JP2002064321A - Wave polarization control system, terminal and control method therefor - Google Patents

Wave polarization control system, terminal and control method therefor

Info

Publication number
JP2002064321A
JP2002064321A JP2000248207A JP2000248207A JP2002064321A JP 2002064321 A JP2002064321 A JP 2002064321A JP 2000248207 A JP2000248207 A JP 2000248207A JP 2000248207 A JP2000248207 A JP 2000248207A JP 2002064321 A JP2002064321 A JP 2002064321A
Authority
JP
Japan
Prior art keywords
polarization
antenna
sinr
terminal
sir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000248207A
Other languages
Japanese (ja)
Other versions
JP3612010B2 (en
Inventor
Kazutada Komiya
一公 小宮
Kentaro Nishimori
健太郎 西森
Keizo Cho
敬三 長
Toshikazu Hori
俊和 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000248207A priority Critical patent/JP3612010B2/en
Publication of JP2002064321A publication Critical patent/JP2002064321A/en
Application granted granted Critical
Publication of JP3612010B2 publication Critical patent/JP3612010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase system capacity by recognizing the deteriorated communication quality in mobile communication. SOLUTION: A mobile terminal is configured to perform transmitting/ receiving with both a vertically polarized wave and a horizontally polarized wave, a base station is provided with a vertically polarized wave array antenna 60 and a horizontally polarized wave array antenna 61, and transmission is performed to a new terminal with the vertically polarized wave under adaptive control. Then, an output SINR corresponding to the transmission wave of each of existing terminals at that time is measured, a minimum value SINR(V) thereof is found, and transmission is performed to the new terminal with the horizontally polarized wave. Then, an output SINR corresponding to the transmission wave of each of existing terminals at that time is measured, a minimum value SINR(H) thereof is found, and a polarized wave corresponding to greater one of SINR(V) and SINR(H) is assigned as a transmitting/receiving radio wave for the new terminal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は干渉波が存在する
環境において、干渉波を除去して所望の信号波(以下、
「希望波」という)を受信できるようにした偏波制御シ
ステムと端末およびその制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an environment in which an interference wave is present, by removing the interference wave,
The present invention relates to a polarization control system, a terminal, and a control method for receiving a desired wave.

【0002】[0002]

【従来の技術】無線伝搬路における干渉波やマルチパス
フェージングに起因する通信品質の劣化を軽減し、シス
テム容量を増大するための技術として、アレーアンテナ
の受信出力を制御して希望波に対して放射パターンの最
大値を向け、干渉波に対して放射パターンの零点を向け
る制御を行うことにより、出力信号の希望波信号対干渉
波および雑音レベル比(以下出力SINRと記す)を最
大にする機能を持つアダプティブ送受信機がある。
2. Description of the Related Art As a technique for reducing the degradation of communication quality due to interference waves and multipath fading in a radio propagation path and increasing system capacity, the reception output of an array antenna is controlled to control a desired wave. A function for maximizing the desired value of the output signal to the interference wave and the noise level ratio (hereinafter referred to as output SINR) by controlling the maximum value of the radiation pattern and the zero point of the radiation pattern with respect to the interference wave. There is an adaptive transceiver with.

【0003】従来、このような機能を実現できるように
した装置として、例えば図7に示すようにアンテナ素子
をN素子(A1〜AN)配列し、その各素子Ai(i=
1,2,…,N)の出力xiに対して到来波のレベル、
方向などに対応する重み付けwi(i=1,2,…,
N)を重み付け装置30で行い、その重み付けした出力
を合成装置40で合成して所望の出力を得る。この図に
示したものは、各アンテナ素子A1〜ANの各受信信号
を送受信装置20でそれぞれ復調し、各アンテナ素子ご
とのベースバンド信号を得、これらベースバンド信号
と、合成装置40よりの合成信号を制御装置50に入力
して、アンテナ素子A1〜ANのそれぞれと対応するベ
ースバンド信号に対し、重み付け装置30で重みW1〜
WNを乗算して、アンテナ素子A1〜ANよりなるアレ
ーの放射パターンの最大値が希望波方向に向き、かつ零
点が干渉波方向に向くように制御している。アレーアン
テナの放射パターンを制御するにはアンテナ素子A1〜
ANの対応の各ベースバンド信号に対し、重みW1〜W
Nを与える場合に限らず、アンテナ素子A1〜ANの各
受信高周波信号に対して重みW1〜WNをそれぞれ与
え、あるいは、送受信装置20内の各アンテナ素子A1
〜AN対応の中間周波信号に対して重みを与えてもよ
い。このことはこの発明においても云えることである。
Conventionally, as an apparatus capable of realizing such a function, for example, as shown in FIG. 7, antenna elements are arranged in N elements (A1 to AN) and each element Ai (i = i
1,2,..., N) output xi,
Weighting wi (i = 1, 2,...,
N) is performed by the weighting device 30, and the weighted outputs are combined by the combining device 40 to obtain a desired output. In the diagram shown in the figure, the transmission / reception device 20 demodulates each reception signal of each of the antenna elements A1 to AN, obtains baseband signals for each antenna element, and synthesizes these baseband signals with the synthesis device 40. The signals are input to the control device 50, and the weighting device 30 weights the baseband signals corresponding to each of the antenna elements A1 to AN by the weighting device 30.
By multiplying by WN, control is performed so that the maximum value of the radiation pattern of the array including the antenna elements A1 to AN is directed to the desired wave direction and the zero point is directed to the interference wave direction. To control the radiation pattern of the array antenna, the antenna elements A1
Weights W1 to W
N, the weights W1 to WN are given to the respective received high-frequency signals of the antenna elements A1 to AN, or each of the antenna elements A1
Weights may be given to intermediate frequency signals corresponding to .about.AN. This is also true of the present invention.

【0004】また、この装置を陸上移動通信システムに
適用した場合、各アンテナ素子Aiに用いる偏波は、簡
単な構造で設置性にも優れたダイポール等の線状アンテ
ナで容易に水平面内無指向性が得られるという理由か
ら、垂直偏波が一般に用いられてきた。ところが、垂直
偏波素子のみを用いた従来技術では次のような問題が生
じる。図8は従来技術の問題点の例を示す図である。移
動通信方式における基地局は6垂直偏波素子・6ブラン
チ半波長間隔直線配列アンテナを有するアダプティブ送
受信機を用い、移動端末は垂直偏波素子アンテナを有す
る送受信機を用いた。XPDとは伝搬路の交差偏波識別
度を意味し、この例では5dBとしている。2端末に対
して到来波を、120度セクタの範囲でランダムに生起
させる試行回数を1000とした。到来角度差を、第2
移動端末の到来方向と、第1移動端末の到来方向との差
で定義し、これと出力SINRの関係を求めている。こ
の図から、希望波の到来方向と干渉波の到来方向の差が
小さくなるにつれ、干渉波に対して完全に放射パターン
の零点を向けることができず、干渉電力を抑圧しきれな
いことに起因する出力SINRの劣化が生じることがわ
かる。同時アクセスする移動端末数が増加するにつれ
て、希望波の到来方向と干渉波の到来方向が接近する確
率が高くなることから、従来システムにおける出力SI
NRの劣化は、通信品質の劣化およびシステム容量増大
の観点から問題である。
When this apparatus is applied to a land mobile communication system, the polarization used for each antenna element Ai is easily omnidirectional in a horizontal plane by a linear antenna such as a dipole having a simple structure and excellent in installation. Vertical polarization has been commonly used because of its flexibility. However, the related art using only the vertical polarization element has the following problems. FIG. 8 is a diagram illustrating an example of a problem in the related art. The base station in the mobile communication system used an adaptive transceiver having 6 vertically polarized elements and a 6-branch half-wavelength interval linear array antenna, and the mobile terminal used a transceiver having a vertically polarized element antenna. XPD means the cross polarization discrimination degree of the propagation path, and is set to 5 dB in this example. The number of trials for randomly arriving waves for two terminals in a 120-degree sector range was set to 1000. The arrival angle difference is
It is defined by the difference between the direction of arrival of the mobile terminal and the direction of arrival of the first mobile terminal, and the relationship between this and the output SINR is determined. From this figure, it can be seen that as the difference between the arrival direction of the desired wave and the arrival direction of the interference wave becomes smaller, the zero point of the radiation pattern cannot be completely directed to the interference wave, and the interference power cannot be suppressed completely. It can be seen that the output SINR deteriorates. As the number of mobile terminals accessing simultaneously increases, the probability that the arrival direction of the desired wave approaches the arrival direction of the interference wave increases.
Deterioration of NR is a problem from the viewpoint of deterioration of communication quality and increase of system capacity.

【0005】[0005]

【発明が解決しようとする課題】この発明が解決しよう
とする課題は、通信品質の劣化を軽減しシステム容量増
大のための制御を実現する偏波制御システム、端末およ
び制御方法を提供する点にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a polarization control system, a terminal, and a control method which reduce deterioration of communication quality and realize control for increasing system capacity. is there.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、この発明の無線端末は、所定の偏波特性を有する第
1のアンテナ素子と、この第1のアンテナ素子の偏波特
性に対して直交する偏波特性を有する第2のアンテナ素
子と、送受信アンテナとして第1のアンテナ素子または
該第2のアンテナ素子を選択する制御装置を有する。こ
の発明の偏波制御システムは所定の偏波特性を有する第
1のアンテナと、第1のアンテナの偏波特性に対して直
交する偏波特性を有する第2のアンテナと、第1のアン
テナ及び第2のアンテナの出力信号を合成する合成装置
と、その合成装置の出力信号SINR又は出力信号の希
望波対干渉波レベル比(以下出力SIRと記す)を監視
する監視部と端末の送信偏波を設定する端末送信偏波設
定部と新規割当端末の受信偏波として、出力信号のSI
R又はSINRが高くなる方の偏波を割当てる偏波割当
部を包含する制御装置とを備える。
In order to solve the above-mentioned problems, a radio terminal according to the present invention includes a first antenna element having a predetermined polarization characteristic and a polarization characteristic of the first antenna element. It has a second antenna element having a polarization characteristic orthogonal to the first antenna element, and a control device for selecting the first antenna element or the second antenna element as a transmission / reception antenna. A polarization control system according to the present invention includes: a first antenna having a predetermined polarization characteristic; a second antenna having a polarization characteristic orthogonal to the polarization characteristic of the first antenna; A synthesizing device for synthesizing output signals of the antenna and the second antenna, a monitoring unit for monitoring an output signal SINR of the synthesizing device or a desired wave to interference wave level ratio (hereinafter referred to as output SIR) of the output signal and a terminal The terminal transmission polarization setting unit for setting the transmission polarization and the SI of the output signal as the reception polarization of the newly allocated terminal.
And a control device including a polarization allocating unit that allocates the polarization having the higher R or SINR.

【0007】この発明の偏波制御システムは、新規割当
端末に対し、所定の偏波特性で送信させ、各既存端末の
送信波に対するSIR又はSINRを測定し、この測定
結果のSIR又はSINRの最小値SIR(V)又はS
INR(V)を選択し、新規割当端末に対し、所定の偏
波特性と直交する偏波特性で送信させ、各既存端末の送
信波に対するSIR又はSINRを測定し、この測定結
果のSIR又はSINRの最小値SIR(H)又はSI
NR(H)を選択し、SIR(V)又はSINR(V)
とSIR(H)又はSINR(H)との大きい方と対応
する偏波特性で送信するように、その新規割当端末に偏
波特性を割当てる。
The polarization control system of the present invention allows a newly allocated terminal to transmit with predetermined polarization characteristics, measures the SIR or SINR of the transmission wave of each existing terminal, and calculates the SIR or SINR of the measurement result. Minimum value SIR (V) or S
INR (V) is selected and transmitted to a newly allocated terminal with a polarization characteristic orthogonal to a predetermined polarization characteristic, and the SIR or SINR of the transmission wave of each existing terminal is measured. Or the minimum value of SINR SIR (H) or SI
Select NR (H), SIR (V) or SINR (V)
A polarization characteristic is allocated to the newly allocated terminal so that transmission is performed with a polarization characteristic corresponding to the larger one of SIR (H) or SINR (H).

【0008】[0008]

【発明の実施の形態】図1及び図2を参照してこの発明
の実施例を説明する。図1Aはこの発明の端末の構成を
示す。端末は所定の偏波特性を有する第1のアンテナ素
子10と、第1のアンテナ素子10の偏波特性に対して
直交する偏波特性を有する第2のアテナ素子11と、送
受信アンテナとして第1のアンテナ素子10または第2
のアンテナ素子11を選択する制御装置13と、送受信
装置14とから構成される。つまりこの例では第1のア
ンテナ素子10に対する送受信装置と、第2のアンテナ
素子11に対する送受信装置とを制御装置13で切替え
ることができるようにされる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. FIG. 1A shows a configuration of a terminal according to the present invention. The terminal includes a first antenna element 10 having a predetermined polarization characteristic, a second antenna element 11 having a polarization characteristic orthogonal to the polarization characteristic of the first antenna element 10, a transmission / reception antenna As the first antenna element 10 or the second
And a transmitting / receiving device 14. That is, in this example, the transmission / reception device for the first antenna element 10 and the transmission / reception device for the second antenna element 11 can be switched by the control device 13.

【0009】図2はこの発明の偏波制御システム(基地
局)の構成を示す。この実施例はアダプティブアレーに
適用した場合である。基地局は複数のアンテナ素子A
1,A2,A3で構成され所定の偏波特性を有する第3
のアレーアンテナ60と、複数のアンテナ素子A4,A
5,A6で構成され、第3のアレーアンテナ60の偏波
特性に対して直交する偏波特性を有する第4のアレーア
ンテナ61と、第3のアレーアンテナ60及び第4のア
レーアンテナ61の各アンテナ素子A1〜A6の出力信
号に対してそれぞれ重み付けを行う重み付け装置30
と、重み付け装置30から出力される信号を合成する合
成装置40と、合成装置40の出力信号のSINRを監
視するSINR監視部71及び端末の送信偏波を設定す
る端末送信偏波設定部72、新規割当端末の送信偏波と
して出力信号のSINRが大きくなる方の偏波を割当て
る偏波割当部73を包含し、合成装置40の出力信号を
基に重み係数W1〜W6を計算する重み係数計算部74
を包含し、重み付け装置30の重み係数W1〜W6を制
御する制御装置70とから構成される。なお、端末の第
1のアンテナ素子10と第2のアンテナ素子11、もし
くは、基地局の第3のアレーアンテナ60と第4のアレ
ーアンテナ61の各アンテ素子を、1つの素子において
異なる点を給電点とすることで受信可能な電波の偏波方
向を変化させ得るもので構成することも可能である。例
えば、円形マイクロストリップアンテナである。これに
より、第1のアンテナ素子10と第2のアンテナ素子1
1、もしくは、第3のアレーアンテナ60と第4のアレ
ーアンテナ61が各素子で完全に共通化されるために、
位置偏差に基づく不要波の除去効果の低下を防止するこ
とができる。
FIG. 2 shows the configuration of the polarization control system (base station) of the present invention. This embodiment is a case where the present invention is applied to an adaptive array. The base station has a plurality of antenna elements A
, A3, and A3 having predetermined polarization characteristics.
Array antenna 60 and a plurality of antenna elements A4, A
5 and A6, a fourth array antenna 61 having a polarization characteristic orthogonal to the polarization characteristic of the third array antenna 60, a third array antenna 60 and a fourth array antenna 61 Weighting device 30 that weights the output signals of the respective antenna elements A1 to A6
A combining device 40 that combines the signals output from the weighting device 30, an SINR monitoring unit 71 that monitors the SINR of the output signal of the combining device 40, and a terminal transmission polarization setting unit 72 that sets the transmission polarization of the terminal. A weighting factor calculator that includes a polarization allocating unit 73 that allocates a polarization having a higher SINR of an output signal as a transmission polarization of a newly allocated terminal, and calculates weighting factors W1 to W6 based on an output signal of the combining device 40. Part 74
And a control device 70 for controlling the weighting factors W1 to W6 of the weighting device 30. The first antenna element 10 and the second antenna element 11 of the terminal or the antenna elements of the third array antenna 60 and the fourth array antenna 61 of the base station are fed to different points in one element. It is also possible to use a point that can change the polarization direction of a receivable radio wave. For example, a circular microstrip antenna. Thereby, the first antenna element 10 and the second antenna element 1
In order for the first or third array antenna 60 and the fourth array antenna 61 to be completely common to each element,
It is possible to prevent a reduction in the effect of removing unnecessary waves based on the position deviation.

【0010】例えば端末において、図1Bに示すよう
に、円形マイクロストリップアンテナ10′を設け、そ
の給電点を給電点切替部15で切替えて送受信装置14
に接続することができるようにされ、その給電点切替部
15の給電点の切替えは制御装置13により行うように
される。また基地局においても第3のアレーアンテナ6
0と第4のアレーアンテナ61の各アンテナ素子として
の前記円形マイクロストリップアンテナを用い、その前
記二つの給電点に同時に給電して二つの偏波について同
時に送受信するようにすることにより前記位置偏差に基
づく不要波除去効果の低下を防止できる。
For example, in a terminal, a circular microstrip antenna 10 'is provided as shown in FIG.
And the switching of the feeding point of the feeding point switching unit 15 is performed by the control device 13. Also, in the base station, the third array antenna 6
By using the circular microstrip antenna as each antenna element of the 0th and fourth array antennas 61 and simultaneously feeding the two feed points to simultaneously transmit and receive two polarized waves, the position deviation can be reduced. It is possible to prevent the unnecessary wave removing effect from being lowered.

【0011】図3はこの発明の偏波制御システムにかか
る制御装置70における空間・偏波制御方法の処理手順
の例を示す。まず新規割当端末の番号k(kは1以上n
以下の整数)を1に初期化し(S1)、予め決めた偏波
で基地局と端末間の通信を行う(S2)、その時の合成
装置40の出力信号(以下、単に出力信号と記す)のS
INRを測定する(S3)。次に同時にアクセスする端
末の数n(nは1以上の整数)が2以上であるかを調べ
(S4)、2以上でなければ終了する。つまり同時アク
セス端末数がその新規割当の第k端末の1個の場合は、
基地局と端末間の通信はステップS2で割当てた所定の
偏波で行う。
FIG. 3 shows an example of a processing procedure of a space / polarization control method in the control device 70 according to the polarization control system of the present invention. First, the number k (k is 1 or more and n
The following integer is initialized to 1 (S1), and communication between the base station and the terminal is performed with a predetermined polarization (S2). The output signal (hereinafter simply referred to as an output signal) of the synthesizer 40 at that time. S
The INR is measured (S3). Next, it is checked whether or not the number n of terminals to be accessed simultaneously (n is an integer of 1 or more) is 2 or more (S4). In other words, if the number of simultaneous access terminals is one of the k-th terminals newly assigned,
Communication between the base station and the terminal is performed using the predetermined polarization assigned in step S2.

【0012】次にステップS4で同時アクセス端末数n
が2以上と判定されると、kを2に更新し(S5)、そ
のkがn以下かを調べ(S6)、n以下でなければ後述
で明らかなように新規割当第k端末に対する偏波の割当
てが終了したから、出力信号のSINRを測定して終了
する(S7)。kがn以下であれば、新規割当第k端末
に、所定の偏波V、例えば垂直偏波を割当てる制御信号
を例えば制御チャネルにより送信する(S8)。この送
信に基づき、新規割当第k端末は偏波Vで送信する(S
9)。この状態で既存端末を示すi(iは1以上k−1
以下の整数)を1に初期化し(S10)、その第i端末
はそれに割当られた所定の偏波で送信させ(S11)、
その時の伝搬路の交差偏波識別度XPDに基づいた受信
レベルで、所定偏波VとHの各電波を受信し(S1
2)、その時のSINR(i)を求める(S13)。そ
の後iがk−1以下であるかを調べ(S14)、k−1
以下であれば、つまり既存端末の電波との干渉状態を調
べてない既存端末があればiを+1してステップS11
に移り、次の第i端末についてSINR(i)の測定を
行う(S15)。
Next, in step S4, the number of simultaneous access terminals n
Is determined to be 2 or more, k is updated to 2 (S5), and it is checked whether or not k is equal to or less than n (S6). If k is not less than n, the polarization for the newly assigned k-th terminal is determined as described later. Is completed, the SINR of the output signal is measured, and the process ends (S7). If k is equal to or less than n, a control signal for allocating a predetermined polarization V, for example, a vertical polarization, to the k-th terminal to be newly allocated is transmitted by, for example, a control channel (S8). Based on this transmission, the newly assigned k-th terminal transmits with polarization V (S
9). In this state, i indicating an existing terminal (i is 1 or more and k-1
(The following integer) is initialized to 1 (S10), and the i-th terminal is caused to transmit with a predetermined polarization assigned to it (S11),
At the reception level based on the cross polarization discrimination degree XPD of the propagation path at that time, the radio waves of the predetermined polarizations V and H are received (S1).
2) Then, the SINR (i) at that time is obtained (S13). Thereafter, it is checked whether i is equal to or smaller than k-1 (S14), and k-1 is determined.
If it is below, that is, if there is an existing terminal whose interference state with the radio wave of the existing terminal has not been checked, i is incremented by 1 and step S11
Then, the SINR (i) is measured for the next i-th terminal (S15).

【0013】全ての既存端末、つまり第1〜第k−1既
存端末の所定の偏波Vとについて新規割当第k端末の偏
波Vとの干渉状態つまりSINR(i)の測定を終了す
ると、これら(k−1)個のSINR(i)中の最小値
SINR(V)を選択する(S16)。なおk+i=n
である。次に前記新規割当第k端末に、所定偏波Vと直
交する偏波H(例えば水平偏波)を割当てる制御信号を
送信する(S17)。よって新規割当第k端末は偏波H
で送信する(S18)。この状態でiを1に初期化し
(S19)、第i既存端末に、それに割当てられた所定
の偏波で送信させ(S20)、その時のXPDに基づい
た受信レベルで所定偏波VとHの各電波を受信し(S2
1)、その時のSINR(i)を求める(S22)。i
がk−1以下であるかを調べ(S23)、k−1であれ
ばiを+1して、ステップS20に戻り、次の第i端末
についてSINR(i)を測定することを行う(S2
4)。このようにして全ての既存端末についてのSIN
R(i)を測定すると、これらSINR(i)中の最小
値SINR(H)を選択する(S25)。
When the measurement of the interference state, that is, SINR (i), of the polarization V of the newly assigned k-th terminal with respect to all the existing terminals, ie, the predetermined polarizations V of the first to k-1th existing terminals, is completed. The minimum SINR (V) of these (k-1) SINR (i) is selected (S16). Note that k + i = n
It is. Next, a control signal for allocating a polarization H (for example, horizontal polarization) orthogonal to the predetermined polarization V is transmitted to the k-th newly allocated terminal (S17). Therefore, the newly assigned k-th terminal is the polarization H
(S18). In this state, i is initialized to 1 (S19), and the i-th existing terminal is caused to transmit with the predetermined polarization assigned to it (S20). At the reception level based on the XPD at that time, the predetermined polarization V and H are compared. Each radio wave is received (S2
1) Then, the SINR (i) at that time is obtained (S22). i
It is checked whether or not is less than or equal to k-1 (S23). If it is k-1, i is incremented by 1, and the process returns to step S20 to measure SINR (i) for the next i-th terminal (S2).
4). In this way, SIN for all existing terminals
When R (i) is measured, the minimum value SINR (H) of these SINR (i) is selected (S25).

【0014】このSINR(H)と先に選択したSIN
R(V)とを比較し(S26)そのSINRの高い方を
選択し、つまり新規割当第k端末には高いSINRが得
られた偏波を割当て、そのSINRを出力し(S2
7)、kを+1してステップS6に戻る。従ってkがn
と等しくなるまで、つまり生じた新規割当端末の全てに
ついて偏波の割当が済むまで同様のことを行う。上記の
結果から、XPDに基づいた受信レベルで所定の偏波お
よびこれと直交する偏波で受信する基地局において、新
規割当第k端末に対して所定の偏波またはこれと直交す
る偏波を割当てた場合、k−1の既存端末の出力SIN
Rの最小値を比較しそれが高くなる方の偏波を選択して
その新規割当第k端末に割当てることにより、同時アク
セス端末数がnである端末群と通信を行う基地局のシス
テム容量が増大する。
The SINR (H) and the previously selected SIN
R (V) is compared (S26), and the higher SINR is selected. That is, the polarization with the higher SINR is assigned to the newly assigned k-th terminal, and the SINR is output (S2).
7), k is incremented by 1, and the process returns to step S6. Therefore, if k is n
The same operation is performed until the polarization assignment is completed, that is, until the polarization assignment is completed for all of the newly assigned terminals. From the above results, in the base station receiving at the reception level based on the XPD with the predetermined polarization and the polarization orthogonal thereto, the predetermined polarization or the polarization orthogonal thereto with respect to the k-th terminal newly assigned is determined. If assigned, the output SIN of the k-1 existing terminal
By comparing the minimum value of R and selecting the polarization having the higher value and assigning it to the newly assigned k-th terminal, the system capacity of the base station that communicates with a terminal group having the number n of simultaneous access terminals is reduced. Increase.

【0015】以上図4に示した新規端末に対する偏波割
当制御は図2中の偏波割当部73で行うが、これはコン
ピュータによりプログラムを解釈実行させて機能させる
ことができる。つまり例えば図4に示すようにSINR
監視部71、端末送信偏波設定部72、既存端末送信制
御部81、記憶部82、偏波制御プログラムが格納され
たメモリ83、基本プログラムメモリ84、CPU85
がバス86に接続されている。図3中のステップS8、
ステップS17における新規割当第k端末に対し、所定
の偏波特性で送信させる制御信号の生成は端末送信偏波
設定部72で行い、ステップS11、S20における第
i既存端末に対しその割当偏波で送信させる制御信号の
生成は既存端末送信制御部81で行い、ステップS1
3、S22で測定されたSIN監視部71からの各SI
NR(i)は記憶部82に記憶され、CPU85が偏波
制御プログラムを解釈実行することにより、図3に示し
た処理が実行される。ステップS27で決定された偏波
特性を送受信のために、その新規割当第k端末に割当て
る制御信号も端末送信偏波設定部72で生成させる。
The polarization assignment control for the new terminal shown in FIG. 4 is performed by the polarization assignment unit 73 shown in FIG. 2, and the computer can interpret and execute the program to function. That is, for example, as shown in FIG.
Monitoring unit 71, terminal transmission polarization setting unit 72, existing terminal transmission control unit 81, storage unit 82, memory 83 storing a polarization control program, basic program memory 84, CPU 85
Are connected to the bus 86. Step S8 in FIG.
The generation of a control signal to be transmitted to the newly assigned k-th terminal with predetermined polarization characteristics in step S17 is performed by the terminal transmission polarization setting unit 72, and the assigned polarization is assigned to the i-th existing terminal in steps S11 and S20. Generation of a control signal to be transmitted in step S1 is performed by the existing terminal transmission control unit 81, and in step S1
3. Each SI from the SIN monitoring unit 71 measured in S22
The NR (i) is stored in the storage unit 82, and the CPU 85 interprets and executes the polarization control program, whereby the processing shown in FIG. 3 is executed. In order to transmit and receive the polarization characteristics determined in step S27, the terminal transmission polarization setting section 72 also generates a control signal to be allocated to the newly allocated k-th terminal.

【0016】図3に示した偏波制御の手順から理解され
るように、この発明は必ずしもアレーアンテナを用いる
アダプティブ送受信機に限らず、アダプティブ制御しな
い場合においても、各端末の送受信電波として所定の偏
波特性と、これと直交した偏波特性とを、干渉がなるべ
く生じないように割当てることができ、それだけ同時ア
クセス端末数と通信する基地局のシステム容量を増大さ
せることができる。また上述において、SINRの代り
にSIR(希望波対干渉波レベル比)を用いてもよい。
更にこの発明は、TDMA,FDMA,CDMAなど何れ
のアクセス方式にも適用できる。更に従来の技術の項で
述べたように、この発明をアダプティブ送受信機に適用
する場合はその各アンテナ素子対応の信号に対する重み
付与は、高周波段、中間周波段、ベースバンド段の何れ
で行ってもよい。
As can be understood from the polarization control procedure shown in FIG. 3, the present invention is not limited to an adaptive transceiver using an array antenna. The polarization characteristic and the polarization characteristic orthogonal to the polarization characteristic can be assigned so that interference is minimized, and the system capacity of the base station communicating with the number of simultaneous access terminals can be increased accordingly. In the above description, SIR (desired wave to interference wave level ratio) may be used instead of SINR.
Further, the present invention can be applied to any access method such as TDMA, FDMA, and CDMA. Further, as described in the section of the prior art, when the present invention is applied to an adaptive transceiver, weighting of a signal corresponding to each antenna element is performed in any of a high frequency stage, an intermediate frequency stage, and a baseband stage. Is also good.

【0017】[0017]

【発明の効果】以上述べたようにこの発明によれば、所
望の偏波特性と、これと直交する偏波特性を、端末に干
渉が少ないように選択的に割当てることにより同時アク
セス可能な端末数を多くすることができ基地局のシステ
ム容量を増大することができる。次にこの発明をアダプ
ティブ送受信機に適用した場合の電子計算機シミュレー
ションによる実験例を説明する。
As described above, according to the present invention, simultaneous access is possible by selectively assigning a desired polarization characteristic and a polarization characteristic orthogonal thereto to a terminal so as to minimize interference. The number of terminals can be increased, and the system capacity of the base station can be increased. Next, a description will be given of an experimental example by computer simulation when the present invention is applied to an adaptive transceiver.

【0018】図5にその一例を示す。ここで、従来構成
とは図7に示した6垂直偏波素子・6ブランチ半波長間
隔直線配列のアダプティブ送受信機であり、提案構成と
は図2に示したこの発明の3垂直偏波素子・3水平偏波
素子・6ブランチ半波長間隔直線配列の空間・偏波制御
システムである。XPDは5dBとしている。2端末に
対して到来波を20度の範囲でランダムに生起させる試
行回数を1000としている。到来角度差を第2端末の
到来方向と第1端末の到来方向の差で定義し、これと出
力SINRの関係を求めている。この図から垂直偏波素
子のみを用いた従来技術では、希望波の到来方向と干渉
波の到来方向の差が小さくなるにつれ、干渉波に対して
完全に放射パターンの零点を向けることができず干渉電
力を抑圧しきれないことに起因する出力SINRの劣化
が生じることがわかる。ところが、提案構成では希望波
の到来方向と干渉波の到来方向の差が小さい場合でも偏
波成分の違いにより端末を分離できることがわかる。
FIG. 5 shows an example. Here, the conventional configuration is an adaptive transceiver having a 6-vertical polarization element and a 6-branch half-wavelength interval linear array shown in FIG. 7, and the proposed configuration is a 3-vertical polarization element of the present invention shown in FIG. This is a space / polarization control system with three horizontal polarization elements and six branches and a half-wavelength interval linear array. XPD is 5 dB. The number of trials for randomly arriving waves in the range of 20 degrees for two terminals is set to 1000. The arrival angle difference is defined as the difference between the arrival direction of the second terminal and the arrival direction of the first terminal, and the relationship between this and the output SINR is determined. From this figure, in the prior art using only the vertical polarization element, as the difference between the arrival direction of the desired wave and the arrival direction of the interference wave becomes smaller, the zero point of the radiation pattern cannot be completely directed to the interference wave. It can be seen that the output SINR deteriorates due to the inability to suppress the interference power. However, it can be seen that in the proposed configuration, even when the difference between the arrival direction of the desired wave and the arrival direction of the interference wave is small, terminals can be separated based on the difference in polarization components.

【0019】図6は他の実験例を示す。ここで、従来構
成とは図7に示した6垂直偏波素子・6ブランチ半波長
間隔直線配列のアダプティブ送受信装置であり、提案構
成とは図2に示したこの発明の3垂直偏波素子・3水平
偏波素子・6ブランチ半波長間隔直線配列の空間・偏波
制御システムである。XPDは5dBとしている。各端
末数に対して到来波を120度セクタの範囲でランダム
に生起させる試行回数を1000とし、同時アクセス端
末数と出力SINR累積確率50%値の関係を求めてい
る。同時アクセス端末数が増加すると希望波と干渉波の
到来方向が接近する確率が高くなる。図5で示したよう
に提案構成では希望波の到来方向と干渉波の到来方向の
差が小さい場合でも偏波成分の違いにより端末を分離で
きることから、図6から提案構成は端末数が多くなって
も出力SINRの低下が従来構成よりも緩やかになって
いることがわかる。
FIG. 6 shows another experimental example. Here, the conventional configuration is the adaptive transmission / reception device having the 6 vertical polarization elements and the 6-branch half-wavelength interval linear array shown in FIG. 7, and the proposed configuration is the 3 vertical polarization elements of the present invention shown in FIG. This is a space / polarization control system with three horizontal polarization elements and six branches and a half-wavelength interval linear array. XPD is 5 dB. The number of trials for randomly arriving an incoming wave in the range of 120-degree sector for each number of terminals is set to 1000, and the relationship between the number of simultaneous access terminals and the output SINR cumulative probability 50% value is obtained. As the number of simultaneous access terminals increases, the probability that the arrival directions of the desired wave and the interference wave approach each other increases. As shown in FIG. 5, in the proposed configuration, even when the difference between the arrival direction of the desired wave and the arrival direction of the interference wave is small, terminals can be separated by the difference in polarization components. However, it can be seen that the output SINR decreases more gradually than in the conventional configuration.

【0020】以上述べたようにこの発明では、基地局に
おいて出力SINR又はSIRが高くなる方の偏波で送
信するように端末に対して送受信を行う偏波を割当てる
ことにより、垂直偏波素子のみを用いた従来技術では干
渉電力を抑圧しきれないことに起因する出力SINR又
はSIRの劣化を補償することが可能となる。この効果
により、通信品質の劣化を軽減しシステム容量増大が実
現できる。さらに、同一ブランチ数の垂直偏波素子のみ
の従来構成と比較してアンテナ設置空間の削減も実現で
きる。
As described above, according to the present invention, the base station allocates the polarization for transmitting and receiving to the terminal such that the output SINR or SIR is transmitted with the polarization having the higher output. In the related art using the technique described above, it is possible to compensate for the deterioration of the output SINR or SIR due to the inability to completely suppress the interference power. With this effect, deterioration of communication quality can be reduced and system capacity can be increased. Further, it is possible to reduce the antenna installation space as compared with the conventional configuration having only the same number of vertical polarization elements.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の移動通信端末の構成例を示す図。FIG. 1 is a diagram showing a configuration example of a mobile communication terminal according to the present invention.

【図2】この発明の偏波制御システムの構成例を示す
図。
FIG. 2 is a diagram showing a configuration example of a polarization control system of the present invention.

【図3】この発明の偏波制御方法の例を示す流れ図。FIG. 3 is a flowchart illustrating an example of a polarization control method according to the present invention.

【図4】図3に示した処理をコンピュータに行わせる場
合の構成例を示す図。
FIG. 4 is an exemplary view showing a configuration example in a case where a computer performs the processing shown in FIG. 3;

【図5】この発明の効果例としての2端末電波の到来角
度差と出力SINRの関係例を示す図。
FIG. 5 is a diagram showing an example of a relationship between an arrival angle difference between two terminal radio waves and an output SINR as an effect example of the present invention.

【図6】この発明の効果の他の例として、同時アクセス
端末数と、出力SINRの関係例を示す図。
FIG. 6 is a diagram showing an example of the relationship between the number of simultaneous access terminals and the output SINR as another example of the effect of the present invention.

【図7】従来のアダプティブ送受信機の構成例を示す
図。
FIG. 7 is a diagram showing a configuration example of a conventional adaptive transceiver.

【図8】従来技術の問題点の例を説明するための2端末
電波の到来角度差と出力SINRの関係例を示す図。
FIG. 8 is a diagram showing an example of the relationship between the arrival angle difference between two terminal radio waves and the output SINR for explaining an example of the problem of the related art.

【符号の説明】[Explanation of symbols]

20 送受信装置 30 重み付け装置 40 合成装置 60 第3のアレーアンテナ 61 第4のアレーアンテナ 70 制御装置 71 SINR監視部 72 端末送信偏波設定部 73 偏波割当部 REFERENCE SIGNS LIST 20 transmission / reception device 30 weighting device 40 combining device 60 third array antenna 61 fourth array antenna 70 control device 71 SINR monitoring unit 72 terminal transmission polarization setting unit 73 polarization assignment unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04B 7/26 H04B 7/26 B H04L 27/00 D H04L 27/00 Z (72)発明者 長 敬三 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 堀 俊和 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 5J021 AA05 CA06 DB02 DB03 DB04 EA04 FA14 FA15 FA16 FA17 FA20 FA31 FA32 GA02 HA05 HA10 JA05 5K004 AA01 BA02 BB01 5K059 CC03 CC05 DD31 5K067 AA23 AA42 BB02 CC24 EE02 FF16 GG01 GG11 KK03 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H04B 7/26 H04B 7/26 B H04L 27/00 D H04L 27/00 Z (72) Inventor Keizo Tokyo 2-3-1, Otemachi, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Inventor Toshikazu Hori 2-3-1, Otemachi, Chiyoda-ku, Tokyo F-term (reference) 5J021 AA05 CA06 DB02 DB03 DB04 EA04 FA14 FA15 FA16 FA17 FA20 FA31 FA32 GA02 HA05 HA10 JA05 5K004 AA01 BA02 BB01 5K059 CC03 CC05 DD31 5K067 AA23 AA42 BB02 CC24 EE02 FF16 GG01 GG11 KK03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 所定の偏波特性を有する第1アンテナ
と、 上記第1アンテナの偏波特性に対して直交する偏波特性
の第2アンテナと、 上記第1アンテナの出力信号と上記第2アンテナの出力
信号とを合成する合成装置と、 上記合成装置の出力信号の希望波信号対干渉波信号レベ
ル比(以下SIRと記す)又は希望波信号対干渉波信号
及び雑音レベル比(以下SINRと記す)を監視する監
視部、端末の送信偏波を設定する端末送信偏波設定部、
新規割当端末の送信偏波として、上記出力信号のSIR
又はSINRが大きくなる方の偏波を割当てる偏波割当
部を有する制御装置とを具備する偏波制御システム。
A first antenna having a predetermined polarization characteristic; a second antenna having a polarization characteristic orthogonal to the polarization characteristic of the first antenna; and an output signal of the first antenna. A synthesizing device for synthesizing the output signal of the second antenna, and a desired signal to interference wave signal level ratio (hereinafter referred to as SIR) or a desired signal to interference wave signal and noise level ratio (SIR) of the output signal of the synthesizing device. A monitoring unit for monitoring SINR), a terminal transmission polarization setting unit for setting the transmission polarization of the terminal,
As the transmission polarization of the newly assigned terminal, the SIR of the output signal
Or a control device having a polarization allocating unit that allocates a polarization having a higher SINR.
【請求項2】 上記第1アンテナはその偏波特性を有す
る複数のアンテナ素子で構成されるアレーアンテナであ
り、 上記第2アンテナはその偏波特性を有する複数のアンテ
ナ素子で構成されるアレーアンテナであり、 上記第1アレーアンテナ及び上記第2アレーアンテナの
各アンテナ素子の出力信号に対して重み付けを行う重み
付け装置が設けられ、 上記制御装置は上記出力信号を基に上記重み付け装置の
重み係数を制御する重み係数生成部を有することを特徴
とする請求項1記載の偏波制御システム。
2. The first antenna is an array antenna composed of a plurality of antenna elements having the polarization characteristics, and the second antenna is composed of a plurality of antenna elements having the polarization characteristics. A weighting device for weighting an output signal of each antenna element of the first array antenna and the second array antenna, wherein the control device is configured to control the weight of the weighting device based on the output signal. The polarization control system according to claim 1, further comprising a weight coefficient generation unit that controls the coefficient.
【請求項3】 上記第1アンテナと上記第2アンテナと
して、1つのアンテナ素子の異なる点を給電点とするこ
とにより送受信可能な電波の偏波の偏波方向が変化する
アンテナが用いられ、そのアンテナの前記両給電点に送
受信装置が接続されていることを特徴とする請求項1又
は2記載の偏波制御システム。
3. An antenna in which the direction of polarization of radio waves that can be transmitted and received is changed by using different points of one antenna element as feed points as the first antenna and the second antenna. 3. The polarization control system according to claim 1, wherein a transmission / reception device is connected to the both feeding points of the antenna.
【請求項4】 所定の偏波特性を有する第1アンテナ素
子と、 その第1アンテナ素子の偏波特性に対して直交する第2
アンテナ素子と、 受信した端末送信偏波設定信号に応じて、送受信アンテ
ナとして上記第1アンテナ素子又は上記第2アンテナ素
子を選択する制御装置とを備えることを特徴とする移動
通信端末。
4. A first antenna element having a predetermined polarization characteristic and a second antenna element orthogonal to the polarization characteristic of the first antenna element.
A mobile communication terminal comprising: an antenna element; and a control device that selects the first antenna element or the second antenna element as a transmission / reception antenna according to a received terminal transmission polarization setting signal.
【請求項5】 上記第1アンテナ素子と上記第2アンテ
ナ素子は、1つのアンテナ素子の異なる点を給電点とす
ることにより送受信可能な電波の偏波方向が変化させら
れる1アンテナ素子として構成され、その給電点の切替
えを上記制御装置により制御される給電点切替え部を備
えることを特徴とする請求項4記載の移動通信端末。
5. The first antenna element and the second antenna element are configured as one antenna element that can change the direction of polarization of radio waves that can be transmitted and received by using different points of one antenna element as feed points. The mobile communication terminal according to claim 4, further comprising a power supply point switching unit that controls the switching of the power supply point by the control device.
【請求項6】 偏波制御システムによる移動端末に対す
る送信偏波制御方法であって、 新規割当端末に対して、所定の偏波特性で送信するよう
に偏波割当制御信号を送信する過程と、 上記新規割当端末に対し送信偏波を上記所定の偏波特性
に設定した状態で各既存の端末の送信波に対する希望波
信号対干渉波レベル比(以下SIRと記す)又は希望波
信号対干渉波及び雑音レベル比(以下SINRと記す)
を測定する第1測定過程と、 その第1測定過程で測定したSIR又はSINRの最小
値SIR(V)又はSINR(V)を選択する過程と、 上記新規割当端末に対して、上記所定の偏波特性に対し
直交する偏波特性で送信するように偏波割当制御信号を
送信する過程と、 上記新規割当端末に対し送信偏波を上記所定偏波特性に
対し直交する偏波特性に設定した状態で各既存の端末の
送信波に対するSIR又はSINRを測定する第2測定
過程と、 その第2測定過程で測定したSIR又はSINRの最小
値SIR(H)又はSINR(H)を選択する過程と、 上記最小値SIR(V)又はSINR(V)と上記最小
値SIR(H)又はSINR(H)とを比較する過程
と、 この比較においてSIR又はSINRの高い方に対応す
る偏波特性で送信するように偏波特性を割当てする偏波
特性割当制御信号を上記新規割当端末に送信する過程
と、 を有する偏波制御システムの端末制御方法。
6. A transmission polarization control method for a mobile terminal by a polarization control system, comprising: transmitting a polarization allocation control signal to a newly allocated terminal so as to transmit with a predetermined polarization characteristic. In the state where the transmission polarization is set to the predetermined polarization characteristic for the newly allocated terminal, a desired wave signal to interference wave level ratio (hereinafter referred to as SIR) or a desired wave signal pair for a transmission wave of each existing terminal is set. Interference wave and noise level ratio (hereinafter referred to as SINR)
A first measuring step of measuring the SIR or SINR measured in the first measuring step, a step of selecting a minimum value SIR (V) or SINR (V) of the SIR or SINR, Transmitting a polarization assignment control signal so as to transmit with a polarization characteristic orthogonal to the wave characteristic; and transmitting a polarization direction orthogonal to the predetermined polarization characteristic to the newly assigned terminal. A second measurement process of measuring the SIR or SINR for the transmission wave of each existing terminal in a state where the characteristics are set, and a minimum value SIR (H) or SINR (H) of the SIR or SINR measured in the second measurement process. Selecting, and comparing the minimum value SIR (V) or SINR (V) with the minimum value SIR (H) or SINR (H). In this comparison, the bias corresponding to the higher SIR or SINR Wave characteristics Terminal control method for polarization control system having a process of transmitting to the new assignment terminals polarization characteristics allocation control signals to assign a polarization characteristic to transmit.
JP2000248207A 2000-08-18 2000-08-18 Polarization control system and control method thereof Expired - Fee Related JP3612010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000248207A JP3612010B2 (en) 2000-08-18 2000-08-18 Polarization control system and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000248207A JP3612010B2 (en) 2000-08-18 2000-08-18 Polarization control system and control method thereof

Publications (2)

Publication Number Publication Date
JP2002064321A true JP2002064321A (en) 2002-02-28
JP3612010B2 JP3612010B2 (en) 2005-01-19

Family

ID=18738155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000248207A Expired - Fee Related JP3612010B2 (en) 2000-08-18 2000-08-18 Polarization control system and control method thereof

Country Status (1)

Country Link
JP (1) JP3612010B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214780A (en) * 2006-02-08 2007-08-23 Nippon Telegr & Teleph Corp <Ntt> Radio communication device system, radio communication method, base station device, and terminal device
JP2007311930A (en) * 2006-05-16 2007-11-29 Sanyo Electric Co Ltd Wireless apparatus
JP2008527791A (en) * 2004-12-30 2008-07-24 テレフオンアクチーボラゲット エル エム エリクソン(パブル) An improved antenna for a radio base station in a cellular network
JP2008211342A (en) * 2007-02-23 2008-09-11 Nippon Telegr & Teleph Corp <Ntt> Communication device and its communication method
DE102008048068A1 (en) 2007-09-20 2009-04-23 Nec Corporation Synthetic Aperture Radar, Method and Program for Compact Polarimetric SAR Processing
WO2014008476A1 (en) * 2012-07-06 2014-01-09 Metropcs Wireless, Inc Polarization control for cell telecommunication system
US8937986B2 (en) 2010-09-08 2015-01-20 Kyushu University, National University Corporation Packet communication system, emission control apparatus, antenna control method and computer program
JP2018532311A (en) * 2015-09-15 2018-11-01 クアルコム,インコーポレイテッド System and method for reducing interference using polarization diversity
JP2021010068A (en) * 2019-06-28 2021-01-28 株式会社東芝 Antenna device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527791A (en) * 2004-12-30 2008-07-24 テレフオンアクチーボラゲット エル エム エリクソン(パブル) An improved antenna for a radio base station in a cellular network
JP4685879B2 (en) * 2004-12-30 2011-05-18 テレフオンアクチーボラゲット エル エム エリクソン(パブル) An improved antenna for a radio base station in a cellular network
JP4574563B2 (en) * 2006-02-08 2010-11-04 日本電信電話株式会社 Wireless communication system, wireless communication method, base station apparatus, and terminal apparatus
JP2007214780A (en) * 2006-02-08 2007-08-23 Nippon Telegr & Teleph Corp <Ntt> Radio communication device system, radio communication method, base station device, and terminal device
JP2007311930A (en) * 2006-05-16 2007-11-29 Sanyo Electric Co Ltd Wireless apparatus
JP2008211342A (en) * 2007-02-23 2008-09-11 Nippon Telegr & Teleph Corp <Ntt> Communication device and its communication method
US7825847B2 (en) 2007-09-20 2010-11-02 Nec Corporation Synthetic aperture radar, compact polarimetric SAR processing method and program
DE102008048068A1 (en) 2007-09-20 2009-04-23 Nec Corporation Synthetic Aperture Radar, Method and Program for Compact Polarimetric SAR Processing
DE102008048068B4 (en) * 2007-09-20 2016-07-07 Nec Corporation Synthetic Aperture Radar, Method and Program for Compact Polarimetric SAR Processing
US8937986B2 (en) 2010-09-08 2015-01-20 Kyushu University, National University Corporation Packet communication system, emission control apparatus, antenna control method and computer program
WO2014008476A1 (en) * 2012-07-06 2014-01-09 Metropcs Wireless, Inc Polarization control for cell telecommunication system
JP2018532311A (en) * 2015-09-15 2018-11-01 クアルコム,インコーポレイテッド System and method for reducing interference using polarization diversity
JP2021010068A (en) * 2019-06-28 2021-01-28 株式会社東芝 Antenna device
JP7064471B2 (en) 2019-06-28 2022-05-10 株式会社東芝 Antenna device

Also Published As

Publication number Publication date
JP3612010B2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
KR100817620B1 (en) Method and apparatus for adapting antenna array using received predetermined signal
US8306572B2 (en) Communication control method, communication system and communication control apparatus
RU2155460C2 (en) Antenna with wide lobe of directivity pattern
CN108781102B (en) Method for operating wireless communication system, communication device and wireless communication system
US5566355A (en) Radio link control method for a mobile telecommunications system
CN107615091B (en) Beam signal tracking method, device and system
US20080280634A1 (en) Adaptive antenna control method and adaptive antenna transmission/reception characteristic control method
US10680688B2 (en) Beam training of a radio transceiver device
US9942778B2 (en) Virtual base station apparatus and communication method
US20230006728A1 (en) Operating devices in a wireless communication system
JP2002064321A (en) Wave polarization control system, terminal and control method therefor
CN110247689B (en) Terminal communication area allocation method, device, communication equipment and storage medium
JP2005236686A (en) Communications system and communication method by adaptive array antenna
US20090253452A1 (en) Mobile Communication System, Base Station Device, and Interference Wave Judging Method
US20200229003A1 (en) Access Point Device and Communication Method
JP2001268004A (en) Antenna directivity control method and wireless system
JP3370621B2 (en) Mobile communication base station antenna device
CN111509405B (en) Antenna module and electronic equipment
JP3229857B2 (en) Antenna directivity control method
US11018718B1 (en) Wireless communication device and wireless communication method
JP2023548192A (en) Wireless transmitter/receiver and its beam forming method
US7398098B2 (en) Radio base apparatus, transmission power control method, and transmission power control program
JP2001313525A (en) Base station antenna for mobile communication
US7020107B2 (en) Methods for reliable user switchback on a PHS spatial division multiple access channel
JP2001275150A (en) Wireless base station

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees