回路は不要となる)、運動の状況やその
評価の情報が表示され、使用者(着用者)自身がそれを
確認できる利点がある。もちろん記憶された情報を再生
回路20によって後刻再生させ、第三者等に確認させた
り外部機器に記録させたりすることも可能である。制御
回路26は身体側装置1内の各回路に作用し、制御信号
P261、P262、P263、P264、P265を
発生し、各回路の動作タイミングや各回路間の連携動作
を調整する。
FIG. 2 is a block diagram of a second embodiment of the body movement sensing device according to the present invention. In this example, the necessary circuits and the display device 1 already described in the body-side device 1
8 (the communication circuit becomes unnecessary), and there is an advantage that the information of the exercise situation and its evaluation is displayed and the user (wearer) himself can confirm it. Of course, the stored information can be reproduced later by the reproduction circuit 20 so as to be confirmed by a third party or the like or recorded in an external device. The control circuit 26 acts on each circuit in the body-side device 1, generates control signals P261, P262, P263, P264, and P265, and adjusts the operation timing of each circuit and the cooperative operation between each circuit.

【0022】図3は本発明の実施の形態における身体側
装置の一例を示し、(a)は部分平面図、(b)はその
A−A断面図である。本身体側装置3はほぼ腕時計型を
しており、腕巻き用のバンド36を備えて手首に装着で
きる。主要な部品として運動センサ31、表示装置3
2、通信回路モジュール33、電源となる電池34、操
作スイッチ35を示した。身体側装置3は装着が使用者
の負担にならぬように薄型・小型でなくてはならない。
表示装置32は見易さを重視すると腕時計の表示面に相
当する身体側装置3の最も広い表面に配置することにな
る。運動センサ31も同じ面に、従って表示装置32と
平行に配置する。表示装置32は液晶表示パネル等薄型
のものが利用できるので、運動センサ31も十分薄いパ
ッケージに納められていなければならない。
FIGS. 3A and 3B show an example of the body-side device according to the embodiment of the present invention, wherein FIG. 3A is a partial plan view, and FIG. The body-side device 3 is substantially in the form of a wristwatch, and is provided with a band 36 around the arm and can be worn on the wrist. Motion sensor 31 and display device 3 as main components
2, the communication circuit module 33, the battery 34 as a power supply, and the operation switch 35 are shown. The body-side device 3 must be thin and small so that wearing does not burden the user.
The display device 32 is arranged on the widest surface of the body-side device 3 corresponding to the display surface of the wristwatch when importance is placed on visibility. The motion sensor 31 is also arranged on the same plane, and therefore parallel to the display device 32. Since the display device 32 can be a thin type such as a liquid crystal display panel, the motion sensor 31 must also be contained in a sufficiently thin package.

【0023】運動センサ31を表示装置32と平行に配
置する理由は次の通りである。最適な運動検出方向は、
後に述べるような実験結果から、加速度については身体
の上下(鉛直)方向の直線運動即ち(a)図に示すX方
向、回転角速度については身体の上下方向と前後方向の
双方を含む平面内の回転(同図のΩ方向)、即ち身体の
左右方向を向きかつ水平な回転軸(図示Z軸に平行)回
りの回転運動である。身体側装置3を腕時計のように、
表示面が手首の甲側または掌側になるよう装着したとし
(これが最も自然で望ましい)、上体を直立させ肘を自
然に曲げ伸ばしするとき、その回転面は身体側装置3の
表示面すなわち表示装置32と平行になるので、その最
も広い面に平行な回転検出面を持つ薄型の角速度センサ
があれば、それを内部に含む運動センサ31を表示装置
32と平行に配置することが好ましい。
The reason for disposing the motion sensor 31 in parallel with the display device 32 is as follows. The optimal motion detection direction is
From the experimental results as described later, the acceleration indicates a linear motion in the vertical direction (vertical direction) of the body, that is, the X direction shown in FIG. 3A, and the rotation angular velocity indicates a rotation in a plane including both the vertical direction and the front-back direction of the body. (Ω direction in the figure), that is, a rotational movement around a horizontal rotation axis (parallel to the illustrated Z axis) in the left-right direction of the body. The body-side device 3 is like a wristwatch,
Assuming that the display surface is worn on the back side or palm side of the wrist (this is the most natural and desirable), when the upper body is upright and the elbow is naturally bent and stretched, the rotating surface is the display surface of the body-side device 3, that is, Since the sensor is parallel to the display device 32, if there is a thin angular velocity sensor having a rotation detection surface parallel to the widest surface, it is preferable to dispose the motion sensor 31 including it inside the display device 32 in parallel.

【0024】図4は本発明の実施の形態における運動セ
ンサの一例の内部構造を示す平面図である。この運動セ
ンサの構造は上記のような形状、配置、検出方向に関す
る要求を全て満たすものである。40は薄い箱型で気密
(好ましくは真空)の容器で、内部構造を示すため蓋
(容器の天井部分)を取り除いてある。41は容器の底
部を貫通する多数のハーメチック端子ピンである。各ピ
ンは運動センサ振動体50上の電極膜群の個々と例えば
ワイヤボンディングの手法で接続されるが、電極膜やボ
ンディングワイヤは図示を省略してある。運動センサ振
動体50は1枚の圧電性材料の平板から成形されてお
り、加速度センサ部と角速度センサ部が一体化されてい
る。運動センサ振動体50は総基部51の裏面の固定部
A52(斜線部)と、小面積の固定部B64(斜線部)
の裏面とが容器40側の台座(図示せず)上に接着され
支持されている。
FIG. 4 is a plan view showing an internal structure of an example of the motion sensor according to the embodiment of the present invention. The structure of the motion sensor satisfies all of the above requirements regarding the shape, arrangement, and detection direction. Numeral 40 denotes a thin box-shaped airtight (preferably vacuum) container from which a lid (the ceiling portion of the container) has been removed to show the internal structure. Reference numeral 41 denotes a number of hermetic terminal pins penetrating the bottom of the container. Each pin is connected to each of the electrode film groups on the motion sensor vibrating body 50 by, for example, a wire bonding method, but the electrode film and the bonding wires are not shown. The motion sensor vibrating body 50 is formed from a single flat plate of a piezoelectric material, and the acceleration sensor unit and the angular velocity sensor unit are integrated. The motion sensor vibrator 50 includes a fixed portion A52 (shaded portion) on the back surface of the total base portion 51 and a fixed portion B64 (shaded portion) having a small area.
Is adhered and supported on a pedestal (not shown) on the container 40 side.

【0025】角速度センサ部はいわゆる三脚音叉型の形
状をした部分であり、各々平行な外脚A53、外脚B5
5、中脚C54、および音叉基部56、支点57より成
る。外脚A53と外脚B55とは通常の2脚音叉と同様
にそれぞれが片持ち梁的で対称軸(図示せず)に関して
対称な振動を行うように、角速度測定回路(例えば図1
の13)に含まれる励振回路(発振回路)によって一定
振幅で励振させられている。中脚C54は励振されない
が、その撓みを検出するための表面電極を持っている。
固定部と異なるハッチングを付して示した58A、58
B、58Cはそれぞれ付加質量で、固有振動数を下げか
つ互いに等しくするために脚先端部に施した金属の厚メ
ッキ層等より成る(中脚C54の固有振動数は両外脚の
固有振動数と適宜に差をつけることがある)。
The angular velocity sensor section is a so-called tripod tuning fork-shaped portion, and the outer leg A53 and the outer leg B5 are parallel to each other.
5, a middle leg C54, a tuning fork base 56, and a fulcrum 57. The outer leg A53 and the outer leg B55 each have a cantilever shape and oscillate symmetrically with respect to an axis of symmetry (not shown) in the same manner as a normal two-legged tuning fork.
Excitation is performed at a constant amplitude by an excitation circuit (oscillation circuit) included in 13). The middle leg C54 is not excited, but has a surface electrode for detecting its deflection.
58A, 58 shown with hatching different from the fixing portion
B and 58C are additional masses, each of which is made of a thick metal plating layer applied to the tip of the leg to lower the natural frequency and make them equal to each other (the natural frequency of the middle leg C54 is the natural frequency of both outer legs). May be appropriately differentiated).

【0026】今運動センサ50が図示の方向、即ち紙面
に垂直なZ軸に平行な回転軸の回りに角速度Ωで回転す
ると、両外側の振動脚には角速度Ωに比例するコリオリ
力が作用する。その方向は脚の長手方向であって、ある
瞬間外脚A53に脚先端向きの力が作用すれば、外脚B
55には脚の基部に向かう力が作用する。力の方向は脚
の振動と同期して正弦的に変化し周期的に反転する。2
つの力は両外脚が平行に離れているため偶力を構成し、
音叉基部56を揺さぶり、支点57の回りに微小な回転
振動を惹起する。このコリオリ力によるモーメントに起
因する音叉基部56の振動を感知して中脚C54はコリ
オリ力に比例した振幅で振動する。中脚C54に設けた
検出電極で抽出された振動電圧が角速度の検出信号(図
1のP11)である。
Now, when the motion sensor 50 rotates at an angular velocity Ω in the direction shown in the drawing, that is, about a rotation axis parallel to the Z axis perpendicular to the paper surface, Coriolis force proportional to the angular velocity Ω acts on both outer vibrating legs. . The direction is the longitudinal direction of the leg, and when a force toward the tip of the leg acts on the outer leg A53 at a certain moment, the outer leg B
A force is applied to 55 toward the base of the leg. The direction of the force changes sinusoidally in synchronization with the vibration of the legs and periodically reverses. 2
The two forces constitute a couple because the outer legs are separated in parallel,
The tuning fork base 56 is shaken, and a minute rotational vibration is generated around the fulcrum 57. When the vibration of the tuning fork base 56 caused by the moment due to the Coriolis force is sensed, the middle leg C54 vibrates with an amplitude proportional to the Coriolis force. The vibration voltage extracted by the detection electrode provided on the middle leg C54 is the detection signal of the angular velocity (P11 in FIG. 1).

【0027】運動センサ50の加速度センサ部は1対の
平行な振動するバネ部である棒A61、棒B62、負荷
質量60(広い面積の素材板の一部の質量とその表面に
施した厚メッキ材の質量とよりなる)、2本の支持バネ
63(負荷質量60を支持しながら図示Z方向の微小な
変位を許すための部材)、固定部B(負荷質量60が特
にX方向に大きく変位しないように支持固定するための
部分)より成る。各々両端固定である棒A61、棒B6
2は運動センサ50の対称軸に関して対称な弓形をなす
振動姿態で発振回路(例えば図1の角速度測定回路14
に含まれる)によって励振させられる。
The acceleration sensor portion of the motion sensor 50 includes a pair of parallel vibrating spring portions, a bar A61, a bar B62, and a load mass 60 (partial mass of a material plate having a large area and thick plating applied to the surface thereof). Two support springs 63 (members for supporting the load mass 60 and allowing a minute displacement in the Z direction in the figure), and fixing portions B (the load mass 60 is largely displaced particularly in the X direction). Part for supporting and fixing so that it does not occur. Bars A61 and B6, each fixed at both ends
Numeral 2 denotes an oscillation circuit (eg, an angular velocity measurement circuit 14 shown in FIG.
Is included).

【0028】その発振周波数は通常一定であるが、負荷
質量60に図示X方向の加速度が作用すると、その大き
さに比例する力で負荷質量60は棒A61、棒B62を
その長手方向に圧縮あるいは引張ることになり、その力
の方向と大きさにより発振周波数が増減し変化する。そ
こで別途設けた基準周波数と上記発振周波数とを比較
し、発振周波数の変化の方向と量を知ればX軸方向の加
速度を求めることができる。基準周波数源を特に設け
ず、代わりに角速度センサ用の振動体である外脚A5
3、B55の発振周波数を利用し得る可能性もある。
Although the oscillation frequency is normally constant, when an acceleration in the X direction shown in the figure acts on the load mass 60, the load mass 60 compresses the rod A61 and the rod B62 in the longitudinal direction with a force proportional to the magnitude. The oscillation frequency is increased or decreased depending on the direction and magnitude of the force. Therefore, the acceleration in the X-axis direction can be obtained by comparing the separately provided reference frequency with the above oscillation frequency and knowing the direction and amount of change of the oscillation frequency. The external leg A5, which is not provided with the reference frequency source and is instead a vibrating body for the angular velocity sensor
3. There is also a possibility that the oscillation frequency of B55 can be used.

