JP2002022816A - Deviation measuring apparatus and deviation speed measuring apparatus - Google Patents

Deviation measuring apparatus and deviation speed measuring apparatus

Info

Publication number
JP2002022816A
JP2002022816A JP2000203466A JP2000203466A JP2002022816A JP 2002022816 A JP2002022816 A JP 2002022816A JP 2000203466 A JP2000203466 A JP 2000203466A JP 2000203466 A JP2000203466 A JP 2000203466A JP 2002022816 A JP2002022816 A JP 2002022816A
Authority
JP
Japan
Prior art keywords
deviation
amount
carrier phase
phase change
satellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000203466A
Other languages
Japanese (ja)
Other versions
JP2002022816A5 (en
JP4289767B2 (en
Inventor
Kenji Itani
健二 井澗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP2000203466A priority Critical patent/JP4289767B2/en
Publication of JP2002022816A publication Critical patent/JP2002022816A/en
Publication of JP2002022816A5 publication Critical patent/JP2002022816A5/ja
Application granted granted Critical
Publication of JP4289767B2 publication Critical patent/JP4289767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To constitute a deviation measuring apparatus and a deviation speed measuring apparatus wherein the problem of a drift by an acceleration sensor is solved, a reference station is not required and the deviation amount or the deviation speed of a moving body can be measured with high accuracy. SOLUTION: The change amount of the carrier frequency of radio waves received from a satellite for positioning is observed in every prescribed observation cycle. The movement of the satellite in the observation cycle and the drift position of the carrier frequency of the satellite are subtracted. The change amount of the carrier phase due to the movement of a receiving point is found. Regarding four or more satellites, deviation amounts of their receiving points are found on the basis of change amounts of carrier phases due to movements of the receiving points, they are integrated, and the integrated deviation amount of the receiving points is found. The deviation speed is found on the basis of the deviation amount per unit time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、GPS衛星等の
測位用衛星から送信される電波を移動体上で受信して、
移動体の偏位量または偏位速度を計測する装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for receiving a radio wave transmitted from a positioning satellite such as a GPS satellite on a mobile body.
The present invention relates to a device for measuring a displacement amount or a displacement speed of a moving body.

【0002】[0002]

【従来の技術】従来、例えば測深機によって海底深度や
海底地形を計測する船舶においては、船舶の鉛直方向の
動揺による影響を受けずに計測を行うために、船舶の鉛
直方向の変化を計測するヒーブ計が利用されている。こ
のヒーブ計には鉛直方向の加速度を検出する加速度セン
サが設けられている。
2. Description of the Related Art Conventionally, in a ship, for example, which measures the depth of the seabed or the seafloor topography with a sounding device, the change in the vertical direction of the ship is measured in order to perform the measurement without being affected by the vertical movement of the ship. Heave gauge is used. The heave meter is provided with an acceleration sensor for detecting a vertical acceleration.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来のヒー
ブ計のように、加速度を検出する加速度センサの出力信
号を二重積分して、移動体の偏位を計測するものでは、
高価で高精度な加速度センサを必要とし、移動体の偏位
量の計測誤差は加速度センサの精度に大きく左右されて
しまう。また、積分に伴う誤差の累積が生じるため、長
周期で動揺する移動体の偏位を高精度に計測するのは困
難であった。
However, as in a conventional heave meter, the displacement of a moving body is measured by double integrating the output signal of an acceleration sensor for detecting acceleration.
An expensive and high-accuracy acceleration sensor is required, and the measurement error of the amount of displacement of the moving object largely depends on the accuracy of the acceleration sensor. In addition, since errors accumulate due to integration, it has been difficult to measure the displacement of a moving body that oscillates in a long cycle with high accuracy.

【0004】そこで、このような加速度センサを用いな
いで、GPSを利用することが考えられる。例えば、キ
ャリア位相の相対測位を行うRTK(リアルタイムキネ
マティック測位)方式で受信点の高さを求めれば、これ
をヒーブ計の代わりに用いることができる。
Therefore, it is conceivable to use GPS without using such an acceleration sensor. For example, if the height of the receiving point is obtained by an RTK (real-time kinematic positioning) method for performing relative positioning of the carrier phase, this can be used instead of the heave meter.

【0005】しかし、GPSを用いてRTK方式で計測
を行うには、陸上に基準局を設ける必要があり、そのサ
ービスエリアも基準局から約20km程度であり、陸上
からそれ以上離れた地点での計測はできない。なお、G
PSのコードディファレンシャル方式であればサービス
エリアは広がるが、高い測位精度が得られない。
However, in order to perform measurement by the RTK method using GPS, it is necessary to provide a reference station on land, and its service area is also about 20 km from the reference station, and measurement at a point further away from the land is not possible. Can not. Note that G
With the PS code differential system, the service area is widened, but high positioning accuracy cannot be obtained.

【0006】この発明の目的は、加速度センサによるド
リフトの問題を解消し、基準局を不要とし、かつ移動体
の偏位量または偏位速度を高精度に計測できるようにし
た偏位計測装置および偏位速度計測装置を提供すること
にある。
SUMMARY OF THE INVENTION It is an object of the present invention to eliminate the problem of drift caused by an acceleration sensor, eliminate the need for a reference station, and measure the displacement or displacement speed of a moving object with high accuracy. It is to provide a position velocity measuring device.

【0007】[0007]

【課題を解決するための手段】この発明の偏位計測装置
は、たとえばGPS衛星等の測位用衛星から送信された
電波を受信して、その電波に重畳されている、たとえば
C/Aコード等のコード位相から受信点の位置を求める
測位手段と、前回の観測時から今回の観測時までの観測
周期における前記電波のキャリア位相変化量DRを観測
する手段を設ける。また、測位された受信点の位置に対
する測位用衛星の移動による上記観測周期におけるキャ
リア位相の変化分DRaおよび測位用衛星から送信され
た前記電波のキャリア周波数のドリフトによるキャリア
位相変化分DRbを、前記観測によるキャリア位相の変
化量DRから差し引いて、受信点の移動に伴うキャリア
位相の変化量DR′を求める手段と、4つ以上の測位用
衛星について求めた上記キャリア位相の変化量DR′か
ら、観測周期における受信点の偏位量を求める手段と、
観測周期における受信点の偏位量を積算して受信点の積
算偏位量を求める手段とを設ける。
A displacement measuring apparatus according to the present invention receives a radio wave transmitted from a positioning satellite such as a GPS satellite and superimposed on the radio wave, for example, a C / A code or the like. And a means for observing the carrier phase change amount DR of the radio wave in the observation cycle from the previous observation to the current observation. Further, the carrier phase change DRa due to the movement of the positioning satellite with respect to the position of the measured receiving point and the carrier phase change DRb due to the drift of the carrier frequency of the radio wave transmitted from the positioning satellite in the above-described observation cycle are calculated as described above. The means for obtaining the change amount DR ′ of the carrier phase due to the movement of the reception point by subtracting the change amount DR ′ of the carrier phase due to the observation, and the change amount DR ′ of the carrier phase obtained for four or more positioning satellites, Means for determining the amount of deviation of the receiving point in the observation period;
Means for integrating the amount of deviation of the receiving point in the observation period to obtain an integrated amount of deviation of the receiving point.

【0008】また、この発明の偏位速度計測装置は、前
記観測周期における受信点の偏位量から単位時間当たり
の受信点の偏位量すなわち移動体の偏位速度を求める手
段を設ける。
Further, the displacement velocity measuring device of the present invention is provided with a means for obtaining the displacement of the receiving point per unit time, that is, the displacement velocity of the moving body, from the displacement of the receiving point in the observation period.

【0009】このように各測位用衛星から送信された電
波のキャリア位相の変化量を利用して、受信点から各衛
星までの距離の変化量を求め、この距離の変化量と受信
点から各衛星を見た方向余弦とに基づいて、移動体の3
次元方向の偏位量およびその偏位速度を計測する。
As described above, the amount of change in the distance from the receiving point to each satellite is determined by using the amount of change in the carrier phase of the radio wave transmitted from each positioning satellite. Based on the direction cosine of the satellite,
The displacement amount and the displacement speed in the dimensional direction are measured.

【0010】この発明によれば、従来の加速度センサを
必要としないため、小型・低コスト化が図れる。また、
大きな累積誤差が生じることがなく、高精度な計測が可
能となる。また、基地局が不要であるので、システム全
体が大掛かりにはならず、サービスエリアの制限もなく
なる。
According to the present invention, since a conventional acceleration sensor is not required, the size and cost can be reduced. Also,
A large accumulated error does not occur, and high-precision measurement can be performed. Further, since no base station is required, the whole system does not become large and the service area is not restricted.

【0011】[0011]

【発明の実施の形態】この発明の実施形態に係る移動体
の偏位計測装置・偏位速度計測装置の構成を図1および
図2を参照して説明する。図1は装置全体の構成を示す
ブロック図である。図1において、1はGPSアンテ
ナ、2はGPSアンテナ1からの信号を中間周波信号I
Fに変換するダウンコンバータ、3はこの中間周波信号
を信号処理して、C/Aコード位相およびキャリア位相
の情報を求める受信信号処理部である。また、4は受信
信号処理部3の制御によって得た情報を基に受信点の偏
位量および偏位速度を求める測位演算部である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction of a displacement measuring device and displacement speed measuring device for a moving object according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram showing the configuration of the entire apparatus. In FIG. 1, reference numeral 1 denotes a GPS antenna, and 2 denotes a signal from the GPS antenna 1 as an intermediate frequency signal I.
The down-converter 3 for converting the signal into F is a received signal processing section for processing the intermediate frequency signal to obtain information on the C / A code phase and the carrier phase. Reference numeral 4 denotes a positioning operation unit that obtains a deviation amount and a deviation speed of a reception point based on information obtained under the control of the reception signal processing unit 3.

【0012】ダウンコンバータ2は、基準周波数信号を
発生する基準発振器21と、その基準周波数信号とのミ
キシングにより周波数変換し、さらに所定ビット数のデ
ィジタルデータに変換する、ミキサ、アンプ、フィルタ
およびA/Dコンバータ等を含む回路22とから構成し
ている。
The down-converter 2 performs frequency conversion by mixing a reference oscillator 21 for generating a reference frequency signal with the reference frequency signal, and further converts the data into digital data of a predetermined number of bits. And a circuit 22 including a D converter and the like.

【0013】受信信号処理部3は、C/Aコード発生
器、そのコード位相を数値制御するコードNCO、所定
のコード位相のずれを有する3つのC/Aコードと入力
信号とを乗算し、それらの値をそれぞれ積分することに
よって相関を求める相関器を備えている。測位演算処理
部4は、これらの相関結果からC/Aコード位相を求め
るとともに、その追尾を行う。また、受信信号処理部3
は、位相が0°と90°のキャリア信号を発生するキャ
リアNCO、このキャリア信号と入力信号との乗算を行
い、それぞれの結果を積分することによって相関を求め
る相関器を備えている。また、受信信号処理部3は、入
力信号のキャリア位相の修正量(追尾量)を積算カウン
トする位相カウンタを備えていて、これによりキャリア
位相を求めるとともに、その追尾を行う。
The received signal processing section 3 multiplies a C / A code generator, a code NCO for numerically controlling the code phase thereof, three C / A codes having a predetermined code phase shift, and an input signal, and Is provided with a correlator that obtains a correlation by integrating each of the values. The positioning operation processing unit 4 obtains a C / A code phase from these correlation results, and performs tracking thereof. Also, the reception signal processing unit 3
Includes a carrier NCO that generates carrier signals having phases of 0 ° and 90 °, and a correlator that multiplies the carrier signal by an input signal and integrates the respective results to obtain a correlation. In addition, the received signal processing unit 3 includes a phase counter that accumulates and counts the correction amount (tracking amount) of the carrier phase of the input signal, thereby obtaining the carrier phase and tracking the same.

【0014】測位演算部4は、CPU41、ROM4
2、RAM43、RTC(リアルタイムクロック)4
4、外部へデータを出力するためのインタフェース4
5、および受信信号処理部3に対してデータを入出力す
るためのインタフェース46を備えている。この測位演
算部4は、受信信号処理部3で求められたコード位相に
関する相関値からコードNCOの位相を制御し、キャリ
ア位相に関する相関値からキャリアNCOの周波数を制
御することによって、C/Aコード位相およびキャリア
位相の追尾を行う。また、上記キャリア位相の積算カウ
ント値を読み取って、観測周期における、波長の端数に
相当する位相角を含めた波数の変化分(キャリア位相変
化量DR)を求める。
The positioning operation unit 4 includes a CPU 41, a ROM 4
2, RAM43, RTC (real-time clock) 4
4. Interface 4 for outputting data to outside
5 and an interface 46 for inputting and outputting data to and from the received signal processing unit 3. The positioning calculation unit 4 controls the phase of the code NCO based on the correlation value regarding the code phase obtained by the reception signal processing unit 3 and controls the frequency of the carrier NCO based on the correlation value regarding the carrier phase. Tracking of phase and carrier phase is performed. Further, the integrated count value of the carrier phase is read, and a change in the wave number (carrier phase change amount DR) including the phase angle corresponding to the fraction of the wavelength in the observation period is obtained.

【0015】また、後述するように、受信点(GPSア
ンテナ1の中心)の3次元の偏位量およびその偏位速度
を算出し、これを外部へ出力する。
As will be described later, a three-dimensional displacement amount and a displacement speed of a receiving point (the center of the GPS antenna 1) are calculated and output to the outside.

【0016】図2は測位演算部4の処理手順を示すフロ
ーチャートである。まず、現在追尾中の複数の衛星につ
いてのコード位相を基に単独測位を行う(n1)。この
単独測位による受信点位置は、受信点から各衛星への方
向余弦を求めるために用いる。次に、受信信号処理部3
で求められたキャリア位相の修正量(追尾量)の積算カ
ウント値を読み取り、前回の値との差をキャリア位相変
化量DRとして求める(n2→n3)。続いて、前回の
観測時から今回の観測時までの観測周期における衛星の
移動によって生じるキャリア位相の変化分DRaを算出
する(n4)。具体的には、受信点の位置と前回観測時
の衛星の位置および今回観測時の衛星の位置とから逆算
する。また、各衛星が備える基準発振器のドリフトによ
るキャリア位相変化分DRbを航法メッセージ中のGP
S時刻補正係数から算出する(n5)。そして上記キャ
リア位相変化量DRから、衛星移動によるキャリア位相
変化分DRaと衛星の基準発振器のドリフトによるキャ
リア位相の変化分DRbとを差し引いて、受信点の移動
に伴うキャリア位相の変化量DR′を求める(n6)。
FIG. 2 is a flowchart showing a processing procedure of the positioning operation unit 4. First, single positioning is performed based on the code phases of a plurality of currently tracking satellites (n1). The position of the receiving point obtained by the sole positioning is used to obtain the direction cosine from the receiving point to each satellite. Next, the reception signal processing unit 3
The integrated count value of the correction amount (tracking amount) of the carrier phase obtained by the above is read, and the difference from the previous value is obtained as the carrier phase change amount DR (n2 → n3). Subsequently, a change DRa in the carrier phase caused by the movement of the satellite in the observation cycle from the previous observation to the current observation is calculated (n4). Specifically, the position of the receiving point, the position of the satellite at the time of the previous observation, and the position of the satellite at the time of the current observation are calculated backward. In addition, the carrier phase change DRb due to the drift of the reference oscillator included in each satellite is determined by the GP in the navigation message.
It is calculated from the S time correction coefficient (n5). Then, the carrier phase change DRa due to the movement of the receiving point is subtracted from the carrier phase change DRa due to the satellite movement and the carrier phase change DRb due to the drift of the reference oscillator of the satellite from the carrier phase change DR. (N6).

【0017】その後、4つ以上の各衛星について求めた
DR′と各衛星の現在位置とから、受信点から各衛星ま
での距離変化をそれぞれ求め、これらの距離変化と、受
信点から各衛星への方向余弦とから方程式を立て、受信
点の3次元方向の偏位量を求める。すなわち、方向余弦
の逆行列と、受信点−衛星間の距離変化量の行列との積
で求める。尚この時、4つ目の未知数は受信機の基準発
振器のドリフトとして求められる(n7)。この受信点
の偏位量は、前回の観測時から今回の観測時までの偏位
量であるので、この偏位量をこれまでの積算値に積算す
ることによって、積算偏位量を求め、これを出力する
(n8)。また観測周期の間での受信点の偏位量から、
1秒当たりの偏位量を求め、これを秒速の偏位速度とし
て出力する(n9)。
Thereafter, from the DR 'obtained for each of the four or more satellites and the current position of each satellite, a change in the distance from the receiving point to each satellite is obtained. An equation is established from the direction cosine and the deviation amount of the receiving point in the three-dimensional direction is obtained. That is, it is determined by the product of the inverse matrix of the direction cosine and the matrix of the distance change amount between the receiving point and the satellite. At this time, the fourth unknown is obtained as the drift of the reference oscillator of the receiver (n7). Since the amount of deviation of the receiving point is the amount of deviation from the time of the previous observation to the time of the current observation, the accumulated amount of deviation is obtained by integrating this amount of deviation with the accumulated value so far. This is output (n8). Also, from the amount of deviation of the receiving point during the observation period,
The displacement amount per second is obtained, and this is output as the displacement speed per second (n9).

【0018】その後はステップn1の処理へ戻り、以上
の処理を所定の観測周期ごとに繰り返す。たとえば0.
2秒ごとに繰り返すことによって、0.2秒周期で受信
点の積算偏位量および偏位速度を求める。
Thereafter, the flow returns to the process of step n1, and the above process is repeated for each predetermined observation cycle. For example, 0.
By repeating every two seconds, the integrated deviation amount and deviation speed of the receiving point are obtained in a period of 0.2 seconds.

【0019】この実施形態によれば、キャリア位相の変
化量から受信点の偏位量を求め、これを単独測位結果と
は独立に偏位量を積算して、受信点の積算偏位量を順次
求めるようにしたので、或る平均的な位置を中心として
受信点が往復動するような場合に、累積誤差が小さく抑
えられる。
According to this embodiment, the amount of deviation of the receiving point is obtained from the amount of change in the carrier phase, and the amount of deviation is integrated with the amount of deviation independently of the result of the single positioning. Since it is determined sequentially, the accumulated error can be kept small when the receiving point reciprocates around a certain average position.

【0020】例えば波浪による船舶の上下動を観測する
場合、従来の加速度センサを用いたヒーブ計では、20
秒間で約30%の位置誤差が生じ、20秒を超える長周
期的な変化の検出には不向きであった。これに対し、本
願発明によれば、たとえば1分程度積算を継続しても、
±5cm程度の測位精度が得られる。すなわち1分程度
の長周期的な上下動も観測可能となる。
For example, when observing the vertical movement of a ship due to waves, a heave meter using a conventional acceleration sensor requires 20 meters.
Approximately 30% of the position error occurs per second, which is not suitable for detecting a long-period change exceeding 20 seconds. On the other hand, according to the present invention, for example, even if integration is continued for about one minute,
A positioning accuracy of about ± 5 cm can be obtained. That is, a long-period vertical movement of about 1 minute can be observed.

【0021】また、従来の加速度センサを用いたもので
は、数百万円という高価なものとなっていたが、本願発
明によれば、GPS受信機と測位演算部だけでよいの
で、全体が数万円程度で構成できる。
Further, the conventional one using an acceleration sensor is expensive at several million yen. However, according to the present invention, only the GPS receiver and the positioning calculation unit are required. It can be configured for around 10,000 yen.

【0022】なお、本願発明はヒーブ計以外にも、同様
にして、船舶のローリングを計測することもできる。ま
た一般に、例えば下端部が固定されているポール状部材
の上端部の運動、振り子状部材の運動、シーソー状に揺
動する部材の運動などを計測する場合にも同様に適用で
き、同様の作用効果を奏する。
The invention of the present application can also measure the rolling of a ship in a similar manner besides the heave meter. Further, in general, the present invention can be similarly applied to, for example, measuring the motion of the upper end of a pole-shaped member having a fixed lower end, the motion of a pendulum-shaped member, the motion of a member that swings in a seesaw shape, and the like. It works.

【0023】[0023]

【発明の効果】この発明によれば、加速度センサを必要
としないため、大きな累積誤差が生じることがなく、高
精度な計測が可能となる。また、基準局が不要であるの
で、システム全体が大掛かりにはならず、サービスエリ
アの制限も生じない。
According to the present invention, since no acceleration sensor is required, a large accumulated error does not occur and high-precision measurement can be performed. Further, since the reference station is not required, the whole system does not become large and the service area is not restricted.

【0024】また、各観測時での偏位量の計測精度を高
めることができるので、偏位量を積算することによって
生じる累積誤差が抑えられる。特に、受信点が往復動す
るような場合に、累積誤差が全体に打ち消されるので、
長周期的な運動も高精度に計測できる。
Further, since the accuracy of measuring the amount of deviation at each observation can be improved, the accumulated error caused by integrating the amount of deviation can be suppressed. In particular, when the receiving point reciprocates, the accumulated error is totally canceled,
Long-period motion can be measured with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】偏位計測装置・偏位速度計測装置の構成を示す
ブロック図
FIG. 1 is a block diagram showing a configuration of a displacement measuring device and a displacement speed measuring device.

【図2】同装置の測位演算部における処理手順を示すフ
ローチャート
FIG. 2 is a flowchart showing a processing procedure in a positioning calculation unit of the apparatus.

【符号の説明】[Explanation of symbols]

1−GPSアンテナ 1-GPS antenna

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 測位用衛星から送信された電波を受信し
て、当該電波に重畳されているコードの位相から受信点
の位置を求める測位手段と、 前回の観測時から今回の観測時までの観測周期における
前記電波のキャリア位相変化量DRを観測する手段と、 前記測位手段により求められた受信点の位置に対する測
位用衛星の移動による、前記観測周期におけるキャリア
位相の変化分DRaを求め、当該キャリア位相の変化分
DRaおよび前記電波のキャリア周波数のドリフトによ
るキャリア位相変化分DRbを、前記観測によるキャリ
ア位相の変化量DRから差し引いて、前記受信点の移動
に伴うキャリア位相の変化量DR′を求める手段と、 4つ以上の測位用衛星について求めた前記キャリア位相
の変化量DR′から、前記観測周期における受信点の偏
位量を求める手段と、 前記観測周期における受信点の偏位量を積算して積算偏
位量を求める手段とを備えた偏位計測装置。
1. A positioning means for receiving a radio wave transmitted from a positioning satellite and obtaining a position of a receiving point from a phase of a code superimposed on the radio wave, Means for observing the carrier phase change amount DR of the radio wave in the observation cycle, and calculating the carrier phase change DRa in the observation cycle due to movement of the positioning satellite with respect to the position of the reception point obtained by the positioning means. The carrier phase change DRa due to the carrier phase drift DRb and the carrier phase change DRb due to the drift of the carrier frequency of the radio wave are subtracted from the carrier phase change DR due to the observation to obtain the carrier phase change DR ′ accompanying the movement of the reception point. From the carrier phase change amount DR 'obtained for four or more positioning satellites in the observation period. A deviation measuring device comprising: means for calculating a deviation amount of a trust point; and means for integrating a deviation amount of a reception point in the observation period to obtain an integrated deviation amount.
【請求項2】 請求項1に記載の受信点の偏位量を積算
して積算偏位量を求める手段に代えて、前記観測周期に
おける受信点の偏位量から単位時間当たりの受信点の偏
位量を求める手段を備えた偏位速度計測装置。
2. The method according to claim 1, further comprising the step of integrating the amount of deviation of the receiving point to obtain an integrated amount of deviation, and calculating the number of receiving points per unit time from the amount of deviation of the receiving point in the observation cycle. A displacement speed measuring device provided with a means for calculating a displacement amount.
JP2000203466A 2000-07-05 2000-07-05 Deviation measuring device, deviation velocity measuring device, deviation measuring method, and deviation velocity measuring method Expired - Lifetime JP4289767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000203466A JP4289767B2 (en) 2000-07-05 2000-07-05 Deviation measuring device, deviation velocity measuring device, deviation measuring method, and deviation velocity measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000203466A JP4289767B2 (en) 2000-07-05 2000-07-05 Deviation measuring device, deviation velocity measuring device, deviation measuring method, and deviation velocity measuring method

Publications (3)

Publication Number Publication Date
JP2002022816A true JP2002022816A (en) 2002-01-23
JP2002022816A5 JP2002022816A5 (en) 2005-08-25
JP4289767B2 JP4289767B2 (en) 2009-07-01

Family

ID=18700867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000203466A Expired - Lifetime JP4289767B2 (en) 2000-07-05 2000-07-05 Deviation measuring device, deviation velocity measuring device, deviation measuring method, and deviation velocity measuring method

Country Status (1)

Country Link
JP (1) JP4289767B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284242A (en) * 2005-03-31 2006-10-19 Furuno Electric Co Ltd Tidal current measuring apparatus and tidal current measuring method
JP2007536510A (en) * 2004-05-07 2007-12-13 ナヴコム テクノロジー インコーポレイテッド GPS navigation using continuous difference of carrier-phase measurements
JP2010066106A (en) * 2008-09-10 2010-03-25 Japan Radio Co Ltd Acceleration measuring device
EP2325607A1 (en) 2009-11-20 2011-05-25 Sumitomo Rubber Industries, Ltd. Vehicle estimate navigation appartus, vehicle estimate navigation method, and vehicle estimate navigation program
JP2012008013A (en) * 2010-06-25 2012-01-12 Japan Radio Co Ltd Heave amount measuring device
JP2013534623A (en) * 2010-06-14 2013-09-05 ユニヴァーシタ’デグリ ステュディ ディ ローマ “ラ サピエンツァ” Global Navigation Satellite System-System for measuring seismic motion or vibration of structures based on GNSS and / or pseudo satellites
JP2016065742A (en) * 2014-09-24 2016-04-28 株式会社トプコン Vibration measurement method, vibration detector, and vibration measurement program
CN111465874A (en) * 2017-12-01 2020-07-28 古野电气株式会社 Swing observation device, swing observation method, and swing observation program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101547598B1 (en) 2009-08-17 2015-09-04 한국전자통신연구원 Apparatusand method for receiving signal in global navigation satellite system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007536510A (en) * 2004-05-07 2007-12-13 ナヴコム テクノロジー インコーポレイテッド GPS navigation using continuous difference of carrier-phase measurements
JP2006284242A (en) * 2005-03-31 2006-10-19 Furuno Electric Co Ltd Tidal current measuring apparatus and tidal current measuring method
JP2010066106A (en) * 2008-09-10 2010-03-25 Japan Radio Co Ltd Acceleration measuring device
EP2325607A1 (en) 2009-11-20 2011-05-25 Sumitomo Rubber Industries, Ltd. Vehicle estimate navigation appartus, vehicle estimate navigation method, and vehicle estimate navigation program
JP2013534623A (en) * 2010-06-14 2013-09-05 ユニヴァーシタ’デグリ ステュディ ディ ローマ “ラ サピエンツァ” Global Navigation Satellite System-System for measuring seismic motion or vibration of structures based on GNSS and / or pseudo satellites
JP2012008013A (en) * 2010-06-25 2012-01-12 Japan Radio Co Ltd Heave amount measuring device
JP2016065742A (en) * 2014-09-24 2016-04-28 株式会社トプコン Vibration measurement method, vibration detector, and vibration measurement program
CN111465874A (en) * 2017-12-01 2020-07-28 古野电气株式会社 Swing observation device, swing observation method, and swing observation program

Also Published As

Publication number Publication date
JP4289767B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
Han et al. Accurate absolute GPS positioning through satellite clock error estimation
CN100399047C (en) Method and apparatus for estimating velocity of a terminal in a wireless communication system
JP5078082B2 (en) POSITIONING DEVICE, POSITIONING SYSTEM, COMPUTER PROGRAM, AND POSITIONING METHOD
CN100507594C (en) Method and system for determining position according to computing time
US20130016005A1 (en) Accuracy Assessment in Assisted GPS Positioning
JPH04369492A (en) Gps position measurement device
CN110174104A (en) A kind of Combinated navigation method, device, electronic equipment and readable storage medium storing program for executing
JP2010151725A (en) Gnss receiving apparatus and positioning method
JP2009270927A (en) Inter-moving object interference positioning apparatus and method for moving object
JPH01501087A (en) Accurate dynamic differential position grasping method
US7269512B2 (en) Information processing apparatus and GPS positioning method
US11619748B2 (en) Kinematic positioning system and kinematic positioning method
JP4289767B2 (en) Deviation measuring device, deviation velocity measuring device, deviation measuring method, and deviation velocity measuring method
JPH10253734A (en) Positioning device
JP4848146B2 (en) Apparatus for transmitting positioning signal, positioning system including the apparatus, and system for transmitting positioning signal
JP5077054B2 (en) Mobile positioning system
JPH0836042A (en) Gps receiver and speed deciding means using the gps receiver
JP2004239841A (en) System and method for measuring waves
JP2001108735A (en) Instrument for measuring moving speed
JP2004053312A (en) Azimuth measuring instrument
JP2007107890A (en) Method and device for continuously positioning movable body by using wireless lan positioning in combination with gps positioning, and continuous positioning program for movable body
US20220381924A1 (en) Positioning apparatus and augmentation information generation apparatus
JP2004286600A (en) Three-dimensional positioning system
JP5823143B2 (en) Relative velocity measuring device and relative displacement measuring device
JPH1164478A (en) Dgps receiver

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061226

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4289767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250