JP2002034897A - Diagnostic system - Google Patents

Diagnostic system

Info

Publication number
JP2002034897A
JP2002034897A JP2001136496A JP2001136496A JP2002034897A JP 2002034897 A JP2002034897 A JP 2002034897A JP 2001136496 A JP2001136496 A JP 2001136496A JP 2001136496 A JP2001136496 A JP 2001136496A JP 2002034897 A JP2002034897 A JP 2002034897A
Authority
JP
Japan
Prior art keywords
unit
signal
information
temperature
observer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001136496A
Other languages
Japanese (ja)
Other versions
JP3312904B2 (en
Inventor
Kuniaki Kami
邦彰 上
Yoshihiro Kosaka
芳広 小坂
Hideyuki Adachi
英之 安達
Seiji Yamaguchi
征治 山口
Koichi Umeyama
広一 梅山
Eiichi Fuse
栄一 布施
Michio Sato
道雄 佐藤
Masakazu Nakamura
雅一 中村
Yasuto Tanaka
靖人 田中
Takashi Fukaya
孝 深谷
Kiyotaka Matsuno
清孝 松野
Katsuya Suzuki
克哉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2001136496A priority Critical patent/JP3312904B2/en
Publication of JP2002034897A publication Critical patent/JP2002034897A/en
Application granted granted Critical
Publication of JP3312904B2 publication Critical patent/JP3312904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Endoscopes (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a diagnostic system capable of tactilely recognizing by an operator and improving a function of diagnosis by raising a utilization efficiency of information. SOLUTION: The diagnosing system comprises a contact section with a specimen 43, an organism information sensing means 44 for sensing a pressure of the contact section conning into contact with the specimen, a contact section of an observer 48, and a stimulus generator 47 disposed at the contact section with the observer to generate a pressure or a mechanical stimulus for the observer based on an output of the information sensing means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被検体の情報を再
現する手段を設けた診断システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diagnostic system provided with means for reproducing information on a subject.

【0002】[0002]

【従来の技術】近年、内視鏡は医療分野及び工業用分野
において広く用いられるようになった。従来の内視鏡で
は、対象物の凹凸を視認しにくいため、例えば特開平2
−216403号公報に開示されているように対物光学
系を2つ設けたステレオ内視鏡を用いることにより、3
次元的にできるようにした装置が提案されている。
2. Description of the Related Art In recent years, endoscopes have been widely used in the medical and industrial fields. In a conventional endoscope, it is difficult to visually recognize irregularities on an object.
By using a stereo endoscope provided with two objective optical systems as disclosed in JP-A-216403,
Devices that can be made dimensionally have been proposed.

【0003】[0003]

【発明が解決しようとする課題】上記ステレオ内視鏡に
よれば3次元的に形状を確認できるが、術者(観察者)
が触覚的に認知できないため、情報を有効に利用できな
かった。例えば、対象部位に凹凸がある場合、その部位
が実際にどの程度凹凸になっているか触覚的に認知でき
ない。
According to the above-mentioned stereo endoscope, the shape can be confirmed three-dimensionally.
The information could not be used effectively because of the lack of tactile perception. For example, if the target portion has irregularities, it is not possible to tactilely recognize how much the irregularity of the target portion is actually.

【0004】この問題は、内視鏡以外の場合にも存在す
るものであった。
[0004] This problem also exists in cases other than the endoscope.

【0005】本発明は上述した点にかんがみてなされた
もので、術者が触覚的に認知でき、情報の利用効率を上
げて診断の機能を向上できる診断システムを提供するこ
とを目的とする。
[0005] The present invention has been made in view of the above points, and has as its object to provide a diagnostic system that allows an operator to tactilely perceive, improve the efficiency of use of information, and improve the diagnostic function.

【0006】[0006]

【課題を解決するための手段】本発明による第1の診断
システムは、被検体との接触部と、この接触部が前記被
検体と接触する部分の圧力を検知する生体情報検出手段
と、観察者との接触部と、この観察者との接触部に設け
られ、前記生体情報検出手段の出力に基づいて前記観察
者に対して圧力または機械的な刺激を発生する刺激発生
部と、を具備したことを特徴とする。
According to a first diagnostic system of the present invention, a contact portion with a subject, a biological information detecting means for detecting a pressure of a portion where the contact portion contacts the subject, and an observation system. A contact part with the observer and a stimulus generator provided at the contact part with the observer and generating a pressure or a mechanical stimulus to the observer based on the output of the biological information detecting means. It is characterized by having done.

【0007】本発明による第2の診断システムは、被検
体の温度を検知する温度検出手段と、観察者との接触部
と、この観察者との接触部に設けられ、前記温度検出手
段の出力に基づいて熱を発生する温度変化部と、を具備
したことを特徴とする。
A second diagnostic system according to the present invention is provided at a temperature detecting means for detecting a temperature of a subject, a contact portion with an observer, and a contact portion with the observer. And a temperature change unit that generates heat based on the temperature.

【0008】[0008]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1に示す概念図に示すように、本発明の
診断システム1は、生体の情報又は機械内部の情報等を
検出する検出手段2と、この検出手段2の出力信号を信
号処理する信号処理手段3と、この信号処理手段3の出
力に基づいて動作し、被検体の情報を再現する被検体情
報再現手段4とから構成され、術者はこの被検体情報再
現手段4により触覚的に情報を把握することで、生体又
は機器の情報をより効率的に認知できるようにしてい
る。
As shown in the conceptual diagram of FIG. 1, a diagnostic system 1 of the present invention includes a detecting means 2 for detecting information on a living body or information inside a machine, and performs signal processing on an output signal of the detecting means 2. A signal processing unit 3 and an object information reproducing unit 4 that operates based on the output of the signal processing unit 3 and reproduces information of the object are provided. By grasping the information in advance, the information of the living body or the device can be recognized more efficiently.