【0029】次に、本発明の最適な実施の形態を求める
ために行った諸実験について、図5〜図10を用いて説
明する。まず図5は身体動作センシングにおける振動応
答の実験状況の説明図である。被験者である人体4を直
立させ、片足を固定台5に乗せ、他の脚を鉛直方向に振
動する加振機6の台上に乗せた。なお人体4を基準とし
て図示のようにX,Y,Zの座標軸を設定した。人体4
に付した黒丸は、加速度センサを装着した部位を示す。
そして先ずX方向(鉛直方向)の加振に対する各部位に
装着したセンサの応答を求めた。加振は正弦波で4.9
m/s*sの一定加速度で5〜1000Hzをスイープ
した。なおX方向の加速度は歩行等の普通の運動での消
費カロリーを求めるために必須のデータでもある。
Next, various experiments performed to determine an optimum embodiment of the present invention will be described with reference to FIGS. First, FIG. 5 is an explanatory view of an experimental situation of a vibration response in body motion sensing. The human body 4 as a subject was erected, one leg was placed on the fixed table 5, and the other leg was placed on a table of a vibrator 6 vibrating in the vertical direction. The X, Y, and Z coordinate axes were set based on the human body 4 as shown in the figure. Human body 4
A black circle attached to indicates a site where the acceleration sensor is mounted.
First, the response of the sensor attached to each part to the vibration in the X direction (vertical direction) was obtained. Excitation is 4.9 sine wave
5 to 1000 Hz was swept at a constant acceleration of m / s * s. Note that the acceleration in the X direction is also essential data for calculating calorie consumption in ordinary exercise such as walking.

【0030】図6は上記の実験条件で片方の足裏を加振
したときの身体の各部位に装着した加速度センサのZ方
向の振動応答の実験結果を示すグラフで、横軸は加振周
波数、縦軸は検出された加速度をそれぞれ対数目盛で示
した。(a)は頭頂、(b)は胸ポケット、(c)は腰
ベルト、(d)は足首、(e)は肘を延ばした手首、
(f)は肘を曲げて水平にした手首にそれぞれ装着した
場合である。(c)腰ベルト、(d)足首、(e)肘を
伸ばした場合、(f)肘を曲げた手首の各場合はセンサ
を体の加振側に取り着けた場合と体の中心軸(左右を分
ける面)に関して対称な部位に取り付けた場合の両者を
同じ図上に示して比較を容易にしてある。これらのデー
タを見るに、(e)図で加振側と対称側の応答の差が全
周波数範囲にわたってほとんどなく波形も最もなだらか
である。また約20Hz以上の足裏振動は伝達率が低
く、歩行や走行の検出において履物や地面の固さの影響
を受けにくく安定した検出が期待できる。これらの理由
で、特別な身体部位の測定が目的でなければ、一般的に
は手首にセンサを装着するのが最も優れていることがわ
かる。
FIG. 6 is a graph showing the experimental results of the vibration response in the Z direction of the acceleration sensor attached to each part of the body when one sole is vibrated under the above experimental conditions. The horizontal axis is the vibration frequency. The vertical axis indicates the detected acceleration on a logarithmic scale. (A) crown, (b) chest pocket, (c) waist belt, (d) ankle, (e) wrist with extended elbow,
(F) is a case where each arm is attached to a wrist whose elbow is bent and leveled. (C) waist belt, (d) ankle, (e) elbow extended, (f) wrist with elbow bent. The two parts, which are mounted on a symmetrical part with respect to the left and right surfaces, are shown on the same diagram for easy comparison. Looking at these data, there is almost no difference between the response on the excitation side and the response on the symmetric side in the figure (e), and the waveform is the gentlest. In addition, the sole vibration having a frequency of about 20 Hz or more has a low transmissibility, and is expected to be stable in the detection of walking or running without being affected by the hardness of footwear or the ground. For these reasons, it can be seen that wearing a sensor on the wrist is generally best, unless the purpose is to measure a specific body part.

【0031】次に脳梗塞による片麻痺患者の病状の程度
を評価するために行われるテストの一例である「指−鼻
テスト」の運動検出を、手首に装着した加速度センサと
角速度センサを用いて行ってみた。これはメトロノーム
信号に合わせて指を繰り返し自分の鼻に持ってゆく動作
を被検者にして貰う。図7は指−鼻テストにおける右手
および左手の運動の計測結果をそのまま検出波形で示す
グラフで、横軸は時間(秒)、縦軸は検出値である。
(a)、(b)は健常者A、(c)、(d)は健常者
B、(e)、(f)は左上肢まひ患者の場合を示す。こ
れらの図を見るに、二人の健常者ではいずれの側の手の
動作も加速度、角速度とも滑らかで一定のリズムが認め
られるが、片側麻痺患者では動作のテンポが遅く、波形
も乱れており、特に麻痺側の上肢の場合それが顕著であ
るから、症状の重篤さや過去のデータと比較しての改善
程度などが容易に判断でき、手首型の身体側装置が極め
て有効であることがわかる。
Next, motion detection of a "finger-nose test", which is an example of a test performed to evaluate the degree of a medical condition of a hemiplegic patient due to cerebral infarction, is performed by using an acceleration sensor and an angular velocity sensor attached to a wrist. I went. This allows the subject to repeatedly move his finger to his nose in accordance with the metronome signal. FIG. 7 is a graph showing the measurement results of the right and left hand movements in the finger-nose test as detection waveforms as they are, with the horizontal axis representing time (seconds) and the vertical axis representing detection values.
(A) and (b) show the case of a healthy person A, (c) and (d) show the case of a healthy person B, (e) and (f) show the case of a patient with left upper limb paralysis. As can be seen from these figures, the movement of the hand on either side has smooth and constant rhythms both in acceleration and angular velocity in the two healthy subjects, but the movement tempo is slow and the waveform is disturbed in hemiplegic patients. In particular, in the case of the upper limb on the paralyzed side, it is remarkable, so that the severity of the symptoms and the degree of improvement compared with the past data can be easily determined, and that the wrist-type body-side device is extremely effective. Understand.

【0032】次に、手首に正しく装着した運動センサに
よって、数種類の歩行を各方向の加速度と角速度の測定
結果を用いて識別する実験を行った。座標軸は図5に示
した通りであり、X軸は直立した身体の上下軸、Y軸は
前後軸、Z軸は水平な左右軸である。被験者は20〜4
0代の男女14名、運動の種類は普通歩行、早歩き、ジ
ョギング、走行、腕拘束歩き(腕組み、ポケット入れ、
鞄持ち)の5種であり、20歩あるいは50歩を一まと
めとしてデータ採取を行った。検出波形はそのままでは
なく演算処理し加工してある。1つは振動のピーク(歩
行に応じて測定回路から出力される振動的な電圧波形の
各ピーク値)を検出した場合、他は波形を多点サンプリ
ング(20〜50歩の歩行中の波形電圧を50Hzでサ
ンプリングする)して各点の値の分散(各データと平均
値との差の2乗の平均)を計算した場合で、更にそれら
の対数を取っている。結果は図8〜図10に分けて示し
てある。図8(a)はX軸とY軸の加速度波形の分散値
同志、(b)はX軸とY軸の加速度波形のピーク値同志
を用いた図である。図9(a)はX軸加速度とZ軸角速
度、(b)はY軸加速度とZ軸角速度を採り、いずれも
検出波形のピーク値を用いた図である。図10(a)は
X軸加速度とZ軸角速度、(b)はY軸加速度とZ軸角
速度の、いずれも分散値同志を用いた図である。
Next, an experiment was conducted in which several types of walking were identified by using a motion sensor correctly mounted on the wrist using the measurement results of the acceleration and angular velocity in each direction. The coordinate axes are as shown in FIG. 5, the X axis is the vertical axis of the upright body, the Y axis is the front and rear axis, and the Z axis is the horizontal left and right axis. Subjects are 20-4
14 males and females in their 0s, the types of exercise are normal walking, fast walking, jogging, running, arm-restricted walking (arm folded, pocketed,
Data collection was performed for 20 steps or 50 steps collectively. The detected waveform is not processed as it is but is processed by processing. One is to detect the peak of the vibration (each peak value of the oscillating voltage waveform output from the measuring circuit according to walking), and the other is to multipoint sampling the waveform (waveform voltage during walking of 20 to 50 steps). Is sampled at 50 Hz) and the variance of the value at each point (the average of the square of the difference between each data and the average value) is calculated. The results are shown separately in FIGS. 8A is a diagram using the variance values of the acceleration waveforms on the X axis and the Y axis, and FIG. 8B is a diagram using the peak values of the acceleration waveforms on the X axis and the Y axis. FIG. 9A shows the X-axis acceleration and the Z-axis angular velocity, and FIG. 9B shows the Y-axis acceleration and the Z-axis angular velocity, all using the peak value of the detected waveform. FIG. 10A is a diagram using the variance values of the X-axis acceleration and the Z-axis angular velocity, and FIG.

【0033】各図を見るに、まずピーク値同志を組み合
わせた図8(b)および図9(a)、(b)では各種の
運動を示す測定点に互いに固まり、しかもかなり入り組
んでいるものがあるため、運動の識別が確実に行われな
い恐れがある。それに対し、検出波形の分散値同志を組
み合わせた例では、加速度同志である図8(a)では運
動の分離性が悪いが、加速度と角速度を組み合わせた図
10の両図は比較的分離性が良い。中でも上下方向加速
度Gxと上下−前後面内回転角速度Ωzを用いた(a)
図の方がやや識別性が良いと考えられる。
Referring to each figure, first, in FIG. 8 (b) and FIGS. 9 (a) and 9 (b) in which peak values are combined, measurement points indicating various motions are hardened together and are considerably complicated. Therefore, there is a possibility that the movement cannot be reliably identified. On the other hand, in the example in which the variance values of the detected waveforms are combined, the separability of the motion is poor in FIG. 8A, which is the acceleration, but both figures in FIG. good. Among them, the vertical acceleration Gx and the vertical angular velocity Ωz in the front-rear plane were used (a).
The figure is considered to have slightly better discrimination.

【0034】以上の結果から、身体側装置内の運動の感
受性方向として上下方向加速度Gxと上下−前後面内回
転角速度Ωzを用いるのが一般的な場合に運動識別上最
適であり、これは図7のようなリハビリテーションの判
定にも適しており、また例えば図4のような検出方向を
持つ薄型の運動センサを用いて図3のような装着性と使
用感の良い身体側装置によって実現できることを示して
いる。
From the above results, it is most suitable for the motion discrimination when it is general to use the vertical acceleration Gx and the vertical angular velocity Ωz in the vertical plane as the sensitive directions of the motion in the body-side device. It is also suitable for determination of rehabilitation as shown in FIG. 7 and can be realized by a body-side device having good wearability and usability as shown in FIG. 3 using a thin motion sensor having a detection direction as shown in FIG. Is shown.

【0035】本発明の実施の形態は、以上述べたいくつ
かの形態にとらわれないことはもちろんである。例え
ば、加速度や角速度の感受性の方向は、装置の使用目的
によって異なる方位を選んでもよい。身体側装置と外部
装置との間で送受信されるデータは必要な運動情報が伝
達される限りどのようなものであってもよい。また身体
側装置は時計や携帯電話等の機能を備えていてもよい
(時計機能はタイミングの制御にも用いうる)。また身
体側装置の装着位置も必ずしも手首に限らず例えば腕上
任意の位置とすることができる。また運動計測結果は常
に図8以下のように加工して表示するとは限らず、図7
の各図のように加速度あるいは角速度の検出波形をその
まま表示してもよい。また測定値の演算処理も実験で示
した以外に例えば絶対値の平均を求めるなど種々の場合
があり得る。また他の方向の加速度あるいは角速度をも
計測して補助データとし、診断や運動評価の精度を上げ
ることも考えられる。
The embodiments of the present invention are, of course, not limited to some of the embodiments described above. For example, the direction of the sensitivity of acceleration or angular velocity may select a different direction depending on the purpose of use of the device. Data transmitted / received between the body-side device and the external device may be any data as long as necessary exercise information is transmitted. The body-side device may have a function such as a clock or a mobile phone (the clock function may be used for timing control). Also, the mounting position of the body-side device is not necessarily limited to the wrist, but may be any position on the arm, for example. Also, the exercise measurement result is not always processed and displayed as shown in FIG.
Alternatively, the detected waveform of the acceleration or the angular velocity may be displayed as it is as shown in each of FIGS. In addition, there may be various cases in which the calculation processing of the measured value is performed in addition to the processing shown in the experiment, for example, obtaining an average of absolute values. It is also conceivable to measure acceleration or angular velocity in other directions and use it as auxiliary data to improve the accuracy of diagnosis or exercise evaluation.

