JP2002071513A - Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective - Google Patents

Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective

Info

Publication number
JP2002071513A
JP2002071513A JP2000256897A JP2000256897A JP2002071513A JP 2002071513 A JP2002071513 A JP 2002071513A JP 2000256897 A JP2000256897 A JP 2000256897A JP 2000256897 A JP2000256897 A JP 2000256897A JP 2002071513 A JP2002071513 A JP 2002071513A
Authority
JP
Japan
Prior art keywords
objective lens
wave
spherical surface
lens
immersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000256897A
Other languages
Japanese (ja)
Inventor
Hitoshi Kaizu
均 海津
Tomohiko Yamahiro
知彦 山広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2000256897A priority Critical patent/JP2002071513A/en
Publication of JP2002071513A publication Critical patent/JP2002071513A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an interferometer for immersion microscope objective capable of quantitatively and accurately evaluating the immersion microscope objective. SOLUTION: A hemispherical plane and convex lens 12 having a plane 12 and a return spherical surface 12b is arranged facing the objective 10. In this case, an immersion liquid 15 is filled in the gap between the plane 12a and the objective lens 10, focus positions of the plane 12a and the objective 10 coincide and the center of the sphere of the return spherical surface 12b and the focus position also coincide in the arrangement. Detected wave 8 formed with a reference plane plate 4 after passing through the objective 10 is reflected vertically by the return spherical surface 12b to proceed in the reverse direction in the light path. The detected wave 8 having proceeded in the light path interferes with a reference wave 7 and its interference fringe is photographed with a CCD imaging device 6. From the interference pattern state, the performance of the objective 10 can be evaluated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液浸系顕微鏡対物
レンズを評価するための干渉計、および液浸系顕微鏡対
物レンズの評価方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interferometer for evaluating an immersion microscope objective and a method for evaluating the immersion microscope objective.

【0002】[0002]

【従来の技術】液浸系ではない乾燥系の顕微鏡対物レン
ズを評価する方法としては、干渉計を用いる方法があ
る。図5は評価方法を説明する図であり、評価装置の概
略構成を示す。光源からの平面波2はビームスプリッタ
5により光路が曲げられて平面プレート51に入射す
る。平面波2の一部は平面プレート51により反射され
て参照波とされ、他は透過して被検波として対物レンズ
50に入射する。この被検波8は対物レンズ50の焦点
52に集められた後に凹面(球面の一部)53により垂
直反射されて光路を逆行する。その結果、平面プレート
51で反射された参照波と、対物レンズ50から図示下
方に出射される被検波8との干渉により干渉縞が生じ
る。この干渉縞をCCD撮像装置6で撮像して観察する
ことにより、すなわち波面収差を測定することにより対
物レンズ50の評価を行うことができる。
2. Description of the Related Art As a method of evaluating a dry microscope objective lens, not an immersion system, there is a method using an interferometer. FIG. 5 is a diagram for explaining the evaluation method, and shows a schematic configuration of the evaluation device. The optical path of the plane wave 2 from the light source is bent by the beam splitter 5 and is incident on the plane plate 51. A part of the plane wave 2 is reflected by the plane plate 51 to be a reference wave, and the other part is transmitted and enters the objective lens 50 as a test wave. The test wave 8 is collected at the focal point 52 of the objective lens 50 and then vertically reflected by the concave surface (part of the spherical surface) 53 and goes backward in the optical path. As a result, interference fringes occur due to interference between the reference wave reflected by the flat plate 51 and the test wave 8 emitted downward from the objective lens 50 in the figure. The objective lens 50 can be evaluated by imaging and observing the interference fringes with the CCD imaging device 6, that is, by measuring the wavefront aberration.

【0003】[0003]

【発明が解決しようとする課題】ところで、液浸系対物
レンズを用いる顕微鏡では、対物レンズと標本との間に
油や水などの浸液を充填して観察が行われる。しかしな
がら、図5のような構成の場合には対物レンズ50と凹
面53との間には浸液を充填することができないので、
液浸系対物レンズはこのような装置では評価できなかっ
た。そのため、液浸系対物レンズに関しては、検査員が
ピンホール等の理論分解能に近いサンプルを顕微鏡で観
察し、観察状況(ボケなど)から対物レンズを評価して
いた。
In a microscope using an immersion objective lens, observation is performed by filling an immersion liquid such as oil or water between the objective lens and the specimen. However, in the case of the configuration as shown in FIG. 5, the space between the objective lens 50 and the concave surface 53 cannot be filled with the immersion liquid.
An immersion objective could not be evaluated with such a device. Therefore, as for the immersion objective lens, an inspector observes a sample such as a pinhole or the like having a theoretical resolution close to the theoretical resolution with a microscope, and evaluates the objective lens from observation conditions (such as blur).

【0004】本発明の目的は、液浸系顕微鏡対物レンズ
を人間の判断によらず定量的にかつ精度良く評価するこ
とができる液浸系顕微鏡対物レンズ用干渉計、および液
浸系顕微鏡対物レンズの評価方法を提供することにあ
る。
An object of the present invention is to provide an interferometer for an immersion microscope objective that can quantitatively and accurately evaluate an immersion microscope objective lens without human judgment, and an immersion microscope objective lens. To provide an evaluation method.

【0005】[0005]

【課題を解決するための手段】発明の実施の形態を示す
図1および図4に対応付けて説明する。 (1)図1に対応付けて説明すると、請求項1の発明に
よる液浸系顕微鏡対物レンズ用干渉計は、参照波7およ
び被検波8を形成して、被検波8を液浸系顕微鏡対物レ
ンズ10に入射させる第1の光学系4と、折返し球面1
2bを有するとともに、対物レンズ10との間に浸液1
5を充填して対向配置され、対物レンズ10を透過して
折返し球面12bで反射された被検波8を出射する第2
の光学系12と、折返し球面12bで反射された被検波
8と参照波7との干渉波を検出する検出器6とを備え、
検出器6で検出された干渉波に基づいて対物レンズ10
を評価することにより上述の目的を達成する。 (2)請求項2の発明は、請求項1に記載の液浸系顕微
鏡対物レンズ用干渉計において、第2の光学系12を、
対物レンズ10の焦点位置に配設される平面12aと、
球心が焦点位置と一致する凸球面12bとを有するとと
もに、レンズ厚さが凸球面12bの曲率半径と等しい半
球平凸面レンズとしたものである。 (3)図4に対応付けて説明すると、請求項3の発明
は、請求項1に記載の液浸系顕微鏡対物レンズ用干渉計
において、第2の光学系30を、平面30aと球心が焦
点位置と一致する凸球面30bを有するとともに、レン
ズ厚さが液浸系顕微鏡に使用されるカバーガラスの厚さ
dと凸球面30bの曲率半径との和に等しく、かつ、カ
バーガラスと等しい屈折率を有する半球平凸面レンズ3
0としたものである。 (4)図1に対応付けて説明すると、請求項4の発明に
よる評価方法では、液浸系顕微鏡対物レンズ10との間
に浸液15を介して配設された折返し球面12bで対物
レンズ10を透過した被検波8を反射し、参照波7と折
返し球面12bで反射された被検波8との干渉波に基づ
いて対物レンズ10を評価する。
An embodiment of the present invention will be described with reference to FIGS. 1 and 4. FIG. (1) Explaining in conjunction with FIG. 1, the interferometer for an immersion microscope objective lens according to the first aspect of the invention forms a reference wave 7 and a test wave 8, and converts the test wave 8 into an immersion microscope objective. A first optical system 4 for entering a lens 10 and a folded spherical surface 1
2b and an immersion liquid 1 between the
5 which are arranged to face each other and emit the test wave 8 transmitted through the objective lens 10 and reflected by the folded spherical surface 12b.
And a detector 6 that detects an interference wave between the test wave 8 and the reference wave 7 reflected by the folded spherical surface 12b.
The objective lens 10 based on the interference wave detected by the detector 6
The above object is achieved by evaluating. (2) The invention according to claim 2 is the interferometer for an immersion microscope objective lens according to claim 1, wherein the second optical system 12 comprises:
A plane 12a disposed at the focal position of the objective lens 10,
This is a hemispherical flat convex lens having a convex spherical surface 12b whose spherical center coincides with the focal position and a lens thickness equal to the radius of curvature of the convex spherical surface 12b. (3) Explaining in connection with FIG. 4, the invention of claim 3 is the interferometer for an immersion microscope objective lens according to claim 1, wherein the second optical system 30 is formed by a plane 30a and a spherical center. It has a convex spherical surface 30b coincident with the focal position, and the lens thickness is equal to the sum of the thickness d of the cover glass used for the immersion microscope and the radius of curvature of the convex spherical surface 30b, and is equal to the refractive index of the cover glass. Hemispherical convex convex lens 3 having high refractive index
It is set to 0. (4) Referring to FIG. 1, in the evaluation method according to the fourth aspect of the present invention, the folded spherical surface 12b disposed between the objective lens 10 and the immersion microscope objective lens 10 with the immersion liquid 15 interposed therebetween. Is reflected, and the objective lens 10 is evaluated based on the interference wave between the reference wave 7 and the test wave 8 reflected by the folded spherical surface 12b.

【0006】なお、本発明の構成を説明する上記課題を
解決するための手段の項では、本発明を分かり易くする
ために発明の実施の形態の図を用いたが、これにより本
発明が発明の実施の形態に限定されるものではない。
In the section of the means for solving the above-mentioned problems, which explains the configuration of the present invention, the drawings of the embodiments of the present invention are used to make the present invention easier to understand. However, the present invention is not limited to the embodiment.

【0007】[0007]

【発明の実施の形態】以下、図1〜図4を参照して本発
明の実施の形態を説明する。図1は本発明による干渉計
の一実施の形態を示す図であり、干渉計の概略構成図で
ある。干渉計部1には平面波2を発生する光源3、光源
3からの平面波2を参照平面板4に導くビームスプリッ
タ5、干渉縞を撮影するためのCCD撮像装置6が設け
られている。参照平面板4は参照平面(フィゾー面)4
aを有しており、ビームスプリッタ5からの平面波2の
一部を参照平面4aで反射し、残りは参照平面4aを透
過する。参照平面4aで反射された平面波7は参照波と
呼ばれ、参照平面4aを透過した平面波8は被検波と呼
ばれる。なお、ビームスプリッタ5に代えて、偏光ビー
ムスプリッタと1/4波長板とを用いると、光源3にも
どる光がなくなり、戻りビームによる光源3への悪影響
を防止できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a view showing one embodiment of an interferometer according to the present invention, and is a schematic configuration diagram of the interferometer. The interferometer 1 is provided with a light source 3 for generating a plane wave 2, a beam splitter 5 for guiding the plane wave 2 from the light source 3 to a reference plane plate 4, and a CCD imaging device 6 for photographing interference fringes. The reference plane plate 4 is a reference plane (Fizeau surface) 4
a, a part of the plane wave 2 from the beam splitter 5 is reflected by the reference plane 4a, and the rest is transmitted through the reference plane 4a. The plane wave 7 reflected by the reference plane 4a is called a reference wave, and the plane wave 8 transmitted through the reference plane 4a is called a test wave. If a polarizing beam splitter and a quarter-wave plate are used instead of the beam splitter 5, no light returns to the light source 3 and the adverse effect on the light source 3 due to the return beam can be prevented.

【0008】9は被検レンズである液浸系顕微鏡対物レ
ンズ10が固定される被検レンズ取付用アダプタであ
り、アダプタ9に形成されたネジ部9aに対物レンズ1
0を固定する。このアダプタ9は支柱11に取り付けら
れており、対物レンズ10をネジ部9aに固定すると対
物レンズ10の軸と干渉計部1の光軸とが一致するよう
に調整されている。
Reference numeral 9 denotes an adapter for mounting a test lens to which an immersion microscope objective lens 10 as a test lens is fixed. The objective lens 1 is attached to a screw portion 9a formed on the adapter 9.
0 is fixed. The adapter 9 is attached to a support 11 and is adjusted so that the axis of the objective lens 10 and the optical axis of the interferometer 1 coincide with each other when the objective lens 10 is fixed to the screw portion 9a.

【0009】12は半球形状の半球平凸面レンズであ
り、ステージ13のxステージ13x上に装着されてい
る。半球平凸面レンズ12は平面12aと折返し球面1
2bとを有しており、折返し球面12bの球心は平面1
2a上にある。すなわち、半球平凸面レンズ12のレン
ズ厚さは、折返し球面12bの曲率半径に等しい。半球
平凸面レンズ12は平面12aが対物レンズ10と対向
するように配設され、平面12aと対物レンズ10との
隙間には浸液15が充填される。この浸液15には、液
浸系顕微鏡で使用するものと同様の油や水が用いられ
る。
Reference numeral 12 denotes a hemispherical hemispherical flat convex lens, which is mounted on an x-stage 13x of the stage 13. The hemispherical flat convex lens 12 has a flat surface 12a and a folded spherical surface 1
2b, and the spherical center of the folded spherical surface 12b is the plane 1
2a. That is, the lens thickness of the hemispherical flat convex lens 12 is equal to the radius of curvature of the folded spherical surface 12b. The hemispherical flat convex lens 12 is disposed such that the flat surface 12 a faces the objective lens 10, and a gap between the flat surface 12 a and the objective lens 10 is filled with the immersion liquid 15. As the immersion liquid 15, the same oil or water as that used in the immersion microscope is used.

【0010】ステージ13はxステージ13x、yステ
ージ13yおよびzステージ13zで構成され、支柱1
1に取り付けられたzステージ13zは、つまみ14z
を回転することにより支柱11に沿って上下方向に移動
させることができる。zステージ13z上に設けられた
yステージ13yは、つまみ14yを回転することによ
りy方向に移動させることができる。さらに、yステー
ジ13yに設けられたxステージ13xは、つまみ14
xを回転することによりx方向に移動させることができ
る。
The stage 13 comprises an x stage 13x, a y stage 13y and a z stage 13z.
The z stage 13z attached to 1 is a knob 14z
Can be moved up and down along the column 11 by rotating. The y stage 13y provided on the z stage 13z can be moved in the y direction by rotating the knob 14y. Further, the x stage 13x provided on the y stage 13y has a knob 14
By rotating x, it can be moved in the x direction.

【0011】次に、対物レンズ評価の手順について説明
する。まず、対物レンズ10をアダプタ9に固定すると
ともに、平面12aが下側となるように半球平凸面レン
ズ12をxステージ13xに載置する。次いで、zステ
ージ13zを上下させて、対物レンズ10の焦点16の
位置と半球平凸面レンズ12の平面12aとが一致する
ようにステージ13のz位置を調整する。
Next, the procedure for evaluating the objective lens will be described. First, the objective lens 10 is fixed to the adapter 9, and the hemispherical flat convex lens 12 is placed on the x-stage 13x such that the plane 12a is on the lower side. Next, the z stage 13z is moved up and down, and the z position of the stage 13 is adjusted so that the position of the focal point 16 of the objective lens 10 and the plane 12a of the hemispherical flat convex lens 12 coincide.

【0012】z位置調整が済んだならば、対物レンズ1
0と平面12aとの隙間に浸液15を充填した後に、光
源3からビーム径の細い光を出射させて半球平凸面レン
ズ12の位置調整を行う。CCD撮像装置6の撮像面に
は、参照平面板4の参照平面4aで反射されたビーム
と、参照平面板4を透過して対物レンズ10を透過した
後に半球平凸面レンズ12の折返し球面12bで反射さ
れたビームとが結像される。そして、この2つのビーム
が一致するように、ステージ13により半球平凸面レン
ズ12のx,y位置の調整を行う。この際に、ステージ
13のz位置を微調整してフォーカス合わせも行う。
When the z position adjustment is completed, the objective lens 1
After filling the gap between 0 and the plane 12a with the immersion liquid 15, the light source 3 emits light with a small beam diameter to adjust the position of the hemispherical flat convex lens 12. On the imaging surface of the CCD imaging device 6, the beam reflected by the reference plane 4a of the reference plane plate 4 and the folded spherical surface 12b of the hemispherical flat convex lens 12 after passing through the reference plane plate 4 and passing through the objective lens 10 are used. The reflected beam is imaged. Then, the x and y positions of the hemispherical flat convex lens 12 are adjusted by the stage 13 so that the two beams coincide with each other. At this time, focus adjustment is also performed by finely adjusting the z position of the stage 13.

【0013】半球平凸面レンズ12の位置調整が済んだ
ならば、光源3から所定のビーム径を有する平面波を出
射させて対物レンズ10の評価を行う。平面波2がビー
ムスプリッタ5により光路を曲げられて参照平面板4に
入射すると、上述したように平面波2は参照波7と被検
波8とに分割される。参照波7はビームスプリッタ5を
介してCCD撮像装置6に入射する。一方、被検波8は
参照平面板4を屈折・透過した後に対物レンズ10に入
射し、対物レンズ10の焦点16を通過した後に半球平
凸面レンズ12内に入る。焦点16は半球平凸面レンズ
12の球心と一致しているため、被検波8は半球平凸面
レンズ12の折返し球面12bにより垂直反射され、光
路を逆行してCCD撮像装置6に入射する。
When the position of the hemispherical flat convex lens 12 is adjusted, the objective lens 10 is evaluated by emitting a plane wave having a predetermined beam diameter from the light source 3. When the plane wave 2 is incident on the reference plane plate 4 after the optical path is bent by the beam splitter 5, the plane wave 2 is divided into the reference wave 7 and the test wave 8 as described above. The reference wave 7 enters the CCD imaging device 6 via the beam splitter 5. On the other hand, the test wave 8 enters the objective lens 10 after being refracted and transmitted through the reference plane plate 4, enters the hemispherical flat convex lens 12 after passing through the focal point 16 of the objective lens 10. Since the focal point 16 coincides with the spherical center of the hemispherical convex convex lens 12, the test wave 8 is vertically reflected by the folded spherical surface 12 b of the hemispherical convex convex lens 12, travels backward in the optical path, and enters the CCD imaging device 6.

【0014】参照波7と被検波8とを重ね合わせると干
渉により干渉縞が生じ、この干渉縞がCCD撮像装置6
により撮像される。図2は干渉縞の観察例を示す図であ
り、(a)は対物レンズ10に収差がある場合の干渉縞
を示しており、(b)は収差が無い場合の干渉縞を示
す。対物レンズ10が無収差であれば図2(b)に示す
ように干渉縞は平行となるが、収差があると図2(a)
の符号19で示す部分のように干渉縞に歪みが生じる。
When the reference wave 7 and the test wave 8 are superimposed, interference fringes occur due to interference.
Is imaged. 2A and 2B are diagrams illustrating an example of observation of interference fringes, in which FIG. 2A illustrates interference fringes when the objective lens 10 has aberration, and FIG. 2B illustrates interference fringes when there is no aberration. If the objective lens 10 has no aberration, the interference fringes are parallel as shown in FIG. 2B, but if there is an aberration, FIG.
As shown by a portion 19 of FIG.

【0015】対物レンズ10を評価する際には基準とな
る対物レンズと比較して性能評価を行うが、図2(a)
に示す干渉縞は、ピンホール観察による目視検査では基
準のものと差異が無いと判断された対物レンズ10に関
するものである。このように、目視検査では確認できな
かったような収差も、本発明による干渉計を用いること
により確認することができ、液浸系対物レンズ10の性
能を定量的に高精度に評価することができる。
When the objective lens 10 is evaluated, its performance is evaluated in comparison with a reference objective lens.
Are related to the objective lens 10 determined to have no difference from the reference one in the visual inspection by pinhole observation. Thus, aberrations that could not be confirmed by visual inspection can be confirmed by using the interferometer according to the present invention, and the performance of the immersion objective lens 10 can be quantitatively and highly accurately evaluated. it can.

【0016】《変形例1》図3は、被検レンズである液
浸系対物レンズ20が有限系(図1の対物レンズは無限
系と呼ばれる)である場合の構成を示す図であり、要部
のみを示した。有限系の対物レンズ20では被検波21
として球面波を入射させる必要があり、球面波形成用フ
ィゾー面22aを有するフィゾーレンズ22が図1の参
照平面板4の代わりに用いられる。フィゾーレンズ22
は、フィゾー面22aの曲率中心が被検波(球面波)2
1の発散中心(被検波21の光束をビームスプリッタ5
方向に延長したときに一点に交わる点)と一致するよう
に配置される。光源3(図1参照)からの平面波2がビ
ームスプリッタ5を介してフィゾーレンズ22に入射す
ると、フィゾー面22aにより球面波の被検波21およ
び参照波22が形成される。その他の構成については図
1に示した干渉計と同様である。
<< Modification 1 >> FIG. 3 is a diagram showing a configuration in a case where the immersion type objective lens 20 as a test lens is a finite system (the objective lens in FIG. 1 is called an infinite system). Only parts are shown. In the finite objective lens 20, the test wave 21
It is necessary to make a spherical wave incident, and a Fizeau lens 22 having a Fizeau surface 22a for forming a spherical wave is used instead of the reference plane plate 4 in FIG. Fizeau lens 22
Is that the center of curvature of the Fizeau surface 22a is the test wave (spherical wave) 2
1 divergence center (the luminous flux of the test wave 21 is
(A point that intersects one point when extended in the direction). When the plane wave 2 from the light source 3 (see FIG. 1) is incident on the Fizeau lens 22 via the beam splitter 5, a spherical wave test wave 21 and a reference wave 22 are formed by the Fizeau surface 22a. Other configurations are the same as those of the interferometer shown in FIG.