【0010】図2ないし図4は本発明の第1実施形態に
係り、図2は第1実施形態の内視鏡システムの構成図、
図3は情報処理装置およびモニタの構成図、図4はマウ
スを示す側面図である。
FIGS. 2 to 4 relate to a first embodiment of the present invention. FIG. 2 is a configuration diagram of an endoscope system according to the first embodiment.
FIG. 3 is a configuration diagram of an information processing device and a monitor, and FIG. 4 is a side view showing a mouse.

【0011】図2に示すように診断システムの第1実施
形態としての内視鏡システム11は、ステレオ電子スコ
ープ12と、この電子スコープ12に照明光を供給する
光源装置13と、電子スコープ12の撮像手段に対して
信号処理すると共に、モニタに表示する情報処理装置&
モニタ14と、情報処理装置&モニタ14の出力信号に
より、上下部15aが上下動されるマウス15とから構
成される。
As shown in FIG. 2, an endoscope system 11 as a first embodiment of a diagnostic system includes a stereo electronic scope 12, a light source device 13 for supplying illumination light to the electronic scope 12, and an electronic scope 12. An information processing device that processes a signal to an imaging unit and displays the signal on a monitor.
It comprises a monitor 14 and a mouse 15 whose upper and lower parts 15a are moved up and down by an output signal of the information processing device & monitor 14.

【0012】上記ステレオ電子スコープ12は、細長の
挿入部17と、この挿入部17の後端に形成された太幅
の操作部18と、この操作部18から延出されたユニバ
ーサルケーブル19とからなり、このユニバーサルケー
ブル19の先端に設けたコネクタ20を光源装置13に
接続することにより、この光源装置13から図示しない
ライトガイドの入射端面に照明光が供給されるようにな
っている。このコネクタ20からさらに信号ケーブル2
1が延出され、情報処理装置&モニタ14に接続できる
ようにしてある。
The stereo electronic scope 12 includes an elongated insertion portion 17, a wide operation portion 18 formed at the rear end of the insertion portion 17, and a universal cable 19 extending from the operation portion 18. By connecting the connector 20 provided at the end of the universal cable 19 to the light source device 13, illumination light is supplied from the light source device 13 to the incident end face of a light guide (not shown). From this connector 20, the signal cable 2
1 is extended so that it can be connected to the information processing device & monitor 14.

【0013】上記挿入部17は、先端側より硬性の先端
部22、湾曲自在の湾曲部23、可撓性の可撓部24が
順次形成されている。上記操作部18にはアングル操作
ノブ25が設けてあり、このノブ25を操作することに
より、湾曲部23を上下/左右方向に湾曲することがで
きる。
The insertion portion 17 has a rigid distal end portion 22, a bendable bending portion 23, and a flexible portion 24 formed in this order from the distal end side. The operation section 18 is provided with an angle operation knob 25. By operating the knob 25, the bending section 23 can be bent in the up / down / left / right directions.

【0014】上記光源装置13から供給された照明光
は、ライトガイドにより伝送され、先端部22内の端面
からさらに照明レンズ26を経て前方に出射される。こ
の照明光で照明された被検体は、先端部22に離間して
取付けられた対物レンズ27a,27bにより、各焦点
面に配設されて図示しないCCDに結像され、光電変換
されて図3に示す情報処理装置&モニタ14に入力され
る。
The illumination light supplied from the light source device 13 is transmitted by a light guide, and is further emitted forward from an end surface in the distal end portion 22 through an illumination lens 26. The object illuminated by the illumination light is focused on CCDs (not shown) arranged on respective focal planes by objective lenses 27a and 27b separately attached to the distal end portion 22, and is photoelectrically converted. Is input to the information processing device & monitor 14 shown in FIG.

【0015】上記情報処理装置&モニタ14に入力され
る各画像信号は、図示しないA/Dコンバータで変換さ
れてそれぞれ第1及び第2画像メモリ31a,31bに
入力され、各画像データが格納される。各画像メモリ3
1a,31bの画像データはそれぞれ読出されて立体画
像構成部32に入力され、この立体画像構成部32によ
り、立体画像として表示するための信号処理が行われて
立体画像を表示する映像信号が生成され、モニタ33に
立体画像を表示する。
Each image signal input to the information processing device & monitor 14 is converted by an A / D converter (not shown) and input to first and second image memories 31a and 31b, respectively, where each image data is stored. You. Each image memory 3
The image data 1a and 31b are read out and input to the stereoscopic image forming unit 32. The stereoscopic image forming unit 32 performs signal processing for displaying as a stereoscopic image and generates a video signal for displaying the stereoscopic image. Then, a stereoscopic image is displayed on the monitor 33.

【0016】上記第1及び第2画像メモリ31a,31
bの画像データは演算部34にも入力され、これら画像
データから画像の凹凸量を演算する。一方、マウス15
は、該マウス15の移動量を移動量検出部35により検
出し、その検出した信号をマウス信号入力部36に出力
する。このマウス信号入力部36に入力されたマウス1
5の移動位置は、立体画像構成部32に出力され、モニ
タ33の画面上にマウス15の位置をカーソル37で表
示する(図2参照)。
The first and second image memories 31a, 31
The image data b is also input to the calculation unit 34, and the amount of unevenness of the image is calculated from the image data. On the other hand, mouse 15
Detects the amount of movement of the mouse 15 by the movement amount detection unit 35 and outputs the detected signal to the mouse signal input unit 36. The mouse 1 input to the mouse signal input unit 36
The moving position of 5 is output to the stereoscopic image forming unit 32, and the position of the mouse 15 is displayed on the screen of the monitor 33 with the cursor 37 (see FIG. 2).

【0017】又、このマウス15の位置は、演算部34
にも出力され、この演算部34は、マウス15の位置し
ている部分の内視鏡画像部分の凹凸量を変位量発生手段
38に出力する。この変位量発生手段38は、演算部3
4の出力に応じて、上下部15aを上下動させるように
なっており、カーソル37で指定された位置の凹凸を再
現できるようになっている。この上下部15aは、形状
記憶合金とかエアーの圧力によって上下に駆動されるも
ので構成されている。
The position of the mouse 15 is determined by the operation unit 34.
The calculation unit 34 outputs the amount of unevenness of the endoscope image portion of the portion where the mouse 15 is located to the displacement amount generating means 38. This displacement amount generating means 38 is
The upper and lower portions 15a are moved up and down in accordance with the output of No. 4, so that the unevenness at the position designated by the cursor 37 can be reproduced. The upper and lower portions 15a are configured to be driven up and down by a shape memory alloy or the pressure of air.

【0018】この第1実施形態によれば、術者は、図4
に示すように手39をマウス15の上下部15aに当
て、カーソル37を内視鏡画像における所望とする位置
に移動設定すると、そのカーソル位置の凹凸量が演算部
34で演算され、マウス15の上下部15aが演算で求
められた凹凸量だけ上下動する。従って、術者はマウス
15を内視鏡画像上で移動すると、その画像上の移動部
分における内視鏡画像の凹凸量を上下部15aの上下動
により指(手)に伝えることができ、触覚的に認知する
ことができる。
According to this first embodiment, the surgeon can
When the hand 39 is placed on the upper and lower portions 15a of the mouse 15 and the cursor 37 is moved to a desired position in the endoscopic image as shown in FIG. The upper and lower portions 15a move up and down by the amount of unevenness obtained by the calculation. Therefore, when the surgeon moves the mouse 15 on the endoscope image, the surge amount of the endoscope image in the moving portion on the image can be transmitted to the finger (hand) by the up and down movement of the upper and lower portions 15a. Can be recognized.

【0019】従って、術者はモニタ33上での3次元画
像のみならず触覚的にも知ることができるので、より的
確な診断を行うことができる。なお、カーソル位置の凹
凸量が演算部34で演算され、マウス15の上下部15
aをこの凹凸に対応する量だけ上下動する場合、この上
下動する量を演算部34で演算された凹凸量の任意倍数
に設定できる設定手段を設けるようにしても良い。
Therefore, the operator can know not only a three-dimensional image on the monitor 33 but also a tactile sense, so that a more accurate diagnosis can be made. The amount of unevenness at the cursor position is calculated by the calculation unit 34, and the upper and lower
When a is moved up and down by an amount corresponding to the unevenness, a setting means for setting the amount of up and down movement to an arbitrary multiple of the unevenness amount calculated by the arithmetic unit 34 may be provided.

【0020】図5は本発明の第2実施形態の生体情報告
知装置41を使用状態で示す。この装置41は、内視鏡
42と、この内視鏡42で観察される患者43の生体情
報を検出する生体情報検出部44と、この検出部44で
検出された生体情報を信号処理する生体情報信号処理装
置45と、この処理装置45で駆動する処理を行う駆動
装置46と、この駆動装置46で駆動される刺激発生部
47とから構成され、この刺激発生部47は内視鏡42
で観察する術者48に取付けられ、術者48に刺激を伝
達し、患者43の生体情報を再現できるようにしてい
る。
FIG. 5 shows a biological information notification device 41 according to a second embodiment of the present invention in use. The device 41 includes an endoscope 42, a biological information detecting unit 44 for detecting biological information of a patient 43 observed by the endoscope 42, and a living body for performing signal processing on the biological information detected by the detecting unit 44. An information signal processing device 45, a driving device 46 for performing a process driven by the processing device 45, and a stimulus generating portion 47 driven by the driving device 46 are provided.
It is attached to the operator 48 who observes by the, and transmits a stimulus to the operator 48 so that biological information of the patient 43 can be reproduced.

【0021】図6はこの告知装置41の構成を示す。患
者43に取付けられる生体情報検出部44は、例えばゴ
ムバンドに生体情報検出素子51が取付けられている。
この検出素子51は患者43の心拍、血圧、酸素濃度
(O2)等の生体情報を検出するためのものであり、検
出信号は生体情報信号処理装置45に入力される。
FIG. 6 shows the configuration of the notification device 41. The biological information detecting unit 44 attached to the patient 43 has a biological information detecting element 51 attached to a rubber band, for example.
The detection element 51 is for detecting biological information such as the heart rate, blood pressure, and oxygen concentration (O2) of the patient 43, and a detection signal is input to the biological information signal processing device 45.

【0022】この生体情報信号処理装置45により、信
号処理されて、例えば心拍数、酸素濃度(酸素の含有
率)、血圧等を算出し、それぞれの表示部45a,45
b,45cにより各値を表示する。この処理装置45は
各表示部45a,45b,45cにより、各値を表示す
ると共に、駆動装置46にも信号を出力し、該駆動装置
46を介して刺激発生部47を駆動する。この刺激発生
部47は、圧電素子等からなる刺激発生素子52が取付
けバンド部53に設けられている。
The biological information signal processor 45 performs signal processing to calculate, for example, a heart rate, an oxygen concentration (oxygen content), a blood pressure, and the like.
Each value is displayed by b and 45c. The processing unit 45 displays each value on each of the display units 45a, 45b, and 45c, outputs a signal to the drive unit 46, and drives the stimulus generation unit 47 via the drive unit 46. In the stimulus generation section 47, a stimulus generation element 52 composed of a piezoelectric element or the like is provided on a mounting band section 53.

【0023】図7ないし図9は、刺激発生素子52の駆
動方法を示す。図7は心拍(上の波形)と刺激発生素子
52(下の図)の関係を示す。この図7に示すように、
心拍に合わせて刺激発生素子52が駆動される(刺激で
心拍数が確認できる。)。図8は、血圧が高い場合
(a)と、低い場合(b)の駆動量の関係を示す。血圧
が高い場合、刺激発生素子52の駆動量は図8(a)の
ように大となる。一方、血圧が低いと、図8(b)に示
すように駆動量は小となる(刺激の量で血圧が確認でき
る。)。
FIGS. 7 to 9 show a method of driving the stimulus generating element 52. FIG. FIG. 7 shows the relationship between the heartbeat (upper waveform) and the stimulus generating element 52 (lower diagram). As shown in FIG.
The stimulus generating element 52 is driven in accordance with the heartbeat (the heart rate can be confirmed by stimulation). FIG. 8 shows the relationship between the driving amounts when the blood pressure is high (a) and when the blood pressure is low (b). When the blood pressure is high, the drive amount of the stimulus generation element 52 becomes large as shown in FIG. On the other hand, when the blood pressure is low, the driving amount becomes small as shown in FIG. 8B (the blood pressure can be confirmed by the amount of stimulation).

