JP2002075859A - Illumination system, exposure system and method for manufacturing device - Google Patents

Illumination system, exposure system and method for manufacturing device

Info

Publication number
JP2002075859A
JP2002075859A JP2001207774A JP2001207774A JP2002075859A JP 2002075859 A JP2002075859 A JP 2002075859A JP 2001207774 A JP2001207774 A JP 2001207774A JP 2001207774 A JP2001207774 A JP 2001207774A JP 2002075859 A JP2002075859 A JP 2002075859A
Authority
JP
Japan
Prior art keywords
light
optical system
optical
lighting device
wedge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001207774A
Other languages
Japanese (ja)
Other versions
JP3507459B2 (en
Inventor
Takanaga Shiozawa
崇永 塩澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001207774A priority Critical patent/JP3507459B2/en
Publication of JP2002075859A publication Critical patent/JP2002075859A/en
Application granted granted Critical
Publication of JP3507459B2 publication Critical patent/JP3507459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Microscoopes, Condenser (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an illumination system by which a pattern of a reticle can be projected onto a wafer with a high degree of accuracy. SOLUTION: With respect to the illumination system having an optical system which makes a light flux from a light source incident onto a multi-light-flux forming means and a lens system which illuminates a surface to be illuminated by the multiple fluxes formed by the multi-light-flux forming means, the optical system has, from the side of the multi-light-flux forming means in sequence, an illumination optical system and a first light deflecting member provided at the front focal point of the illumination optical system or in its proximity and the multi-light-flux forming means is provided with a light axis of the illumination optical system and a plurality of fine lenses which are placed around the light axis. The first light deflecting member is provided with a plurality of transparent wedges which are rotatable about the light axis of the illumination optical system and the incoming position of the whole light fluxes from the light surface to the multi-light-flux forming means is changed by changing the direction of deflection of the whole light fluxes from the light source by the rotation of the plurality of transparent wedges.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は照明装置、露光装置
及びデバイス製造方法に関し、特に、LSI等の半導体
素子、CCD等の撮像素子、液晶パネル等の表示素子や
磁気ヘッド等の検出素子等の各種デバイスを製造する時
にレチクル面上のデバイスパタ−ンを適切に照明するた
めの照明装置、露光装置及びデバイス製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illumination device, an exposure device, and a device manufacturing method, and more particularly to a semiconductor device such as an LSI, an imaging device such as a CCD, a display device such as a liquid crystal panel, and a detection device such as a magnetic head. The present invention relates to an illumination apparatus, an exposure apparatus, and a device manufacturing method for appropriately illuminating a device pattern on a reticle surface when manufacturing various devices.

【0002】[0002]

【従来の技術】最近の微細加工技術の進展は著しく、リ
ソグラフィ−で要求される解像力も0.3μmや0.2
5μmと非常に細かいものが要求されている。
2. Description of the Related Art In recent years, the progress of fine processing technology has been remarkable, and the resolution required in lithography has been increased to 0.3 μm or 0.2 μm.
A very fine one of 5 μm is required.

【0003】そこで本出願人は、特開平5−28331
7号公報で、リソグラフィ−用の投影露光装置の解像力
を向上させることができる照明装置を提案している。
[0003] The applicant of the present invention has disclosed in Japanese Patent Application Laid-Open No. 5-28331.
Japanese Patent Application Laid-Open No. H07-207 proposes an illumination device that can improve the resolution of a projection exposure apparatus for lithography.

【0004】図4は特開平5−283317号公報に開
示された照明装置(投影露光装置)を示している。
FIG. 4 shows an illumination apparatus (projection exposure apparatus) disclosed in Japanese Patent Application Laid-Open No. 5-283317.

【0005】図4において、1は紫外線や遠紫外線を放
射する高輝度の超高圧水銀灯で、水銀灯1の発光部1a
は楕円ミラ−2の第1焦点近傍にある。水銀灯1より発
した光は、楕円ミラ−2によって反射及び集光され、コ
−ルドミラ−3で反射された後、楕円ミラ−2の第2焦
点4の近傍に発光部1aの像(発光部像)1bを形成す
る。コ−ルドミラ−3は、ガラス基板上に赤外光を透過
させ紫外光を反射する多層膜を形成して成る。
[0005] In FIG. 4, reference numeral 1 denotes a high-brightness ultra-high pressure mercury lamp that emits ultraviolet rays or far ultraviolet rays.
Is near the first focal point of the elliptical mirror-2. The light emitted from the mercury lamp 1 is reflected and condensed by the elliptical mirror-2, is reflected by the cold mirror-3, and is then imaged by the light emitting unit 1a (light emitting unit) near the second focal point 4 of the elliptical mirror-2. (Image) 1b is formed. Cold mirror-3 is formed by forming a multilayer film on a glass substrate that transmits infrared light and reflects ultraviolet light.

【0006】101は、レンズ系5、9から構成される
結像系であり、第2焦点4の近傍に形成した発光部像1
bをオプティカルインテグレ−タ10の光入射面10a
上に略結像している。レンズ系9は、ズ−ムレンズであ
り、結像系101の倍率を変えることができる構成とな
っている。7は光学素子の保持部材であり、円錐プリズ
ムや多角錐プリズム等の複数個の光学素子を光路中に切
り替えて配置できるように構成されている。レンズ系5
は楕円ミラ−2の開口の位置と保持部材7の位置とを光
学的に略共役な位置関係にしている。
Reference numeral 101 denotes an imaging system composed of lens systems 5 and 9, and a light emitting unit image 1 formed near the second focal point 4.
b is the light incident surface 10a of the optical integrator 10.
The image is roughly formed above. The lens system 9 is a zoom lens, and has a configuration in which the magnification of the imaging system 101 can be changed. Reference numeral 7 denotes an optical element holding member, which is configured so that a plurality of optical elements such as a conical prism and a polygonal pyramid prism can be switched and arranged in the optical path. Lens system 5
Makes the position of the opening of the elliptical mirror-2 and the position of the holding member 7 optically substantially conjugate to each other.

【0007】オプティカルインテグレ−タ10は、多数
個の光束を形成する多光束形成部材であり、多数の微小
レンズを光軸に直交する平面に沿って2次元的に配列し
て成り、その光射出面10b近傍に2次光源10cを形
成する。11は形状や大きさが互いに異なる複数の開口
部材を有する絞り部材であり、絞り部材11は光路中に
挿入する開口部材を切り替えられる機構を有している。
The optical integrator 10 is a multi-beam forming member for forming a large number of light beams. The optical integrator 10 is formed by arranging a large number of minute lenses two-dimensionally along a plane perpendicular to the optical axis. A secondary light source 10c is formed near the surface 10b. Reference numeral 11 denotes a diaphragm member having a plurality of aperture members having different shapes and sizes from each other. The diaphragm member 11 has a mechanism capable of switching an aperture member inserted into an optical path.

【0008】14aはレンズ系であり、レンズ系14a
はオプティカルインテグレ−タ10の光射出面10bか
らの光束を集光する。レンズ系14aとコリメ−タレン
ズ14bとを含む集光レンズ系14は、絞り部材11と
ミラ−13を介して、光射出面10bからの光束で、レ
チクルステ−ジ16に載置した被照射面であるレチクル
15をケ−ラ−照明する。
Reference numeral 14a denotes a lens system.
Collects the light beam from the light exit surface 10b of the optical integrator 10. A condensing lens system 14 including a lens system 14a and a collimator lens 14b is a light beam from a light exit surface 10b via an aperture member 11 and a mirror 13, and is a light-receiving surface mounted on a reticle stage 16. A certain reticle 15 is illuminated with a color light.

【0009】17は、投影光学系であり、レチクル15
に描かれたパタ−ンをウエハ−チャック19に載置した
ウエハ−18の感光面上に縮小投影している。20は、
ステ−ジであり、ウエハ−チャック19をその上に載置
している。オプティカルインテグレ−タ10の光射出面
10b近傍の2次光源10cは集光レンズ系14により
投影光学系17の瞳17a近傍に結像している。
Reference numeral 17 denotes a projection optical system, and the reticle 15
Is reduced and projected on the photosensitive surface of the wafer 18 placed on the wafer chuck 19. 20 is
A stage on which a wafer chuck 19 is mounted. The secondary light source 10c near the light exit surface 10b of the optical integrator 10 forms an image near the pupil 17a of the projection optical system 17 by the condenser lens system 14.

【0010】図4の照明装置は、レチクル15に描かれ
た微細パタ−ンの方向性及び解像線幅等に応じて光学素
子の保持部材7を回転して複数個の光学素子の内の所望
の光学素子を光路中に挿入すると共に必要に応じて結像
系101の倍率を変えることにより、図6(A),
(B),(C)に示すように、オプティカルインテグレ
−タ10の光入射面10a上の光強度分布を変更して2
次光源の光強度分布(照明方法)を変更している。図6
中の斜線の部分は光強度が強い領域である。
The illuminating device shown in FIG. 4 rotates the optical element holding member 7 in accordance with the directionality of the fine pattern drawn on the reticle 15, the resolution line width, and the like. By inserting a desired optical element into the optical path and changing the magnification of the image forming system 101 as necessary, FIG.
As shown in (B) and (C), the light intensity distribution on the light incident surface 10a of the optical integrator 10 is changed to 2
The light intensity distribution (illumination method) of the secondary light source is changed. FIG.
The hatched portion in the middle is a region where the light intensity is high.

【0011】[0011]

【発明が解決しようとする課題】上記照明装置におい
て、絞り部材11の開口の形状や大きさを変えたり、保
持部材7で保持した光学素子を切り替えたり、結像系1
01の結像倍率を変えたりすると、レチクル15やウエ
ハ18での照明状態が変化してしまい、高精度にレチク
ルのパターンをウエハに投影することができなくなって
しまう。本発明は、この種の投影精度の悪化を小さくす
ることができる照明装置、露光装置及びデバイス製造方
法を提供することを目的とする。
In the above-mentioned illumination device, the shape and size of the aperture of the diaphragm member 11 are changed, the optical element held by the holding member 7 is switched, and the imaging system 1 is used.
If the imaging magnification of 01 is changed, the illumination state on the reticle 15 or the wafer 18 changes, and it becomes impossible to project the reticle pattern onto the wafer with high accuracy. An object of the present invention is to provide an illumination apparatus, an exposure apparatus, and a device manufacturing method that can reduce this kind of deterioration in projection accuracy.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明の照明装置は、光源からの光束をオプティカ
ルインテグレータに入射させる光学系と、前記オプティ
カルインテグレータが形成した多光束により被照明面を
照明する照明装置において、前記オプティカルインテグ
レータ、第1光偏向部材が前記光学系の光軸上に配置さ
れており、前記第1光偏向部材としての第1の透明なク
サビ及び第2の透明なクサビは、実質的にクサビ角が等
しく、前記光軸を中心として個別に回転可能であり、前
記第1のクサビと第2のクサビが回転することにより、
前記光源からの光束の前記オプティカルインテグレータ
への入射位置を変えることを特徴とする。
In order to achieve the above object, an illuminating apparatus according to the present invention comprises an optical system for causing a light beam from a light source to enter an optical integrator, and a multi-beam formed by the optical integrator to illuminate a surface to be illuminated. The optical integrator and the first light deflecting member are arranged on the optical axis of the optical system, and a first transparent wedge and a second transparent wedge as the first light deflecting member are illuminated. The wedges have substantially the same wedge angle, are individually rotatable around the optical axis, and are rotated by the first wedge and the second wedge.
The position of incidence of the light beam from the light source on the optical integrator is changed.

【0013】また、前記第1光偏光部材は、該第1光偏
光部材に入射した光束を所望の方向に所望の角度偏向す
ることを特徴とする。
[0013] The first light polarizing member may deflect the light beam incident on the first light polarizing member in a desired direction at a desired angle.

【0014】また、前記光学系は、前記オプティカルイ
ンテグレータと前記第1光偏向部材との間に照射光学系
を有し、該照射光学系の前側焦点位置に前記光偏向部材
が配置されていることを特徴とする。
The optical system has an irradiation optical system between the optical integrator and the first light deflecting member, and the light deflecting member is arranged at a front focal position of the irradiation optical system. It is characterized by.

【0015】また、前記光学系は、前記オプティカルイ
ンテグレータと前記第1光偏向部材との間に照射光学系
を有し、該照射光学系の後側焦点位置に前記オプティカ
ルインテグレータが配置されていることを特徴とする。
Further, the optical system has an irradiation optical system between the optical integrator and the first light deflecting member, and the optical integrator is disposed at a rear focal position of the irradiation optical system. It is characterized by.

【0016】また、前記第1光偏向部材は、透明なクサ
ビを2個備えることを特徴とする。
Further, the first light deflecting member is provided with two transparent wedges.