【0017】対物レンズ20に入射した被検波21は焦
点16、すなわち半球平凸面レンズ12の球心に集めら
れ、半球平凸面レンズ12に入射した後に折返し球面1
2bで垂直反射され光路を逆行する。この逆行した被検
波21とフィゾー面22aで形成された参照波は、平面
波とされてフィゾーレンズ22の図示下方にあるビーム
スプリッタ5へと出射され、CCD撮像装置6の撮像面
に干渉縞が形成される。
The test wave 21 incident on the objective lens 20 is collected at the focal point 16, that is, at the spherical center of the hemispherical flat convex lens 12.
The light is vertically reflected at 2b and travels backward in the optical path. The reversed test wave 21 and the reference wave formed by the Fizeau surface 22a are converted to a plane wave and emitted to the beam splitter 5 below the Fizeau lens 22 in the drawing, and interference fringes are formed on the imaging surface of the CCD imaging device 6. Is done.

【0018】《変形例2》図4は図1に示す干渉計の第
2の変形例を示す図であり、半球平凸面レンズ部分の拡
大図である。図4に示す半球平凸面レンズ30では、図
1に示した半球平凸面レンズ12よりもレンズ厚さをカ
バーレンズの厚さdだけ厚くするとともに、カバーガラ
スと等しい屈折率を有する光学材料で形成した。すなわ
ち、折返し球面30bの曲率半径をRとすれば、レンズ
厚さは(R+d)に設定されている。
<< Modification 2 >> FIG. 4 is a view showing a second modification of the interferometer shown in FIG. 1, and is an enlarged view of a hemispherical flat convex lens portion. In the hemispherical convex convex lens 30 shown in FIG. 4, the lens thickness is made larger than the hemispherical convex convex lens 12 shown in FIG. 1 by the thickness d of the cover lens, and is formed of an optical material having the same refractive index as the cover glass. did. That is, if the radius of curvature of the turning spherical surface 30b is R, the lens thickness is set to (R + d).

【0019】通常、顕微鏡観察をする際には、標本上を
カバーガラスで覆い、そのカバーガラスと対物レンズと
の間に浸液が充填される。図1に示したような半球平凸
面レンズ12を用いて対物レンズ評価をする際には、半
球平凸面レンズ12と対物レンズ10との間にカバーガ
ラスを挿入して波面干渉測定をする。そのため、作業性
が悪く、カバーガラス表面での反射が評価に影響を及ぼ
すおそれもある。
Usually, when observing with a microscope, the specimen is covered with a cover glass, and an immersion liquid is filled between the cover glass and the objective lens. When the objective lens is evaluated using the hemispherical convex convex lens 12 as shown in FIG. 1, a cover glass is inserted between the hemispherical convex convex lens 12 and the objective lens 10 to measure the wavefront interference. Therefore, workability is poor and reflection on the surface of the cover glass may affect the evaluation.

【0020】一方、図4に示す半球平凸面レンズ30で
は、カバーガラスを一体に有するような形状とした。対
物レンズ10からの被検波8は浸液15を通過した後に
平面30aから半球平凸面レンズ30に入射して、平面
30aから距離dの位置16に焦点を結ぶ。半球平凸面
レンズ30は球心が対物レンズ10の焦点位置16と一
致するように配設されるので、半球平凸面レンズ30に
入った被検波8は折返し球面30bで垂直反射され、光
路を逆行してCCD撮像装置6(図1参照)に入射す
る。
On the other hand, the hemispherical flat convex lens 30 shown in FIG. 4 has a shape having a cover glass integrally. After passing through the immersion liquid 15, the test wave 8 from the objective lens 10 enters the hemispherical flat convex lens 30 from the plane 30a, and focuses on a position 16 at a distance d from the plane 30a. Since the hemispherical convex convex lens 30 is disposed so that the spherical center coincides with the focal position 16 of the objective lens 10, the test wave 8 entering the hemispherical convex convex lens 30 is vertically reflected by the folded spherical surface 30b and reverses the optical path. Then, the light enters the CCD imaging device 6 (see FIG. 1).

【0021】半球平凸面レンズ30はカバーガラスと等
しい屈折率を有しているため、浸液15の屈折率とほぼ
等しく、被検波8は平面30aでほとんど反射されるこ
とが無い。そのため、上述したような反射光の影響を防
止することができるとともに、別体のカバーガラスを配
設する必要が無いので作業性の向上を図ることができ
る。
Since the hemispherical flat convex lens 30 has a refractive index equal to that of the cover glass, the refractive index of the immersion liquid 15 is substantially equal, and the test wave 8 is hardly reflected by the plane 30a. Therefore, the influence of the reflected light as described above can be prevented, and workability can be improved because there is no need to provide a separate cover glass.

【0022】以上説明した実施の形態と特許請求の範囲
の要素との対応において、参照平面板4およびフィゾー
レンズ22は第1の光学系を、半球平凸面レンズ12,
30は第2の光学系を、折返し球面12b,30bは凸
球面を、CCD撮像装置6は検出器をそれぞれ構成す
る。
In the correspondence between the embodiment described above and the elements of the claims, the reference plane plate 4 and the Fizeau lens 22 correspond to the first optical system and the hemispherical flat convex lens 12,
Numeral 30 denotes a second optical system, folded spheres 12b and 30b form convex spheres, and the CCD imaging device 6 constitutes a detector.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
折返し球面を有する第2の光学系を液浸系対物レンズと
の間に浸液を充填して対向配置することにより、対物レ
ンズを透過した被検波を第2の光学系の折返し球面で反
射して参照波と干渉させる。この干渉により生じる干渉
縞を検出器で検出することにより、液浸系対物レンズの
性能を定量的にかつ高精度に評価をすることができる。
特に、請求項3の発明では、第2の光学系のレンズ厚さ
が、カバーガラスの厚さと凸球面の曲率半径との和に等
しく設定されているので、評価の際に第2の光学系と対
物レンズとの間にカバーガラスを挿入する必要が無く、
作業性の向上を図ることができる。
As described above, according to the present invention,
By filling the immersion liquid between the second optical system having the folded spherical surface and the immersion type objective lens and arranging the immersion liquid to face each other, the test wave transmitted through the objective lens is reflected by the folded spherical surface of the second optical system. To interfere with the reference wave. The performance of the immersion objective lens can be quantitatively and accurately evaluated by detecting interference fringes generated by the interference with the detector.
In particular, in the invention of claim 3, since the lens thickness of the second optical system is set equal to the sum of the thickness of the cover glass and the radius of curvature of the convex spherical surface, the second optical system is evaluated at the time of evaluation. There is no need to insert a cover glass between the
Workability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による干渉計の一実施の形態を示す図で
あり、干渉計の概略構成図である。
FIG. 1 is a diagram illustrating an embodiment of an interferometer according to the present invention, and is a schematic configuration diagram of the interferometer.

【図2】干渉縞の観察例を示す図であり、(a)は対物
レンズ10に収差がある場合の干渉縞を示しており、
(b)は収差が無い場合の干渉縞を示す。
2A and 2B are diagrams illustrating an example of observation of interference fringes, in which FIG. 2A illustrates interference fringes when the objective lens 10 has aberration;
(B) shows interference fringes when there is no aberration.

【図3】第1の変形例を説明する図であり、有限系の液
浸系対物レンズ20に対する干渉計の構成を示す。
FIG. 3 is a diagram for explaining a first modification example, and shows a configuration of an interferometer for a finite immersion type objective lens 20;

【図4】第2の変形例を説明する図であり、半球平凸面
レンズ部分の拡大図である。
FIG. 4 is a diagram illustrating a second modification, and is an enlarged view of a hemispherical flat convex lens portion.

【図5】乾燥系顕微鏡対物レンズの波面評価方法を説明
する図である。
FIG. 5 is a diagram illustrating a method of evaluating a wavefront of a dry microscope objective lens.

【符号の説明】[Explanation of symbols]

1 干渉計部 2 平面波 3 光源 4 参照平面板 4a 参照平面 6 CCD撮像装置 7 参照波 8,21 被検波 9 アダプタ 10 対物レンズ 12,30 半球平凸面レンズ 12a,30a 平面 12b、30b 折返し球面 13 ステージ 15 浸液 22 フィゾーレンズ DESCRIPTION OF SYMBOLS 1 Interferometer part 2 Plane wave 3 Light source 4 Reference plane plate 4a Reference plane 6 CCD imaging device 7 Reference wave 8,21 Test wave 9 Adapter 10 Objective lens 12,30 Hemispherical flat convex lens 12a, 30a Plane 12b, 30b Folded spherical surface 13 Stage 15 Immersion liquid 22 Fizeau lens

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F064 AA09 BB04 FF00 GG12 GG22 GG38 GG47 HH03 JJ01 KK01 2G086 HH06 2H087 KA12 LA21 NA00 PA01 PA17 PB01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F064 AA09 BB04 FF00 GG12 GG22 GG38 GG47 HH03 JJ01 KK01 2G086 HH06 2H087 KA12 LA21 NA00 PA01 PA17 PB01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 参照波および被検波を形成して、前記被
検波を液浸系顕微鏡対物レンズに入射させる第1の光学
系と、 折返し球面を有するとともに、前記対物レンズとの間に
浸液を充填して対向配置され、前記対物レンズを透過し
て前記折返し球面で反射された被検波を出射する第2の
光学系と、 前記折返し球面で反射された被検波と前記参照波との干
渉波を検出する検出器とを備え、前記検出器で検出され
た干渉波に基づいて前記対物レンズを評価することを特
徴とする液浸系顕微鏡対物レンズ用干渉計。
An immersion liquid between a first optical system that forms a reference wave and a test wave and causes the test wave to be incident on an immersion microscope objective lens, and has a folded spherical surface and the objective lens. And a second optical system that is disposed to face and transmits the objective lens and emits the test wave reflected by the folded sphere, and interference between the test wave reflected by the folded sphere and the reference wave. An interferometer for an immersion microscope objective lens, comprising: a detector for detecting a wave; and evaluating the objective lens based on the interference wave detected by the detector.
【請求項2】 請求項1に記載の液浸系顕微鏡対物レン
ズ用干渉計において、 前記第2の光学系は、前記対物レンズの焦点位置に配設
される平面と、球心が前記焦点位置と一致する凸球面と
を有するとともに、レンズ厚さが前記凸球面の曲率半径
と等しい半球平凸面レンズであることを特徴とする液浸
系顕微鏡対物レンズ用干渉計。
2. The immersion microscope objective lens interferometer according to claim 1, wherein the second optical system is configured such that a plane disposed at a focal position of the objective lens and a spherical center are located at the focal position. And a convex spherical surface having the same shape as that of the convex spherical surface, and having a lens thickness equal to the radius of curvature of the convex spherical surface.
【請求項3】 請求項1に記載の液浸系顕微鏡対物レン
ズ用干渉計において、 前記第2の光学系は、平面と球心が前記焦点位置と一致
する凸球面とを有するとともに、レンズ厚さが液浸系顕
微鏡に使用されるカバーガラスの厚さと前記凸球面の曲
率半径との和に等しく、かつ、前記カバーガラスと等し
い屈折率を有する半球平凸面レンズであることを特徴と
する液浸系顕微鏡対物レンズ用干渉計。
3. The interferometer for an immersion microscope objective lens according to claim 1, wherein the second optical system has a convex spherical surface whose plane and sphere coincide with the focal position, and has a lens thickness. Is a hemispherical flat convex lens having a refractive index equal to the sum of the thickness of the cover glass used for the immersion microscope and the radius of curvature of the convex spherical surface, and having the same refractive index as the cover glass. Interferometer for immersion microscope objectives.
【請求項4】 液浸系顕微鏡対物レンズとの間に浸液を
介して配設された折返し球面で前記対物レンズを透過し
た被検波を反射し、参照波と前記折返し球面で反射され
た前記被検波との干渉波に基づいて前記対物レンズを評
価することを特徴とする液浸系顕微鏡対物レンズの評価
方法。
4. A test wave transmitted through the objective lens is reflected by a folded spherical surface disposed between the immersion liquid and the immersion microscope objective lens through an immersion liquid, and a reference wave and the reflected wave are reflected by the folded spherical surface. A method for evaluating an objective lens for an immersion microscope, wherein the objective lens is evaluated based on an interference wave with a test wave.
JP2000256897A 2000-08-28 2000-08-28 Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective Pending JP2002071513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000256897A JP2002071513A (en) 2000-08-28 2000-08-28 Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000256897A JP2002071513A (en) 2000-08-28 2000-08-28 Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective

Publications (1)

Publication Number Publication Date
JP2002071513A true JP2002071513A (en) 2002-03-08

Family

ID=18745438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000256897A Pending JP2002071513A (en) 2000-08-28 2000-08-28 Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective

Country Status (1)

Country Link
JP (1) JP2002071513A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250678A (en) * 2001-02-27 2002-09-06 Olympus Optical Co Ltd Wave front measuring instrument and wave front measuring method
WO2005010960A1 (en) * 2003-07-25 2005-02-03 Nikon Corporation Inspection method and inspection device for projection optical system, and production method for projection optical system
JP2006112903A (en) * 2004-10-14 2006-04-27 Olympus Corp Ultraviolet light source unit, interferometer using it, and adjusting method of interferometer
WO2005119368A3 (en) * 2004-06-04 2006-05-11 Zeiss Carl Smt Ag System for measuring the image quality of an optical imaging system
US7276717B2 (en) 2004-11-05 2007-10-02 Canon Kabushiki Kaisha Measuring apparatus, exposure apparatus and device manufacturing method
JP2008147702A (en) * 2008-02-25 2008-06-26 Seiko Epson Corp Liquid volume-determining apparatus and method, and aligner
US7408652B2 (en) * 2002-12-20 2008-08-05 Carl Zeiss Smt Ag Device and method for the optical measurement of an optical system by using an immersion fluid
US7623218B2 (en) 2004-11-24 2009-11-24 Carl Zeiss Smt Ag Method of manufacturing a miniaturized device
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8941810B2 (en) 2005-12-30 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9740107B2 (en) 2002-11-12 2017-08-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10180629B2 (en) 2003-06-09 2019-01-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10261428B2 (en) 2002-11-12 2019-04-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10503084B2 (en) 2002-11-12 2019-12-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2020055974A1 (en) * 2018-09-12 2020-03-19 Steris Instrument Management Services, Inc. Systems and methods for standalone endoscopic objective image analysis

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250678A (en) * 2001-02-27 2002-09-06 Olympus Optical Co Ltd Wave front measuring instrument and wave front measuring method
US9740107B2 (en) 2002-11-12 2017-08-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10962891B2 (en) 2002-11-12 2021-03-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10788755B2 (en) 2002-11-12 2020-09-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10503084B2 (en) 2002-11-12 2019-12-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10261428B2 (en) 2002-11-12 2019-04-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10191389B2 (en) 2002-11-12 2019-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8836929B2 (en) 2002-12-20 2014-09-16 Carl Zeiss Smt Gmbh Device and method for the optical measurement of an optical system by using an immersion fluid
US7408652B2 (en) * 2002-12-20 2008-08-05 Carl Zeiss Smt Ag Device and method for the optical measurement of an optical system by using an immersion fluid
US8120763B2 (en) 2002-12-20 2012-02-21 Carl Zeiss Smt Gmbh Device and method for the optical measurement of an optical system by using an immersion fluid
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US10180629B2 (en) 2003-06-09 2019-01-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10678139B2 (en) 2003-06-09 2020-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4524669B2 (en) * 2003-07-25 2010-08-18 株式会社ニコン Projection optical system inspection method and inspection apparatus
EP3346485A1 (en) * 2003-07-25 2018-07-11 Nikon Corporation Projection optical system inspecting method and inspection apparatus, and a projection optical system manufacturing method
JP2009152619A (en) * 2003-07-25 2009-07-09 Nikon Corp Inspection method and inspecting device for projection optical system
WO2005010960A1 (en) * 2003-07-25 2005-02-03 Nikon Corporation Inspection method and inspection device for projection optical system, and production method for projection optical system
EP1650787A1 (en) * 2003-07-25 2006-04-26 Nikon Corporation Inspection method and inspection device for projection optical system, and production method for projection optical system
JPWO2005010960A1 (en) * 2003-07-25 2006-09-14 株式会社ニコン Projection optical system inspection method and inspection apparatus, and projection optical system manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US7760366B2 (en) 2004-06-04 2010-07-20 Carl Zeiss Smt Ag System for measuring the image quality of an optical imaging system
WO2005119368A3 (en) * 2004-06-04 2006-05-11 Zeiss Carl Smt Ag System for measuring the image quality of an optical imaging system
US9429495B2 (en) 2004-06-04 2016-08-30 Carl Zeiss Smt Gmbh System for measuring the image quality of an optical imaging system
US7796274B2 (en) 2004-06-04 2010-09-14 Carl Zeiss Smt Ag System for measuring the image quality of an optical imaging system
US8823948B2 (en) 2004-06-04 2014-09-02 Carl Zeiss Smt Gmbh System for measuring the image quality of an optical imaging system
US8488127B2 (en) 2004-06-04 2013-07-16 Carl Zeiss Smt Gmbh System for measuring the image quality of an optical imaging system
JP2006112903A (en) * 2004-10-14 2006-04-27 Olympus Corp Ultraviolet light source unit, interferometer using it, and adjusting method of interferometer
US7276717B2 (en) 2004-11-05 2007-10-02 Canon Kabushiki Kaisha Measuring apparatus, exposure apparatus and device manufacturing method
US7623218B2 (en) 2004-11-24 2009-11-24 Carl Zeiss Smt Ag Method of manufacturing a miniaturized device
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10761433B2 (en) 2005-12-30 2020-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8947631B2 (en) 2005-12-30 2015-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11669021B2 (en) 2005-12-30 2023-06-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11275316B2 (en) 2005-12-30 2022-03-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9851644B2 (en) 2005-12-30 2017-12-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8941810B2 (en) 2005-12-30 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10222711B2 (en) 2005-12-30 2019-03-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9436096B2 (en) 2005-12-30 2016-09-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2008147702A (en) * 2008-02-25 2008-06-26 Seiko Epson Corp Liquid volume-determining apparatus and method, and aligner
WO2020055974A1 (en) * 2018-09-12 2020-03-19 Steris Instrument Management Services, Inc. Systems and methods for standalone endoscopic objective image analysis
US11857151B2 (en) 2018-09-12 2024-01-02 Steris Instrument Management Services, Inc. Systems and methods for standalone endoscopic objective image analysis

Similar Documents

Publication Publication Date Title
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
EP2538170A1 (en) Method and device for measuring multiple parameters of differential confocal interference component
JP2009162539A (en) Light wave interferometer apparatus
JP5592108B2 (en) Interference confocal microscope and light source imaging method
KR20010012563A (en) High resolution confocal microscope
WO2012001929A1 (en) Wavefront aberration measuring apparatus and wavefront aberration measuring method
JP2007506937A (en) Optical inclinometer
JPH02161332A (en) Device and method for measuring radius of curvature
US6794625B2 (en) Dynamic automatic focusing method and apparatus using interference patterns
JP4694331B2 (en) Optical system for adjusting the tilt of the objective lens
JP4223349B2 (en) Vibration-resistant interferometer device
JP2000241128A (en) Plane-to-plane space measuring apparatus
JP2008026049A (en) Flange focal distance measuring instrument
JP2001235317A (en) Apparatus for measuring radius of curvature of optical spherical surface
US20020054296A1 (en) Point source microscope: device, methods and assembly procedures
JP2005201703A (en) Interference measuring method and system
JP4148592B2 (en) Birefringence measuring method and birefringence measuring apparatus
JP2012013686A (en) Interferometer
JP2010019798A (en) Surface inspection method and surface inspection device
JP6670476B2 (en) Detector
JP2003148939A (en) Autocollimator provided with microscope, and instrument for measuring shape using the same
KR100738387B1 (en) Wavefront measuring devices with off-axis illumination
JP2008292218A (en) Surface shape measuring device, surface shape measuring method, and microscopic objective optical system
JP2593493B2 (en) Lens adjustment and inspection equipment
JP3410800B2 (en) Vibration resistant interferometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027