JP2002040457A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JP2002040457A
JP2002040457A JP2000230956A JP2000230956A JP2002040457A JP 2002040457 A JP2002040457 A JP 2002040457A JP 2000230956 A JP2000230956 A JP 2000230956A JP 2000230956 A JP2000230956 A JP 2000230956A JP 2002040457 A JP2002040457 A JP 2002040457A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
pixel
display device
pixel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000230956A
Other languages
Japanese (ja)
Inventor
Shinichiro Tanaka
慎一郎 田中
Takeshi Suzaki
剛 須崎
Hiroyuki Kase
裕之 賀勢
Yoshitaka Mori
善隆 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP2000230956A priority Critical patent/JP2002040457A/en
Publication of JP2002040457A publication Critical patent/JP2002040457A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide such a liquid crystal display device that the array state of liquid crystal molecules when a voltage is applied becomes stable in a short time and the visual field angle is wide. SOLUTION: This liquid crystal device has a pixel electrode 44 arranged on a 1st substrate 1, a counter electrode 10 arranged on a 2nd substrate 7, and liquid crystal 13 with negative dielectric constant anisotropy charged between the 1st substrate 1 and 2nd substrate 7; and horizontal alignment films 11 and 12 having the same alignment direction are laminated on the 1st substrate 1 and 2nd substrate 7. One pixel is divided into areas B1 to B4, an end part 4a of the pixel electrode 4 and an end part 10a of the counter electrode 10 are arranged shifting from each other by the areas B1 to B4, and when a voltage is applied, an oblique electric field is produced between those end parts 4a and 10a. The liquid crystal molecules 14 which are horizontally aligned in the absence of an electric field have their oblique direction and rotation direction restricted by the oblique electric field and are aligned differently by the areas B1 to B4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液晶表示装置に関
し、特に視野角特性を改善した液晶表示装置に関する。
The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device having improved viewing angle characteristics.

【0002】[0002]

【従来の技術】現在の液晶表示装置にはTN(Twisted
Nematic)方式が広く利用され、高い性能と品質を維持
している。しかし携帯端末や大型テレビなどへ幅広く利
用されるのに伴い、更なる高性能化が求められ、様々な
方式の液晶表示装置が提案されている。例えばTN方式
は視野角が狭いという問題があるため、広視野角が実現
できる方式として液晶層に印加する電界を基板と平行な
方向にかけるIPS(In-Plane Switching)方式の液晶
表示装置が提案されている。IPS方式の液晶表示装置
としては例えば特開平10−307291号公報や特開
平11−38438号公報に開示してある。
2. Description of the Related Art At present, a liquid crystal display device has a TN (Twisted
Nematic) system is widely used and maintains high performance and quality. However, with widespread use in portable terminals, large-size televisions, and the like, higher performance is required, and various types of liquid crystal display devices have been proposed. For example, since the TN method has a problem that the viewing angle is narrow, an IPS (In-Plane Switching) type liquid crystal display device that applies an electric field applied to the liquid crystal layer in a direction parallel to the substrate is proposed as a method capable of realizing a wide viewing angle. Have been. The IPS type liquid crystal display device is disclosed in, for example, JP-A-10-307291 and JP-A-11-38438.

【0003】IPS方式の液晶表示装置は、一対の基板
間に誘電率異方性が正の液晶を封入し、一方の基板側に
櫛歯状の画素電極と櫛歯状の共通電極を配置している。
両基板上の配向膜には櫛歯状の電極の方向とほぼ同一方
向に水平配向処理が施され、画素電極に電圧を印加しな
いときは液晶分子が配向方向と同一方向に水平配列す
る。各基板の外側には偏光板が基板に対向して配置さ
れ、両偏光板の透過軸が90度をなし、且つ偏光板の透
過軸と対向する基板の配向方向が同一方向若しくは直交
方向になるように設定されている。一方の偏光板を通過
した透過光は直線偏光となって液晶層を通過するが、こ
のとき液晶分子は捻れることなく水平配列しているので
透過光は複屈折することなく液晶層を通過する。したが
って透過光は他方の偏光板で遮られるために暗表示にな
る。画素電極に電圧を印加したときは液晶層に横電界が
発生し、液晶分子の誘電率異方性が正であるため、液晶
層の一部の液晶分子が電界の方向に捻れる。このとき一
方の偏光板を通過した直線偏光の透過光は液晶層を通過
するときに複屈折されて楕円偏光の透過光になり、他方
の偏光板を通過して明表示になる。
In the IPS type liquid crystal display device, liquid crystal having a positive dielectric anisotropy is sealed between a pair of substrates, and a comb-shaped pixel electrode and a comb-shaped common electrode are arranged on one of the substrates. ing.
The alignment films on both substrates are subjected to horizontal alignment processing in substantially the same direction as the direction of the comb-shaped electrodes, and when no voltage is applied to the pixel electrodes, the liquid crystal molecules are horizontally aligned in the same direction as the alignment direction. A polarizing plate is arranged outside the substrate so as to face the substrate, the transmission axes of the two polarizing plates are 90 degrees, and the orientation directions of the substrates facing the transmission axis of the polarizing plate are the same or orthogonal. It is set as follows. The transmitted light that has passed through one polarizer passes through the liquid crystal layer as linearly polarized light, but at this time, the transmitted light passes through the liquid crystal layer without birefringence because the liquid crystal molecules are aligned horizontally without twisting. . Therefore, the transmitted light is blocked by the other polarizing plate, so that a dark display is obtained. When a voltage is applied to the pixel electrode, a lateral electric field is generated in the liquid crystal layer, and since the dielectric anisotropy of the liquid crystal molecules is positive, some of the liquid crystal molecules in the liquid crystal layer are twisted in the direction of the electric field. At this time, the transmitted light of the linearly polarized light that has passed through one of the polarizing plates is birefringent when passing through the liquid crystal layer to become the transmitted light of the elliptically polarized light, and passes through the other polarizing plate to provide a bright display.

【0004】また視野角を広くするために、液晶分子の
傾斜方向が異なる領域を複数設け、画素全体としてのコ
ントラストを改善した液晶表示装置が提案されている。
この液晶分子の傾斜方向を規制する手段として画素電極
や共通電極にスリットや突起を形成したものがあり、こ
うした形態は例えば特開平11−174482号公報、
特開平9−22025号公報、特開平6−194657
号公報、特開2000−75302号公報に開示されて
いる。
In order to widen the viewing angle, there has been proposed a liquid crystal display device in which a plurality of regions having different inclination directions of liquid crystal molecules are provided to improve the contrast of the entire pixel.
As means for regulating the tilt direction of the liquid crystal molecules, there is a device in which a slit or a protrusion is formed in a pixel electrode or a common electrode.
JP-A-9-22025, JP-A-6-194657
And JP-A-2000-75302.

【0005】図7と図8に基づいて従来の液晶表示装置
を説明する。図7は無電界時の液晶分子の配列状態を示
す断面図であり、図8は電圧印加時の液晶分子の配列状
態を示す断面図である。100は一方の基板101に設
けられた画素電極、102は他方の基板103に設けら
れた対向電極であり、この一対の基板101、103間
に誘電率異方性が正の液晶104が封入されている。画
素電極100と対向電極102にはスリット105が形
成され、このスリット105は互いにずらして配置され
る。両基板101、103上には配向膜106が積層さ
れ、両配向膜106は同一方向に水平配向処理が施され
ている。
A conventional liquid crystal display device will be described with reference to FIGS. 7 and 8. FIG. 7 is a cross-sectional view showing an alignment state of liquid crystal molecules when no electric field is applied, and FIG. 8 is a cross-sectional view showing an alignment state of liquid crystal molecules when a voltage is applied. Reference numeral 100 denotes a pixel electrode provided on one substrate 101, and 102 denotes a counter electrode provided on the other substrate 103. A liquid crystal 104 having a positive dielectric anisotropy is sealed between the pair of substrates 101 and 103. ing. A slit 105 is formed in the pixel electrode 100 and the counter electrode 102, and the slit 105 is arranged to be shifted from each other. An alignment film 106 is laminated on both substrates 101 and 103, and both alignment films 106 are subjected to horizontal alignment processing in the same direction.

【0006】無電界時には図7に示すように液晶分子1
04aは配向膜106の配向方向に水平配列し、電圧印
加時には図8の点線で示すように電界が掛かるため、液
晶分子104aは電界の方向に立上がる。こうして液晶
分子104aの配列状態を変えることで、液晶層104
が透過光へ与える複屈折の影響を調整し、白黒表示を実
現する。電圧印加時にはスリット105付近では斜め方
向に電界が掛かるので、液晶分子104aの立上がった
ときの傾斜が異なり、液晶分子104aの傾斜方向が異
なる領域を複数形成することができる。
When no electric field is applied, as shown in FIG.
The liquid crystal molecules 104a are arranged horizontally in the alignment direction of the alignment film 106, and when a voltage is applied, an electric field is applied as shown by a dotted line in FIG. 8, so that the liquid crystal molecules 104a rise in the direction of the electric field. By changing the arrangement state of the liquid crystal molecules 104a in this manner, the liquid crystal layer 104
Adjusts the effect of birefringence on transmitted light to achieve black and white display. When a voltage is applied, an electric field is applied obliquely in the vicinity of the slit 105, so that the liquid crystal molecules 104a have different inclinations when rising, and a plurality of regions where the liquid crystal molecules 104a have different inclination directions can be formed.

【0007】[0007]

【発明が解決しようとする課題】しかしIPS方式や従
来の形態で複数の領域を形成するものは応答速度が遅い
という問題があった。これはIPS方式の場合、画素電
極と共通電極が一方の基板上に形成されているため、電
圧印加時に画素電極等が形成されていない他方の基板側
の電界が弱く、液晶分子の配列状態が安定するのに時間
がかかってしまう。
However, there is a problem that the response speed is slow in the case of forming a plurality of areas by the IPS system or the conventional form. This is because, in the case of the IPS method, the pixel electrode and the common electrode are formed on one substrate, so that when the voltage is applied, the electric field on the other substrate on which the pixel electrode and the like are not formed is weak, and the alignment state of the liquid crystal molecules is low. It takes time to stabilize.

【0008】また、複数の領域を形成する場合、誘電率
異方性が正の液晶を用い、無印加時に水平配列している
液晶分子を電圧印加時に垂直配列させるため、液晶分子
が大きく配列状態を変えることになり、短時間で液晶分
子の配列状態が安定させることが困難である。誘電率異
方性が負の液晶を用いる場合もあるが、このときは無印
加時に垂直配列している液晶分子を電圧印加時に水平配
列させるため、このときも液晶分子の配列状態が変わる
までに時間がかかってしまう。
When a plurality of regions are formed, liquid crystal molecules having a positive dielectric anisotropy are used, and liquid crystal molecules which are horizontally arranged when no voltage is applied are vertically arranged when voltage is applied. Therefore, it is difficult to stabilize the alignment state of the liquid crystal molecules in a short time. In some cases, liquid crystal with negative dielectric anisotropy is used.In this case, liquid crystal molecules that are vertically aligned when no voltage is applied are horizontally aligned when voltage is applied. It takes time.

【0009】そこで本発明は、電界の印加時における液
晶分子の配列状態が短時間で安定し、且つ広い視野角を
有する液晶表示装置を提供することを目的とする。
Accordingly, an object of the present invention is to provide a liquid crystal display device in which the arrangement state of liquid crystal molecules during application of an electric field is stable in a short time and has a wide viewing angle.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に請求項1記載の発明は、第一基板に形成した画素電極
とを備え、第二基板に形成した対向電極と、第一基板と
第二基板を対向配置してこの両基板間に誘電率異方性が
負の液晶を封入した液晶表示装置において、両基板上に
は同じ方向に水平配向処理を施した配向膜を設け、1画
素を複数の領域に分割すると共に、領域毎に画素電極と
対向電極を互いの端部がずれて位置するように配置した
ことを特徴とする。
According to a first aspect of the present invention, there is provided an image forming apparatus comprising: a pixel electrode formed on a first substrate; a counter electrode formed on a second substrate; In a liquid crystal display device in which a liquid crystal having negative dielectric anisotropy is sealed between the two substrates with a second substrate opposed to the two substrates, an alignment film that has been subjected to a horizontal alignment process in the same direction is provided on both substrates. The pixel is divided into a plurality of regions, and a pixel electrode and a counter electrode are arranged such that their ends are shifted from each other in each region.

【0011】また請求項2記載の発明は、第一基板に形
成した画素電極と、第二基板に形成した対向電極とを備
え、第一基板と第二基板を対向配置してこの両基板間に
誘電率異方性が負の液晶を封入した液晶表示装置におい
て、両基板上には同じ方向に水平配向処理を施した配向
膜を設け、1画素を複数の領域に分割すると共に、各領
域内での画素電極の周囲部分と対向電極の周囲部分の間
で第二基板に対して斜め方向の電界が発生するように画
素電極と対向電極を配置したことを特徴とする。
According to a second aspect of the present invention, there is provided a pixel electrode formed on a first substrate, and a counter electrode formed on a second substrate. In a liquid crystal display device in which liquid crystal having a negative dielectric anisotropy is enclosed, an alignment film subjected to a horizontal alignment process in the same direction is provided on both substrates, and one pixel is divided into a plurality of regions. The pixel electrode and the counter electrode are arranged such that an electric field in an oblique direction to the second substrate is generated between a peripheral portion of the pixel electrode and a peripheral portion of the counter electrode.

【0012】また請求項3記載の発明は、1画素内の各
領域の大きさを均等に設定したことを特徴とする。
The invention according to claim 3 is characterized in that the size of each region in one pixel is set to be equal.

【0013】また請求項4記載の発明は、1画素内が4
つの領域に分割されていることを特徴とする。
According to a fourth aspect of the present invention, one pixel includes four pixels.
It is divided into two regions.

【0014】また請求項5記載の発明は、1画素内に配
置された画素電極には領域の境界部分にスリットが形成
され、対向電極は1画素毎に設けられると共に、第二基
板側から見たときに画素電極の内側に配置されているこ
とを特徴とする。
According to a fifth aspect of the present invention, a slit is formed at a boundary portion of a region in a pixel electrode disposed in one pixel, a counter electrode is provided for each pixel, and the pixel electrode is viewed from the second substrate side. When it is located inside the pixel electrode.

【0015】また請求項6記載の発明は、内側に十字状
のスリット部が形成されたほぼ四角形の画素電極と、画
素電極よりも一回り小さいぼほ四角形の対向電極とを備
え、第二基板側から見たときに画素電極の内側に対向電
極が配置されていることを特徴とする。
According to a sixth aspect of the present invention, there is provided a second substrate comprising a substantially square pixel electrode having a cross-shaped slit formed inside, and a roughly square counter electrode slightly smaller than the pixel electrode. When viewed from the side, a counter electrode is arranged inside the pixel electrode.

【0016】また請求項7記載の発明は、第一基板の外
側に第一偏光板を設け、第二基板の外側に第二偏光板を
設けた液晶表示装置であって、第一偏光板の透過軸と第
二偏光板の透過軸が直交すると共に、第一偏光板若しく
は第二偏光板のどちらか一方の透過軸が配向膜の水平配
向方向と同一方向になるように設定されていることを特
徴とする。
According to a seventh aspect of the present invention, there is provided a liquid crystal display device having a first polarizing plate provided outside a first substrate and a second polarizing plate provided outside a second substrate. The transmission axis is orthogonal to the transmission axis of the second polarizing plate, and the transmission axis of either the first polarizing plate or the second polarizing plate is set to be the same as the horizontal alignment direction of the alignment film. It is characterized by.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて説明する。図1は画素電極と対向電極の配置関
係を示す平面図、図2は図1のA−A線に沿った断面概
略図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view showing an arrangement relationship between a pixel electrode and a counter electrode, and FIG. 2 is a schematic sectional view taken along line AA of FIG.

【0018】1はガラス基板などの第一基板であり、こ
の第一基板1上には走査線2と信号線3がマトリクス状
に配線されている。走査線2と信号線3で囲まれる領域
が1画素に相当し、この領域内に画素電極4が配置さ
れ、走査線2と信号線3の交差部には薄膜トランジスタ
5(以下TFTという)が形成される。TFT5は走査
線2から延在したゲート電極5a上に信号線3から延在
したソース電極5bやドレイン電極5c等を積層して形
成される。ソース電極5bやドレイン電極5c上には絶
縁膜6が積層され、ドレイン電極5cと画素電極4は絶
縁膜6に形成されたコンタクトホールを介して接続され
る。
Reference numeral 1 denotes a first substrate such as a glass substrate, on which scanning lines 2 and signal lines 3 are arranged in a matrix. A region surrounded by the scanning line 2 and the signal line 3 corresponds to one pixel, and a pixel electrode 4 is arranged in this region, and a thin film transistor 5 (hereinafter referred to as a TFT) is formed at an intersection of the scanning line 2 and the signal line 3. Is done. The TFT 5 is formed by stacking a source electrode 5b and a drain electrode 5c extending from the signal line 3 on a gate electrode 5a extending from the scanning line 2. An insulating film 6 is laminated on the source electrode 5b and the drain electrode 5c, and the drain electrode 5c and the pixel electrode 4 are connected via a contact hole formed in the insulating film 6.

【0019】7はガラス基板などで形成された第二基板
であり、第二基板7上には格子状のブラックマトリック
ス8が形成されている。このブラックマトリックス8は
第一基板1上の走査線2や信号線3に対応する位置に設
けられている。9は各画素毎に設けられたカラーフィル
タであり、走査線2と並行してR、G、Bの順に並んで
いる。10はITO等で形成される対向電極であり、カ
ラーフィルタ9上に形成されている。図1の破線は対向
電極の外縁を示し、第2基板7側から見たときに対向電
極10は画素電極4の内側に位置するように配置され
る。
Reference numeral 7 denotes a second substrate formed of a glass substrate or the like. On the second substrate 7, a lattice-like black matrix 8 is formed. The black matrix 8 is provided at a position corresponding to the scanning lines 2 and the signal lines 3 on the first substrate 1. Reference numeral 9 denotes a color filter provided for each pixel, which is arranged in the order of R, G, and B in parallel with the scanning line 2. Reference numeral 10 denotes a counter electrode formed of ITO or the like, which is formed on the color filter 9. The dashed line in FIG. 1 indicates the outer edge of the counter electrode, and the counter electrode 10 is arranged so as to be located inside the pixel electrode 4 when viewed from the second substrate 7 side.

【0020】11は第一基板1上に積層された配向膜、
12は第二基板7上に積層された配向膜であり、配向膜
11、12には同一方向に水平配向処理が施されてい
る。この第一基板1と第二基板7の間には誘電率異方性
が負の液晶層13が介在し、画素電極4に電圧が印加さ
れていない無電界時には配向膜11、12の影響により
液晶層13の液晶分子14は基板1、7に対して水平方
向に配列する。15は第一基板1の外側に配置された第
一偏光板、16は第二基板7の外側に配置された第二偏
光板である。第一偏光板15と第二偏光板16は、互い
の透過軸が直交し、且つどちらか一方の透過軸が配向膜
11、12の水平配向方向と同一方向になるように配置
されている。
11 is an alignment film laminated on the first substrate 1,
Reference numeral 12 denotes an alignment film laminated on the second substrate 7, and the alignment films 11 and 12 are subjected to horizontal alignment processing in the same direction. A liquid crystal layer 13 having a negative dielectric anisotropy is interposed between the first substrate 1 and the second substrate 7, and due to the influence of the alignment films 11 and 12 when no voltage is applied to the pixel electrode 4 when no electric field is applied. The liquid crystal molecules 14 of the liquid crystal layer 13 are arranged in the horizontal direction with respect to the substrates 1 and 7. Reference numeral 15 denotes a first polarizing plate disposed outside the first substrate 1, and reference numeral 16 denotes a second polarizing plate disposed outside the second substrate 7. The first polarizing plate 15 and the second polarizing plate 16 are arranged such that their transmission axes are orthogonal to each other and one of the transmission axes is in the same direction as the horizontal alignment direction of the alignment films 11 and 12.

【0021】本発明では画素電極4の縁部4aと対向電
極10の縁部10aをずらして配置し、画素電極4に電
圧を印加したときにこの縁部4a、10a付近で斜め方
向の電界が発生するようになっている。この実施の形態
では図1及び図2に示すように、1画素毎の画素電極4
に十字状のスリット17が形成され、画素電極4がほぼ
均等に4つの領域B1〜B4に分けられている。4つの
領域B1〜B4の画素電極4は接続部18によって電気
的に接続されているが、電圧印加時の液晶分子14の配
列状態を考慮すると接続部18付近で液晶分子14の配
列状態が乱れやすいため、画素電極4を完全に4分割し
た方が好ましい。したがって接続部18は液晶分子14
の配列状態をできるだけ乱し難い位置に形成することが
望ましい。
In the present invention, the edge 4a of the pixel electrode 4 and the edge 10a of the counter electrode 10 are arranged so as to be shifted from each other. When a voltage is applied to the pixel electrode 4, an electric field in an oblique direction near the edges 4a and 10a is generated. Is to occur. In this embodiment, as shown in FIG. 1 and FIG.
A cross-shaped slit 17 is formed in the pixel electrode 4, and the pixel electrode 4 is divided almost equally into four regions B1 to B4. Although the pixel electrodes 4 in the four regions B1 to B4 are electrically connected by the connection portions 18, the arrangement state of the liquid crystal molecules 14 is disturbed near the connection portions 18 in consideration of the arrangement state of the liquid crystal molecules 14 when a voltage is applied. Therefore, it is preferable to completely divide the pixel electrode 4 into four parts. Therefore, the connecting portion 18 is connected to the liquid crystal molecules 14.
Is desirably formed at a position where the arrangement state is hardly disturbed as much as possible.

【0022】対向電極10も1画素毎に設けられ、画素
電極4を一回り小さくしてスリット17を形成しない形
状をしている。そして対向電極10は第二基板7側から
観察したときに画素電極4内に収まるように配置され、
対向電極10の縁部10aと画素電極4の縁部4aの間
隔が周囲に亘ってほぼ等間隔になっている。対向電極1
0は隣接する画素の対向電極10と接続部19で電気的
に接続されているが、この接続部19も画素電極4の接
続部18の場合と同様に液晶分子14の配列状態の乱れ
の原因に成り易い。したがってこの接続部19も液晶分
子14の配列状態をできるだけ乱し難い位置に形成する
ことが望ましい。
The counter electrode 10 is also provided for each pixel, and has a shape in which the pixel electrode 4 is made one size smaller and the slit 17 is not formed. The counter electrode 10 is arranged so as to fit within the pixel electrode 4 when observed from the second substrate 7 side,
The distance between the edge 10a of the counter electrode 10 and the edge 4a of the pixel electrode 4 is substantially equal over the periphery. Counter electrode 1
Numeral 0 is electrically connected to the opposing electrode 10 of the adjacent pixel at the connection portion 19, and this connection portion 19 causes the disorder of the arrangement state of the liquid crystal molecules 14 similarly to the connection portion 18 of the pixel electrode 4. Easily. Therefore, it is desirable that the connecting portion 19 is also formed at a position where the alignment state of the liquid crystal molecules 14 is hardly disturbed.

【0023】画素電極4と対向電極10を対向配置させ
たとき、図2に示すように画素電極4の外側の縁部4a
よりも対向電極10の縁部10bが内側に位置し、画素
電極4の内側の縁部4aよりも中央側に対向電極10が
存在する。したがって画素電極4に電圧を印加したとき
に、画素電極4の縁部4a付近では図2の点線で示すよ
うな斜め方向の電界が発生し、液晶分子14はこの斜め
方向の電界によって傾斜方向が規制される。
When the pixel electrode 4 and the counter electrode 10 are arranged to face each other, the outer edge 4a of the pixel electrode 4 as shown in FIG.
The edge 10b of the counter electrode 10 is located on the inner side, and the counter electrode 10 is located closer to the center than the inner edge 4a of the pixel electrode 4. Accordingly, when a voltage is applied to the pixel electrode 4, an electric field in an oblique direction is generated near the edge 4a of the pixel electrode 4 as shown by a dotted line in FIG. 2, and the tilt direction of the liquid crystal molecules 14 is changed by the electric field in the oblique direction. Be regulated.

【0024】図3、図4は無電界時の液晶分子の配列状
態を示す図であり、図5、図6は電圧印加時の液晶分子
の配列状態を示す図である。図3、図5は図2の断面図
を模式的に示した図に相当し、図4、図6は1画素分の
図1の平面図を模式的に示した図に相当する。また図
4、図6では実線の四角形が画素電極4を、点線の四角
形が対向電極10を、一点鎖線が領域B1〜B4の境界
を示している。
FIGS. 3 and 4 are views showing the arrangement of liquid crystal molecules when no electric field is applied, and FIGS. 5 and 6 are views showing the arrangement of liquid crystal molecules when a voltage is applied. 3 and 5 correspond to diagrams schematically illustrating the cross-sectional view of FIG. 2, and FIGS. 4 and 6 correspond to diagrams schematically illustrating the plan view of FIG. 1 for one pixel. 4 and 6, a solid square indicates the pixel electrode 4, a dotted square indicates the counter electrode 10, and a dashed line indicates the boundary between the regions B1 to B4.

【0025】図3の矢印は配向膜11、12の配向方向
を示し、第一基板1側の矢印は配向膜11の配向方向
を、第二基板7側の矢印は配向膜12の配向方向を示し
ている。配向膜11、12はラビング等で水平配向処理
が施されるが、矢印の向きはこのラビング方向を意味す
る。配向膜11、12には水平配向処理が施されている
ので、無電界時は液晶分子14がこの配向方向に水平配
列する。このとき配向膜11、12付近の液晶分子14
はチルト角θで傾斜するが、この実施の形態では配向膜
11、12の配向方向が同一方向であるため第一基板1
側の液晶分子14と第二基板7側の液晶分子14の傾き
が逆方向になり、第一基板1側の液晶分子14は右端の
方が第二基板7よりに位置し、第二基板7側の液晶分子
14は左端の方が第二基板7よりに位置する。なお、配
向膜11、12の配向方向が逆方向にすれば第一基板1
側の液晶分子14も第二基板7側の液晶分子14も同じ
向きに傾くが、本発明ではこうした配向処理を施しても
構わない。図4は第二基板7側に位置する液晶分子14
の配列状態を示したものであり、液晶分子14の一方の
端部に印した円形は第二基板7に近い方の端部を意味
し、液晶分子14の傾斜状態を表している。また図4の
画素電極4の側方に示した矢印は偏光板15、16の透
過軸であり、この実施の形態では第一偏光板15の透過
軸が配向膜11の配向方向と同一方向になるように設定
されている。
The arrows in FIG. 3 indicate the alignment directions of the alignment films 11 and 12, the arrow on the first substrate 1 indicates the alignment direction of the alignment film 11, and the arrow on the second substrate 7 indicates the alignment direction of the alignment film 12. Is shown. The alignment films 11 and 12 are subjected to horizontal alignment processing by rubbing or the like, and the direction of the arrow means this rubbing direction. Since the alignment films 11 and 12 have been subjected to the horizontal alignment process, the liquid crystal molecules 14 are horizontally aligned in this alignment direction when no electric field is applied. At this time, the liquid crystal molecules 14 near the alignment films 11 and 12 are formed.
Is tilted at a tilt angle θ, but in this embodiment, since the alignment directions of the alignment films 11 and 12 are the same, the first substrate 1
The tilts of the liquid crystal molecules 14 on the side of the first substrate 1 and the liquid crystal molecules 14 on the side of the second substrate 7 are in opposite directions. The leftmost liquid crystal molecules 14 are located closer to the second substrate 7. If the alignment directions of the alignment films 11 and 12 are reversed, the first substrate 1
The liquid crystal molecules 14 on the side and the liquid crystal molecules 14 on the side of the second substrate 7 are inclined in the same direction. In the present invention, such an alignment treatment may be performed. FIG. 4 shows the liquid crystal molecules 14 located on the second substrate 7 side.
The circle marked on one end of the liquid crystal molecules 14 means the end closer to the second substrate 7 and indicates the tilted state of the liquid crystal molecules 14. 4 indicate transmission axes of the polarizing plates 15 and 16. In this embodiment, the transmission axis of the first polarizing plate 15 is in the same direction as the alignment direction of the alignment film 11. It is set to be.

【0026】このとき第一偏光板15を通過した直線偏
光の透過光は、透過光の振幅方向と液晶分子14の長軸
方向が一致しているため複屈折することなくそのままの
偏光状態で液晶層13を通過する。そして第二偏光板1
6に達する透過光は、直線偏光の振幅方向と透過軸が直
交するために第二偏光板16で遮られ、液晶表示装置は
良好な黒表示になる。
At this time, the transmitted light of the linearly polarized light that has passed through the first polarizing plate 15 has the same polarization state as that of the liquid crystal without birefringence because the amplitude direction of the transmitted light coincides with the major axis direction of the liquid crystal molecules 14. Passes through layer 13. And the second polarizing plate 1
The transmitted light reaching 6 is blocked by the second polarizing plate 16 because the amplitude direction of the linearly polarized light is orthogonal to the transmission axis, and the liquid crystal display device displays a good black display.

【0027】画素電極4に電圧を印加したときは、画素
電極4と対向電極10の間に図5の点線で示すような電
界が生じる。このとき液晶分子14は負の誘電率異方性
を持っているため、電界に対して直交する方向に倒れ
る。したがって図5で示すように、領域B1の液晶分子
14は画素電極4の縁部4aに発生する斜め電界の影響
を受けて左端の方が第二基板7よりになるように傾斜
し、領域B4の液晶分子14は画素電極4の縁部4aに
発生する斜め電界の影響を受けて右端の方が第二基板7
よりになるように傾斜する。また画素電極4の縁部4a
より画素電極4の内側に位置する液晶分子14bは、画
素電極4の縁部4aに位置する液晶分子14aの傾斜方
向に影響されて同じように傾斜する。
When a voltage is applied to the pixel electrode 4, an electric field is generated between the pixel electrode 4 and the counter electrode 10 as shown by a dotted line in FIG. At this time, since the liquid crystal molecules 14 have negative dielectric anisotropy, they fall in a direction perpendicular to the electric field. Therefore, as shown in FIG. 5, the liquid crystal molecules 14 in the region B1 are inclined by the influence of the oblique electric field generated at the edge 4a of the pixel electrode 4 so that the left end is closer to the second substrate 7, and the region B4 Liquid crystal molecules 14 are affected by an oblique electric field generated at the edge 4a of the pixel electrode 4, and the right end of the
Tilt to be more. The edge 4a of the pixel electrode 4
The liquid crystal molecules 14b located further inside the pixel electrode 4 are similarly inclined by being affected by the inclination direction of the liquid crystal molecules 14a located at the edge 4a of the pixel electrode 4.

【0028】領域B1〜B4毎に観察すると、図6に示
すように各領域B1〜B4の画素電極4には4辺の縁部
4aで斜め電界が発生し、その電界の向きも異なる。そ
のため各辺付近の液晶分子14aはそれぞれに発生する
電界の方向に応じて水平方向に回転し、それぞれの液晶
分子14の向きが変化する。例えば領域B1の場合を説
明すると、領域B1の画素電極4の各辺付近に示した矢
印は電界の向きを表し、辺B1−1の電界は対向電極1
0の方向に発生し、辺B1−4の電界は対向電極10の
方向に発生する。そして辺B1−1と辺B1−3の電界
が同じ向き、辺B1−2と辺B1−4の電界が同じ向
き、辺B1−1と辺B1−4の電界の向きが直交する。
また辺B1−1と辺B1−4の角部では対向電極10の
角部の方向に電界が生じ、辺B1−2と辺B1−3の角
部でも同じ方向の電界が生じる。液晶分子14は各電界
の向きに応じて無電界時の状態から水平方向に回転する
ので、辺B1−1付近と辺B1−3付近の液晶分子14
aが同じ方向を向き、辺B1−2付近と辺B1−4付近
の液晶分子14aが同じ方向を向き、辺B1−1付近と
辺B1−4付近の液晶分子14aの向きが直交し、辺B
1−1と辺B1−4の角部に位置する液晶分子14aと
辺1−2と辺1−3の角部に位置する液晶分子14aが
画素の中心方向に向く。
When observing each of the regions B1 to B4, oblique electric fields are generated at the edges 4a of the four sides of the pixel electrodes 4 in the regions B1 to B4 as shown in FIG. 6, and the directions of the electric fields are also different. Therefore, the liquid crystal molecules 14a near each side rotate in the horizontal direction according to the direction of the electric field generated in each side, and the direction of each liquid crystal molecule 14 changes. For example, the case of the region B1 will be described. The arrows shown near each side of the pixel electrode 4 in the region B1 indicate the direction of the electric field, and the electric field on the side B1-1 is the counter electrode 1
0, and the electric field on the side B1-4 is generated in the direction of the counter electrode 10. The electric field directions of the side B1-1 and the side B1-3 are the same, the electric field directions of the side B1-2 and the side B1-4 are the same, and the electric field directions of the side B1-1 and the side B1-4 are orthogonal.
An electric field is generated in the direction of the corner of the counter electrode 10 at the corner between the side B1-1 and the side B1-4, and an electric field is generated in the same direction at the corner of the side B1-2 and the side B1-3. Since the liquid crystal molecules 14 rotate in the horizontal direction from the state without the electric field according to the direction of each electric field, the liquid crystal molecules 14 near the side B1-1 and the side B1-3 are rotated.
a is in the same direction, the liquid crystal molecules 14a near the side B1-2 and the side B1-4 are in the same direction, and the directions of the liquid crystal molecules 14a near the side B1-1 and the side B1-4 are orthogonal to each other. B
The liquid crystal molecules 14a located at the corners of 1-1 and B1-4 and the liquid crystal molecules 14a located at the corners of sides 1-2 and 1-3 face the center of the pixel.

【0029】領域B1内の液晶分子14は複数の方向を
向いているが、光学的には各液晶分子14が互いに作用
し合い、領域B1全体として液晶分子14cの方向に向
くことになる。領域B2〜B4も同様であり、各液晶分
子14の向きは図6に示すようになる。ここで領域B1
と領域B3の液晶分子14cが逆方向を向き、領域B2
と領域B4の液晶分子14cが逆方向を向いているた
め、領域B1と領域B3が視角特性を補償し合い、領域
B2と領域B4が視角特性を補償し合う。また領域B1
と領域B2の液晶分子14cの向きが直交し、各領域B
1〜B4の大きさが均等になっているため、1画素全体
で見た場合に各方向からの視角特性がバランス良く改善
される。
The liquid crystal molecules 14 in the region B1 are oriented in a plurality of directions. Optically, the liquid crystal molecules 14 act on each other, and the entire region B1 is oriented in the direction of the liquid crystal molecules 14c. The same applies to the regions B2 to B4, and the directions of the liquid crystal molecules 14 are as shown in FIG. Here, the area B1
And the liquid crystal molecules 14c in the region B3 face the opposite direction, and the region B2
Since the liquid crystal molecules 14c of the region B4 and the region B4 face in opposite directions, the region B1 and the region B3 compensate the viewing angle characteristics, and the region B2 and the region B4 compensate the viewing angle characteristics. The area B1
And the direction of the liquid crystal molecules 14c in the region B2 are orthogonal to each other,
Since the sizes of 1 to B4 are uniform, the viewing angle characteristics from each direction are improved in a well-balanced manner when the entire pixel is viewed.

【0030】第一偏光板15を通過した直線偏光の透過
光が液晶層13を通過するとき、透過光の振幅方向と液
晶分子14cの長軸方向が異なるため、透過光は液晶層
13で複屈折され楕円偏光になる。この場合、透過光の
振幅方向と液晶分子14cの長軸方向が約45度を成す
ときが複屈折の作用が大きくなるため、電圧印加時の液
晶分子14がそうした条件を満たすように調整する方が
好ましい。楕円偏光の透過光は第二偏光板16を通過で
きるのため、液晶表示装置としては白表示になる。この
とき1画素毎に液晶分子14の傾き及び向きが異なる領
域B1〜B4が4つ存在するため、表示ムラの少なく且
つ広い視野角を得ることができる。
When the transmitted light of linearly polarized light that has passed through the first polarizing plate 15 passes through the liquid crystal layer 13, the transmitted light is multiplied by the liquid crystal layer 13 because the amplitude direction of the transmitted light and the major axis direction of the liquid crystal molecules 14 c are different. It is refracted and becomes elliptically polarized light. In this case, the effect of birefringence increases when the amplitude direction of the transmitted light and the major axis direction of the liquid crystal molecules 14c form about 45 degrees. Therefore, it is preferable to adjust the liquid crystal molecules 14 so as to satisfy such conditions when voltage is applied. Is preferred. Since the transmitted light of the elliptically polarized light can pass through the second polarizing plate 16, the liquid crystal display device displays white. At this time, since there are four regions B1 to B4 in which the inclination and the direction of the liquid crystal molecules 14 are different for each pixel, it is possible to obtain a wide viewing angle with less display unevenness.

【0031】この発明では1画素内の各領域において画
素電極の縁部と対向電極の縁部をそれぞれずらして配置
している。したがって各領域の画素電極の4辺に斜め電
界が発生し、その4辺で液晶分子の傾斜方向や回転方向
が規制されるため、電圧印加時における各領域内の全て
の液晶分子が配列状態を変化させてその状態が安定する
までの時間が短くて済む。またこの発明では無電界時に
水平配列してる液晶分子を電圧印加時に水平方向に回転
させるので、液晶分子の配列状態を水平配列から垂直配
列に変えるものと比べても、応答速度が速くなる。
In the present invention, the edge of the pixel electrode and the edge of the counter electrode are arranged to be shifted from each other in each region within one pixel. Therefore, oblique electric fields are generated on the four sides of the pixel electrode in each region, and the tilt direction and the rotation direction of the liquid crystal molecules are restricted on the four sides. Therefore, when the voltage is applied, all the liquid crystal molecules in each region are aligned. The time it takes to change and stabilize the state can be shortened. Further, according to the present invention, the liquid crystal molecules which are horizontally arranged in the absence of an electric field are rotated in the horizontal direction when a voltage is applied, so that the response speed is faster than in the case where the arrangement state of the liquid crystal molecules is changed from the horizontal arrangement to the vertical arrangement.

【0032】なお、この実施の形態では画素電極4にス
リット17を形成し、且つ画素電極4の端部4aの内側
に対向電極10が位置する場合を説明したが、本発明の
趣旨に沿った範囲内でその他の形態をとることもでき
る。例えば、対向電極にスリットを形成し、且つ1画素
毎に対向電極の端部の内側に画素電極が位置する場合で
もよい。
In this embodiment, the case where the slit 17 is formed in the pixel electrode 4 and the counter electrode 10 is located inside the end 4a of the pixel electrode 4 has been described. Other forms are possible within the scope. For example, a slit may be formed in the counter electrode, and the pixel electrode may be located inside the end of the counter electrode for each pixel.

【0033】[0033]

【発明の効果】本発明によれば、無電界時から電圧印加
時になったとき水平配列の液晶分子が水平方向に回転す
ることで配列状態を変化させ、また、1画素を複数の領
域に分割し、各領域の画素電極の周縁部分で液晶分子の
傾斜方向と回転方向を規制するので、応答速度が速くな
る。
According to the present invention, when the voltage is applied from the absence of an electric field, the liquid crystal molecules in a horizontal arrangement rotate in the horizontal direction to change the arrangement state, and one pixel is divided into a plurality of regions. Since the tilt direction and the rotation direction of the liquid crystal molecules are regulated at the peripheral portion of the pixel electrode in each region, the response speed is increased.

【0034】さらに電圧印加時に、液晶分子の傾きや向
きの異なる領域が画素毎に複数存在するため、広視野角
の液晶表示装置が実現できる。
Further, when a voltage is applied, a plurality of regions having different inclinations and directions of liquid crystal molecules exist for each pixel, so that a liquid crystal display device having a wide viewing angle can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である液晶表示装置の画素電
極と対向電極の配置関係を示す平面図である。
FIG. 1 is a plan view showing an arrangement relationship between a pixel electrode and a counter electrode of a liquid crystal display device according to an embodiment of the present invention.

【図2】図1のA−A線に沿った断面概略図である。FIG. 2 is a schematic cross-sectional view taken along line AA of FIG.

【図3】無電界時の液晶分子の配列状態を模式的に示し
た断面図である。
FIG. 3 is a cross-sectional view schematically showing an alignment state of liquid crystal molecules when no electric field is applied.

【図4】無電界時の液晶分子の配列状態を模式的に示し
た平面図である。
FIG. 4 is a plan view schematically showing an arrangement state of liquid crystal molecules when no electric field is applied.

【図5】電圧印加時の液晶分子の配列状態を模式的に示
した断面図である。
FIG. 5 is a cross-sectional view schematically showing an alignment state of liquid crystal molecules when a voltage is applied.

【図6】電圧印加時の液晶分子の配列状態を模式的に示
した平面図である。
FIG. 6 is a plan view schematically showing an alignment state of liquid crystal molecules when a voltage is applied.

【図7】従来の液晶表示装置における無電界時の液晶分
子の配列状態を模式的に示した断面図である。
FIG. 7 is a cross-sectional view schematically showing an alignment state of liquid crystal molecules when no electric field is applied in a conventional liquid crystal display device.

【図8】従来の液晶表示装置における電圧印加時の液晶
分子の配列状態を模式的に示した断面図である。
FIG. 8 is a cross-sectional view schematically showing an alignment state of liquid crystal molecules when a voltage is applied in a conventional liquid crystal display device.

【符号の説明】[Explanation of symbols]

1 第1基板 4 画素電極 7 第二基板 8 ブラックマトリックス 9 カラーフィルタ 10 対向電極 11 配向膜 12 配向膜 14 液晶分子 15 第一偏光板 16 第二偏光板 17 スリット Reference Signs List 1 first substrate 4 pixel electrode 7 second substrate 8 black matrix 9 color filter 10 counter electrode 11 alignment film 12 alignment film 14 liquid crystal molecule 15 first polarizing plate 16 second polarizing plate 17 slit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 須崎 剛 鳥取県鳥取市南吉方3丁目201番地 鳥取 三洋電機株式会社内 (72)発明者 賀勢 裕之 鳥取県鳥取市南吉方3丁目201番地 鳥取 三洋電機株式会社内 (72)発明者 森 善隆 鳥取県鳥取市南吉方3丁目201番地 鳥取 三洋電機株式会社内 Fターム(参考) 2H090 LA01 LA09 MA02 MA07 MA14 MA15 2H091 FA08X FA08Z FD01 FD08 FD09 GA02 GA03 GA06 LA19 2H092 GA13 GA20 GA21 JB02 JB04 NA01 PA02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tsuyoshi Suzaki 3-201 Minamiyoshikata, Tottori-shi, Tottori Tottori Sanyo Electric Co., Ltd. (72) Inventor Hiroyuki Kase 3-201 Minamiyoshikata, Tottori-shi, Tottori Sanyo Tottori Inside Electric Co., Ltd. (72) Inventor Yoshitaka Mori 3-201 Minamiyoshikata, Tottori City, Tottori Pref. GA13 GA20 GA21 JB02 JB04 NA01 PA02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 第一基板に形成した画素電極と、第二基
板に形成した対向電極とを備え、前記第一基板と前記第
二基板を対向配置してこの両基板間に誘電率異方性が負
の液晶を封入した液晶表示装置において、前記両基板上
には同じ方向に水平配向処理を施した配向膜を設け、1
画素を複数の領域に分割すると共に、領域毎に前記画素
電極と前記対向電極を互いの端部がずれて位置するよう
に配置したことを特徴とする液晶表示装置。
A first electrode formed on a first substrate; and a counter electrode formed on a second substrate, wherein the first substrate and the second substrate are disposed to face each other, and a dielectric anisotropy is provided between the two substrates. In a liquid crystal display device in which a negative liquid crystal is sealed, an alignment film that has been subjected to a horizontal alignment process in the same direction is provided on both of the substrates.
A liquid crystal display device, wherein a pixel is divided into a plurality of regions, and the pixel electrode and the counter electrode are arranged such that their ends are shifted from each other in each region.
【請求項2】 第一基板に形成した画素電極と、第二基
板に形成した対向電極とを備え、前記第一基板と前記第
二基板を対向配置してこの両基板間に誘電率異方性が負
の液晶を封入した液晶表示装置において、前記両基板上
には同じ方向に水平配向処理を施した配向膜を設け、1
画素を複数の領域に分割すると共に、各領域内での画素
電極の周囲部分と対向電極の周囲部分の間で第二基板に
対して斜め方向の電界が発生するように画素電極と対向
電極を配置したことを特徴とする液晶表示装置。
2. A semiconductor device comprising: a pixel electrode formed on a first substrate; and a counter electrode formed on a second substrate, wherein the first substrate and the second substrate are disposed to face each other, and a dielectric anisotropy is provided between the two substrates. In a liquid crystal display device in which a negative liquid crystal is sealed, an alignment film that has been subjected to a horizontal alignment process in the same direction is provided on both of the substrates.
The pixel is divided into a plurality of regions, and the pixel electrode and the counter electrode are formed such that an electric field in an oblique direction with respect to the second substrate is generated between a peripheral portion of the pixel electrode and a peripheral portion of the counter electrode in each region. A liquid crystal display device characterized by being arranged.
【請求項3】 前記1画素内の各領域の大きさを均等に
設定したことを特徴とする請求項1乃至請求項2記載の
液晶表示装置。
3. The liquid crystal display device according to claim 1, wherein the size of each region in one pixel is set to be equal.
【請求項4】 前記1画素内が4つの領域に分割されて
いることを特徴とする請求項1乃至請求項3記載の液晶
表示装置。
4. The liquid crystal display device according to claim 1, wherein the inside of one pixel is divided into four regions.
【請求項5】 1画素内に配置された画素電極には前記
領域の境界部分にスリットが形成され、対向電極は1画
素毎に設けられると共に、第二基板側から見たときに画
素電極の内側に配置されていることを特徴とする請求項
1乃至請求項4記載の液晶表示装置。
5. A pixel electrode disposed in one pixel is provided with a slit at a boundary portion of the region, a counter electrode is provided for each pixel, and the pixel electrode is viewed from the second substrate side. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is disposed inside.
【請求項6】 内側に十字状のスリット部が形成された
ほぼ四角形の画素電極と、前記画素電極よりも一回り小
さいぼほ四角形の対向電極とを備え、第二基板側から見
たときに画素電極の内側に対向電極が配置されているこ
とを特徴とする請求項1乃至請求項5記載の液晶表示装
置。
6. A substantially square pixel electrode having a cross-shaped slit formed inside, and a roughly square counter electrode slightly smaller than the pixel electrode, when viewed from the second substrate side. 6. The liquid crystal display device according to claim 1, wherein a counter electrode is disposed inside the pixel electrode.
【請求項7】 前記第一基板の外側に第一偏光板を設
け、前記第二基板の外側に第二偏光板を設けた液晶表示
装置であって、前記第一偏光板の透過軸と前記第二偏光
板の透過軸が直交すると共に、前記第一偏光板若しくは
前記第二偏光板のどちらか一方の透過軸が前記配向膜の
水平配向方向と同一方向になるように設定されているこ
とを特徴とする請求項1乃至請求項6記載の液晶表示装
置。
7. A liquid crystal display device comprising a first polarizing plate provided outside the first substrate and a second polarizing plate provided outside the second substrate, wherein the transmission axis of the first polarizing plate is The transmission axes of the second polarizing plate are orthogonal to each other, and the transmission axis of one of the first polarizing plate and the second polarizing plate is set to be the same as the horizontal alignment direction of the alignment film. 7. The liquid crystal display device according to claim 1, wherein:
JP2000230956A 2000-07-31 2000-07-31 Liquid crystal display device Pending JP2002040457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000230956A JP2002040457A (en) 2000-07-31 2000-07-31 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000230956A JP2002040457A (en) 2000-07-31 2000-07-31 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2002040457A true JP2002040457A (en) 2002-02-06

Family

ID=18723848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000230956A Pending JP2002040457A (en) 2000-07-31 2000-07-31 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2002040457A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7023516B2 (en) 2002-04-15 2006-04-04 Sharp Kabushiki Kaisha Substrate for liquid crystal display provided with electrode units having trunk and branch sections formed in each pixel region, and liquid crystal display having the same
JP2007047784A (en) * 2005-08-05 2007-02-22 Samsung Electronics Co Ltd Liquid crystal display
WO2012137541A1 (en) * 2011-04-08 2012-10-11 株式会社ジャパンディスプレイセントラル Liquid crystal display device
KR101383717B1 (en) 2007-06-27 2014-04-10 삼성디스플레이 주식회사 Display device and method of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7023516B2 (en) 2002-04-15 2006-04-04 Sharp Kabushiki Kaisha Substrate for liquid crystal display provided with electrode units having trunk and branch sections formed in each pixel region, and liquid crystal display having the same
US7385662B2 (en) 2002-04-15 2008-06-10 Sharp Kabushiki Kaisha Liquid crystal display with connection electrodes, branches, and extension electrodes
US7586573B2 (en) 2002-04-15 2009-09-08 Sharp Kabushiki Kaisha Substrate for liquid crystal display and liquid crystal display having the same
JP2007047784A (en) * 2005-08-05 2007-02-22 Samsung Electronics Co Ltd Liquid crystal display
US8345196B2 (en) 2005-08-05 2013-01-01 Samsung Display Co., Ltd. Liquid crystal display
KR101383717B1 (en) 2007-06-27 2014-04-10 삼성디스플레이 주식회사 Display device and method of manufacturing the same
WO2012137541A1 (en) * 2011-04-08 2012-10-11 株式会社ジャパンディスプレイセントラル Liquid crystal display device
US9424786B2 (en) 2011-04-08 2016-08-23 Japan Display Inc. Liquid crystal display device

Similar Documents

Publication Publication Date Title
US6646707B2 (en) Fringe field switching mode LCD
JP3108768B2 (en) TN liquid crystal display device
JP3850002B2 (en) Liquid crystal electro-optical device
JPH11352490A (en) Wide viewing angle liquid crystal display device
KR100921137B1 (en) Liquid crystal display
JP2009151204A (en) Liquid crystal display device
WO2011161921A1 (en) Liquid crystal display device
JP2006133619A (en) Liquid crystal display device and method for manufacturing the same
JP4156342B2 (en) Liquid crystal display
JP2000193977A (en) Liquid crystal display device
JP2003043488A (en) Liquid crystal display device
KR100288766B1 (en) Wide viewing angle liquid crystal display device
JP3733011B2 (en) Liquid crystal display
JP2006106338A (en) Liquid crystal display device
JPH11174482A (en) Liquid crystal display device
JPH11174481A (en) Display device
JP4019906B2 (en) Liquid crystal display
JP2002040457A (en) Liquid crystal display device
KR100777690B1 (en) Liquid crystal displays
KR100717186B1 (en) fringe field switching mode liquid crystal display device
JP4586481B2 (en) Transflective LCD panel
JP2005024676A (en) Liquid crystal display
JP2002014331A (en) Liquid crystal display device
KR100599962B1 (en) Fringe field switching mode lcd device
JP2003066453A (en) Liquid crystal display