【0017】また、前記第1光偏向部材は、透明なクサ
ビを3個備えることを特徴とする。また、前記透明な3
個のクサビは、最もクサビ角が大きいクサビのクサビ角
が、他の二つのクサビのクサビ角の合計より小さいこと
を特徴とする。
Further, the first light deflecting member is provided with three transparent wedges. In addition, the transparent 3
Each wedge is characterized in that the wedge angle of the wedge having the largest wedge angle is smaller than the sum of the wedge angles of the other two wedges.

【0018】また、前記光源からの光束を複数個の光束
に分割し、前記複数個の光束を互いに異なる方向に偏向
することで前記複数の光束を前記オプティカルインテグ
レータの互いに異なる位置に入射させる第2光偏向部材
を前記第1光偏向部材の近傍に設けることを特徴とす
る。
A second beam splitting device for splitting the light beam from the light source into a plurality of light beams and deflecting the plurality of light beams in mutually different directions so that the plurality of light beams enter different positions of the optical integrator; A light deflecting member is provided near the first light deflecting member.

【0019】また、前記光源からの光束をリング状の光
束に変換して前記オプティカルインテグレータに照射す
るための円錐状の偏向面を有する第2光偏向部材を前記
第1光偏向部材の近傍に設けたことを特徴とする。
A second light deflecting member having a conical deflecting surface for converting a light beam from the light source into a ring-shaped light beam and irradiating the light to the optical integrator is provided near the first light deflecting member. It is characterized by having.

【0020】また、前記第1光偏向部材と前記照射光学
系の間に前記第2光偏向部材を設けたことを特徴とす
る。
Further, the invention is characterized in that the second light deflecting member is provided between the first light deflecting member and the irradiation optical system.

【0021】前記多光束によりレチクル及びウエハを照
明することを特徴とする。また、前記光学系が楕円鏡を
備えることを特徴とする。
A reticle and a wafer are illuminated by the multi-beam. Further, the optical system includes an elliptical mirror.

【0022】また、前記光源は水銀灯を有することを特
徴とする請求項1乃至12いずれか1項記載の照明装
置。
13. The lighting device according to claim 1, wherein the light source includes a mercury lamp.

【0023】また、前記クサビは前記照射光学系の光軸
に対して傾いた面を少なくとも一つ有することを特徴と
する。
Further, the wedge has at least one surface inclined with respect to the optical axis of the irradiation optical system.

【0024】また、露光装置は、請求項1乃至請求項1
4のいずれかの照明装置によりマスクを照明し、該照明
されたマスクのパターンを投影光学系によりウエハ上に
投影することを特徴とする。
[0024] The exposure apparatus may further comprise:
A mask is illuminated by any one of the illumination devices according to item 4, and the pattern of the illuminated mask is projected onto a wafer by a projection optical system.

【0025】また、デバイス製造方法は、請求項15の
露光装置によりデバイスパターンでウエハを露光する段
階と、該露光したウエハを現像する段階とを含むことを
特徴とする。
Further, the device manufacturing method includes a step of exposing the wafer with a device pattern by the exposure apparatus according to claim 15 and a step of developing the exposed wafer.

【0026】[0026]

【発明の実施の形態】図1は本発明の第1の実施例を示
す図である。
FIG. 1 is a diagram showing a first embodiment of the present invention.

【0027】図1において、1は紫外線や遠紫外線を放
射する高輝度の超高圧水銀灯で、水銀灯1の発光部1a
は楕円ミラ−2の第1焦点近傍にある。水銀灯1より発
した光は、楕円ミラ−2によって反射及び集光され、コ
−ルドミラ−3で反射された後、楕円ミラ−2の第2焦
点4の近傍に発光部1aの像(発光部像)1bを形成す
る。コ−ルドミラ−3は、ガラス基板上に赤外光を透過
させ紫外光を反射する多層膜を形成して成る。水銀灯1
は、光軸方向に動かすことができ、例えばオプティカル
インテグレ−タ10の光入射面10a上へ入射する光束
の量が最大になるように光軸方向に関する位置を調整で
きる。
In FIG. 1, reference numeral 1 denotes a high-intensity ultra-high pressure mercury lamp that emits ultraviolet light or far ultraviolet light, and a light emitting portion 1a of the mercury lamp 1
Is near the first focal point of the elliptical mirror-2. The light emitted from the mercury lamp 1 is reflected and condensed by the elliptical mirror-2, is reflected by the cold mirror-3, and is then imaged by the light emitting unit 1a (light emitting unit) near the second focal point 4 of the elliptical mirror-2. (Image) 1b is formed. Cold mirror-3 is formed by forming a multilayer film on a glass substrate that transmits infrared light and reflects ultraviolet light. Mercury lamp 1
Can be moved in the direction of the optical axis. For example, the position in the direction of the optical axis can be adjusted so that the amount of the light beam incident on the light incident surface 10a of the optical integrator 10 is maximized.

【0028】101は、レンズ系5、9から構成される
結像系等の光学系であり、第2焦点4の近傍に形成した
発光部像1bをオプティカルインテグレ−タ10の光入
射面10a上またはその近くに再び結像している。レン
ズ系5の前側焦点位置は第2焦点4の近傍に形成した発
光部像1bの位置とほぼ一致している。レンズ系9(照
射光学系)は、ズ−ムレンズであり、結像系101の倍
率を変えることができる構成となっている。7は光学素
子の保持部材であり、円錐プリズムや多角錐プリズム等
の複数個の光学素子(第2光偏向部材)を光路中に切り
替えて配置できるように構成されている。レンズ系5
(受光光学系)は楕円ミラ−2の開口の位置と保持部材
7の位置とを光学的に略共役な位置関係にしている。図
2は保持部材7とそれに保持された複数個の光学素子6
a〜6fとを示しており、保持部材7は不図示のモータ
により中心を貫く回転軸回りに回転するターレット板で
あり、光学素子6aは円錐プリズム、光学素子6bは光
学素子6aよりも頂角が小さい円錐プリズム、光学素子
6cは四角錐プリズム、光学素子6dは光学素子6cよ
りも頂角が大きい四角錐プリズム、光学素子6eは8角
錐プリズム、光学素子6fは平行平面板(この部分は素
通しの開口でもいい。)である。
Reference numeral 101 denotes an optical system such as an image forming system including the lens systems 5 and 9. The light emitting unit image 1 b formed in the vicinity of the second focal point 4 is formed on the light incident surface 10 a of the optical integrator 10. Or it is imaged again near it. The front focal position of the lens system 5 substantially coincides with the position of the light emitting unit image 1b formed near the second focal point 4. The lens system 9 (irradiation optical system) is a zoom lens, and has a configuration in which the magnification of the imaging system 101 can be changed. Reference numeral 7 denotes a holding member for the optical element, which is configured so that a plurality of optical elements (second light deflecting members) such as a conical prism and a polygonal pyramid prism can be switched and arranged in the optical path. Lens system 5
The (light receiving optical system) makes the position of the opening of the elliptical mirror-2 and the position of the holding member 7 optically substantially conjugate with each other. FIG. 2 shows a holding member 7 and a plurality of optical elements 6 held thereon.
a to 6f, the holding member 7 is a turret plate that rotates around a rotation axis passing through the center by a motor (not shown), the optical element 6a is a conical prism, and the optical element 6b is more apical than the optical element 6a. Is a conical prism, the optical element 6c is a quadrangular pyramid prism, the optical element 6d is a quadrangular pyramid prism having a larger apex angle than the optical element 6c, the optical element 6e is an octagonal pyramid prism, and the optical element 6f is a parallel flat plate. Opening is also acceptable.)

【0029】オプティカルインテグレ−タ10は、多数
個の光束を形成する多光束形成部材であり、多数の微小
レンズを光軸に直交する平面に沿って2次元的に配列し
て成り、その光射出面10b近傍に2次光源10cを形
成する。オプティカルインテグレ−タ10の光入射面は
レンズ系9の後ろ側焦点位置にある。11は形状や大き
さが互いに異なる複数の開口部材を有する絞り部材であ
り、絞り部材11は光路中に挿入する開口部材を切り替
えられる機構を有している。複数の開口部材の開口形状
は、光学素子6a〜6fに対応しており、リング状、4
つ穴、8つの穴、一つ穴を含む。
The optical integrator 10 is a multi-beam forming member for forming a large number of light beams, and is formed by arranging a large number of minute lenses two-dimensionally along a plane perpendicular to the optical axis. A secondary light source 10c is formed near the surface 10b. The light incident surface of the optical integrator 10 is located at the rear focal position of the lens system 9. Reference numeral 11 denotes a diaphragm member having a plurality of aperture members having different shapes and sizes from each other. The diaphragm member 11 has a mechanism capable of switching an aperture member inserted into an optical path. The aperture shapes of the plurality of aperture members correspond to the optical elements 6a to 6f, and are ring-shaped,
Includes one hole, eight holes, and one hole.

【0030】14aはレンズ系であり、レンズ系14a
はオプティカルインテグレ−タ10の光射出面10bか
らの光束を集光する。レンズ系14aとコリメ−タレン
ズ14bとを含む集光レンズ系14は、絞り部材11と
ミラ−13を介して、光射出面10bからの光束で、レ
チクルステ−ジ16に載置した被照射面であるレチクル
15をケ−ラ−照明する。
Reference numeral 14a denotes a lens system.
Collects the light beam from the light exit surface 10b of the optical integrator 10. A condensing lens system 14 including a lens system 14a and a collimator lens 14b is a light beam from a light exit surface 10b via an aperture member 11 and a mirror 13, and is a light-receiving surface mounted on a reticle stage 16. A certain reticle 15 is illuminated with a color light.

【0031】17は、投影光学系であり、レチクル15
に描かれたパタ−ンをウエハ−チャック19に載置した
ウエハ−18の感光面上に縮小投影している。20は、
XYステ−ジであり、ウエハ−チャック19をその上に
載置している。オプティカルインテグレ−タ10の光射
出面10b近傍の2次光源10cは集光レンズ14によ
り投影光学系17の瞳17a近傍に結像している。
Reference numeral 17 denotes a projection optical system, and the reticle 15
Is reduced and projected on the photosensitive surface of the wafer 18 placed on the wafer chuck 19. 20 is
An XY stage on which a wafer chuck 19 is mounted. The secondary light source 10c near the light exit surface 10b of the optical integrator 10 forms an image near the pupil 17a of the projection optical system 17 by the condenser lens 14.

【0032】図1の照明装置は、レチクル15に描かれ
た微細パタ−ンの方向性及び解像線幅等に応じて光学素
子保持部材7を回転して複数個の光学素子6a〜6fの
内の所望の光学素子を光路中に挿入すると共に必要に応
じて結像系101の倍率を変えることにより、図6
(A),(B),(C)に示すように、オプティカルイ
ンテグレ−タ10の光入射面10a上の光強度分布を変
更して2次光源の光強度分布(照明方法)を変更してい
る。図6の斜線の部分は光強度が強い領域である。
The illuminating apparatus shown in FIG. 1 rotates the optical element holding member 7 in accordance with the directionality of the fine pattern drawn on the reticle 15, the resolution line width, and the like, thereby forming a plurality of optical elements 6a to 6f. 6 by inserting a desired optical element in the optical path and changing the magnification of the imaging system 101 as necessary.
As shown in (A), (B) and (C), the light intensity distribution on the light incident surface 10a of the optical integrator 10 is changed to change the light intensity distribution (illumination method) of the secondary light source. I have. The hatched portion in FIG. 6 is a region where the light intensity is high.

【0033】図1の照明装置の特徴は光学素子保持部材
7の近傍に光軸調整装置21(第1光偏向部材)を設け
たことである。光軸調整装置21は実質的に同じクサビ
角を持つ2枚のクサビガラス21a,21bを備えてお
り、2枚のクサビガラス21a,21bは双方とも光軸
に垂直な第1面と光軸に対して傾いた第2面とを有す
る。クサビ角は第1面と第2面とが成す角度を言う。光
軸調整装置21は、クサビガラス21a,21bの各々
を、不図示の駆動装置により個別に光軸を回転軸として
回転させ、各々の光軸回りの回転角を調整する。この調
整により光軸調整装置21を通過する光束全体を所望の
方向にある角度偏向でき、光束全体のオプティカルイン
テグレ−タ10の光入射面10a上のへの入射位置を変
え、光入射面10a上の光強度分布全体を動かすことが
できる。
A feature of the illumination device shown in FIG. 1 is that an optical axis adjusting device 21 (first light deflection member) is provided near the optical element holding member 7. The optical axis adjusting device 21 includes two wedge glasses 21a and 21b having substantially the same wedge angle, and the two wedge glasses 21a and 21b are both provided on a first surface perpendicular to the optical axis and on the optical axis. A second surface inclined with respect to the first surface. The wedge angle refers to an angle formed between the first surface and the second surface. The optical axis adjusting device 21 rotates each of the wedge glasses 21a and 21b individually using a driving device (not shown) with the optical axis as a rotation axis, and adjusts the rotation angle around each optical axis. By this adjustment, the entire light beam passing through the optical axis adjusting device 21 can be deflected in a desired direction by an angle, and the incident position of the entire light beam on the light incident surface 10a of the optical integrator 10 is changed to change the position on the light incident surface 10a. The entire light intensity distribution can be moved.

【0034】図1の照明装置においては、オプティカル
インテグレ−タ10に入射する光束全体(光強度分布全
体)の位置を変えると、被照射面であるレチクル15や
ウエハ18での照明状態が変わる。本実施例ではこのこ
とを利用し、レチクルのパターンをウエハに高精度に投
影できるようにクサビガラス21a,21bの回転角度
を調整するようにしている。
In the illumination apparatus shown in FIG. 1, when the position of the entire light beam (entire light intensity distribution) incident on the optical integrator 10 is changed, the illumination state on the reticle 15 or the wafer 18 which is the surface to be illuminated changes. In this embodiment, utilizing this fact, the rotation angles of the wedge glasses 21a and 21b are adjusted so that the reticle pattern can be projected onto the wafer with high accuracy.

【0035】図3は光軸調整装置21の機能を示す説明
図である。図3(A)は、光路中に平行平面板6fが挿
入されており、2枚のクサビガラス21a,21bを互
いにクサビ角を相殺する位置に設定した場合を示す図、
図3(B)は図3(A)の状態からクサビガラス21b
をある角度だけ回転した場合を示す図である。図3
(A)、(B)の右側にある図はオプティカルインテグ
レ−タ10の光入射面10aでの光強度を模式的に示す
もので、この図面から、クサビガラス21a,21bの
各々を適当な角度回転し光束全体を所望の方向にある角
度偏向することにより、オプティカルインテグレ−タ1
0の光入射面10aにおける光強度分布を光軸(中心)
に対して偏心することができることが分かる。これはレ
ンズ系9へ入射する光束全体の入射角度を変えると、光
束全体のオプティカルインテグレ−タ10の光入射面1
0aに入射する位置が変わるからである。
FIG. 3 is an explanatory diagram showing the function of the optical axis adjusting device 21. FIG. 3A is a diagram showing a case where the parallel flat plate 6f is inserted in the optical path and the two wedge glasses 21a and 21b are set at positions where the wedge angles cancel each other.
FIG. 3B shows the wedge glass 21b from the state of FIG.
Is a diagram showing a case where is rotated by a certain angle. FIG.
FIGS. 3A and 3B schematically show the light intensity on the light incident surface 10a of the optical integrator 10, and show that each of the wedge glasses 21a and 21b has an appropriate angle. The optical integrator 1 is rotated to deflect the entire light beam in a desired direction by an angle.
The light intensity distribution on the 0 light incident surface 10a is represented by the optical axis (center).
It can be seen that eccentricity can be achieved. This is because when the incident angle of the entire light beam incident on the lens system 9 is changed, the light incident surface 1 of the optical integrator 10 of the entire light beam is changed.
This is because the position of incidence on 0a changes.

【0036】以下、光軸調整装置21を用いた調整手順
の一例を示す。 1.照明方法を決定する。 2.決定した照明方法に最適なように光学系を変更す
る。光学素子(6a〜6f)の選択。結像系101の倍
率の設定(レンズ系9のズ−ム位置の決定)。絞り11
の選択(開口形状、大きさの選択)。水銀灯1の光軸方
向への位置の変更。etc 3.レチクル15をステージ16から外し、XYステ−
ジ20上にある不図示の測定器により投影光学系17の
像面での照明状態を調べる。 4.手順3の結果より、クサビガラス21a,21bの
回転角を算出し、不図示の駆動装置によりクサビガラス
21a,21bをそれぞれ指定位置に回転させる。
Hereinafter, an example of an adjustment procedure using the optical axis adjustment device 21 will be described. 1. Determine the lighting method. 2. The optical system is changed to be optimal for the determined illumination method. Selection of optical elements (6a-6f). Setting the magnification of the imaging system 101 (determination of the zoom position of the lens system 9). Aperture 11
Selection (selection of opening shape and size). Change the position of the mercury lamp 1 in the optical axis direction. etc 3. Remove the reticle 15 from the stage 16 and
An illumination state on the image plane of the projection optical system 17 is checked by a measuring device (not shown) on the surface 20. 4. The rotation angles of the wedge glasses 21a and 21b are calculated from the result of the procedure 3, and the wedge glasses 21a and 21b are respectively rotated to designated positions by a driving device (not shown).

【0037】尚、上記の測定はレチクル15のパターン
面が位置する所の物体面でもいい。
The above measurement may be performed on the object surface where the pattern surface of the reticle 15 is located.

【0038】上記調整手順においては照明方法の切り替
え毎に照度分布を測定し、測定結果によりクサビガラス
21a,21bの回転角を算出することになるが、あら
かじめ実験により各照明方法におけるクサビガラス21
a,21bの回転角を求めてメモリに記憶しておき、照
明方法切り替え時にクサビガラス21a,21bを自動
的に所定角度回転しても良い。
In the above adjustment procedure, the illuminance distribution is measured each time the illumination method is switched, and the rotation angles of the wedge glasses 21a and 21b are calculated based on the measurement results.
The rotation angles of a and 21b may be obtained and stored in a memory, and the wedge glasses 21a and 21b may be automatically rotated by a predetermined angle when the illumination method is switched.

【0039】また、各照明方法毎にクサビガラス21
a,21bの指定回転角度を持たずに、使用する全照明
方法において、平均的に投影精度がよくなる回転角度を
求め、その角度にクサビガラス21a,21bを固定し
ておいてもよい。
The wedge glass 21 is provided for each lighting method.
Instead of having the designated rotation angles of a and 21b, the rotation angles at which the projection accuracy is improved on average in all the illumination methods to be used may be obtained, and the wedge glasses 21a and 21b may be fixed to those angles.

【0040】本実施例では光軸調整装置21を同一角度
を持った2枚のクサビガラスにより構成させているが、
3枚以上のクサビガラスにより構成しても良い。この場
合は最もクサビ角が大きいクサビガラスのクサビ角が他
の2枚以上のクサビガラスのクサビ角の合計以下である
必要がある。
In this embodiment, the optical axis adjusting device 21 is made of two wedge glasses having the same angle.
It may be composed of three or more wedge glasses. In this case, the wedge angle of the wedge glass having the largest wedge angle needs to be equal to or less than the sum of the wedge angles of the other two or more wedge glasses.

【0041】本実施例においては光軸調整装置21を光
学素子6a〜6fより光源側に配置しているが、光軸調
整装置21を光学素子6a〜6fよりオプティカルイン
テグレ−タ10側に配置してもよい。要は、オプティカ
ルインテグレ−タ10の光入射面10aへの入射角度を
あまり変えずに入射位置を変えることができる場所に配
置すれば良いのである。
In this embodiment, the optical axis adjusting device 21 is arranged closer to the light source than the optical elements 6a to 6f. However, the optical axis adjusting device 21 is arranged closer to the optical integrator 10 than the optical elements 6a to 6f. You may. The point is that the optical integrator 10 may be disposed at a place where the incident position can be changed without changing the incident angle on the light incident surface 10a so much.

【0042】上記各実施例では照明方法を変更した時に
クサビガラスにより被照射面での照度むらが最小になる
ように調整しているが、必ずしもそのかぎりではなく、
例えば、光学系の経時変化(レンズやミラーのコ−ティ
ングの特性変化やランプのア−クの輝度分布変化)によ
り投影精度が悪化した時に自動的にクサビの回転角度を
調整するようにしてもよい。
In each of the above embodiments, when the illumination method is changed, the wedge glass is used to adjust the illuminance unevenness on the surface to be illuminated to a minimum, but this is not always the case.
For example, the rotation angle of the wedge may be automatically adjusted when the projection accuracy is deteriorated due to a temporal change of the optical system (a change in the characteristics of the coating of the lens or the mirror or a change in the luminance distribution of the lamp arc). Good.

【0043】また上記各実施例では光学素子6a〜6f
の数を6種類として説明しているが、この数には限定さ
れない。光学素子が無い場合にも本発明は適用出来る。
In each of the above embodiments, the optical elements 6a to 6f
Is described as six types, but is not limited to this number. The present invention can be applied even when there is no optical element.

【0044】次に図1乃至図3の投影露光装置を利用し
たデバイスの製造方法の一実施例を説明する。
Next, an embodiment of a device manufacturing method using the projection exposure apparatus shown in FIGS. 1 to 3 will be described.

【0045】図6はデバイス(ICやLSI等の半導体
チップ、磁気ヘッドや液晶パネルやCCD)の製造フロ
−を示す。ステップ1(回路設計)では半導体デバイス
の回路設計を行なう。ステップ2(マスク製作)では設
計した回路パタ−ンを形成したマスク(レチクル15)
を製作する。一方、ステップ3(ウエハ−製造)ではシ
リコン等の材料を用いてウエハ−(ウエハ−18)を製
造する。ステップ4(ウエハ−プロセス)は前工程と呼
ばれ、上記用意したマスクとウエハ−とを用いて、リソ
グラフィ−技術によってウエハ−上に実際の回路を形成
する。次のステップ5(組み立て)は後工程と呼ばれ、
ステップ4よって作成されたウエハ−を用いてチップ化
する工程であり、アッセンブリ工程(ダイシング、ボン
ディング)、パッケ−ジング工程(チップ封入)等の工
程を含む。ステップ6(検査)ではステップ5で作成さ
れた半導体装置の動作確認テスト、耐久性テスト等の検
査を行なう。こうした工程を経て半導体デバイスが完成
し、これが出荷(ステップ7)される。図8は上記ウエ
ハ−プロセスの詳細なフロ−を示す。ステップ11(酸
化)ではウエハ−(ウエハ−18)の表面を酸化させ
る。ステップ12(CVD)ではウエハ−の表面に絶縁
膜を形成する。ステップ13(電極形成)ではウエハ−
上に電極を蒸着によって形成する。ステップ14(イオ
ン打ち込み)ではウエハ−にイオンを打ち込む。ステッ
プ15(レジスト処理)ではウエハ−にレジスト(感
材)を塗布する。ステップ16(露光)では上記投影露
光装置によってマスク(レチクル15)の回路パタ−ン
の像でウエハ−を露光する。ステップ17(現像)では
露光したウエハ−を現像する。ステップ18(エッチン
グ)では現像したレジスト以外の部分を削り取る。ステ
ップ19(レジスト剥離)ではエッチングが済んで不要
となったレジストを取り除く。これらステップを繰り返
し行なうことによりウエハ−上に回路パタ−ンが形成さ
れる。
FIG. 6 shows a manufacturing flow of a device (a semiconductor chip such as an IC or an LSI, a magnetic head, a liquid crystal panel, or a CCD). In step 1 (circuit design), the circuit of the semiconductor device is designed. In step 2 (mask fabrication), a mask (reticle 15) on which the designed circuit pattern is formed
To produce On the other hand, in step 3 (wafer manufacturing), a wafer (wafer 18) is manufactured using a material such as silicon. Step 4 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by lithography using the prepared mask and wafer. The next step 5 (assembly) is called post-processing,
This is a step of forming chips using the wafer created in step 4, and includes steps such as an assembly step (dicing and bonding) and a packaging step (chip enclosing). In step 6 (inspection), inspections such as an operation confirmation test and a durability test of the semiconductor device created in step 5 are performed. Through these steps, a semiconductor device is completed and shipped (step 7). FIG. 8 shows a detailed flow of the wafer process. Step 11 (oxidation) oxidizes the surface of the wafer (wafer 18). Step 12 (CVD) forms an insulating film on the surface of the wafer. In step 13 (electrode formation), the wafer
An electrode is formed thereon by vapor deposition. Step 14 (ion implantation) implants ions into the wafer. In step 15 (resist processing), a resist (sensitive material) is applied to the wafer. Step 16 (exposure) uses the projection exposure apparatus to expose the wafer from the circuit pattern image of the mask (reticle 15). Step 17 (development) develops the exposed wafer. In step 18 (etching), portions other than the developed resist are removed. In step 19 (resist stripping), unnecessary resist after etching is removed. By repeating these steps, a circuit pattern is formed on the wafer.

【0046】本実施例の製造方法を用いれば、従来は難
しかった高集積度のデバイスを製造することが可能にな
る。
By using the manufacturing method of this embodiment, it is possible to manufacture a highly integrated device which has been difficult in the past.

【0047】[0047]

【発明の効果】本発明を半導体素子製造用の投影投影露
光装置に適用すれば、レチクル面上の電子回路パタ−ン
をウエハ−面上に高精度で投影することができる。
When the present invention is applied to a projection projection exposure apparatus for manufacturing a semiconductor device, an electronic circuit pattern on a reticle surface can be projected on a wafer surface with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の照明装置の第1の実施例を示す図であ
る。
FIG. 1 is a diagram showing a first embodiment of a lighting device of the present invention.

【図2】図1の照明装置の光学素子の一例を示す図であ
る。
FIG. 2 is a diagram illustrating an example of an optical element of the illumination device in FIG. 1;

【図3】図1の光軸調整装置の説明図である。FIG. 3 is an explanatory diagram of the optical axis adjusting device of FIG. 1;

【図4】従来の照明装置を示す図である。FIG. 4 is a diagram showing a conventional lighting device.

【図5】図4の照明装置における照明方法の切り替え方
を示す説明図である。
FIG. 5 is an explanatory diagram showing how to switch the lighting method in the lighting device of FIG. 4;

【図6】デバイス製造方法のフローを示す図である。FIG. 6 is a diagram showing a flow of a device manufacturing method.

【図7】図6のウエハ−プロセスを示す図である。FIG. 7 is a view showing a wafer process of FIG. 6;

【符号の説明】[Explanation of symbols]

1 水銀灯 2 楕円ミラ− 3 コ−ルドミラ− 5、9 レンズ系 6a〜6f 光学素子 7 光学素子保持部材(タ−レット板) 10 オプティカルインテグレ−タ 11 絞り部材 15 レチクル 17 投影レンズ 18 ウエハ− 21a,21b クサビガラス 22 平行平面板 23a〜23f クサビガラス DESCRIPTION OF SYMBOLS 1 Mercury lamp 2 Elliptical mirror 3 Cold mirror 5, 9 Lens system 6a-6f Optical element 7 Optical element holding member (turret plate) 10 Optical integrator 11 Aperture member 15 Reticle 17 Projection lens 18 Wafer 21a 21b Wedge glass 22 Parallel plane plate 23a to 23f Wedge glass

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G03F 7/20 521 H01L 21/30 515D G02B 7/18 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G03F 7/20 521 H01L 21/30 515D G02B 7/18 A

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 光源からの光束をオプティカルインテグ
レータに入射させる光学系と、前記オプティカルインテ
グレータが形成した多光束により被照明面を照明する照
明装置において、前記オプティカルインテグレータ、第
1光偏向部材が前記光学系の光軸上に配置されており、
前記第1光偏向部材としての第1の透明なクサビ及び第
2の透明なクサビは、実質的にクサビ角が等しく、前記
光軸を中心として個別に回転可能であり、 前記第1のクサビと第2のクサビが回転することによ
り、前記光源からの光束の前記オプティカルインテグレ
ータへの入射位置を変えることを特徴とする照明装置。
1. An optical system for causing a light beam from a light source to enter an optical integrator and a lighting device for illuminating a surface to be illuminated with multiple light beams formed by the optical integrator, wherein the optical integrator and the first light deflecting member include the optical Are located on the optical axis of the system,
The first transparent wedge and the second transparent wedge serving as the first light deflecting member have substantially the same wedge angle and are individually rotatable around the optical axis. An illumination device, wherein the position of incidence of a light beam from the light source on the optical integrator is changed by rotation of a second wedge.
【請求項2】 前記第1光偏光部材は、該第1光偏光部
材に入射した光束を所望の方向に所望の角度偏向するこ
とを特徴とする請求項1記載の照明装置。
2. The lighting device according to claim 1, wherein the first light polarizing member deflects a light beam incident on the first light polarizing member in a desired direction at a desired angle.
【請求項3】 前記光学系は、前記オプティカルインテ
グレータと前記第1光偏向部材との間に照射光学系を有
し、該照射光学系の前側焦点位置に前記光偏向部材が配
置されていることを特徴とする請求項1又は2記載の照
明装置。
3. The optical system has an irradiation optical system between the optical integrator and the first light deflecting member, and the light deflecting member is arranged at a front focal position of the irradiation optical system. The lighting device according to claim 1, wherein:
【請求項4】 前記光学系は、前記オプティカルインテ
グレータと前記第1光偏向部材との間に照射光学系を有
し、該照射光学系の後側焦点位置に前記オプティカルイ
ンテグレータが配置されていることを特徴とする請求項
1乃至3いずれか1項記載の照明装置。
4. The optical system has an irradiation optical system between the optical integrator and the first light deflecting member, and the optical integrator is disposed at a rear focal position of the irradiation optical system. The lighting device according to claim 1, wherein:
【請求項5】 前記第1光偏向部材は、透明なクサビを
2個備えることを特徴とする請求項1乃至4いずれか1
項記載の照明装置。
5. The device according to claim 1, wherein the first light deflecting member includes two transparent wedges.
The lighting device according to any one of the preceding claims.
【請求項6】 前記第1光偏向部材は、透明なクサビを
3個備えることを特徴とする請求項1乃至4いずれか1
項記載の照明装置。
6. The apparatus according to claim 1, wherein the first light deflecting member includes three transparent wedges.
The lighting device according to any one of the preceding claims.
【請求項7】 前記透明な3個のクサビは、最もクサビ
角が大きいクサビのクサビ角が、他の二つのクサビのク
サビ角の合計より小さいことを特徴とする請求項6記載
の照明装置。
7. The lighting device according to claim 6, wherein the wedge angle of the wedge having the largest wedge angle of the three transparent wedges is smaller than the sum of the wedge angles of the other two wedges.
【請求項8】 前記光源からの光束を複数個の光束に分
割し、前記複数個の光束を互いに異なる方向に偏向する
ことで前記複数の光束を前記オプティカルインテグレー
タの互いに異なる位置に入射させる第2光偏向部材を前
記第1光偏向部材の近傍に設けることを特徴とする請求
項1乃至7のいずれか1項記載の照明装置。
8. A second method of dividing a light beam from the light source into a plurality of light beams and deflecting the plurality of light beams in different directions to cause the plurality of light beams to enter different positions of the optical integrator. The lighting device according to any one of claims 1 to 7, wherein a light deflecting member is provided near the first light deflecting member.
【請求項9】 前記光源からの光束をリング状の光束に
変換して前記オプティカルインテグレータに照射するた
めの円錐状の偏向面を有する第2光偏向部材を前記第1
光偏向部材の近傍に設けたことを特徴とする請求項1乃
至7のいずれか1項記載の照明装置。
9. A second light deflecting member having a conical deflecting surface for converting a light beam from the light source into a ring-shaped light beam and irradiating the light to the optical integrator with the first light deflecting member.
The lighting device according to any one of claims 1 to 7, wherein the lighting device is provided near the light deflecting member.
【請求項10】 前記第1光偏向部材と前記照射光学系
の間に前記第2光偏向部材を設けたことを特徴とする請
求項8又は9記載の照明装置。
10. The illumination device according to claim 8, wherein the second light deflection member is provided between the first light deflection member and the irradiation optical system.
【請求項11】 前記多光束によりレチクル及びウエハ
を照明することを特徴とする請求項1乃至10いずれか
1項記載の照明装置。
11. The illumination device according to claim 1, wherein the reticle and the wafer are illuminated by the multi-beam.
【請求項12】 前記光学系が楕円鏡を備えることを特
徴とする請求項1乃至11いずれか1項記載の照明装
置。
12. The lighting device according to claim 1, wherein the optical system includes an elliptical mirror.
【請求項13】 前記光源は水銀灯を有することを特徴
とする請求項1乃至12いずれか1項記載の照明装置。
13. The lighting device according to claim 1, wherein the light source includes a mercury lamp.
【請求項14】 前記クサビは前記照射光学系の光軸に
対して傾いた面を少なくとも一つ有することを特徴とす
る請求項1乃至13いずれか1項記載の照明装置。
14. The lighting device according to claim 1, wherein the wedge has at least one surface inclined with respect to an optical axis of the irradiation optical system.
【請求項15】 請求項1乃至請求項14のいずれかの
照明装置によりマスクを照明し、該照明されたマスクの
パターンを投影光学系によりウエハ上に投影することを
特徴とする露光装置。
15. An exposure apparatus, wherein a mask is illuminated by the illuminating device according to claim 1, and a pattern of the illuminated mask is projected on a wafer by a projection optical system.
【請求項16】 請求項15の露光装置によりデバイス
パターンでウエハを露光する段階と、該露光したウエハ
を現像する段階とを含むことを特徴とするデバイス製造
方法。
16. A device manufacturing method, comprising: exposing a wafer with a device pattern using the exposure apparatus according to claim 15; and developing the exposed wafer.
JP2001207774A 2001-07-09 2001-07-09 Illumination apparatus, exposure apparatus, and device manufacturing method Expired - Fee Related JP3507459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001207774A JP3507459B2 (en) 2001-07-09 2001-07-09 Illumination apparatus, exposure apparatus, and device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001207774A JP3507459B2 (en) 2001-07-09 2001-07-09 Illumination apparatus, exposure apparatus, and device manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP19754195A Division JP3236193B2 (en) 1995-08-02 1995-08-02 Illumination apparatus, exposure apparatus, and device manufacturing method

Publications (2)

Publication Number Publication Date
JP2002075859A true JP2002075859A (en) 2002-03-15
JP3507459B2 JP3507459B2 (en) 2004-03-15

Family

ID=19043705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001207774A Expired - Fee Related JP3507459B2 (en) 2001-07-09 2001-07-09 Illumination apparatus, exposure apparatus, and device manufacturing method

Country Status (1)

Country Link
JP (1) JP3507459B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309053A (en) * 2002-04-12 2003-10-31 Nikon Corp Aligner and exposure method
SG114513A1 (en) * 2000-11-29 2005-09-28 Nikon Corp Illumination optical apparatus and exposure apparatus provided with illumination optical apparatus
JP2006030873A (en) * 2004-07-21 2006-02-02 Fuji Photo Film Co Ltd Image forming apparatus and image forming method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
CN113167919A (en) * 2018-11-14 2021-07-23 11093568加拿大有限公司 High resolution multiplexing system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG114513A1 (en) * 2000-11-29 2005-09-28 Nikon Corp Illumination optical apparatus and exposure apparatus provided with illumination optical apparatus
JP2003309053A (en) * 2002-04-12 2003-10-31 Nikon Corp Aligner and exposure method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP4583827B2 (en) * 2004-07-21 2010-11-17 富士フイルム株式会社 Image forming apparatus and image forming method
JP2006030873A (en) * 2004-07-21 2006-02-02 Fuji Photo Film Co Ltd Image forming apparatus and image forming method
CN113167919A (en) * 2018-11-14 2021-07-23 11093568加拿大有限公司 High resolution multiplexing system

Also Published As

Publication number Publication date
JP3507459B2 (en) 2004-03-15

Similar Documents

Publication Publication Date Title
JP3232473B2 (en) Projection exposure apparatus and device manufacturing method using the same
JP3275575B2 (en) Projection exposure apparatus and device manufacturing method using the projection exposure apparatus
JP3610175B2 (en) Projection exposure apparatus and semiconductor device manufacturing method using the same
JP4678493B2 (en) Light source unit, illumination optical apparatus, exposure apparatus, and exposure method
JP3057998B2 (en) Illumination device and projection exposure apparatus using the same
JP2001284240A (en) Illuminating optical system, projection exposure system equipped therewith, method of manufacturing device by use of projection exposure system
JP3576685B2 (en) Exposure apparatus and device manufacturing method using the same
KR100485314B1 (en) Projection exposure apparatus and device manufacturing method using the same
JPH11317348A (en) Projection aligner and method for manufacturing device using the same
JP3507459B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
JPH11121358A (en) Illuminator and projecting aligner using it
KR20090093837A (en) Illumination optical system, exposure apparatus, and device fabrication method
JP3236193B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
JP3710321B2 (en) Exposure amount control method, exposure apparatus, and device manufacturing method
JP3008744B2 (en) Projection exposure apparatus and semiconductor device manufacturing method using the same
JP2008124308A (en) Exposure method and exposure apparatus, and device manufacturing method using the same
US20210096466A1 (en) Light source device, illuminating apparatus, exposing apparatus, and method for manufacturing article
JP2006253529A (en) Illumination optical apparatus, exposure apparatus, and exposure method
KR0165701B1 (en) Illumination system and exposure apparatus using the same
JPH0729816A (en) Projection aligner and fabrication of semiconductor element employing it
JPH07135145A (en) Aligner
JP3223646B2 (en) Projection exposure apparatus and method for manufacturing semiconductor device using the same
JP3566318B2 (en) Scanning exposure apparatus and device manufacturing method
JP3376043B2 (en) Illumination device and projection exposure apparatus using the same
JP3347405B2 (en) Illumination device and exposure apparatus including the illumination device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees