JP2002069626A - Sputtering target and its production method - Google Patents

Sputtering target and its production method

Info

Publication number
JP2002069626A
JP2002069626A JP2000269445A JP2000269445A JP2002069626A JP 2002069626 A JP2002069626 A JP 2002069626A JP 2000269445 A JP2000269445 A JP 2000269445A JP 2000269445 A JP2000269445 A JP 2000269445A JP 2002069626 A JP2002069626 A JP 2002069626A
Authority
JP
Japan
Prior art keywords
target
sputtering
temperature
annealing
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000269445A
Other languages
Japanese (ja)
Inventor
Toshiyuki Osako
敏行 大迫
Kunio Watanabe
邦夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2000269445A priority Critical patent/JP2002069626A/en
Publication of JP2002069626A publication Critical patent/JP2002069626A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sputtering target capable of dissolving the non-uniformity of thickness by variation and the like of voltage in sputtering, when forming an electrode film by sputtering method. SOLUTION: Copper and aluminum are blended to form a mixture containing 2.5 wt.% copper and the balance aluminum, and it is charged into a crucible, melted and cast to produce an ingot. The obtained ingot is homogenized, and thereafter cooled, that is, this ingot is, after chamfering, cold-worked so that the ratio of cold-working, namely, the diminishing ratio of cross section by cold-working, is 60% or above. The obtained worked material is annealed, in a flow of argon, at the same temperature or a little higher temperature than it as the maximum arriving temperature of the target, when the maximum arriving temperature of the target is over 350 deg.C in sputtering, and at 350 deg.C or above when the maximum arriving temperature of the target is below 350 deg.C in sputtering, and thereafter is quickly cooled to produce the sputtering target.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子部品電極形成用
に用いられるアルミニウム合金製のスパッタリングター
ゲットおよびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sputtering target made of an aluminum alloy used for forming an electrode of an electronic component and a method of manufacturing the same.

【0002】[0002]

【従来の技術】表面弾性波デバイスを初めとする電子部
品では、素子上にアルミニウムを蒸着し、あるいはスパ
ッタリング法により電極を構成していた。この様に形成
されたアルミニウム膜は、軽量で電気特性も良く、電極
材として好適であるが、繰り返し応力による経時変化を
生じるという欠点がある。この欠点を解消するために、
アルミニウムに50重量%以下の銅などを添加した膜を
形成して電極としていた。
2. Description of the Related Art In an electronic component such as a surface acoustic wave device, an electrode is formed by evaporating aluminum on the element or by sputtering. The aluminum film formed in this way is lightweight and has good electric characteristics and is suitable as an electrode material, but has a drawback of causing a temporal change due to repeated stress. To eliminate this drawback,
An electrode was formed by forming a film obtained by adding 50% by weight or less of copper or the like to aluminum.

【0003】[0003]

【発明が解決しようとする課題】近年電子部品の小型
化、高精度化の進展に伴い、これらに用いられる電極に
もさらに高加工精度が要求される。すなわち、表面弾性
波デバイスのような電子部品では共振周波数が電極の膜
厚によって影響されるので、いかに一定の均一な厚みを
有する電極膜を得るかと言うことがきわめて重要とな
る。この点より蒸着法よりスパッタ法が推奨されるが、
スパッタ法でも、スパッタ中の電圧等の変動などによる
厚みの不均一性を十分解消できず、必ずしも十分な膜厚
制御ができているとはいえない。
In recent years, with the progress of miniaturization and higher precision of electronic components, electrodes used in these components are required to have higher processing accuracy. That is, in an electronic component such as a surface acoustic wave device, the resonance frequency is affected by the thickness of the electrode, and it is very important how to obtain an electrode film having a constant and uniform thickness. From this point, the sputtering method is recommended over the vapor deposition method,
Even with the sputtering method, it is not possible to sufficiently eliminate the non-uniformity of the thickness due to the fluctuation of the voltage or the like during the sputtering, and it cannot be said that sufficient film thickness control is always performed.

【0004】本発明は、スパッタ法により電極膜を形成
するに際して、上記したような従来技術の問題点を改善
し、高精度の膜厚制御を可能とするスパッタリングター
ゲットの提供を目的とする。
An object of the present invention is to provide a sputtering target which can solve the above-mentioned problems of the prior art when forming an electrode film by a sputtering method and which can control the film thickness with high accuracy.

【0005】[0005]

【課題を解決するための手段】すなわち上記課題を解消
する本発明は、Cuを2〜5重量%含み、残部が実質的
にアルミニウムからなるアルミニウム合金ターゲットで
あって、該アルミニウム合金ターゲットを構成する結晶
の粒径が100μm以下であることを特徴とするアルミ
ニウム合金スパッタリングターゲットである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides an aluminum alloy target containing 2 to 5% by weight of Cu and the balance substantially consisting of aluminum. An aluminum alloy sputtering target having a crystal grain size of 100 μm or less.

【0006】また本発明の別の態様は、銅が2〜5重量
%、残部がアルミニウムとなるように銅とアルミニウム
とを調合して坩堝に入れ、溶解し、鋳造して鋳塊を得、
得られた鋳塊を均質化処理した後冷却し、要すればこれ
を面削した後、冷間加工率、すなわち冷間加工による断
面減少率が60%以上となるように冷間加工して、得た
加工材をアルゴン気流中で、スパッタ時のターゲット到
達最高温度が350℃を越える場合には該ターゲット到
達最高温度と同じかそれよりも若干高い温度、スパッタ
時のターゲット到達最高温度が350℃を下回る場合に
は350℃以上で焼鈍し、焼鈍し後に急冷してスパッタ
リングターゲットとするアルミニウム合金スパッタリン
グターゲットの製造方法である。
In another embodiment of the present invention, copper and aluminum are mixed and put into a crucible so that copper is 2 to 5% by weight, and the balance is aluminum, melted and cast to obtain an ingot.
The obtained ingot is homogenized, then cooled and, if necessary, is beveled, and then cold-worked so that the cold-working rate, that is, the cross-sectional reduction rate by cold working, is 60% or more. If the maximum temperature attained by the target during sputtering exceeds 350 ° C. in an argon gas flow of the obtained work material, the target maximum temperature at the time of sputtering is equal to or slightly higher than the maximum temperature reached by the target. In the case where the temperature is lower than ℃, the method is a method of manufacturing an aluminum alloy sputtering target which is annealed at 350 ° C or more, quenched after annealing, and used as a sputtering target.

【0007】[0007]

【発明の実施の形態】本発明の趣旨は、合金成分として
銅を用い、適切な熱処理と加工処理とを施すことにより
銅により結晶径を制御し、もって良好なアルミニウム合
金ターゲットを得ようとするものである。よって、本発
明では、他の目的のために他の元素をアルミニウムに添
加することを拒むものではない。本発明が「残部が実質
的にアルミニウムからなる」とする意味はこの点を意味
する。
BEST MODE FOR CARRYING OUT THE INVENTION The purpose of the present invention is to use copper as an alloy component and to control the crystal diameter by using appropriate heat treatment and processing to obtain a good aluminum alloy target. Things. Therefore, the present invention does not refuse to add another element to aluminum for another purpose. The meaning of the present invention that “the remainder substantially consists of aluminum” means this point.

【0008】スパッタ法では、スパッタリングターゲッ
ト表面(以下、単に「ターゲット」と記す。)に存在す
る結晶粒子より放出される金属原子の放出角度は結晶の
方位によって異なってくる。従って、ターゲットの各結
晶粒が大きい場合には、各結晶粒子から構成される平均
としての結晶方位に比較的大きな異方性を生じるため、
得られる膜の厚みにバラツキを生じることになる。よっ
て、ターゲットを構成する結晶粒が十分小さければ、平
均としての結晶方位の異方性が小さくなり、得られる膜
の厚みのバラツキは無視できるほどに小さくなる。
In the sputtering method, the emission angle of metal atoms emitted from crystal particles existing on the surface of a sputtering target (hereinafter simply referred to as “target”) varies depending on the orientation of the crystal. Therefore, when each crystal grain of the target is large, a relatively large anisotropy occurs in the average crystal orientation composed of each crystal grain,
The thickness of the obtained film will vary. Therefore, if the crystal grains constituting the target are sufficiently small, the anisotropy of the crystal orientation as an average becomes small, and the variation in the thickness of the obtained film becomes so small as to be negligible.

【0009】一般にアルミニウムのような純金属は結晶
粒が粗大となりやすい。従来のように、銅などを添加し
た場合でも、単純に混合溶解し、鋳造し、圧延するのみ
では、得られるターゲットの組織は粗大となってしま
う。また、合金組成および製造方法によっては、初期の
結晶粒径が小さくても、スパッタによる加熱によって結
晶粒が粗大化し膜厚分布の均一性を低下させる。
In general, a pure metal such as aluminum tends to have a large crystal grain. Even if copper or the like is added as in the related art, simply mixing, dissolving, casting, and rolling will result in a coarse target structure. Further, depending on the alloy composition and the manufacturing method, even when the initial crystal grain size is small, the crystal grains are coarsened by heating by sputtering, and the uniformity of the film thickness distribution is reduced.

【0010】スパッタ中の加熱によっても安定な微細結
晶組織を維持するためには、銅の添加量を一定範囲とす
ることが必要である。添加した銅の量が、対ターゲット
に対して2重量%未満の場合、加工方法如何に関わらず
微細な結晶組織が得られない。例え得られたとしても、
スパッタ中の加熱により結晶が粗大化してしまう。銅の
量が増加すると共に結晶組織は安定化するが、5重量%
を越えて添加した場合には、アルミニウムと銅との化合
物が粗大に分布するようになり、加工性が低下する。そ
こで、本発明では、アルミニウムへの銅添加量は対ター
ゲットに対して2〜5重量%とした。
[0010] In order to maintain a stable fine crystal structure even by heating during sputtering, it is necessary to keep the added amount of copper within a certain range. If the amount of copper added is less than 2% by weight with respect to the target, a fine crystal structure cannot be obtained regardless of the processing method. Even if you get it,
Crystals become coarse due to heating during sputtering. The crystal structure stabilizes as the amount of copper increases, but 5% by weight
If the addition exceeds the range, the compound of aluminum and copper is coarsely distributed, and the workability is reduced. Therefore, in the present invention, the amount of copper added to aluminum is set to 2 to 5% by weight based on the target.

【0011】次に本発明ターゲットの製造方法とくに結
晶粒径の制御方法について述べる。まず、所定量の銅と
アルミニウム、あるいはアルミニウム合金を坩堝に秤取
り、溶解し、鋳造して鋳塊を得るが、この溶解方法とし
ては一般的な高周波溶解などを用いることができる。酸
化防止のために真空溶解などを適用してもよい。鋳型材
質は、アルミニウムや銅と反応しないものであれば特に
こだわらず、通常鉄または黒鉛製の坩堝を用いる。
Next, a method for manufacturing the target of the present invention, in particular, a method for controlling the crystal grain size will be described. First, a predetermined amount of copper and aluminum or an aluminum alloy is weighed in a crucible, melted, and cast to obtain an ingot. As a melting method, general high frequency melting or the like can be used. Vacuum melting may be applied to prevent oxidation. The mold material is not particularly limited as long as it does not react with aluminum or copper, and usually a crucible made of iron or graphite is used.

【0012】このように溶解し、鋳造した場合、得られ
る鋳塊の組織は粗大結晶粒からなり、かつ添加した銅の
分布も不均一であるので500℃以上の温度での均質化
処理または熱間圧延などを行って銅分布の均一化を図る
ことが望ましい。銅の分布が不均一であると、濃度の違
いによってターゲットの結晶粒径が不均一になってしま
う。その後の冷却はできるだけ早い冷却速度で行うこと
が好ましいが、通常のシャワー冷却などで十分である。
When melted and cast as described above, the structure of the resulting ingot is composed of coarse crystal grains and the distribution of the added copper is not uniform. It is desirable to make the copper distribution uniform by performing cold rolling or the like. If the distribution of copper is non-uniform, the crystal grain size of the target will be non-uniform due to the difference in concentration. The subsequent cooling is preferably performed at a cooling rate as fast as possible, but ordinary shower cooling or the like is sufficient.

【0013】その後、冷間圧延や冷間鍛造などにより鋳
塊をターゲットに近い形状に加工する。このときの加工
度によってターゲットの結晶粒径が変化する。冷間加工
率即ち、被加工材の断面減少率が60%未満ではターゲ
ット粒径が粗大となる。冷間加工率が高いほどターゲッ
トの粒径は小さくなるので、最終のターゲット厚みと必
要な加工率から鋳塊の厚みを計算することができる。
Thereafter, the ingot is worked into a shape close to the target by cold rolling, cold forging, or the like. The crystal grain size of the target changes depending on the degree of processing at this time. When the cold working ratio, that is, the cross-sectional reduction ratio of the workpiece is less than 60%, the target particle size becomes coarse. Since the grain size of the target becomes smaller as the cold working ratio becomes higher, the thickness of the ingot can be calculated from the final target thickness and the required working ratio.

【0014】良好なターゲットを得るためには、冷間化
工により生じた加工組織をできるだけ除去することが望
まれる。このため、冷間加工を行った材料を加熱焼鈍す
る。このときの焼鈍温度、焼鈍時間により再結晶が生
じ、歪みの少ないターゲットを得ることができるが、粒
径も変化する。本発明のように2〜5重量%のCuを添
加した場合、均一な再結晶組織を得るためには350℃
以上の温度での焼鈍が必要である。それ以下の温度では
加工組織が残留し、結晶方位の偏りを持つ組織となって
しまう。さらに、スパッタ中の加熱により残留した歪み
が回復し、ターゲット組織の変化やターゲットにソリな
どを生じる。350℃以上の温度で焼鈍した場合には、
均一な再結晶組織となり結晶方位もランダムなものとな
る。
[0014] In order to obtain a good target, it is desirable to remove as much as possible the processed structure generated by the cold working. For this reason, the cold-worked material is heated and annealed. At this time, recrystallization occurs depending on the annealing temperature and the annealing time, and a target with less distortion can be obtained, but the grain size also changes. When 2 to 5% by weight of Cu is added as in the present invention, 350 ° C. is required to obtain a uniform recrystallized structure.
Annealing at the above temperature is necessary. If the temperature is lower than this, the processed structure remains, resulting in a structure having an uneven crystal orientation. Further, the remaining strain is recovered by heating during sputtering, which causes a change in the target structure and warpage of the target. When annealing at a temperature of 350 ° C. or more,
A uniform recrystallization structure is obtained, and the crystal orientation is also random.

【0015】さらに焼鈍温度が高くなると、結晶粒が粗
大化し、かつ圧延集合組織と呼ばれる特定方位に偏った
方位を持つようになる。焼鈍温度が高いほど結晶粒は大
きくなるので、焼鈍温度は再結晶組織が得られる範囲
で、できるだけ低い方が望ましい。
[0015] When the annealing temperature is further increased, the crystal grains become coarse and have an orientation biased to a specific orientation called a rolling texture. Since the crystal grains increase as the annealing temperature increases, it is desirable that the annealing temperature be as low as possible within a range where a recrystallized structure can be obtained.

【0016】しかし、焼鈍温度がスパッタ時のターゲッ
ト到達最高温度よりも低いと、スパッタ中に粒成長が生
じてスパッタ中の成膜特性の時間変化を起こしてしま
う。焼鈍時スパッタ時のターゲット到達最高温度と同じ
かそれよりも高い温度で焼鈍することでターゲット組織
が安定化し、安定したスパッタ特性を得ることができ
る。なおスパッタ時のターゲット到達最高温度が350
℃よりも低い場合は当然であるが、350℃以上で焼鈍
することによって,スパッタ中の成膜特性の変化を小さ
くすることができる。
However, if the annealing temperature is lower than the maximum temperature attained by the target at the time of sputtering, grain growth occurs during sputtering, causing a change in the film forming characteristics with time during sputtering. Annealing at a temperature equal to or higher than the maximum temperature attained by the target during sputtering during annealing stabilizes the target structure and enables stable sputtering characteristics to be obtained. The target maximum temperature during sputtering is 350
Naturally, the annealing temperature is lower than 350 ° C., but by annealing at 350 ° C. or higher, a change in film forming characteristics during sputtering can be reduced.

【0017】しかし、高温焼鈍の場合も連続焼鈍のよう
に短時間の焼鈍であれば、結晶粒の比較的小さな、均一
なターゲット組織を得ることができる。
However, even in the case of high-temperature annealing, if the annealing is performed for a short time as in continuous annealing, a uniform target structure with relatively small crystal grains can be obtained.

【0018】なお、当然焼鈍温度は融点以下としなけれ
ば、ターゲットが一部溶解し、その効果は無い。
If the annealing temperature is not lower than the melting point, the target partially dissolves and has no effect.

【0019】[0019]

【実施例】以上述べてきた本発明ターゲットおよびその
製造方法について、実施例によりさらに詳しく説明す
る。
EXAMPLES The above-described target of the present invention and the method for producing the same will be described in more detail with reference to examples.

【0020】99.99%以上の純度の高純度アルミニ
ウムと電気銅を原料として用い、表1に示す組成の各合
金を真空溶解法によって10kg溶解し、ステンレス鋼
製金型に流し込み、鋳塊を作製した。得られた鋳塊をア
ルゴン気流中、500℃に24時間保持して均質化処理
をした後、鋳塊をシャワー冷却した。この鋳塊を面削し
て100mm厚みの板材とした。次に、この板材を切り
出し、それぞれ冷間圧延して50〜20mmまでの各板
厚とした後、アルゴン気流中、500℃、2hの焼鈍
後、シャワー冷却して出発材料とした。
Using high purity aluminum and electrolytic copper having a purity of 99.99% or more as raw materials, 10 kg of each alloy having the composition shown in Table 1 was melted by a vacuum melting method, poured into a stainless steel mold, and the ingot was cast. Produced. The obtained ingot was kept in an argon stream at 500 ° C. for 24 hours to perform a homogenization treatment, and then the ingot was shower-cooled. The ingot was chamfered to obtain a plate having a thickness of 100 mm. Next, this plate material was cut out and cold rolled to obtain a plate thickness of 50 to 20 mm, and then annealed at 500 ° C. for 2 hours in an argon stream, followed by shower cooling to obtain a starting material.

【0021】(実施例1〜6、比較例1〜6)これらの
20〜100mm厚の板材を10mm厚まで冷間圧延し
た。それぞれ冷間加工率は50、60、80、90%で
ある。これらの板材を300℃〜500℃の各温度で焼
鈍した後、150mmの円板に切り出し、平面研削して
ターゲットを作製した。切り出した残部を研磨し、エッ
チングして光学顕微鏡を用いて組織を観察し、切断法に
より約200の結晶粒について結晶粒径を測定して平均
値を求めた。
(Examples 1 to 6, Comparative Examples 1 to 6) These sheet materials having a thickness of 20 to 100 mm were cold-rolled to a thickness of 10 mm. The cold working rates are 50, 60, 80 and 90%, respectively. After annealing these plate materials at respective temperatures of 300 ° C. to 500 ° C., they were cut out into 150 mm disks and surface ground to prepare targets. The cut-out remainder was polished and etched, the structure was observed using an optical microscope, and the crystal grain size of about 200 crystal grains was measured by a cutting method to obtain an average value.

【0022】作製したターゲットを用いて直流スパッタ
法により圧電セラミックス基板上にアルミニウム合金電
極を成膜した。30分のプレスパッタ後、3分間のスパ
ッタを行い、厚さ約50nmの電極を形成した。得られ
た圧電素子の共振周波数を測定し、正確な膜厚を計算し
た。また、一部のターゲットについては24時間の連続
スパッタを行った後に、再度セラミックス基板上に成膜
を行った。
Using the produced target, an aluminum alloy electrode was formed on a piezoelectric ceramic substrate by DC sputtering. After pre-sputtering for 30 minutes, sputtering was performed for 3 minutes to form an electrode having a thickness of about 50 nm. The resonance frequency of the obtained piezoelectric element was measured, and an accurate film thickness was calculated. For some of the targets, after continuous sputtering was performed for 24 hours, a film was formed again on the ceramic substrate.

【0023】これらのスパッタリングターゲットは試験
終了後、切断し再度結晶粒径を測定した。なお、スパッ
タ中のターゲット温度を、熱電対を用いて測定したとこ
ろ最高370℃であった。銅の割合、加工率、焼鈍温
度、焼鈍時間、結晶粒径を表1にまとめて示した。
After the test, these sputtering targets were cut and the crystal grain size was measured again. The target temperature during sputtering was measured at 370 ° C. using a thermocouple. Table 1 summarizes the ratio of copper, the working ratio, the annealing temperature, the annealing time, and the crystal grain size.

【0024】 表1 実施例 Cu 加工率 焼鈍温度 焼鈍時間 結晶粒径 (重量%) (%) (℃) (分) (μm) 1 2.2 80 390 120 85 2 2.2 90 380 120 67 3 3.9 80 390 120 83 4 3.9 90 420 120 62 5 4.8 80 380 120 72 6 4.8 90 450 10 55 比較例 1 1.2 80 330 120 加工組織 2 1.2 80 390 120 400 3 5.8 90 390 120 加工組織 圧延割れ 4 5.8 80 420 120 30 圧延割れ 5 3.9 50 390 120 145 6 2.2 80 350 120 52Table 1 Example Cu working rate Annealing temperature Annealing time Crystal grain size (% by weight) (%) (° C) (min) (μm) 1 2.2 80 390 120 85 2 2.2 90 380 120 67 3 3.9 80 390 120 83 4 3.9 90 420 420 120 62 5 4.8 80 380 120 72 6 4.8 90 90 450 10 55 Comparative example 1 1.2 80 330 120 120 Working structure 2 1.2 80 390 120 400 3 5.8 90 390 120 Work structure Rolling crack 4 5.8 80 420 120 30 Rolling crack 5 3.9 50 390 120 145 6 2.2 80 350 120 52

【0025】本発明実施例1〜7では、銅を2.2重量
%から4.8重量%含ませ、70〜90%の冷間加工率
行い、350〜450℃で焼鈍を行うことにより60〜
85μmの比較的均一な結晶粒径が得られている。一
方、銅量の少ない比較例1では330℃で焼鈍を行って
も加工組織が残留しており、銅量を同じとし、焼鈍温度
を360℃とした比較例2では400μmと粗大な結晶
組織なってしまい、焼鈍条件如何にかかわらず微細で均
一なターゲット組織は得られない。銅量の多い比較例
3、4では、390℃焼鈍では加工組織が残留するのに
対し、420℃では30μm程度の微細結晶粒が得られ
ている。しかし、これらの試料は50%以上の冷間圧延
で割れを生じ、良好なターゲットは得られない。
In Examples 1 to 7 of the present invention, copper is contained in an amount of 2.2 to 4.8% by weight, a cold working rate of 70 to 90% is performed, and annealing is performed at 350 to 450 ° C. ~
A relatively uniform crystal grain size of 85 μm is obtained. On the other hand, in Comparative Example 1 where the amount of copper was small, the processed structure remained even after annealing at 330 ° C., and in Comparative Example 2 where the amount of copper was the same and the annealing temperature was 360 ° C., a coarse crystal structure of 400 μm was obtained. As a result, a fine and uniform target structure cannot be obtained regardless of the annealing conditions. In Comparative Examples 3 and 4 having a large amount of copper, the processed structure remains after annealing at 390 ° C., whereas fine crystals of about 30 μm are obtained at 420 ° C. However, these samples are cracked by cold rolling of 50% or more, and a good target cannot be obtained.

【0026】銅量を3.9%とし、圧延率を50%とし
た比較例5では,焼鈍後の結晶粒径が145μmと大き
くなっている。比較例6は焼鈍温度がスパッタ時のター
ゲットの最高到達温度に比べ低い例であり、上記短期間
の使用に限れば微細結晶粒となっている。次に、圧延途
中で割れを生じた比較例3、4を除いたこれらの板材を
用いてターゲットを作製し、長期間のスパッタ試験を行
った。表2には20枚の基板に成膜した電極の膜厚を測
定し、電極間での最大膜厚と最小膜厚の差をとり、平均
膜厚で割った値を膜厚バラツキとして百分率で示した。
また24時間連続スパッタした後に同様の成膜を行った
場合の結果も併せて示した。
In Comparative Example 5 in which the amount of copper was 3.9% and the rolling reduction was 50%, the crystal grain size after annealing was as large as 145 μm. Comparative Example 6 is an example in which the annealing temperature is lower than the maximum attainable temperature of the target at the time of sputtering. Next, a target was produced using these plates except for Comparative Examples 3 and 4 in which cracks occurred during rolling, and a long-term sputtering test was performed. In Table 2, the film thickness of the electrodes formed on 20 substrates is measured, the difference between the maximum film thickness and the minimum film thickness between the electrodes is taken, and the value obtained by dividing by the average film thickness is expressed as a film thickness variation in percentage. Indicated.
The results obtained when the same film formation was performed after continuous sputtering for 24 hours are also shown.

【0027】 [0027]

【0028】本発明実施例1〜6では膜厚バラツキが小
さく、また24h連続スパッタ後も膜厚バラツキはほと
んど変化しない。それに対し,加工組織の残留する比較
例1では膜厚のバラツキが大きい。また、結晶粒径の大
きな比較例2、5も同様に膜厚のバラツキが大きい。ま
た、350℃で焼鈍を行い52μmの結晶粒を持つ比較
例6では、初期特性は優れているが24h連続スパッタ
後には膜厚バラツキが大きくなっている。
In Examples 1 to 6 of the present invention, the film thickness variation is small, and the film thickness variation hardly changes even after continuous sputtering for 24 hours. On the other hand, in Comparative Example 1 in which the processed structure remains, the variation in the film thickness is large. Similarly, Comparative Examples 2 and 5 having a large crystal grain size also have large variations in film thickness. In Comparative Example 6, which was annealed at 350 ° C. and had crystal grains of 52 μm, the initial characteristics were excellent, but the film thickness variation was large after continuous sputtering for 24 hours.

【0029】試験終了後のターゲットを切断してエロー
ジョン部を観察したところ、比較例6では,結晶粒径が
93μmまで粗大化していた。スパッタ加熱の影響によ
ると考えられる。それに対して実施例1〜6では、24
h連続スパッタ後にも結晶粒径の大きな変化は見られな
かった。
When the target was cut after the test and the erosion portion was observed, in Comparative Example 6, the crystal grain size was coarsened to 93 μm. This is considered to be due to the influence of sputter heating. In contrast, in Examples 1 to 6, 24
No significant change in crystal grain size was observed even after continuous sputtering.

【0030】次に、スパッタ時のターゲットと基板間の
距離を大きくし、ターゲットの到達最高温度を340℃
まで低下させ、比較例6と同じターゲットを24h連続
スパッタした後、同様に電極の膜厚を測定した。その結
果、膜厚のバラツキは1.4%と小さくなった。この結
果は、ターゲット組織を安定化するためにはターゲット
の使用条件を踏まえて焼鈍条件を決めることが効果的で
あることを示している。スパッタにおいては1回のスパ
ッタにおける位置によるバラツキとともにスパッタ中の
膜厚の経時変化も重大な問題となる。本発明のターゲッ
トでは、結晶組織による位置のバラツキだけでなく、長
時間使用においても安定した厚みの膜を得ることができ
る。
Next, the distance between the target and the substrate during sputtering is increased, and the maximum temperature of the target is set to 340 ° C.
After the same target as in Comparative Example 6 was continuously sputtered for 24 hours, the film thickness of the electrode was measured in the same manner. As a result, the variation in the film thickness was reduced to 1.4%. This result indicates that in order to stabilize the target structure, it is effective to determine the annealing conditions based on the use conditions of the target. In spattering, there is a serious problem that the film thickness varies during sputtering as well as the variation depending on the position in one sputtering. According to the target of the present invention, a film having a stable thickness can be obtained not only due to a variation in position due to the crystal structure but also for a long time use.

【0031】以上説明してきたように、本発明スパッタ
リングターゲットを用いれば、膜厚のバラツキの小さい
電極膜を形成することができ、電子部品の特性の制御に
大きな効果を有する。
As described above, by using the sputtering target of the present invention, an electrode film having a small variation in film thickness can be formed, which has a great effect on controlling the characteristics of electronic components.

【0032】[0032]

【発明の効果】以上述べたように、本発明は膜厚制御性
に優れる結晶粒径100μm以下で、スパッタ中の加熱
によっても結晶粒の粗大化などを起こさない安定なアル
ミニウム合金スパッタターゲットを提供するものであ
り、高い膜厚制御性をスパッタ開始時から長時間持続す
ることができる。なお、本発明は表面弾性波デバイスな
どの電極に特に効果を発揮するが、その他の電子部品に
ついても品質の向上に寄与できる。
As described above, the present invention provides a stable aluminum alloy sputter target having a crystal grain size of 100 μm or less which is excellent in film thickness controllability and which does not cause the crystal grains to become coarse even by heating during sputtering. Therefore, high film thickness controllability can be maintained for a long time from the start of sputtering. Although the present invention is particularly effective for electrodes such as surface acoustic wave devices, it can also contribute to improving the quality of other electronic components.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/285 301 H01L 21/285 301L // C22F 1/00 604 C22F 1/00 604 661 661Z 682 682 685 685A 691 691B 692 692A 694 694A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/285 301 H01L 21/285 301L // C22F 1/00 604 C22F 1/00 604 661 661 661Z 682 682 685 685A 691 691B 692 692A 694 694A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Cuを2〜5重量%含み、残部が実質的に
アルミニウムからなるアルミニウム合金スパッタリング
ターゲットであって、該ターゲットを構成する結晶の粒
径が100μm以下であることを特徴とするアルミニウ
ム合金スパッタリングターゲット。
1. An aluminum alloy sputtering target containing 2 to 5% by weight of Cu and the balance substantially consisting of aluminum, wherein the crystal constituting the target has a grain size of 100 μm or less. Alloy sputtering target.
【請求項2】銅が2〜5重量%、残部が実質的にアルミ
ニウムとなるように銅とアルミニウムとを調合して溶解
し、鋳造して鋳塊を得、得られた鋳塊を均質化処理した
後冷却し、要すればこれを面削した後、冷間加工率、す
なわち冷間加工による断面減少率が60%以上となるよ
うに冷間加工して、得た加工材をアルゴン気流中で下記
いずれかの温度で焼鈍し、焼鈍し後に急冷してスパッタ
リングターゲットとするアルミニウム合金スパッタリン
グターゲットの製造方法。 (1)スパッタ時のターゲット到達最高温度が350℃を
越える場合には該ターゲット到達最 高温度以上、融
点以下の焼鈍温度。 (2)スパッタ時のターゲット到達最高温度が350℃を
下回る場合には350℃以上、融点 以下の焼鈍温
度。
2. An ingot is prepared by mixing and melting copper and aluminum so that the content of copper is 2 to 5% by weight, and the balance is substantially aluminum, and the resulting ingot is homogenized. After the treatment, it is cooled and, if necessary, is chamfered, and then cold-worked so that the cold-working rate, that is, the cross-sectional reduction rate due to the cold-working, becomes 60% or more. A method of manufacturing an aluminum alloy sputtering target in which annealing is performed at any one of the following temperatures, followed by rapid cooling after annealing. (1) If the maximum temperature at which the target reaches the target during sputtering exceeds 350 ° C., the annealing temperature is equal to or higher than the target maximum temperature and equal to or lower than the melting point. (2) If the maximum target temperature during sputtering is lower than 350 ° C., the annealing temperature is 350 ° C. or higher and the melting point or lower.
JP2000269445A 2000-09-06 2000-09-06 Sputtering target and its production method Pending JP2002069626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000269445A JP2002069626A (en) 2000-09-06 2000-09-06 Sputtering target and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000269445A JP2002069626A (en) 2000-09-06 2000-09-06 Sputtering target and its production method

Publications (1)

Publication Number Publication Date
JP2002069626A true JP2002069626A (en) 2002-03-08

Family

ID=18756047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000269445A Pending JP2002069626A (en) 2000-09-06 2000-09-06 Sputtering target and its production method

Country Status (1)

Country Link
JP (1) JP2002069626A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195953A (en) * 2010-02-26 2011-10-06 Fujifilm Corp Aluminum alloy sheet and method for producing the same
CN102485946A (en) * 2010-12-02 2012-06-06 比亚迪股份有限公司 Target material used for rearview mirror, rearview mirror and its manufacture method
DE112010003274T5 (en) 2009-08-12 2012-12-27 Ulvac, Inc. Method for producing a sputtering target and sputtering target
KR101531804B1 (en) * 2012-06-27 2015-06-25 신닛테츠스미킨 카부시키카이샤 Slag supply container for electric furnace for steel slag reduction
WO2017134879A1 (en) * 2016-02-05 2017-08-10 株式会社コベルコ科研 Uv reflective film and sputtering target

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010003274T5 (en) 2009-08-12 2012-12-27 Ulvac, Inc. Method for producing a sputtering target and sputtering target
US9017493B2 (en) 2009-08-12 2015-04-28 Ulvac, Inc. Method of manufacturing a sputtering target and sputtering target
JP2011195953A (en) * 2010-02-26 2011-10-06 Fujifilm Corp Aluminum alloy sheet and method for producing the same
CN102485946A (en) * 2010-12-02 2012-06-06 比亚迪股份有限公司 Target material used for rearview mirror, rearview mirror and its manufacture method
KR101531804B1 (en) * 2012-06-27 2015-06-25 신닛테츠스미킨 카부시키카이샤 Slag supply container for electric furnace for steel slag reduction
WO2017134879A1 (en) * 2016-02-05 2017-08-10 株式会社コベルコ科研 Uv reflective film and sputtering target

Similar Documents

Publication Publication Date Title
KR100760156B1 (en) Tantalum sputtering target
JP4883546B2 (en) Method for manufacturing tantalum sputtering target
KR100600974B1 (en) Target of high-purity nickel or nickel alloy and its producing method
JP2003500546A (en) Copper sputter target assembly and method of manufacturing the same
JPH06299342A (en) Sputtering target made of high purity aluminum or its alloy
JP5654126B2 (en) Co-Cr-Pt-B alloy sputtering target and method for producing the same
KR20200106084A (en) Method for forming a copper alloy sputtering target having a refined shape and microstructure
JP6293929B2 (en) Tantalum sputtering target and manufacturing method thereof
CN111286703A (en) Nickel-platinum alloy sputtering target material and preparation method thereof
WO2017164301A1 (en) Ti-Ta ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREFOR
TWI676691B (en) Sputum sputtering target and manufacturing method thereof
JP2002069626A (en) Sputtering target and its production method
WO2017022320A1 (en) Aluminum sputtering target
WO2017164302A1 (en) Ti-Nb ALLOY SPUTTERING TARGET AND METHOD FOR MANUFACTURING SAME
JP2004084065A (en) Silver alloy sputtering target and its producing method
JPH06128737A (en) Sputtering target
JP6678528B2 (en) Indium target member and method of manufacturing the same
JPH0790560A (en) High purity titanium sputtering target
JP2024066629A (en) Copper alloy sputtering film, copper alloy sputtering target, method for producing copper alloy sputtering film, and method for producing copper alloy sputtering target
JP6791313B1 (en) Nickel alloy sputtering target
TWI665325B (en) Tantalum sputtering target
JP5477790B2 (en) Tantalum sputtering target and manufacturing method thereof
JPH0790561A (en) High-purity titanium sputtering target
JPH0790563A (en) High-purity titanium sputtering target