【0036】また本装置の用途としては運動データの採
取と評価に限られず、例えばコミュニケーションツール
としての利用がある。使用者が遠隔の医療担当者に対し
「すぐに来て欲しい」等の何種類かの要求や意志の伝達
を、予め取り決めておいた身体動作を合図として行い、
外部装置側で運動検出波形を分析してその合図動作即ち
意図を知ることができる。
The application of the present apparatus is not limited to the collection and evaluation of exercise data, but may be, for example, a communication tool. The user makes a request to the remote medical staff, such as "I want you to come immediately," and communicates several types of requests and intentions, as a signal of a pre-arranged body movement,
By analyzing the motion detection waveform on the external device side, the signal operation, that is, the intention can be known.

【0037】[0037]

【発明の効果】本発明の身体動作センシング装置は、1
方向の加速度と1方向の回転角速度を検出し、それらに
所定の演算を加えて運動を判定しあるいは評価するの
で、 (1)最少限のセンサと測定回路により、簡素な構成で
かつ身体側装置が小型化され、その電源にも余裕を持た
せることができるし、取扱い易いコミュニケーションツ
ールともなる基本的な効果を有する。
The body movement sensing device of the present invention has the following features.
Since the acceleration in one direction and the rotational angular velocity in one direction are detected and a predetermined calculation is applied to them to judge or evaluate the motion, (1) a simple configuration and a body-side device using a minimum number of sensors and measurement circuits Has a basic effect that it can be made small, its power supply can have a margin, and it can be an easy-to-handle communication tool.

【0038】請求項1の構成に請求項2〜7の構成要件
を加えることにより、それぞれ更に次の効果を加えるこ
とができる。 (2)動作判定結果や評価結果が身体側装置にて直読で
きるので使用者が健康の自己管理を容易に行える効果が
ある。
By adding the constituent features of claims 2 to 7 to the structure of claim 1, the following effects can be further added. (2) Since the operation determination result and the evaluation result can be read directly by the body-side device, there is an effect that the user can easily manage the self-health.

【0039】(3)身体側装置からのデータ送信によ
り、動作判定結果や評価結果が外部装置側に表示される
ので、医療機関側で複数の使用者(患者)の状態を観察
し管理することができる。また使用者からのメッセージ
を受け、対応した処置を行うことができる効果がある。
(3) Since the operation determination result and the evaluation result are displayed on the external device side by the data transmission from the body side device, the medical institution side observes and manages the state of a plurality of users (patients). Can be. In addition, there is an effect that a message from the user can be received and a corresponding treatment can be performed.

【0040】(4)身体側装置の直線運動と回転運動の
身体に関する検出方向を特定することにより、少ない検
出要素数で目的に応じた必要かつ十分な情報が得られる
効果がある。また特に重要な歩行や走行運動と上肢の運
動の双方を検出できるので、例えば消費エネルギの推定
やリハビリテーションの評価が可能となる。
(4) By specifying the detection direction of the linear motion and the rotary motion of the body-side device with respect to the body, it is possible to obtain necessary and sufficient information according to the purpose with a small number of detection elements. In addition, since both particularly important walking and running movements and upper limb movements can be detected, for example, estimation of energy consumption and evaluation of rehabilitation can be performed.

【0041】(5)身体側装置の最も広い面と薄型の運
動センサの最も広い面と検出回転面をほぼ平行としたの
で、薄型で装着負担感が少ない身体側装置が実現できた
効果がある。
(5) Since the widest surface of the body-side device, the widest surface of the thin motion sensor, and the detection rotation surface are substantially parallel to each other, there is an effect that a body-side device that is thin and has a small mounting burden can be realized. .

【0042】(6)更に加速度センサを角速度センサと
一体化しかつ表示部と重ねたので、更に小型化され表示
も見やすい身体側装置が実現できた効果がある。
(6) Further, since the acceleration sensor is integrated with the angular velocity sensor and is superimposed on the display unit, there is an effect that the body-side device which is further reduced in size and in which the display is easy to see can be realized.

【0043】(7)加速度出力あるいは角速度出力の分
散を求めることにより、運動の種類の判別がより明確に
なる効果がある。
(7) By determining the variance of the acceleration output or the angular velocity output, there is an effect that the type of exercise can be more clearly identified.

【0044】(8)更に運動計測値の対数をとることに
より、運動の種類の判別が更に明確になる効果がある。
(8) Further, by taking the logarithm of the exercise measurement value, the type of exercise can be more clearly identified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態のブロック図であ
る。
FIG. 1 is a block diagram of a first embodiment of the present invention.

【図2】本発明の第2の実施の形態のブロック図であ
る。
FIG. 2 is a block diagram of a second embodiment of the present invention.

【図3】本発明の実施の形態における身体側装置の一例
を示し、(a)は部分平面図、(b)はそのA−A断面
図である。
3A and 3B show an example of a body-side device according to an embodiment of the present invention, wherein FIG. 3A is a partial plan view, and FIG.

【図4】本発明の実施の形態における運動センサの内部
構造を示す平面図である。
FIG. 4 is a plan view showing an internal structure of the motion sensor according to the embodiment of the present invention.

【図5】身体動作センシングにおける振動応答の実験状
況の説明図である。
FIG. 5 is an explanatory diagram of an experimental situation of a vibration response in body motion sensing.

【図6】身体の各部位の振動応答の実験結果を示すグラ
フで、(a)は頭頂、(b)は胸ポケット、(c)は腰
ベルト、(d)は脚首、(e)は肘を延ばした手首、
(f)は肘を曲げて水平にした手首の場合である。
FIGS. 6A and 6B are graphs showing the experimental results of the vibration response of each part of the body, where FIG. 6A shows the top of the head, FIG. 6B shows the breast pocket, FIG. 6C shows the waist belt, FIG. 6D shows the ankle, and FIG. Wrist with extended elbows,
(F) is a case of a wrist in which an elbow is bent and leveled.

【図7】指−鼻テストにおける右手および左手の運動の
計測結果を示すグラフで、(a)、(b)は健常者A、
(c)、(d)は健常者B、(e)、(f)は左上肢ま
ひ患者の場合を示す。
FIGS. 7A and 7B are graphs showing measurement results of right hand and left hand movements in a finger-nose test, wherein FIGS.
(C) and (d) show the case of a healthy person B, (e) and (f) show the case of left upper limb paralysis.

【図8】各種の身体運動を行って手首の各方向の運動デ
ータを演算処理して組合わせた実験結果を示すグラフ
で、(a)はX軸とY軸の加速度波形の分散値同志、
(b)はX軸とY軸の加速度波形のピーク値同志を用い
た図である。
8A and 8B are graphs showing experimental results obtained by performing various body exercises, performing arithmetic processing on motion data in each direction of the wrist, and combining the data, wherein FIG. 8A shows variance values of acceleration waveforms on the X axis and the Y axis,
(B) is a diagram using the peak values of the acceleration waveforms on the X axis and the Y axis.

【図9】各種の身体運動を行って手首の各方向の運動デ
ータを演算処理して組合わせた実験結果を示すグラフ
で、(a)はX軸加速度とZ軸角速度、(b)はY軸加
速度とZ軸角速度を採り、いずれも検出波形のピーク値
を用いた図である。
FIGS. 9A and 9B are graphs showing experimental results obtained by performing various body exercises and calculating and combining exercise data in each direction of the wrist, where FIG. 9A is an X-axis acceleration and a Z-axis angular velocity, and FIG. It is a figure which took the axis acceleration and the Z-axis angular velocity, and all used the peak value of the detected waveform.

【図10】各種の身体運動を行って手首の各方向の運動
データを演算処理して組合わせた実験結果を示すグラフ
で、(a)はX軸加速度とZ軸角速度、(b)はY軸加
速度とZ軸角速度の、いずれも分散値同志を用いた図で
ある。
FIGS. 10A and 10B are graphs showing experimental results obtained by performing various physical exercises and calculating and combining exercise data in each direction of a wrist; FIG. 10A is an X-axis acceleration and a Z-axis angular velocity; FIG. FIG. 7 is a diagram using both variance values of axial acceleration and Z-axis angular velocity.

【符号の説明】[Explanation of symbols]

1、3 身体側装置 2 外部装置 4 人体 5 固定台 6 加振機 11 加速度センサ 12 角速度センサ 13 加速度測定回路 14 角速度測定回路 15 加速度演算回路 16 角速度演算回路 17 運動判定回路 18 表示装置 19 記憶装置 20 再生回路 21 記録装置 22、23 通信回路 24、25、26 制御回路 31 運動センサ 32 表示装置 33 通信モジュール 34 電池 35 操作スイッチ 36 腕巻きバンド 40 センサ容器 41 ハーメチック端子ピン 50 運動センサ振動体 51 総基部 52 固定部A 53 外脚A 54 中脚B 55 外脚C 56 音叉基部 57 支点 58A、58B、58C 脚付加質量 60 負荷質量 61 棒A 62 棒B 63 支持バネ 64 固定部B G 加速度 Z 座標軸 Ω 角速度 1, 3 Body side device 2 External device 4 Human body 5 Fixed base 6 Shaker 11 Acceleration sensor 12 Angular velocity sensor 13 Acceleration measuring circuit 14 Angular velocity measuring circuit 15 Acceleration computing circuit 16 Angular velocity computing circuit 17 Motion judging circuit 18 Display device 19 Storage device Reference Signs List 20 reproduction circuit 21 recording device 22, 23 communication circuit 24, 25, 26 control circuit 31 motion sensor 32 display device 33 communication module 34 battery 35 operation switch 36 arm band 40 sensor container 41 hermetic terminal pin 50 motion sensor vibrator 51 total Base 52 Fixed part A 53 Outer leg A 54 Middle leg B 55 Outer leg C 56 Tuning fork base 57 Support point 58A, 58B, 58C Leg added mass 60 Load mass 61 Bar A 62 Bar B 63 Support spring 64 Fixed part B G acceleration Z coordinate axis Ω angular velocity

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01P 9/04 A61B 5/10 310G 15/10 G01P 15/00 A (72)発明者 白鳥 典彦 長野県北佐久郡御代田町大字草越1173番地 1394 マイクロストーン株式会社内 (72)発明者 森泉 哲次 長野県松本市大字里山辺1266番地3 Fターム(参考) 2F105 AA10 BB13 CC01 CD02 CD06 4C038 VA11 VA14 VB01 VB31 VC20──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01P 9/04 A61B 5/10 310G 15/10 G01P 15/00 A (72) Inventor Norihiko Shiratori Kitasaku, Nagano Prefecture 1173 Kusukoshi, Miyota-machi, Gunchi 1394 Micro Stone Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 1つの方向の加速度と1つの軸の回りの
回転角速度を測定できる運動センサと、該運動センサに
よって前記1つの方向の加速度と1つの軸の回りの回転
角速度とを所定の期間測定する測定回路手段とを含み、
身体の所定の部位に装着される身体側装置と、該測定回
路手段の加速度出力と角速度出力とにそれぞれ所定の演
算を施す演算回路手段と、前記所定の演算が施された加
速度出力と角速度出力との組み合わせによって前記所定
の期間における身体運動の種類および強度を判定する判
定回路手段と、前記判定された身体運動の種類および強
度あるいはその評価結果を表示する表示手段とを有する
ことを特徴とする身体動作センシング装置。
1. A motion sensor capable of measuring an acceleration in one direction and a rotational angular velocity around one axis, and using the motion sensor to measure the acceleration in one direction and the rotational angular velocity around one axis for a predetermined period. Measuring circuit means for measuring,
A body-side device mounted on a predetermined part of the body, operation circuit means for performing predetermined calculations on the acceleration output and angular velocity output of the measurement circuit means, respectively, and the acceleration output and angular velocity output on which the predetermined calculation has been performed A determination circuit for determining the type and intensity of the physical exercise in the predetermined period by a combination of the above and a display for displaying the type and intensity of the determined physical exercise or the evaluation result thereof. Body movement sensing device.
【請求項2】 前記運動センサと、前記測定回路手段
と、前記演算回路手段と、前記判定回路手段と、前記表
示手段が、全て身体の所定の部位に装着される身体側装
置に内蔵されていることを特徴とする請求項1の身体動
作センシング装置。
2. The body-side device, wherein all of the motion sensor, the measurement circuit means, the arithmetic circuit means, the judgment circuit means, and the display means are mounted on a predetermined part of the body. The body movement sensing device according to claim 1, wherein
【請求項3】 前記運動センサと、前記測定回路手段
と、前記演算回路手段と、前記判定回路手段と、前記表
示手段のうち、少なくとも前記運動センサと前記測定回
路手段とが身体の所定の部位に装着される身体側装置に
内蔵されており、その他の手段が前記身体に装着されな
い外部装置に内蔵されており、かつ前記身体側装置は中
間データの送信手段を備え、前記外部装置は前記中間デ
ータの受信手段を備えていることを特徴とする請求項1
の身体動作センシング装置。
3. The motion sensor, the measurement circuit means, the arithmetic circuit means, the determination circuit means, and the display means, wherein at least the motion sensor and the measurement circuit means are in a predetermined part of a body. Embedded in a body-side device attached to the body, other means are incorporated in an external device that is not attached to the body, and the body-side device includes transmission means for intermediate data, and the external device is an intermediate device. 2. The apparatus according to claim 1, further comprising data receiving means.
Body movement sensing device.
【請求項4】 前記運動センサの検出する1つの方向の
加速度は身体のほぼ上下方向の加速度であり、また前記
運動センサの検出する1つの方向の角速度は身体のほぼ
鉛直方向および前後方向を含む平面内における回転運動
に対する角速度であることを特徴とする請求項1ないし
3のいずれかの身体動作センシング装置。
4. The acceleration in one direction detected by the motion sensor is substantially vertical acceleration of the body, and the angular velocity in one direction detected by the motion sensor includes a substantially vertical direction and a front-back direction of the body. 4. The body motion sensing device according to claim 1, wherein the body motion sensing device is an angular velocity with respect to a rotational motion in a plane.
【請求項5】 前記身体側装置は腕に装着される機器で
あり、その内部で前記運動センサの角速度センサ部は厚
みの薄い箱型の容器に収納されていて前記身体側装置の
最も広い面にほぼ平行に配置されており、前記角速度セ
ンサ部の検出回転方向は前記箱型の容器の最も広い表面
にほぼ平行な方向であることを特徴とする請求項1ない
し4のいずれかの身体動作センシング装置。
5. The body-side device is a device to be worn on an arm. Inside the body-side device, the angular velocity sensor section of the motion sensor is housed in a thin box-shaped container, and the widest surface of the body-side device is provided. The body motion according to any one of claims 1 to 4, wherein the rotation direction is substantially parallel to the widest surface of the box-shaped container. Sensing device.
【請求項6】 前記身体側装置は主な表面に表示装置を
有し、前記運動センサの箱型の容器には一体化された構
造の加速度センサ部と角速度センサ部とが収納されてお
り、また前記運動センサの容器は前記表示装置にほぼ平
行に前記身体側装置内に配置されており、前記運動セン
サの加速度検出方向は前記箱型の容器の最も広い表面に
ほぼ平行な方向であることを特徴とする請求項5の身体
動作センシング装置。
6. The body-side device has a display device on a main surface, and an acceleration sensor unit and an angular velocity sensor unit having an integrated structure are housed in a box-shaped container of the motion sensor, The container of the motion sensor is disposed in the body-side device substantially parallel to the display device, and the acceleration detection direction of the motion sensor is a direction substantially parallel to the widest surface of the box-shaped container. The body movement sensing device according to claim 5, wherein:
【請求項7】 前記所定の演算は、前記加速度出力と前
記角速度出力の少なくとも一方の分散を求めることであ
ることを特徴とする請求項1ないし6のいずれかの身体
動作センシング装置。
7. The body motion sensing device according to claim 1, wherein the predetermined calculation is to obtain at least one of the variance of the acceleration output and the angular velocity output.
【請求項8】 前記所定の演算は、前記加速度出力と前
記角速度出力の少なくとも一方の分散を求め、更にその
対数をとることであることを特徴とする請求項7の身体
動作センシング装置。
8. The body motion sensing apparatus according to claim 7, wherein the predetermined calculation is to obtain a variance of at least one of the acceleration output and the angular velocity output, and take a logarithm thereof.
JP2000272357A 2000-09-07 2000-09-07 Body motion sensing device Expired - Fee Related JP4021137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000272357A JP4021137B2 (en) 2000-09-07 2000-09-07 Body motion sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000272357A JP4021137B2 (en) 2000-09-07 2000-09-07 Body motion sensing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007217905A Division JP2008026331A (en) 2007-08-24 2007-08-24 Motion sensor

Publications (2)

Publication Number Publication Date
JP2002078697A true JP2002078697A (en) 2002-03-19
JP4021137B2 JP4021137B2 (en) 2007-12-12

Family

ID=18758486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000272357A Expired - Fee Related JP4021137B2 (en) 2000-09-07 2000-09-07 Body motion sensing device

Country Status (1)

Country Link
JP (1) JP4021137B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015606A1 (en) * 2002-08-08 2004-02-19 Microstone Co., Ltd. Behavior condition providing system using movement condition transmitting terminal
JPWO2004014230A1 (en) * 2002-08-09 2005-11-24 松下電器産業株式会社 Equilibrium analysis device, equilibrium analysis method, program thereof, and recording medium
JP2006010659A (en) * 2004-06-21 2006-01-12 Microstone Corp Oscillation gyroscope
JP2006101973A (en) * 2004-10-01 2006-04-20 Microstone Corp Apparatus for health management
US7212943B2 (en) 2003-03-07 2007-05-01 Seiko Epson Corporation Body motion detection device, pitch meter, wristwatch-type information processing device, method for controlling thereof, control program, and storage medium
JP2007526781A (en) * 2003-07-09 2007-09-20 ニュウテスト オーワイ Method and apparatus for detecting exercise type
US7340067B2 (en) 2002-05-29 2008-03-04 Fujitsu Limited Wave signal processing system and method
JP2009089740A (en) * 2007-10-03 2009-04-30 Bycen Inc Behavior identification system
JP2010017525A (en) * 2008-06-09 2010-01-28 Tanita Corp Action determining apparatus and action determining method
JP2010264320A (en) * 2010-09-01 2010-11-25 Tokyo Institute Of Technology Gait evaluation system and gait evaluation method
KR101071214B1 (en) * 2009-07-29 2011-10-10 건국대학교 산학협력단 Apparatus for measurement of angular velocity in disease patients and analysis system for the same
JP2012152481A (en) * 2011-01-28 2012-08-16 Alps Electric Co Ltd Portable device, and training control method executed on the portable device
KR20160011518A (en) * 2014-07-22 2016-02-01 엘지전자 주식회사 Apparatus for detecting wrist step and method thereof
JP2016043121A (en) * 2014-08-25 2016-04-04 国立研究開発法人農業・食品産業技術総合研究機構 Animal's behavior determination device, behavior determination method, and program
JP2016198512A (en) * 2012-01-19 2016-12-01 ナイキ イノベイト シーブイ Energy expenditure
WO2018179072A1 (en) 2017-03-27 2018-10-04 富士通株式会社 Information processing system, information processing device, and information processing method
WO2022024899A1 (en) * 2020-07-30 2022-02-03 株式会社村田製作所 Action state estimation device, action state estimation method, action state learning device and action state learning method
CN115841864A (en) * 2023-02-22 2023-03-24 佛山科学技术学院 Rehabilitation exercise quality assessment method and system

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7340067B2 (en) 2002-05-29 2008-03-04 Fujitsu Limited Wave signal processing system and method
WO2004015606A1 (en) * 2002-08-08 2004-02-19 Microstone Co., Ltd. Behavior condition providing system using movement condition transmitting terminal
JPWO2004014230A1 (en) * 2002-08-09 2005-11-24 松下電器産業株式会社 Equilibrium analysis device, equilibrium analysis method, program thereof, and recording medium
JP4603884B2 (en) * 2002-08-09 2010-12-22 パナソニック株式会社 Equilibrium analysis system, program, and recording medium
US7212943B2 (en) 2003-03-07 2007-05-01 Seiko Epson Corporation Body motion detection device, pitch meter, wristwatch-type information processing device, method for controlling thereof, control program, and storage medium
JP2007526781A (en) * 2003-07-09 2007-09-20 ニュウテスト オーワイ Method and apparatus for detecting exercise type
JP2006010659A (en) * 2004-06-21 2006-01-12 Microstone Corp Oscillation gyroscope
JP2006101973A (en) * 2004-10-01 2006-04-20 Microstone Corp Apparatus for health management
JP2009089740A (en) * 2007-10-03 2009-04-30 Bycen Inc Behavior identification system
JP2010017525A (en) * 2008-06-09 2010-01-28 Tanita Corp Action determining apparatus and action determining method
KR101071214B1 (en) * 2009-07-29 2011-10-10 건국대학교 산학협력단 Apparatus for measurement of angular velocity in disease patients and analysis system for the same
JP2010264320A (en) * 2010-09-01 2010-11-25 Tokyo Institute Of Technology Gait evaluation system and gait evaluation method
JP2012152481A (en) * 2011-01-28 2012-08-16 Alps Electric Co Ltd Portable device, and training control method executed on the portable device
US10734094B2 (en) 2012-01-19 2020-08-04 Nike, Inc. Energy expenditure
US11990220B2 (en) 2012-01-19 2024-05-21 Nike, Inc. Energy expenditure
JP2016198512A (en) * 2012-01-19 2016-12-01 ナイキ イノベイト シーブイ Energy expenditure
US9996660B2 (en) 2012-01-19 2018-06-12 Nike, Inc. Energy expenditure
US11081207B2 (en) 2012-01-19 2021-08-03 Nike, Inc. Energy expenditure
KR102130801B1 (en) 2014-07-22 2020-08-05 엘지전자 주식회사 Apparatus for detecting wrist step and method thereof
KR20160011518A (en) * 2014-07-22 2016-02-01 엘지전자 주식회사 Apparatus for detecting wrist step and method thereof
JP2016043121A (en) * 2014-08-25 2016-04-04 国立研究開発法人農業・食品産業技術総合研究機構 Animal's behavior determination device, behavior determination method, and program
WO2018179072A1 (en) 2017-03-27 2018-10-04 富士通株式会社 Information processing system, information processing device, and information processing method
WO2022024899A1 (en) * 2020-07-30 2022-02-03 株式会社村田製作所 Action state estimation device, action state estimation method, action state learning device and action state learning method
WO2022024900A1 (en) * 2020-07-30 2022-02-03 株式会社村田製作所 Action state estimation device, action state estimation method, action state learning device, and action state learning method
JP7047990B1 (en) * 2020-07-30 2022-04-05 株式会社村田製作所 Behavior state estimation device, behavior state estimation method, behavior state learning device, and behavior state learning method
JP7047991B1 (en) * 2020-07-30 2022-04-05 株式会社村田製作所 Behavior state estimation device, behavior state estimation method, behavior state learning device, and behavior state learning method
CN115841864A (en) * 2023-02-22 2023-03-24 佛山科学技术学院 Rehabilitation exercise quality assessment method and system

Also Published As

Publication number Publication date
JP4021137B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
JP4881517B2 (en) Physical condition monitoring device
JP4021137B2 (en) Body motion sensing device
JP3984253B2 (en) Health care equipment
US7028547B2 (en) Body motion detector
JP2002263086A (en) Motion measuring instrument
US8021312B2 (en) Arrangement, method and computer program for determining physical activity level of human being
Aminian et al. Capturing human motion using body‐fixed sensors: outdoor measurement and clinical applications
Zheng et al. Position-sensing technologies for movement analysis in stroke rehabilitation
US6834436B2 (en) Posture and body movement measuring system
JP4673342B2 (en) Exercise information determination method and wristwatch type device
US20060251334A1 (en) Balance function diagnostic system and method
JP3886997B2 (en) Action status provision system
JP2004227522A (en) Health management system
WO2004103176A1 (en) Balance function diagnostic system and method balance function diagnostic system and method
JPH0956705A (en) Consumption calorimeter
JP2003093566A (en) Method for discriminating movement and movement sensing module
CN107613869B (en) Index derivation device, wearable device, and portable device
CN107708561B (en) Index derivation device, wearable device, and mobile device
JP2009106374A (en) Display system for gait information
Ambar et al. Arduino based arm rehabilitation assistive device
JP2001059742A (en) Walk data measuring instrument
US20240024735A1 (en) Treadmill with Running Form Detection Device
Tamura Wearable units
JP2004267535A (en) Calorie consumption measuring meter
Tsuruoka et al. Analysis of 1/f fluctuation in walking using gyro sensor system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070524

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070601

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees