JP2002076415A - Photovoltaic power generating installation - Google Patents

Photovoltaic power generating installation

Info

Publication number
JP2002076415A
JP2002076415A JP2000260852A JP2000260852A JP2002076415A JP 2002076415 A JP2002076415 A JP 2002076415A JP 2000260852 A JP2000260852 A JP 2000260852A JP 2000260852 A JP2000260852 A JP 2000260852A JP 2002076415 A JP2002076415 A JP 2002076415A
Authority
JP
Japan
Prior art keywords
pole
solar cell
power generation
cell module
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000260852A
Other languages
Japanese (ja)
Other versions
JP4032620B2 (en
Inventor
Toshio Joge
利男 上下
Yasuhiro Imazu
康博 今津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000260852A priority Critical patent/JP4032620B2/en
Publication of JP2002076415A publication Critical patent/JP2002076415A/en
Application granted granted Critical
Publication of JP4032620B2 publication Critical patent/JP4032620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To relieve restriction on installation, reduce the cost and improve power generating characteristic of a solar battery module installed on a pole- shaped construction, the housetop of a building, etc. SOLUTION: Both sides light receiving solar battery modules 4 are installed perpendicularly. A several steps of the solar battery modules 4 are arranged in the height direction of a pole 1, and the respective azimuth angles are dispersed. Thereby restriction on installation of the solar battery modules are relieved, and power generator installation of large capacity can be realized at a low cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽光発電設備に
係わる。
The present invention relates to a photovoltaic power generation facility.

【0002】[0002]

【従来の技術】従来の一般的な太陽光発電設備は、太陽
電池モジュールが、片面受光型であり、その受光面を南
向きにし、年間の受光日射量を最大にする為、設置地点
での緯度を考慮して、適切な傾斜角を持って設置され
る。
2. Description of the Related Art In a conventional general photovoltaic power generation system, a solar cell module is a single-sided light-receiving type, and its light-receiving surface faces south to maximize the annual amount of received solar radiation. It is installed with an appropriate inclination angle in consideration of latitude.

【0003】ポール状構造物に太陽電池モジュールを設
置する場合は、ポールの先端等に南向き傾斜角付設置を
行うが、ポール及び太陽電池モジュールの構造上、風圧
強度等の問題で、設置する太陽電池モジュールの面積は
制限される為、発生電力量も制限され、ポール状工作物
に電気負荷を搭載する場合は、その負荷も制限され、そ
の応用に限界がある。
[0003] When a solar cell module is installed on a pole-shaped structure, the solar cell module is installed with a south-facing inclination angle at the tip of the pole or the like. Since the area of the solar cell module is limited, the amount of generated power is also limited, and when an electric load is mounted on a pole-shaped workpiece, the load is also limited, and its application is limited.

【0004】また、ビルの屋上または平屋根構造の個人
住宅や集合住宅の平屋根上に設置される場合は、太陽電
池モジュールは片面受光型であり、専用の架台上に南向
き傾斜設置することが一般的である。
When the solar cell module is installed on the roof of a building or on a flat roof of a private house or apartment house having a flat roof structure, the solar cell module is a single-sided light-receiving type, and is installed on a dedicated pedestal so as to be inclined southward. Is common.

【0005】[0005]

【発明が解決しようとする課題】従来技術においては、
ポールに取付けられる太陽電池モジュールは、風圧等に
対する機械的強度の点から、構造上の制約がある為、数
Wから数10W程度の小容量の発電に制限されている。
当該ポールに、工業用テレビカメラ,遠隔情報を表示す
るディスプレイ装置等の負荷機器を設置する場合、その
機器は、太陽電池発電容量に制限され、ポール状ステー
ションの応用範囲が制限される。
In the prior art,
The solar cell module attached to the pole has a structural limitation in terms of mechanical strength against wind pressure and the like, and is therefore limited to power generation with a small capacity of about several W to several tens of W.
When a load device such as an industrial television camera and a display device for displaying remote information is installed on the pole, the load device is limited to the solar cell power generation capacity, and the application range of the pole station is limited.

【0006】ビル屋上または、住宅・集合住宅用の平屋
根上に設置する場合、ビルまたは住宅は必ずしも南向き
とは限らず、かつ比較的小規模の設置面積の場合は、南
向き傾斜付設置は、その設置容量が大幅に制限される。
更に、設置架台は重量的にも大きな建屋荷重となるばか
りでなく、コストも大きくなる。
[0006] When the building or the house is installed on the roof of a building or a flat roof for a house or an apartment house, the building or the house is not always facing south. , Its installation capacity is greatly limited.
Further, the mounting base not only causes a large building load in terms of weight, but also increases the cost.

【0007】[0007]

【課題を解決するための手段】本発明による太陽光発電
設備においては、両面受光型モジュールを使用すること
を第1の手段とし、当該モジュールを垂直設置すること
を第2の手段とする。この第1の手段及び第2の手段に
より、太陽電池システムの発電電力量は、当該太陽電池
モジュールの設置方位角に依存することなく、ほぼ一定
となる。更に、発電システムの出力特性を平坦化する
為、複数の垂直設置の両面受光型太陽電池モジュールを
方位角を分散させて設置するということを第3の手段と
する。
In the photovoltaic power generation system according to the present invention, the first means is to use a double-sided light receiving module, and the second means is to vertically install the module. By the first means and the second means, the amount of power generated by the solar cell system is substantially constant without depending on the installation azimuth of the solar cell module. Furthermore, in order to flatten the output characteristics of the power generation system, a third means is to install a plurality of vertically installed double-sided light receiving solar cell modules with azimuth angles dispersed.

【0008】ポール設置型の太陽光発電設備において、
上記の第2の手段を適用すると、従来技術に比較してよ
り大きな風圧を受ける可能性が出てくる。本発明による
太陽光発電設備においては、風圧対策として、一つのポ
ールに、複数対の太陽電池モジュールを、それぞれ、方
位角を変えて配置し、風圧の影響を分散するということ
を第4の手段とする。
[0008] In a pole-mounted solar power generation facility,
When the above-mentioned second means is applied, there is a possibility that a greater wind pressure will be applied as compared with the prior art. In the photovoltaic power generation facility according to the present invention, as a measure against wind pressure, a fourth means is to dispose a plurality of pairs of solar cell modules on one pole at different azimuth angles to disperse the influence of wind pressure. And

【0009】本発明による太陽光発電設備においては、
他の風圧対策として、当該モジュールの取付け構造物を
ポールの軸方向に旋回できる構造とするということを第
5の手段とする。更に、旋回可能な当該モジュールが受
けた風圧とバランスして静止するように、ポール構造物
と旋回可能モジュール及びその取付け構造物をスプリン
グ機能付き連結材で連結するということを第6の手段と
する。
In the solar power generation facility according to the present invention,
As another measure against wind pressure, a fifth means is to provide a structure in which the mounting structure of the module can be turned in the axial direction of the pole. A sixth means is to connect the pole structure, the swivel module and its mounting structure with a connection member having a spring function so that the swivel module is stationary in balance with the received wind pressure. .

【0010】[0010]

【発明の実施の形態】以下、本発明の実施例を説明する
が、複数の実施例を説明する為、まず、本発明の手段と
なる共通的な事項につき説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described. In order to explain a plurality of embodiments, first, common matters serving as means of the present invention will be described.

【0011】図6は、両面受光型太陽電池モジュールを
その受光面を東西方向とした場合の年間日射量の日分布
をシミュレーションした1例である。本図から分かるよ
うに、南面傾斜角30°設置の場合は、正午付近をピ
ークとしたコサイン状の分布となる。一方、東西垂直
面合計では、に比較して、より早朝から夕方遅くま
で、より多くの日射を受光し、午前10時頃と午後3時
頃に2つのピークを有する分布となり、かつ、日射量積
分値は、ほぼ同等となっている。なお、本シミュレーシ
ョンは、茨城県水戸市を地点としたものであり、海の近
く,積雪の多い地点等では、地上反射,散乱光が多くな
り、垂直設置面の受光日射量は、より多くなる。
FIG. 6 shows an example of a simulation of the daily distribution of the annual solar radiation when the light receiving surface of the double-sided light receiving type solar cell module is set to the east-west direction. As can be seen from the figure, in the case of setting the southern surface inclination angle at 30 °, the distribution has a cosine shape with a peak near noon. On the other hand, the total of the east-west vertical plane receives more solar radiation from early morning to late evening, and has a distribution having two peaks at around 10 am and 3 pm, and The integral values are almost equal. The simulation is based on Mito City, Ibaraki Prefecture. At places near the sea and in areas with heavy snowfall, ground reflection and scattered light increase, and the amount of received solar radiation on the vertical installation surface increases. .

【0012】図7は、垂直設置の両面受光型太陽電池モ
ジュールの設置方位角依存性をシミュレーションした例
を示すものである。図において、出力比率は、方位角−
90°から+90°に振ったときの最大出力で正規化した
値を示している。本図から分かるように、垂直設置され
た片面受光型モジュールは、方位角0°(真南)からず
れるとその電気出力は著しく低下してゆく特性を有す
る。一方、垂直設置の両面受光型モジュールは、方位角
依存性が殆ど無視できる程度であるという優れた特性を
有する。
FIG. 7 shows an example of simulating the installation azimuth dependence of a vertically installed double-sided light receiving solar cell module. In the figure, the output ratio is azimuth-
It shows a value normalized by the maximum output when swinging from 90 ° to + 90 °. As can be seen from this figure, the vertically installed single-sided light-receiving module has the characteristic that its electric output is significantly reduced when the azimuth deviates from 0 ° (true south). On the other hand, the vertically mounted double-sided light receiving module has an excellent characteristic that the azimuth angle dependency is almost negligible.

【0013】図1及び図2は、本発明の実施例の一つを
示すものである。図1において、両面受光型太陽電池モ
ジュール4は、ポール1に水平方向に固定された1対の
支持構造物、即ち、上部支持構造物2と下部支持構造物
3に、複数の取付け金具5によって垂直に取付けられて
いる。ポール1の最上部の当該モジュール対は、その受
光面が東西方向を向くように取付けられ、下方に向かっ
て、2段目には東南・北西方向、3段目には南北方向、
4段目には北東・南西方向に取付けられている。図2
は、前述の4対の太陽電池モジュールの設置方位角を説
明する図で、ポール1を中心として、4対の両面受光型
太陽電池モジュール4の設置角度を示している。
FIGS. 1 and 2 show one embodiment of the present invention. In FIG. 1, a two-sided light receiving solar cell module 4 is attached to a pair of support structures fixed horizontally to a pole 1, that is, an upper support structure 2 and a lower support structure 3 by a plurality of mounting brackets 5. Mounted vertically. The module pair at the top of the pole 1 is mounted so that its light receiving surface faces east-west, and downward, the second row is southeast / northwest, the third row is north / south,
The fourth row is attached to the northeast and southwest directions. FIG.
FIG. 4 is a diagram for explaining the installation azimuth angles of the above-mentioned four pairs of solar cell modules, and shows the installation angles of the four pairs of double-sided light receiving solar cell modules 4 around the pole 1.

【0014】なお、本実施例は、4対の太陽電池モジュ
ールとし、各対の設置角度は、上方より、順次に45°
ずらした例を説明したが、太陽電池モジュールの数、設
置方位角度及びその順番は種々のものがある。
In this embodiment, four pairs of solar cell modules are used, and the installation angle of each pair is 45 ° sequentially from above.
Although the shifted example has been described, the number of solar cell modules, the installation azimuth angles, and the order thereof may be various.

【0015】本発明の他の実施例を図3,図4を参照し
て説明する。1対の両面受光型太陽電池モジュール4
は、ポール1を軸にして旋回できる回転支持構造物6に
複数の取付け金具5で固定されており、回転支持構造物
6は、ポール1に固定された上下2個の軸受け機構7に
より支えられ、旋回可能な構造となっている。両面受光
型太陽電池モジュール4の取付けられた支持回転構造物
6は、その構成要素の一つである上部水平支持構造材8
及び下部水平支持構造材9に、フック10を有し、ポー
ル側フック11とスプリング機構14(連結棒12とス
プリング・ダッシュポット機能要素13より構成)で連
結されている。当該太陽電池モジュールが風圧を受ける
と、上記説明の機構により、太陽電池モジュールは、風
圧とスプリング伸びによる応力がバランスする角度まで
回転し、風圧が開放されたときは、初期の角度に復元す
ることになる。図4は、この太陽電池モジュールの回転
角バランスを説明する図で、ポール上方からみた平面図
である。本実施例では、両面受光型太陽電池モジュール
4は、その受光面を東西方向としている。風圧により、
太陽電池モジュール4及び支持回転構造物6は、初期の
位置から応力がバランスする位置まで回転する。この回
転限界として、メカニカルストッパー15がポール1ま
たは軸受け機構7に取付けられている。
Another embodiment of the present invention will be described with reference to FIGS. A pair of double-sided light receiving solar cell modules 4
Is fixed by a plurality of mounting brackets 5 to a rotation support structure 6 that can turn around the pole 1, and the rotation support structure 6 is supported by two upper and lower bearing mechanisms 7 fixed to the pole 1. , And can be turned. The supporting rotary structure 6 to which the double-sided light receiving type solar cell module 4 is attached includes an upper horizontal supporting structure material 8 which is one of the constituent elements.
The lower horizontal support structure 9 has a hook 10 and is connected to the pole side hook 11 by a spring mechanism 14 (composed of a connecting rod 12 and a spring / dashpot functional element 13). When the solar cell module receives the wind pressure, the mechanism described above causes the solar cell module to rotate to an angle at which the stress due to the wind pressure and the spring expansion is balanced, and to restore the initial angle when the wind pressure is released. become. FIG. 4 is a diagram for explaining the rotation angle balance of the solar cell module, and is a plan view seen from above the pole. In the present embodiment, the light receiving surface of the double-sided light receiving solar cell module 4 is set to the east-west direction. By wind pressure
The solar cell module 4 and the supporting rotating structure 6 rotate from an initial position to a position where the stress is balanced. As this rotation limit, a mechanical stopper 15 is attached to the pole 1 or the bearing mechanism 7.

【0016】次に、本発明の他の実施例を図5にて説明
する。図5は、本発明をビル屋上に適用した例を示すも
のである。フェンス一体型太陽電池モジュール17は、
フェンス用ポール19とフェンス用上部水平支持材20
及びフェンス用下部水平支持材21に両面受光型太陽電
池モジュール4を組込んだものである。このフェンス一
体型太陽電池モジュール17を、ビル16の屋上22の
周辺部全体に亘って垂直に設置する。この設置に当たっ
て、屋上の角近辺では、生じる影の影響を避ける為、太
陽電池モジュールを組込まないフェンス構造物18を組
み合わせる。なお、本発明の適用は、平地に設置する場
合も含む。
Next, another embodiment of the present invention will be described with reference to FIG. FIG. 5 shows an example in which the present invention is applied to a building roof. The fence-integrated solar cell module 17
Fence pole 19 and fence upper horizontal support 20
In addition, the double-sided light receiving solar cell module 4 is incorporated in the lower horizontal support member 21 for fence. The fence-integrated solar cell module 17 is installed vertically over the entire periphery of the rooftop 22 of the building 16. In this installation, a fence structure 18 without a solar cell module is combined in the vicinity of the rooftop corner in order to avoid the influence of the generated shadow. In addition, the application of the present invention includes the case where it is installed on flat ground.

【0017】[0017]

【発明の効果】本発明によれば、従来技術に比較して大
容量の太陽光発電設備を設置できるポール状構造物設置
型発電設備をより低コストで提供できる効果がある。更
に、平坦な日間発電出力分布を実現し、独立型電源とし
て、蓄電池,コンバータ,負荷を含めた最適かつ合理的
なシステム設計を提供することができる。
According to the present invention, there is an effect that it is possible to provide a pole-type structure-installed type power generation facility capable of installing a large-capacity photovoltaic power generation facility at a lower cost than in the prior art. Further, it is possible to realize a flat daily power generation output distribution and to provide an optimal and rational system design including a storage battery, a converter, and a load as an independent power source.

【0018】本発明によれば、ビルの屋上または平屋根
住宅の屋根に、従来技術適用時と同等以上の発電電力量
を供給できる太陽光発電設備を低コストで実現できると
いう効果がある。更に、建屋の方位が南からずれている
場合においては、従来技術である南向き傾斜付きの架台
設置の方式では、設置可能容量が大幅に縮小されるか、
建屋方位に合わせて、太陽電池モジュールを設置するこ
とになり、発電電力量の低下を招くが、本発明によれ
ば、方位角依存性が殆どなく、屋上周辺部に沿って垂直
設置できる為、建屋周辺部合計長さえあれば、その形
状,向きに無関係に大きな発電量が得られる太陽光発電
が可能となる。
According to the present invention, there is an effect that a photovoltaic power generation facility capable of supplying a power generation amount equal to or greater than that of the prior art to the roof of a building or the roof of a flat roof house can be realized at low cost. Furthermore, in the case where the orientation of the building is shifted from the south, in the conventional method of mounting the pedestal with a southward inclination, the installable capacity is significantly reduced,
In accordance with the building orientation, the solar cell module will be installed, which causes a decrease in the amount of generated power, but according to the present invention, there is almost no azimuth dependence, and it can be installed vertically along the rooftop periphery, As long as there is only the total length around the building, it is possible to generate a large amount of power regardless of its shape and orientation.

【0019】また、本発明によれば、太陽電池モジュー
ルは、フェンスと一体型になり、垂直設置されるので、
従来技術で必要な重量のある架台及びその基礎を割愛で
き、かつ、フェンス一体型モジュールは、屋上周辺部即
ち、建屋の柱,壁等の位置となるので、その荷重負荷は
建屋構造上も有利となり、軽量化が実現でき、低コスト
化ができるという効果がある。更に、フェンス一体型の
両面受光型モジュールは、一方向ではなく、少なくと
も、その受光面は、南北/東西等の4方向からの受光と
なるので、出力分布は平坦になり、良好な発電特性が得
られるという効果がある。
Further, according to the present invention, since the solar cell module is integrated with the fence and is installed vertically,
The heavy frame and its base required in the prior art can be omitted, and the fence-integrated module is located at the periphery of the roof, that is, at the position of columns, walls, etc. of the building, so that the load load is advantageous in the structure of the building. Thus, there is an effect that the weight can be reduced and the cost can be reduced. In addition, the fence-integrated double-sided light receiving module is designed to receive light from at least four directions, such as north, south, east, and west, rather than in one direction. There is an effect that it can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明をポール状構造物に適用し、太陽電池モ
ジュールは固定とした場合の実施例。
FIG. 1 shows an embodiment in which the present invention is applied to a pole-shaped structure and a solar cell module is fixed.

【図2】図1の実施例を補足説明する図。FIG. 2 is a diagram supplementarily explaining the embodiment of FIG.

【図3】本発明をポール状構造物に適用し、太陽電池モ
ジュールは回転可能とした場合の実施例。
FIG. 3 shows an embodiment in which the present invention is applied to a pole-shaped structure and a solar cell module is rotatable.

【図4】図3の実施例を補足説明する図。FIG. 4 is a diagram supplementarily explaining the embodiment of FIG. 3;

【図5】本発明をビル屋上設置の太陽光発電に適用した
実施例を説明する図。
FIG. 5 is a diagram illustrating an embodiment in which the present invention is applied to photovoltaic power generation installed on a building rooftop.

【図6】垂直設置両面受光型太陽電池モジュールをその
受光面を東西面とした場合のシミュレーション結果例を
示す図。
FIG. 6 is a diagram showing an example of a simulation result when the light receiving surface of the vertically installed double-sided light receiving solar cell module is the east-west surface.

【図7】垂直設置両面受光型太陽電池モジュールの方位
角依存性のシミュレーション結果の例を示す図。
FIG. 7 is a diagram showing an example of a simulation result of the azimuth angle dependence of a vertically installed double-sided light receiving solar cell module.