【0024】図9は、酸素濃度と刺激発生素子52の駆
動量の関係を示す。酸素濃度が低い場合の図9(a)の
場合には、酸素が不足している状態であり、刺激発生素
子52が伸張した状態から駆動する。一方、酸素濃度が
低い図9(b)の場合には、刺激発生素子52は伸張し
ていない状態から駆動する(術者43をしめつける刺激
で確認できる。)。
FIG. 9 shows the relationship between the oxygen concentration and the driving amount of the stimulus generating element 52. In the case of FIG. 9A where the oxygen concentration is low, oxygen is in short supply, and the stimulus generation element 52 is driven from the expanded state. On the other hand, in the case of FIG. 9B where the oxygen concentration is low, the stimulus generating element 52 is driven from a state where it is not extended (this can be confirmed by a stimulus that tightens the operator 43).

【0025】図10はこの告知装置41の詳細な構成を
示す。酸素濃度は発光素子61と受光素子62とで検出
されるようにしている。発光素子61は発光素子駆動部
63により駆動され、この発光素子61の光は生体の透
過光量が受光素子62で検出され、受光素子処理部64
に出力される。この場合、酸素濃度が高いと、光の減衰
が大きくなり、この減衰量から酸素濃度を検出する(例
えばミノルタ製パルスオキシメータ等がある。)。
FIG. 10 shows a detailed configuration of the notification device 41. The oxygen concentration is detected by the light emitting element 61 and the light receiving element 62. The light emitting element 61 is driven by a light emitting element driving unit 63, and the light emitted from the light emitting element 61 is detected by the light receiving element 62 as the amount of transmitted light of the living body, and the light receiving element processing unit 64
Is output to In this case, when the oxygen concentration is high, the attenuation of light increases, and the oxygen concentration is detected from the amount of attenuation (for example, a pulse oximeter manufactured by Minolta).

【0026】上記受光素子処理部64で処理され、酸素
濃度信号出力部65で表示されると共に、駆動装置46
内の電圧発生手段66に出力され、この電圧発生手段6
6により、刺激発生素子52に常時印加する電圧を、こ
の信号で変化させるようになっている。
The light is processed by the light receiving element processing section 64 and displayed on the oxygen concentration signal output section 65.
The voltage is output to the voltage generating means 66 in the
6, the voltage constantly applied to the stimulus generating element 52 is changed by this signal.

【0027】心拍検出は、圧電素子等からなる心拍検出
素子67で心拍が検出され、この信号は電圧検出部68
で電圧で検出され、心拍信号出力部69で心拍信号が表
示されると共に、この心拍信号に同期して、パルス発生
手段70を駆動し、刺激発生素子52にパルス的に電圧
を印加するようにしている。
In the heartbeat detection, a heartbeat is detected by a heartbeat detection element 67 composed of a piezoelectric element or the like.
The heartbeat signal output unit 69 displays the heartbeat signal, and in synchronization with the heartbeat signal, drives the pulse generation means 70 to apply a voltage to the stimulus generation element 52 in a pulsed manner. ing.

【0028】血圧検出は、圧迫素子71により血圧検出
素子72を押圧して検出するようにしている。圧迫素子
71は圧迫素子駆動部73により駆動され、血圧検出素
子72で検出された信号は、電圧検出部74により電圧
が検出され、圧迫素子駆動部73の出力と共に血圧信号
演算部75に入力される。この血圧信号演算部75は、
圧迫素子駆動部73の駆動量と、電圧検出部74の出力
とから演算により血圧を算出し、血圧信号出力部76に
出力する。
The blood pressure is detected by pressing the blood pressure detecting element 72 by the compression element 71. The compression element 71 is driven by the compression element driving unit 73, and the voltage detected by the blood pressure detection element 72 is detected by the voltage detection unit 74 and is input to the blood pressure signal calculation unit 75 together with the output of the compression element driving unit 73. You. This blood pressure signal calculation unit 75
The blood pressure is calculated by calculation from the driving amount of the compression element driving unit 73 and the output of the voltage detection unit 74, and output to the blood pressure signal output unit 76.

【0029】この血圧信号出力部76により血圧を表示
すると共に、血圧信号をパルス電圧制御手段76に出力
し、このパルス電圧制御手段76は、パルス発生手段7
0のパルス出力の電圧レベルを制御する。又、制御部7
8は、刺激発生素子52の動作量、電圧発生手段66、
パルス発生手段70、パルス電圧制御手段77の駆動の
組み合わせ(1つのみ、2つの組合わせ、3つ等)の選
択および制御を行うようになっている。
The blood pressure signal is displayed by the blood pressure signal output unit 76 and the blood pressure signal is output to the pulse voltage control means 76.
The voltage level of the 0 pulse output is controlled. The control unit 7
8 is an operation amount of the stimulus generation element 52, a voltage generation unit 66,
Selection and control of a combination of driving of the pulse generation means 70 and the pulse voltage control means 77 (only one combination, two combinations, three or the like) are performed.

【0030】尚、生体の情報として、呼吸の状態等を検
出するようにしても良い。
Incidentally, a respiratory state or the like may be detected as biological information.

【0031】この実施形態によれば、内視鏡42により
患者43を観察することができると共に患者43の生体
情報を検出して、その情報は術者48に触覚的な刺激で
伝達されるようにしてあるので、術者48により具体的
に患者43の状態を把握でき、診断に有効な情報をもた
らす。
According to this embodiment, the patient 43 can be observed by the endoscope 42 and the biological information of the patient 43 is detected, and the information is transmitted to the operator 48 by tactile stimulation. Therefore, the operator 48 can more specifically grasp the condition of the patient 43 and bring information effective for diagnosis.