【図8】太陽光発電設備の発電出力の平坦化の原理を示
すシミュレーション結果の例を示す図。
FIG. 8 is a diagram showing an example of a simulation result showing the principle of flattening the power generation output of a solar power generation facility.

【符号の説明】[Explanation of symbols]

1…ポール状構造物、2…上部支持構造物、3…下部支
持構造物、4…両面受光型太陽電池モジュール、5…取
付け金具、6…支持回転構造物、7…軸受機構、8…上
部水平支持構造材、9…下部水平支持構造材、10…フ
ック、11…ポール側フック、12…連結棒、13…ス
プリング・ダッシュポット機能要素、14…スプリング
機構、15…メカニカルストッパー、16…ビル、17
…フェンス一体型太陽電池モジュール、18…フェンス
構造物、19…フェンス用ポール、20…フェンス用上
部支持材、21…フェンス用下部支持材、22…ビル屋
上。
DESCRIPTION OF SYMBOLS 1 ... Pole-shaped structure, 2 ... Upper support structure, 3 ... Lower support structure, 4 ... Double-sided light receiving solar cell module, 5 ... Mounting bracket, 6 ... Support rotary structure, 7 ... Bearing mechanism, 8 ... Upper part Horizontal support structure material, 9: Lower horizontal support structure material, 10: Hook, 11: Pole side hook, 12: Connecting rod, 13: Spring / dashpot functional element, 14: Spring mechanism, 15: Mechanical stopper, 16: Building , 17
... Fence integrated solar cell module, 18 ... Fence structure, 19 ... Fence pole, 20 ... Fence upper support material, 21 ... Fence lower support material, 22 ... Building rooftop.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ポール状構造物に、両面受光型太陽電池モ
ジュールを高さ方向に複数台,方位角を均等に分散させ
て垂直に設置される太陽光発電設備。
1. A photovoltaic power generation system in which a plurality of double-sided photovoltaic modules are installed vertically on a pole-like structure with their azimuths distributed uniformly in the height direction.
【請求項2】請求項1において、ポール状構造物に、上
下1対の水平支持構造物を有し、該支持構造物に1対の
両面受光型太陽電池モジュールをポール状構造物の両側
に、それぞれ垂直に取付けた構造を有した太陽電池アレ
イを南北方向,東西方向,南東・北西方向,南西・北東
方向に4組有することを特徴とする太陽光発電設備。
2. The pole structure according to claim 1, wherein the pole structure has a pair of upper and lower horizontal support structures, and the support structure has a pair of double-sided light receiving solar cell modules on both sides of the pole structure. A photovoltaic power generation facility comprising four sets of solar cell arrays each having a vertically mounted structure in a north-south direction, an east-west direction, a south-east / north-west direction, and a south-west / northeast direction.
【請求項3】ポール状構造物に、これを軸として旋回可
能な構造物を有し、該構造物に垂直に取付けられた両面
受光型太陽電池モジュールを有する太陽光発電設備。
3. A photovoltaic power generation facility having a pole-like structure having a structure that can be pivoted about the pole, and a double-sided light receiving type solar cell module vertically mounted on the structure.
【請求項4】請求項3において、旋回可能な両面受光型
太陽電池モジュールを有する構造物とポール状構造物は
スプリング機能を有した部材で連結され、太陽電池モジ
ュールが受ける風圧とスプリング機能を有した部材の伸
び応力とがバランスする角度まで旋回する機構を有する
太陽光発電設備。
4. The structure according to claim 3, wherein the structure having the pivotable double-sided light receiving solar cell module and the pole-shaped structure are connected by a member having a spring function, and have a wind pressure received by the solar cell module and a spring function. Photovoltaic power generation equipment having a mechanism for turning to an angle at which the elongation stress of the member is balanced.
【請求項5】両面受光型太陽電池モジュールをフェンス
等の工作物と一体型にして、ビル,平屋根住宅等の屋上
に、当該建物の方位に係わらず、建物屋上の周辺部に、
原則として全般に亘って垂直設置した太陽光発電設備。
5. A double-sided photoreceptor solar cell module is integrated with a work such as a fence, and is mounted on a roof of a building, a flat roof house, or the like, regardless of the orientation of the building, on a peripheral portion of the building roof.
Photovoltaic power generation facilities installed vertically in general throughout.
JP2000260852A 2000-08-25 2000-08-25 Solar power generation equipment Expired - Lifetime JP4032620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000260852A JP4032620B2 (en) 2000-08-25 2000-08-25 Solar power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000260852A JP4032620B2 (en) 2000-08-25 2000-08-25 Solar power generation equipment

Publications (2)

Publication Number Publication Date
JP2002076415A true JP2002076415A (en) 2002-03-15
JP4032620B2 JP4032620B2 (en) 2008-01-16

Family

ID=18748795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000260852A Expired - Lifetime JP4032620B2 (en) 2000-08-25 2000-08-25 Solar power generation equipment

Country Status (1)

Country Link
JP (1) JP4032620B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259928A (en) * 2003-02-26 2004-09-16 Hitachi Ltd Solar cell module
KR200453557Y1 (en) 2008-11-14 2011-05-13 선일전력주식회사 solar module system
JP2013004591A (en) * 2011-06-14 2013-01-07 Hayashi Bussan Hatsumei Kenkyusho:Kk Solar cell disposed along linear object extended in air
CN106597126A (en) * 2016-11-21 2017-04-26 天津七六四通信导航技术有限公司 Solar-based receiver powering and location monitoring system and installation method
CN106953591A (en) * 2017-03-21 2017-07-14 华电电力科学研究院 A kind of photovoltaic plant increment life insurance structure and its increment life insurance method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259928A (en) * 2003-02-26 2004-09-16 Hitachi Ltd Solar cell module
KR200453557Y1 (en) 2008-11-14 2011-05-13 선일전력주식회사 solar module system
JP2013004591A (en) * 2011-06-14 2013-01-07 Hayashi Bussan Hatsumei Kenkyusho:Kk Solar cell disposed along linear object extended in air
CN106597126A (en) * 2016-11-21 2017-04-26 天津七六四通信导航技术有限公司 Solar-based receiver powering and location monitoring system and installation method
CN106953591A (en) * 2017-03-21 2017-07-14 华电电力科学研究院 A kind of photovoltaic plant increment life insurance structure and its increment life insurance method
CN106953591B (en) * 2017-03-21 2023-11-21 华电电力科学研究院有限公司 Photovoltaic power station power generation increasing structure and power generation increasing method thereof

Also Published As

Publication number Publication date
JP4032620B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
US6563040B2 (en) Structure for supporting a photovoltaic module in a solar energy collection system
US20100102200A1 (en) Terrestrial Solar Tracking Photovoltaic Array
JP3985837B2 (en) Photovoltaic power generation apparatus and installation method thereof
US20110259397A1 (en) Rotational Trough Reflector Array For Solar-Electricity Generation
JP4141935B2 (en) Buildings that have both solar and wind power generators
JP4032620B2 (en) Solar power generation equipment
JPH11330523A (en) Solar battery device
JP2019205223A (en) Portable photovoltaic power generator
US20220149774A1 (en) Rocking solar panel sun tracking mounting system
JPH11177114A (en) Rack for installing solar battery module
Pavlović et al. Determining optimum tilt angles and orientations of photovoltaic panels in Niš, Serbia
WO1989002055A1 (en) Solar energy conversion device
JP3794245B2 (en) Solar power plant
BG113152A (en) Active tracking system for positioning of solar panels
JPH0536286Y2 (en)
Barman et al. Performance Analysis of Building Integrated Photovoltaic of High-rise Buildings in Urban Areas
JP2007067176A (en) Photovoltaic power generator
JP3911622B2 (en) How to use solar power generation equipment
WO2011043757A1 (en) Two axis ground based solar tracking system for large-scale solar collectors
JP2005223164A (en) Solar light power generation system and its installation method
US11711050B2 (en) Solar powered solar tracking system
KR20230036747A (en) Double Axis Tracking Type Support Structure For Photovoltaic Module
US12003211B2 (en) Tracking solar panel stand
JP2013171861A (en) Photovoltaic power generation device
US20240079993A1 (en) Tracking solar panel stand

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061025

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4032620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

EXPY Cancellation because of completion of term