【0032】図11は本発明の第3実施形態の生体触診
装置81を示す。この生体触診装置81はプローブ82
を有し、このプローブ82を構成する超音波センサ83
は、超音波を送受波し、この超音波センサ83で受信し
た信号は超音波信号処理部84で処理した後、CRT8
5上に超音波断層像を表示する。又、上記プローブ82
には、感圧センサ86,…,86が設けられており、各
感圧センサ86で検知された感圧信号は、信号処理部8
7に入力される。
FIG. 11 shows a living body palpation device 81 according to a third embodiment of the present invention. The living body palpation device 81 includes a probe 82
And an ultrasonic sensor 83 constituting the probe 82
Transmits and receives an ultrasonic wave, and a signal received by the ultrasonic sensor 83 is processed by an ultrasonic signal processing unit 84.
5, an ultrasonic tomographic image is displayed. In addition, the probe 82
Are provided with pressure-sensitive sensors 86,..., 86. The pressure-sensitive signals detected by the respective pressure-sensitive sensors 86 are transmitted to the signal processing unit 8.
7 is input.

【0033】この信号処理部87は感圧信号と、超音波
信号処理部84からの超音波信号とを用い、超音波信号
からは観察部の形状を、感圧信号から観察部の硬さを求
め、これらの信号を生体モデル駆動部88に送る。生体
モデル駆動部88は、入力された信号に基づいて、生体
モデル89を観察部と同一形状となるように変形させ
る。
The signal processing unit 87 uses the pressure-sensitive signal and the ultrasonic signal from the ultrasonic signal processing unit 84, and determines the shape of the observation unit from the ultrasonic signal and the hardness of the observation unit from the pressure-sensitive signal. Then, these signals are sent to the biological model driving unit 88. The biological model driving unit 88 deforms the biological model 89 based on the input signal so as to have the same shape as the observation unit.

【0034】上記プローブ82は、例えば、図12に示
すような外形である。プローブ82の先端にはバルーン
91が設けてあり、バルーン91の表面に沿って感圧セ
ンサ86,…,86が並べて取付けてある。プローブ8
2内部には超音波を送受信できる超音波センサ83が設
けてある。このバルーン91は、水でふくらます(空気
でふくらますと、超音波が通らないため)。
The probe 82 has, for example, an outer shape as shown in FIG. A balloon 91 is provided at the tip of the probe 82, and pressure-sensitive sensors 86,..., 86 are mounted side by side along the surface of the balloon 91. Probe 8
An ultrasonic sensor 83 capable of transmitting and receiving ultrasonic waves is provided inside 2. The balloon 91 is inflated with water (when inflated with air, ultrasonic waves do not pass).

【0035】図13は、食道静脈癌の診断にプローブ8
2を挿入した様子を示す。破線で示した面の断層像が超
音波で画像化される。感圧センサ86,…,86は、断
層像と重ならないように取付けてあるので、超音波像に
は感圧センサ86,…,86の像は写らない。
FIG. 13 shows a probe 8 for diagnosis of esophageal vein cancer.
2 shows a state where 2 is inserted. A tomographic image of the plane indicated by the broken line is imaged by ultrasonic waves. Since the pressure sensors 86,..., 86 are mounted so as not to overlap the tomographic image, the images of the pressure sensors 86,.

【0036】図14は、例えば生体モデル89の1例を
示す。この生体モデル89は、例えば小さなバルーン9
4,…,94を多数並べて構成されており、所定位置に
あるバルーンを膨らませたり、縮ませたりして、観察部
と同じ形状となるように変形させる。そして、生体モデ
ル89に実際に手95で触れてみることにより、患部の
大きさ、硬さを確認することができる。本実施形態では
食道静脈癌を食道の内側から触診するという実際の生体
では不可能な診断を可能にする。尚、生体モデル89と
しては、図15に示すように、各ピン96をアクチュエ
ータ等で動かして、変形させるようなものでも良い。
FIG. 14 shows an example of the biological model 89, for example. This biological model 89 is, for example, a small balloon 9
A large number of balloons 4,..., 94 are arranged, and the balloon at a predetermined position is inflated or compressed so as to be deformed to have the same shape as the observation part. Then, by actually touching the living body model 89 with the hand 95, the size and hardness of the affected part can be confirmed. In the present embodiment, it is possible to make a diagnosis, which is impossible in an actual living body, in which palpation of esophageal vein cancer is performed from inside the esophagus. As shown in FIG. 15, the living body model 89 may be such that each pin 96 is moved by an actuator or the like to be deformed.

【0037】尚、直腸癌等の診断では、直接患者の肛門
に指をつっこんでしこり等がないか調べることがあり、
安全衛生上問題があったが、本発明を応用すれば、直接
患部に触れる必要がないので、衛生的である。
In the diagnosis of rectal cancer or the like, a finger may be directly inserted into the anus of the patient to check for lump or the like.
Although there was a problem in health and safety, if the present invention is applied, there is no need to directly touch the affected part, so that it is hygienic.

【0038】図16は本発明の第4実施形態の感温機能
付診断システム101を示す。このシステム101は電
子スコープ102と、この電子スコープ102のCCD
103に対する信号処理を行うカメラコントロールユニ
ット(以下、CCUと略記)104と、このCCU10
4により信号処理された映像信号を表示する内視鏡像表
示モニタ105と、電子スコープ102に設けた赤外線
センサ106で検出した温度信号に対して信号処理する
温度信号処理ユニット107と、この温度信号処理ユニ
ット107で処理した温度分布画像を表示する温度分布
像表示モニタ108と、マーカ位置を設定するためのマ
ウス109と、このマウス109によるマーカ位置での
温度を、マウス109に設けた温度変化部110で再現
する処理等を行う主制御ユニット111とから構成され
る。
FIG. 16 shows a diagnostic system 101 with a temperature sensing function according to a fourth embodiment of the present invention. The system 101 includes an electronic scope 102 and a CCD of the electronic scope 102.
A camera control unit (hereinafter abbreviated as CCU) 104 for performing signal processing on the CCU 103;
4, an endoscope image display monitor 105 for displaying a video signal processed by the signal processing unit 4, a temperature signal processing unit 107 for performing signal processing on a temperature signal detected by an infrared sensor 106 provided in the electronic scope 102, A temperature distribution image display monitor for displaying a temperature distribution image processed by the unit 107; a mouse 109 for setting a marker position; and a temperature changing unit 110 provided on the mouse 109 for displaying the temperature at the marker position by the mouse 109 And a main control unit 111 for performing processing to reproduce the data.

【0039】この診断システム101では、電子スコー
プ102に、診断部位の温度を検出するための赤外線セ
ンサ106を設け、温度信号処理ユニット107で信号
処理してモニタ108上に温度分布像を表示している。
又、マウス109により、内視鏡像及び温度分布像上で
マーカ112の位置を移動できるようにしている。この
マウス109には、図17に示すようにペルチェ素子等
からなる温度変化部110が設けられている。この温度
変化部110の位置は、例えば人指し指の当たる位置に
設定されている。
In the diagnostic system 101, the electronic scope 102 is provided with an infrared sensor 106 for detecting the temperature of the diagnostic site, the signal is processed by the temperature signal processing unit 107, and the temperature distribution image is displayed on the monitor 108. I have.
Further, the position of the marker 112 can be moved on the endoscope image and the temperature distribution image by the mouse 109. As shown in FIG. 17, the mouse 109 is provided with a temperature changing unit 110 made of a Peltier element or the like. The position of the temperature change unit 110 is set, for example, at a position where the index finger touches.

【0040】図18は、この診断システム101におけ
る主制御ユニット111の詳細な構成を示す。マウス1
09の位置(移動量)信号は、マウス位置検出回路11
3に入力され、マウス109の位置が検出され、この検
出信号はマーカ表示回路114を介してCCU104及
び温度信号処理ユニット107内の各画像メモリ11
5,116に格納され、モニタ105,108上にマー
カ112がそれぞれ表示される。
FIG. 18 shows a detailed configuration of the main control unit 111 in the diagnostic system 101. Mouse 1
The position (movement amount) signal of the signal 09 is transmitted to the mouse position detection circuit 11.
3, the position of the mouse 109 is detected, and this detection signal is sent to each image memory 11 in the CCU 104 and the temperature signal processing unit 107 via the marker display circuit 114.
5 and 116, and the markers 112 are displayed on the monitors 105 and 108, respectively.

【0041】温度信号処理ユニット107内の画像メモ
リ116は、温度信号読込回路117と接続され、マー
カ112の位置する所の温度信号がマウス位置検出回路
113の信号を用いて読込まれ、さらに信号増幅回路1
18により増幅される。この増幅により、微妙な温度変
化を手の温感で判断できるように温度変化が拡大された
後、温度変化素子駆動回路119に出力され、この駆動
回路119により温度変化部110を駆動する。
The image memory 116 in the temperature signal processing unit 107 is connected to the temperature signal reading circuit 117, and the temperature signal at the position where the marker 112 is located is read by using the signal of the mouse position detecting circuit 113, and the signal is further amplified. Circuit 1
Amplified by 18. By this amplification, the temperature change is expanded so that a delicate temperature change can be judged by the sense of warmth of the hand, and then output to the temperature change element drive circuit 119, and the drive circuit 119 drives the temperature change unit 110.

【0042】尚、上記信号増幅回路118は、増幅温度
調整回路120により、増幅率を可変設定できるように
なっている。この実施形態によれば、内視鏡像を見て、
病変部ではないか疑わしいと思われる部位を温感として
確認することができる。従って、従来例における視覚だ
けによる診断に比べ、温感でも診断できるので、より的
確な診断を行うことができる。
The amplification factor of the signal amplification circuit 118 can be variably set by an amplification temperature adjustment circuit 120. According to this embodiment, looking at the endoscope image,
A site suspected of being a lesion can be confirmed as a warm feeling. Therefore, the diagnosis can be made even with a sense of warmness, as compared with the diagnosis based on only the visual sense in the conventional example, so that more accurate diagnosis can be made.

【0043】図19は本発明の第5実施形態における温
感機能付診断システム131を示す。この実施形態は、
図16におけるシステム101において、電子スコープ
102の代りに超音波内視鏡(又は超音波プローブ)1
32を用い、この超音波内視鏡132に内蔵した超音波
振動子133による超音波信号は超音波信号処理ユニッ
ト134で処理され、超音波像表示モニタ135で超音
波断層像が表示される。
FIG. 19 shows a diagnostic system 131 with a thermal sensation function according to the fifth embodiment of the present invention. This embodiment is
In the system 101 in FIG. 16, an ultrasonic endoscope (or an ultrasonic probe) 1 is used instead of the electronic scope 102.
The ultrasonic signal from the ultrasonic transducer 133 incorporated in the ultrasonic endoscope 132 is processed by the ultrasonic signal processing unit 134, and the ultrasonic tomographic image is displayed on the ultrasonic image display monitor 135.

【0044】又、上記超音波内視鏡132は、温度検出
素子としてマイクロストリップアンテナ136が設けて
あり、このマイクロストリップアンテナ136でマイク
ロ波を受信し、温度信号処理ユニット107に出力す
る。
The ultrasonic endoscope 132 has a microstrip antenna 136 as a temperature detecting element. The microstrip antenna 136 receives a microwave and outputs the microwave to the temperature signal processing unit 107.

【0045】上記超音波内視鏡132の先端側は図20
に示すように、図示しないモータにより回転される軸1
41の先端に、超音波振動子133とマイクロストリッ
プアンテナ136とが取付けられ、これら超音波振動子
133とマイクロストリップアンテナ136とは周方向
に回転されてメカラジアル走査を行う。尚、これら振動
子133及びマイクロストリップアンテナ136の外周
は超音波を伝達するゴム又は合成樹脂で覆われ、且つそ
の内側は超音波を伝達し、電気的には絶縁特性を示す液
体が封入されている。超音波内視鏡132の場合には、
図示しない内視鏡機能を有する。
The distal end side of the ultrasonic endoscope 132 is shown in FIG.
As shown in the figure, the shaft 1 rotated by a motor (not shown)
An ultrasonic transducer 133 and a microstrip antenna 136 are attached to the tip of 41, and these ultrasonic transducers 133 and the microstrip antenna 136 are rotated in the circumferential direction to perform a mechanical scan. The outer circumference of the vibrator 133 and the microstrip antenna 136 is covered with a rubber or a synthetic resin that transmits ultrasonic waves, and the inside of the vibrator 133 and the microstrip antenna 136 transmits ultrasonic waves and is electrically sealed with a liquid having insulating properties. I have. In the case of the ultrasonic endoscope 132,
It has an endoscope function (not shown).

【0046】その他の構成は第4実施形態と同様であ
り、またその作用効果もほぼ同様のものとなる。
The other construction is the same as that of the fourth embodiment, and the operation and effect are almost the same.

【0047】尚、例えば第5実施形態において、マウス
109の代わりに図21に示すように、指151に位置
センサ152を付けたリング状の温度変化部材153を
取り付けるようにしても良い。また、上述した実施形態
において、マウス109の代わりに温度変化部材を設け
たトラックボールその他のポインティングデバイスを用
いても良い。
For example, in the fifth embodiment, a ring-shaped temperature changing member 153 having a position sensor 152 attached to a finger 151 may be attached instead of the mouse 109 as shown in FIG. In the above-described embodiment, a trackball provided with a temperature changing member or another pointing device may be used instead of the mouse 109.

【0048】[0048]

【発明の効果】以上述べたように本発明によれば、被検
体の情報等を検出手段により検出し、その情報を用いて
被検体を再現し、術者が触覚的にも認知できるようにし
ているので、術者は視覚的のみで診断等を行う場合より
も的確な診断などを行うことができる。
As described above, according to the present invention, information on the subject is detected by the detecting means, and the subject is reproduced using the information so that the operator can recognize the object tactilely. Therefore, the operator can make a more accurate diagnosis and the like than when performing the diagnosis and the like only visually.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の概念的構成を示すブロック図。FIG. 1 is a block diagram showing a conceptual configuration of the present invention.

【図2】本発明の第1実施形態の全体構成図。FIG. 2 is an overall configuration diagram of a first embodiment of the present invention.

【図3】第1実施形態における主要部の構成を示すブロ
ック図。
FIG. 3 is a block diagram showing a configuration of a main part in the first embodiment.

【図4】マウスを示す側面図。FIG. 4 is a side view showing a mouse.

【図5】本発明の第2実施形態を使用状態で示す構成
図。
FIG. 5 is a configuration diagram showing a second embodiment of the present invention in use.

【図6】第2実施形態における生体情報検出部等の構成
を示す構成図。
FIG. 6 is a configuration diagram showing a configuration of a biological information detection unit and the like in a second embodiment.

【図7】刺激発生素子の心拍に対する駆動方法を示すた
めの説明図。
FIG. 7 is an explanatory diagram showing a driving method for a heartbeat of a stimulus generating element.

【図8】刺激発生素子の血圧に対する駆動方法を示すた
めの説明図。
FIG. 8 is an explanatory diagram showing a method of driving a stimulus generating element for blood pressure.

【図9】刺激発生素子の酸素濃度に関する駆動方法を示
すための説明図。
FIG. 9 is an explanatory diagram showing a driving method relating to the oxygen concentration of the stimulus generating element.

【図10】第2実施形態における生体情報信号処理回路
等の具体的構成を示すブロック図。
FIG. 10 is a block diagram showing a specific configuration of a biological information signal processing circuit and the like in a second embodiment.

【図11】本発明の第3実施形態の全体構成を示すブロ
ック図。
FIG. 11 is a block diagram showing the overall configuration of a third embodiment of the present invention.

【図12】第3実施形態におけるプローブの構成を示す
側面図。
FIG. 12 is a side view showing a configuration of a probe according to a third embodiment.

【図13】図12のプローブを食道内に挿入した様子を
示す説明図。
FIG. 13 is an explanatory view showing a state where the probe of FIG. 12 is inserted into the esophagus.

【図14】第3実施形態における生体モデルの1例を示
す説明図。
FIG. 14 is an explanatory diagram illustrating an example of a biological model according to the third embodiment.

【図15】第3実施形態における生体モデルの他の1例
を示す説明図。
FIG. 15 is an explanatory view showing another example of the biological model in the third embodiment.

【図16】本発明の第4実施形態の全体構成図。FIG. 16 is an overall configuration diagram of a fourth embodiment of the present invention.

【図17】第4実施形態におけるマウスを示す断面図。FIG. 17 is a sectional view showing a mouse according to a fourth embodiment.

【図18】第4実施形態における主制御ユニットの構成
を示すブロック図。
FIG. 18 is a block diagram illustrating a configuration of a main control unit according to a fourth embodiment.

【図19】本発明の第5実施形態の全体構成図。FIG. 19 is an overall configuration diagram of a fifth embodiment of the present invention.

【図20】第5実施形態における超音波内視鏡の先端側
を示す断面図。
FIG. 20 is a sectional view showing a distal end side of an ultrasonic endoscope according to a fifth embodiment.

【図21】第5実施形態の変形例における主要部を示す
側面図。
FIG. 21 is a side view showing a main part in a modification of the fifth embodiment.

【符号の説明】[Explanation of symbols]

1…診断システム 2…検出手段 3…信号処理手段 4…被検体情報再現手段 11…内視鏡システム 12…電子スコープ 13…光源装置 14…情報処理装置&モニタ 15…マウス 15a…上下部 41…生体情報告知装置 42…内視鏡 43…患者 44…生体情報検出部 45…生体情報信号処理装置 46…駆動装置 47…刺激発生部 48…術者 DESCRIPTION OF SYMBOLS 1 ... Diagnosis system 2 ... Detection means 3 ... Signal processing means 4 ... Subject information reproduction means 11 ... Endoscope system 12 ... Electronic scope 13 ... Light source device 14 ... Information processing device & monitor 15 ... Mouse 15a ... Upper and lower part 41 ... Biological information notifying device 42 Endoscope 43 Patient 44 Biological information detecting unit 45 Biological information signal processing device 46 Driving device 47 Stimulation generating unit 48 Surgeon

フロントページの続き (72)発明者 安達 英之 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 山口 征治 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 梅山 広一 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 布施 栄一 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 佐藤 道雄 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 中村 雅一 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 田中 靖人 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 深谷 孝 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 松野 清孝 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 鈴木 克哉 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 Fターム(参考) 2F055 AA05 BB14 CC60 DD20 FF05 GG03 2F056 HD02 HD06 HD10 4C061 GG11 HH51 Continued on the front page (72) Inventor Hideyuki Adachi 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Industrial Co., Ltd. (72) Inventor Seiji Yamaguchi 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Within Kogyo Co., Ltd. (72) Inventor Koichi Umeyama 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Kogyo Co., Ltd. (72) Eiichi Fuse 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Inside the Industrial Co., Ltd. (72) Michio Sato Inventor 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd. (72) Masakazu Nakamura 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus In Optical Industry Co., Ltd. (72) Inventor Yasuhito Tanaka 2-43-2 Hatagaya, Shibuya-ku, Tokyo ORINPASS Optical Industry Co., Ltd. (72) Takashi Fukaya 2-43-2 Hatagaya, Shibuya-ku, Tokyo Ori (72) Invention within Compass Optical Industry Co., Ltd. Kiyotaka Matsuno 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Industrial Co., Ltd. (72) Katsuya Suzuki 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Industrial Co., Ltd. F-term (reference) 2F055 AA05 BB14 CC60 DD20 FF05 GG03 2F056 HD02 HD06 HD10 4C061 GG11 HH51

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被検体との接触部と、 この接触部が前記被検体と接触する部分の圧力を検知す
る生体情報検出手段と、 観察者との接触部と、 この観察者との接触部に設けられ、前記生体情報検出手
段の出力に基づいて前記観察者に対して圧力または機械
的な刺激を発生する刺激発生部と、 を具備したことを特徴とする診断システム。
1. A contact portion with a subject, a biological information detecting means for detecting a pressure of a portion where the contact portion contacts the subject, a contact portion with an observer, and a contact portion with the observer And a stimulus generator that generates a pressure or a mechanical stimulus to the observer based on the output of the biological information detecting means.
【請求項2】 被検体の温度を検知する温度検出手段
と、 観察者との接触部と、 この観察者との接触部に設けられ、前記温度検出手段の
出力に基づいて熱を発生する温度変化部と、 を具備したことを特徴とする診断システム。
2. A temperature detecting means for detecting a temperature of a subject, a contact part with an observer, and a temperature which is provided at a contact part with the observer and generates heat based on an output of the temperature detecting means. A diagnostic system, comprising: a changing unit.
JP2001136496A 2001-05-07 2001-05-07 Diagnostic system Expired - Fee Related JP3312904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001136496A JP3312904B2 (en) 2001-05-07 2001-05-07 Diagnostic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001136496A JP3312904B2 (en) 2001-05-07 2001-05-07 Diagnostic system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP09445991A Division JP3217386B2 (en) 1991-04-24 1991-04-24 Diagnostic system

Publications (2)

Publication Number Publication Date
JP2002034897A true JP2002034897A (en) 2002-02-05
JP3312904B2 JP3312904B2 (en) 2002-08-12

Family

ID=18983761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001136496A Expired - Fee Related JP3312904B2 (en) 2001-05-07 2001-05-07 Diagnostic system

Country Status (1)

Country Link
JP (1) JP3312904B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015154928A (en) * 2008-12-11 2015-08-27 エムシー10 インコーポレイテッドMc10,Inc. Apparatus using stretchable electronics for medical applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015154928A (en) * 2008-12-11 2015-08-27 エムシー10 インコーポレイテッドMc10,Inc. Apparatus using stretchable electronics for medical applications

Also Published As

Publication number Publication date
JP3312904B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
JP3217386B2 (en) Diagnostic system
JP5154144B2 (en) Ultrasound endoscope and ultrasound endoscope apparatus
US6832985B2 (en) Endoscopic system with instrument position and orientation display
US6645148B2 (en) Ultrasonic probe including pointing devices for remotely controlling functions of an associated imaging system
JP5329065B2 (en) Ultrasonic probe
US5207225A (en) Transesophageal ultrasonic scanhead
JP5154146B2 (en) Ultrasound endoscope and ultrasound endoscope apparatus
KR20090093877A (en) Location system with virtual touch screen
JP2004113629A (en) Ultrasonograph
US20040204645A1 (en) Scope position and orientation feedback device
JPH06154154A (en) Insertion device in duct
CN112244752A (en) Soft endoscope structure
JPH0984746A (en) Magnetic resonance observation system
CN102068285B (en) Esophagoscope system with color Doppler ultrasound scanning function
JP3312904B2 (en) Diagnostic system
KR101536685B1 (en) Surgical robot for liposuction
JP2002010970A (en) Input/output device for diagnostic system
CN201912122U (en) Electronic bronchoscope system with function of color Doppler ultrasonic scanning
JP2016015972A (en) Ultrasonic diagnostic equipment and operation method of ultrasonic diagnostic equipment
JP2006326128A (en) Medical system
JP7065592B2 (en) Ultrasonic probe, ultrasonic measurement system
CN102008322B (en) Cholecystoscope system with color Doppler ultrasonic scanning function
JP5160619B2 (en) Endoscope shape detection device
CN102018534B (en) Integrated color Doppler ultrasonic electronic bronchoscope system
JP4647972B2 (en) Endoscope shape detection device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees