JP2002009216A - Circuit device with cooling fluid refrigeration - Google Patents

Circuit device with cooling fluid refrigeration

Info

Publication number
JP2002009216A
JP2002009216A JP2000184971A JP2000184971A JP2002009216A JP 2002009216 A JP2002009216 A JP 2002009216A JP 2000184971 A JP2000184971 A JP 2000184971A JP 2000184971 A JP2000184971 A JP 2000184971A JP 2002009216 A JP2002009216 A JP 2002009216A
Authority
JP
Japan
Prior art keywords
cooling fluid
tube
cooling
pipe
tube section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000184971A
Other languages
Japanese (ja)
Other versions
JP4085559B2 (en
Inventor
Yasuyuki Okochi
靖之 大河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000184971A priority Critical patent/JP4085559B2/en
Publication of JP2002009216A publication Critical patent/JP2002009216A/en
Application granted granted Critical
Publication of JP4085559B2 publication Critical patent/JP4085559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • F28D7/0033Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes the conduits for one medium or the conduits for both media being bent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To reduce drive power for cooling fluid in a circuit device with cooling fluid refrigeration using a flat molded tube. SOLUTION: In a large heat generating circuit component 1, there is closely arranged a first tube section 4 of a once-through tube for cooling fluid, composed of a metal extrusion molding or a metal draw molding which has a mutually parallel pair of flat surfaces for refrigeration. A second tube section 5 of the once-through tube for cooling fluid is closely arranged in a small heat generating circuit component. The tube section 4 is connected with the tube section 5 through a third tube section, thus, the cooling fluid flows from the tube section 4 to the tube section 5 through the third tube section 6. The tube section 4 has a member cross-sectional area and a contact surface area of the cooling fluid larger than those of the tube section 5, and a passage cross-sectional area of the cooling fluid smaller than that of the tube section 5, thereby acquiring necessary cooling capability and reducing pressure loss.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷却流体冷却型回
路装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling fluid cooling type circuit device.

【0002】[0002]

【従来の技術】近年、電気自動車において走行モータ駆
動用インバータ装置などに用いられる半導体モジュール
は大電力スイッチングを必要とするために発熱が大き
く、特に発進や急加速時などにおいて発熱が過渡的に大
きくなる特性を有する。この半導体モジュールの冷却に
は、電気自動車がもつエンジン冷却用のラジエータシス
テムや車室空調装置を共用すればよいために装置増設負
担が軽くかつ空冷に対して格段に冷却効果が大きい液冷
方式が従来より採用されており、空調冷媒を用いる方式
も考慮されている。以下、この種の冷却方式を採用する
回路装置を冷却流体冷却型回路装置と呼ぶものとする。
2. Description of the Related Art In recent years, a semiconductor module used for an inverter device for driving a traction motor in an electric vehicle generates a large amount of heat due to the necessity of high-power switching. It has the following characteristics. In order to cool the semiconductor module, a radiator system for cooling the engine of the electric vehicle and a vehicle air conditioner can be used in common. Conventionally adopted, a system using an air-conditioning refrigerant is also considered. Hereinafter, a circuit device employing this type of cooling system will be referred to as a cooling fluid cooling type circuit device.

【0003】[0003]

【発明が解決しようとする課題】この冷却流体冷却型回
路装置では、発熱する回路部品に冷却流体貫流チューブ
を直接又は良熱伝導部材を介して密着させる構造を採用
することが考えられる。この場合、互いに密着する冷却
流体貫流チューブ及び回路部品の接触伝熱面は平坦に形
成されるのが好適であるが、平坦な接触伝熱面(冷却用
平坦表面)をもつ冷却流体貫流チューブとして、金属押
し出し成形品又は金属引き抜き成形品からなる扁平成形
チューブを用いることが考えられる。この種の扁平成形
チューブは空調装置の間接熱交換器(コンデンサやエバ
ポレータ)用に大量生産されており、極めて安価である
ためである。
In this cooling fluid cooling type circuit device, it is conceivable to employ a structure in which a cooling fluid flow-through tube is closely attached to a circuit component which generates heat directly or via a good heat conducting member. In this case, the cooling fluid flow-through tube and the contact heat transfer surface of the circuit component which are in close contact with each other are preferably formed flat. However, the cooling fluid flow-through tube having a flat contact heat transfer surface (cooling flat surface) is preferable. It is conceivable to use a flat tube made of a metal extruded product or a metal drawn product. This type of flat type tube is mass-produced for an indirect heat exchanger (a condenser or an evaporator) of an air conditioner, and is extremely inexpensive.

【0004】次に、この扁平成形チューブを回路装置を
構成する各回路部品に密着させる場合を考える。扁平成
形チューブは各回路部品を順番に巡るように配置するの
が、構造上、最も簡単となる。しかし、この場合、、各
回路部品の発熱量及び大きさはそれぞれ異なるため、小
型で接触伝熱面が小さく発熱が大きい回路部品の冷却に
合わせて扁平成形チューブの冷却能力を設計すると、大
型で接触伝熱面が広い回路部品や発熱が小さい回路部品
ではその接触伝熱面の単位面積当たりの発熱量(すなわ
ち発熱密度)が小さいために、冷却能力が過剰となる。
扁平成形チューブは圧損をもつため、その引き回し長さ
に比例してポンプの大型化及びポンプ動力の増加を必要
とする。
[0004] Next, the case where this flat tube is closely attached to each circuit component constituting the circuit device will be considered. It is simplest in structure to arrange the flat Heisei tube so as to loop around each circuit component in order. However, in this case, since the heat value and the size of each circuit component are different from each other, if the cooling capacity of the flat type tube is designed in accordance with the cooling of the circuit component that is small, has a small contact heat transfer surface, and generates a large amount of heat, a large In a circuit component having a large contact heat transfer surface or a circuit component generating a small amount of heat, the amount of heat generated per unit area of the contact heat transfer surface (ie, heat generation density) is small, so that the cooling capacity becomes excessive.
Since the flat tube has a pressure loss, it is necessary to increase the size of the pump and increase the pump power in proportion to the length of the tube.

【0005】結局、扁平成形チューブを複数の回路部品
を順次巡るように引き回す冷却流体冷却型回路装置で
は、回路部品数の増大に応じて冷却流体の駆動動力が増
大し、冷却流体駆動装置の大型化及び消費エネルギーの
増大が問題となっていた。
After all, in a cooling fluid cooling type circuit device in which a flat type tube is routed around a plurality of circuit components sequentially, the driving power of the cooling fluid increases as the number of circuit components increases. And increase of energy consumption has been a problem.

【0006】本発明は、上記問題点に鑑みなされたもの
であり、扁平成形チューブを用いる冷却流体冷却型回路
装置において、冷却流体駆動動力を低減することをその
目的としている。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and has as its object to reduce the driving power of a cooling fluid in a cooling fluid cooling type circuit device using a flat tube.

【0007】[0007]

【課題を解決するための手段】請求項1記載の冷却流体
冷却型回路装置は、互いに平行な一対の冷却用平坦表面
をもつ金属押し出し成形品又は金属引き抜き成形品によ
り構成される冷却流体貫流チューブ、及び、前記冷却流
体貫流チューブの前記冷却用平坦表面に直接又は伝熱部
材を通じて密着配置される大発熱回路部品及び小発熱回
路部品を備える冷却流体冷却型回路装置において、前記
冷却流体貫流チューブは、前記大発熱回路部品に密着す
る第1管部と、前記第1管部と直列に接続されて前記小
発熱回路部品に密着する第2管部とを有し、前記第1管
部は、前記第2管部よりも大きい部材断面積及び冷却流
体接触表面積と前記第2管部よりも小さい冷却流体流路
断面積を有することを特徴としている。
According to a first aspect of the present invention, there is provided a cooling fluid cooling type circuit device comprising a metal extruded part or a metal drawn part having a pair of parallel flat cooling surfaces. And a cooling fluid cooling type circuit device including a large heat generating circuit component and a small heat generating circuit component that are closely attached to the cooling flat surface of the cooling fluid through tube directly or through a heat transfer member, wherein the cooling fluid through tube is A first tube portion that is in close contact with the large heat generating circuit component, and a second tube portion that is connected in series with the first tube portion and is in close contact with the small heat generating circuit component, wherein the first tube portion is It has a member cross-sectional area and a cooling fluid contact surface area larger than the second pipe portion, and a cooling fluid flow path cross-sectional area smaller than the second pipe portion.

【0008】すなわち、本構成によれば、互いに平行な
一対の冷却用平坦表面をもつ金属押し出し成形品又は金
属引き抜き成形品により構成される冷却流体貫流チュー
ブ、すなわち扁平成形チューブを複数の回路部品を巡っ
て引き回すに際して、大発熱回路部品に接する扁平成形
チューブの部位と、小発熱回路部品に接する扁平成形チ
ューブの部位とで扁平成形チューブの断面形状を変更す
ることにより、回路部品の冷却性を確保しつつその総合
圧損を低減したものである。
That is, according to the present invention, a cooling fluid flow-through tube, which is a metal extrusion molded product or a metal drawn molded product having a pair of cooling flat surfaces parallel to each other, that is, a flat Heisei tube is formed by connecting a plurality of circuit parts. The cooling of circuit components is ensured by changing the cross-sectional shape of the flat heating tube in contact with the large heating circuit components and the flat heating tube portion in contact with the small heating circuit components when routing around While reducing the overall pressure loss.

【0009】更に説明すれば、扁平成形チューブは、大
発熱回路部品に接して大きい部材断面積及び冷却流体接
触表面積をもつので、小さい伝熱抵抗と大きなヒートシ
ンク性能をもつことができる。これは、この種の冷却流
体間接冷却型伝熱系では、扁平成形チューブと冷却流体
との境界部(境界層とも呼ばれる)の伝熱抵抗が支配的
となるためであり、これは、流動する冷却流体の境界層
では実質的な移動速度が小さく、かつ、流れの乱れも小
さいことに起因している。これに対応するために大発熱
回路部品に接する第1管部では、扁平成形チューブの部
材断面積を大きくしてそのヒートシンクマス性能を向上
し、更に冷却流体接触表面積を大きくして放熱能力を向
上している。ただし、扁平成形チューブにおける上記部
材断面積及び冷却流体接触表面積の増大は冷却流体の圧
損増大を招く。
More specifically, since the flat tube has a large member cross-sectional area and a cooling fluid contact surface area in contact with a large heat generating circuit component, it can have a small heat transfer resistance and a large heat sink performance. This is because, in this type of cooling fluid indirect cooling type heat transfer system, the heat transfer resistance at the boundary between the flat tube and the cooling fluid (also referred to as a boundary layer) becomes dominant, which causes the fluid to flow. This is because the boundary layer of the cooling fluid has a substantially low moving speed and a small flow turbulence. In order to cope with this, the first tube part in contact with the large heat generating circuit component has a large cross-sectional area of the flat type tube to improve the heat sink mass performance, and further increases the cooling fluid contact surface area to improve the heat radiation ability. are doing. However, the increase in the above-mentioned member cross-sectional area and the cooling fluid contact surface area in the flat Heisei type tube causes an increase in pressure loss of the cooling fluid.

【0010】これに対し、扁平成形チューブは、小発熱
回路部品に接して小さい部材断面積及び冷却流体接触表
面積をもつので、大きな伝熱抵抗と小さいヒートシンク
性能をもつ。しかし、小発熱回路部品の発熱は小さいの
で小発熱回路部品の温度上昇をその許容温度範囲に十分
維持することができる。更に、扁平成形チューブは、小
発熱回路部品に接して大きな冷却流体流路断面積をもつ
ので、この部位における圧損を低減することができる。
結局、本構成によれば、両発熱部品の良好な冷却を確保
しつつ、全体圧損を低減して冷却流体駆動装置の小型化
及び駆動エネルギーの低減を図ることができる。
On the other hand, since the flat type tube has a small member cross-sectional area and a cooling fluid contact surface area in contact with a small heat generating circuit component, it has a large heat transfer resistance and a small heat sink performance. However, since the heat generation of the small heat generating circuit component is small, the temperature rise of the small heat generating circuit component can be sufficiently maintained within its allowable temperature range. Further, since the flat type tube has a large cooling fluid flow path cross-sectional area in contact with the small heat generating circuit component, it is possible to reduce a pressure loss in this portion.
As a result, according to the present configuration, it is possible to reduce the overall pressure loss and to reduce the size of the cooling fluid drive device and reduce the drive energy while ensuring good cooling of both heat-generating components.

【0011】更に、冷却流体貫流チューブすなわち冷却
系は合計1回路の冷却流体経路で構成できるので、接続
などを簡素化することができる。
Further, since the cooling fluid flow-through tube, that is, the cooling system can be constituted by a cooling fluid path of one circuit in total, connection and the like can be simplified.

【0012】請求項2記載の構成によれば、請求項1記
載の冷却流体冷却型回路装置において更に、前記第1管
部は前記第2管部よりも上流側に配置されることを特徴
としている。本構成によれば、大発熱回路部品をより冷
たい冷却流体で冷却することができるので、冷却装置構
成を複雑かすることなく大発熱回路部品の冷却性を向上
できる。
According to a second aspect of the present invention, in the cooling fluid-cooled circuit device according to the first aspect, the first pipe portion is further arranged upstream of the second pipe portion. I have. According to this configuration, since the large heat generating circuit components can be cooled with a cooler cooling fluid, the cooling performance of the large heat generating circuit components can be improved without complicating the cooling device configuration.

【0013】請求項3記載の構成によれば請求項1記載
の冷却流体冷却型回路装置において更に、前記第1管部
の端部と前記第2管部の端部とを連結する第3管部を有
し、前記第3管部は単一の流路を有して前記第1管部及
び第2管部にそれぞれ嵌着されて接合されている。本構
成によれば、単管(単一の流路を有する管)であり、第
1管部及び第2管部の端部に嵌着されて接合されるの
で、その圧損は最も小さくすることができ、また引き回
しのために変形することが容易であり、複雑な形状の配
管構造を簡単に製造することができる。
According to a third aspect of the present invention, in the cooling fluid-cooled circuit device according to the first aspect, a third pipe connecting an end of the first pipe and an end of the second pipe. The third pipe section has a single flow path and is fitted and joined to the first pipe section and the second pipe section, respectively. According to this configuration, since the pipe is a single pipe (a pipe having a single flow path) and is fitted to and joined to the ends of the first pipe section and the second pipe section, the pressure loss is minimized. And it is easy to deform for routing, and a piping structure having a complicated shape can be easily manufactured.

【0014】請求項4記載の構成によれば請求項3記載
の冷却流体冷却型回路装置において更に、前記第3管部
はU字状に湾曲されており、前記第1、第2管部は第3
の回路部品の両面に密着していることを特徴としてい
る。本構成によれば、変形容易で圧損が小さい第3管部
をU字状に湾曲させることにより第1管部及び第2管部
を第3の回路部品又は前記第1の回路部品の両面に密着
させるので、簡素でコンパクトな冷却配管構造で3つ又
はそれ以上の回路部品を冷却することができる。
According to a fourth aspect of the present invention, in the cooling fluid-cooled circuit device according to the third aspect, the third tube portion is curved in a U shape, and the first and second tube portions are curved. Third
It is characterized by being in close contact with both sides of the circuit component. According to this configuration, the first tube portion and the second tube portion are formed on the third circuit component or both surfaces of the first circuit component by bending the third tube portion that is easily deformed and has a small pressure loss into a U shape. Due to the close contact, three or more circuit components can be cooled with a simple and compact cooling piping structure.

【0015】[0015]

【発明の実施の形態】本発明の冷却流体冷却型回路装置
の好適な実施態様を図面を参照して以下説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a cooling fluid cooling type circuit device according to the present invention will be described below with reference to the drawings.

【0016】[0016]

【実施例1】この冷却流体冷却型回路装置の側面図を図
1に、そのB−B線矢視断面図を図2に示す。
Embodiment 1 FIG. 1 is a side view of this cooling fluid cooling type circuit device, and FIG. 2 is a cross-sectional view taken along the line BB of FIG.

【0017】1は最も発熱が大きい第1の発熱体であ
り、電気自動車の走行モータ駆動制御用の三相インバー
タ回路をなす半導体モジュールにより構成されている。
2a、2bは第2の発熱体であり、上記三相インバータ
回路の一対の直流入力端間に接続される平滑コンデンサ
により構成されている。3は第3の発熱体であり、20
0V以上の主電池と12Vの補機電池との間に介設され
て補機電池を充電するための降圧型DCーDCコンバー
タにより構成されている。
Reference numeral 1 denotes a first heating element which generates the largest amount of heat, and is constituted by a semiconductor module forming a three-phase inverter circuit for controlling driving of a traveling motor of an electric vehicle.
Reference numerals 2a and 2b denote second heating elements, each of which is constituted by a smoothing capacitor connected between a pair of DC input terminals of the three-phase inverter circuit. 3 is a third heating element, 20
It comprises a step-down DC-DC converter interposed between a main battery of 0 V or more and an auxiliary battery of 12 V for charging the auxiliary battery.

【0018】4はアルミ材の押し出しまたは引き抜きで
製造された扁平成形チューブ(第1管部)であり、その
内部には隔壁部により区画されて冷却流体が平行に流れ
るスリット状の通流部(流路)4aが多数並列に形成さ
れている。
Reference numeral 4 denotes a flat tube (first tube) which is manufactured by extruding or drawing an aluminum material, and has a slit-shaped flow passage (partly defined by a partition wall) through which a cooling fluid flows in parallel. A large number of flow paths 4a are formed in parallel.

【0019】5はアルミ材の押し出しまたは引き抜きで
製造された扁平成形チューブ(第2管部)であり、その
内部には隔壁部により区画されて冷却流体が平行に流れ
るスリット状の通流部(流路)5aが多数並列に形成さ
れている。図2に示すように、扁平成形チューブ4、5
内の各隔壁の形状は同一であるが、扁平成形チューブ4
には扁平成形チューブ5の2倍の数の隔壁が形成されて
おり、その分だけ、扁平成形チューブ4の流路4aの合
計断面積は扁平成形チューブ5のそれより減少してい
る。
Reference numeral 5 denotes a flat tube (second tube portion) manufactured by extruding or drawing an aluminum material. Inside the slit tube, a slit-shaped flow portion (partially divided by a partition wall) through which a cooling fluid flows in parallel. Many channels 5a are formed in parallel. As shown in FIG.
Although the shape of each partition in the inside is the same,
Are formed twice as many as the flat tube 5, and the total cross-sectional area of the flow path 4a of the flat tube 4 is smaller than that of the flat tube 5.

【0020】6は、アルミ材の押し出しまたは引き抜き
で製造された扁平成形チューブ(第3管部)であるが、
内部に隔壁をもたず単一の流路を有している。扁平成形
チューブ6は、U字状に湾曲成形されており、互いに平
行配置された冷却流体貫流チューブ4,6の同一側の端
部に圧着され、ろう付けにて接合されている。
Reference numeral 6 denotes a flat tube (third tube) manufactured by extruding or drawing an aluminum material.
It has a single channel without a partition inside. The flat tube 6 is formed into a U-shape and is crimped to the same end of the cooling fluid flow-through tubes 4 and 6 arranged in parallel with each other and joined by brazing.

【0021】7、8は、冷却流体貫流チューブ4,5の
他端部に接合されたヘッダであり、ろう付けにより接合
されている。ヘッダ7,8の一端には配管接続用の雄ね
じ管部が設けられている。半導体モジュール1、平滑コ
ンデンサ2a、2b、DCーDCコンバータ3は、図示
のようにそれぞれの平坦な放熱面が扁平成形チューブ4
〜6の平坦な伝熱面に取り付けられている。平滑コンデ
ンサは2個で無く、一体の1個で構成しても3個で構成
しても構わない。半導体モジュール1も、3相インバー
タの6アームを1個のモジュールとした6in1タイプ
でも、1相2アームを1個のモジュールとした2in1
タイプ3個でも、1アームを1個のモジュールとした1
in1タイプ6個でもよい。平滑コンデンサ2a、2b
は長円形型のコンデンサであり、両側面は平面なため、
容易に両面から冷却することができる。
Reference numerals 7 and 8 denote headers joined to the other ends of the cooling fluid flow-through tubes 4 and 5, which are joined by brazing. At one end of each of the headers 7 and 8, a male screw pipe portion for connecting a pipe is provided. Each of the semiconductor module 1, the smoothing capacitors 2a and 2b, and the DC-DC converter 3 has a flat heat dissipation
~ 6 flat heat transfer surfaces. The number of smoothing capacitors is not limited to two, but may be configured as one integrated or three. The semiconductor module 1 is also a 6-in-1 type in which six arms of a three-phase inverter are one module, and a two-in-one type in which one-phase two arms are one module.
Even with three types, one arm is one module
Six in1 types may be used. Smoothing capacitors 2a, 2b
Is an oval type capacitor and both sides are flat,
It can be easily cooled from both sides.

【0022】半導体モジュール1の発熱量はDCーDC
コンバータ3のそれに比べて数倍から数10倍大きい。
平滑コンデンサ2a、2bの発熱量はDC/DCコンバ
ータ3のそれより更に小さい。
The heat value of the semiconductor module 1 is DC-DC
It is several times to several tens times larger than that of converter 3.
The amount of heat generated by the smoothing capacitors 2a and 2b is smaller than that of the DC / DC converter 3.

【0023】本構成によれば、大発熱回路部品である半
導体モジュール1を冷却する扁平成形チューブ1は小さ
い伝熱抵抗と大きなヒートシンクマス特性をもつことが
でき、小発熱回路部品であるDC/DCコンバータ3
は、流路断面積が大きく低圧損(流体抵抗小)となるた
め、全体として必要な冷却性能を確保しつつ圧損を低減
することができ、ポンプの小型化とポンプ駆動電力の低
減を実現することができる。
According to this structure, the flat tube 1 for cooling the semiconductor module 1 which is a large heat generating circuit component can have a small heat transfer resistance and a large heat sink mass characteristic, and the DC / DC small heat generating circuit component can be obtained. Converter 3
Has a large flow path cross-sectional area and low pressure loss (small fluid resistance), so it is possible to reduce the pressure loss while securing the necessary cooling performance as a whole, and to realize a downsized pump and reduced pump driving power. be able to.

【0024】また、この実施例では、内部に隔壁をもた
ず変形容易な扁平成形チューブ6を扁平成形チューブ
4,5の連結のために用いるので、この回路部品冷却に
関与しない第3管部の圧損を更に低減するとともにこの
第3管部をU字状に湾曲させて、各回路部品1〜3と扁
平成形チューブ4,5を積層配置することができ、冷却
配管の引き回しを複雑化することなく装置をコンパクト
に構成することができる。
Further, in this embodiment, the easily deformable flat tube 6 having no partition therein is used for connecting the flat tubes 4 and 5, so that the third tube portion not involved in the cooling of the circuit parts is used. The third tube portion is curved in a U-shape, and the circuit components 1 to 3 and the flat tubes 4 and 5 can be stacked and arranged, which complicates the routing of the cooling pipe. The device can be made compact without the need for it.

【0025】更に、U字状に湾曲された第3管部の両端
部間の幅を上記積層アセンブリの積層厚さよりわずかに
小さくすれば、第3管部が上記積層アセンブリを挟圧す
るので、熱的結合が良好となり、効率良く冷却すること
ができる。更に、平滑コンデンサ2a、2bは半導体モ
ジュール1のヒートシンクマスとしても機能することが
できる。
Further, if the width between both ends of the U-shaped curved third tube portion is slightly smaller than the lamination thickness of the laminated assembly, the third tube portion clamps the laminated assembly, so that the heat is generated. Good coupling is achieved and cooling can be performed efficiently. Further, the smoothing capacitors 2a and 2b can also function as a heat sink mass of the semiconductor module 1.

【0026】更に、この実施例では、冷却流体は第1管
部4から第3管部6を経由して第2管部5に流れ、大発
熱回路部品である半導体モジュールは上流側でまだ加熱
されていない冷却流体により冷却されるので、強力冷却
が必要な半導体モジュール1の冷却性を向上することが
できる。
Further, in this embodiment, the cooling fluid flows from the first pipe section 4 to the second pipe section 5 via the third pipe section 6, and the semiconductor module which is a large heat generating circuit component is still heated on the upstream side. Since the semiconductor module 1 is cooled by the cooling fluid that has not been cooled, the cooling performance of the semiconductor module 1 that requires strong cooling can be improved.

【0027】[0027]

【実施例2】本発明の装置の他の実施態様を図3を参照
して説明する。
Embodiment 2 Another embodiment of the apparatus of the present invention will be described with reference to FIG.

【0028】図3に示す装置は、図1に示す装置におい
て、半導体モジュール1と平滑コンデンサ2a、2bと
の配置位置を逆としたものである。ただし、半導体モジ
ュール1としては両面冷却型の半導体モジュールが採用
される。
The device shown in FIG. 3 is different from the device shown in FIG. 1 in that the positions of the semiconductor module 1 and the smoothing capacitors 2a and 2b are reversed. However, a double-sided cooling type semiconductor module is adopted as the semiconductor module 1.

【0029】このようにすれば、半導体モジュール1は
両側から冷却されることができるので、一層冷却性を向
上することができる。更に、半導体モジュール1は多く
の隔壁を内蔵して伝熱抵抗が小さい扁平成形チューブ
(第1管部)4を通じて平滑コンデンサ2a、2bに過
渡的に放熱することができるので、平滑コンデンサ2
a、2bが半導体モジュール1のヒートシンクマス機能
を発揮することができる。
In this way, since the semiconductor module 1 can be cooled from both sides, the cooling performance can be further improved. Further, since the semiconductor module 1 can transiently dissipate heat to the smoothing capacitors 2a and 2b through the flat tube (first tube portion) 4 having a small heat transfer resistance and containing many partition walls, the smoothing capacitor 2
a and 2b can exhibit the heat sink mass function of the semiconductor module 1.

【0030】(変形態様)上記実施例では、扁平成形チ
ューブである第3管部6はアルミ押し出し成形品又はア
ルミ引き抜き成形品としたが、湾曲して両扁平成形チュ
ーブ4,5を連結するものであれば、他の構造、形状、
材料を用いて作製してもよい。
(Modification) In the above embodiment, the third tube portion 6 which is a flat Heisei type tube is an aluminum extruded molded product or an aluminum drawn molded product. If so, other structures, shapes,
It may be manufactured using a material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の冷却流体冷却型回路装置の側面図で
ある。
FIG. 1 is a side view of a cooling fluid cooling type circuit device according to a first embodiment.

【図2】図1に示す冷却流体冷却型回路装置の断面図で
ある。
FIG. 2 is a sectional view of the cooling fluid cooling type circuit device shown in FIG.

【図3】実施例2の冷却流体冷却型回路装置の側面図で
ある。
FIG. 3 is a side view of a cooling fluid cooling type circuit device according to a second embodiment.

【符号の説明】[Explanation of symbols]

1:半導体モジュール(大発熱回路部品) 3:DC−DCコンバータ(小発熱回路部品) 4:扁平成形チューブ(第1管部) 5:扁平成形チューブ(第2管部) 6:扁平成形チューブ(第3管部) 1: Semiconductor module (large heat generating circuit parts) 3: DC-DC converter (small heat generating circuit parts) 4: Flat Heisei type tube (first pipe part) 5: Flat Heisei type tube (second pipe part) 6: Flat Heisei type tube ( 3rd pipe)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】互いに平行な一対の冷却用平坦表面をもつ
金属押し出し成形品又は金属引き抜き成形品により構成
される冷却流体貫流チューブ、及び、前記冷却流体貫流
チューブの前記冷却用平坦表面に直接又は伝熱部材を通
じて密着配置される大発熱回路部品及び小発熱回路部品
を備える冷却流体冷却型回路装置において、 前記冷却流体貫流チューブは、前記大発熱回路部品に密
着する第1管部と、前記第1管部と直列に接続されて前
記小発熱回路部品に密着する第2管部とを有し、 前記第1管部は、前記第2管部よりも大きい部材断面積
及び冷却流体接触表面積と前記第2管部よりも小さい冷
却流体流路断面積を有することを特徴とする冷却流体冷
却型回路装置。
A cooling fluid flow-through tube comprising a metal extrusion or a metal pultrusion having a pair of cooling flat surfaces parallel to each other, and directly or directly on said cooling flat surface of said cooling fluid flow-through tube. In a cooling fluid cooling type circuit device including a large heat generating circuit component and a small heat generating circuit component which are arranged in close contact with each other through a heat transfer member, the cooling fluid flow-through tube includes: a first pipe portion which is in close contact with the large heat generating circuit component; A second tube portion connected in series with the one tube portion and in close contact with the small heat generating circuit component, wherein the first tube portion has a larger member cross-sectional area and a cooling fluid contact surface area than the second tube portion; A cooling fluid-cooled circuit device having a cooling fluid passage cross-sectional area smaller than that of the second pipe portion.
【請求項2】請求項1記載の冷却流体冷却型回路装置に
おいて、 前記第1管部は前記第2管部よりも上流側に配置される
ことを特徴とする冷却流体冷却型回路装置。
2. The cooling fluid-cooled circuit device according to claim 1, wherein said first pipe portion is disposed upstream of said second pipe portion.
【請求項3】請求項1記載の冷却流体冷却型回路装置に
おいて、 前記第1管部の端部と前記第2管部の端部とを連結する
第3管部を有し、前記第3管部は単一の流路を有して前
記第1管部及び第2管部にそれぞれ嵌着されて接合され
ていることを特徴とする冷却流体冷却型回路装置。
3. The cooling fluid-cooled circuit device according to claim 1, further comprising: a third pipe connecting an end of said first pipe to an end of said second pipe. A cooling fluid cooling type circuit device, wherein the pipe section has a single flow path and is fitted and joined to each of the first pipe section and the second pipe section.
【請求項4】請求項3記載の冷却流体冷却型回路装置に
おいて、 前記第3管部はU字状に湾曲されており、前記第1、第
2管部は第3の回路部品又は前記第1の回路部品の両面
に直接又は伝熱部材を通じて密着配置されることを特徴
とする冷却流体冷却型回路装置。
4. The cooling fluid-cooled circuit device according to claim 3, wherein said third pipe is curved in a U-shape, and said first and second pipes are third circuit components or said third pipe. A cooling-fluid-cooled circuit device, wherein the circuit component is disposed in close contact with both surfaces of the circuit component directly or through a heat transfer member.
JP2000184971A 2000-06-20 2000-06-20 Cooling fluid cooling type circuit device Expired - Lifetime JP4085559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000184971A JP4085559B2 (en) 2000-06-20 2000-06-20 Cooling fluid cooling type circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000184971A JP4085559B2 (en) 2000-06-20 2000-06-20 Cooling fluid cooling type circuit device

Publications (2)

Publication Number Publication Date
JP2002009216A true JP2002009216A (en) 2002-01-11
JP4085559B2 JP4085559B2 (en) 2008-05-14

Family

ID=18685354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000184971A Expired - Lifetime JP4085559B2 (en) 2000-06-20 2000-06-20 Cooling fluid cooling type circuit device

Country Status (1)

Country Link
JP (1) JP4085559B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161043A (en) * 2006-11-20 2008-07-10 Gm Global Technology Operations Inc Liquid cooling capacitor and power inverter having low inductance bus structure
US7571759B2 (en) 2003-12-03 2009-08-11 Denso Corporation Stacked type cooler
JP2011228566A (en) * 2010-04-22 2011-11-10 Denso Corp Cooler
JP2012196985A (en) * 2011-03-18 2012-10-18 Mitsubishi Heavy Ind Ltd Heater for heat medium and air conditioner for vehicle with the same
JPWO2015198642A1 (en) * 2014-06-23 2017-04-20 日本電気株式会社 Heat sink and heat dissipation method using heat sink
CN107192283A (en) * 2017-05-11 2017-09-22 中国北方车辆研究所 The burner exhaust heat of pipe flat tube combination utilizes heat-exchanger rig
US10448545B2 (en) * 2015-03-10 2019-10-15 Hanon Systems Heat exchanger for cooling electrical element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138799A (en) * 1986-11-28 1988-06-10 インターナショナル・ビジネス・マシーンズ・コーポレーション Cooling circuit module
JPH0385796A (en) * 1989-08-30 1991-04-10 Toshiba Corp Cooling device for electronic equipment
JPH09283679A (en) * 1996-04-15 1997-10-31 Denso Corp Cooling device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138799A (en) * 1986-11-28 1988-06-10 インターナショナル・ビジネス・マシーンズ・コーポレーション Cooling circuit module
JPH0385796A (en) * 1989-08-30 1991-04-10 Toshiba Corp Cooling device for electronic equipment
JPH09283679A (en) * 1996-04-15 1997-10-31 Denso Corp Cooling device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7571759B2 (en) 2003-12-03 2009-08-11 Denso Corporation Stacked type cooler
JP2008161043A (en) * 2006-11-20 2008-07-10 Gm Global Technology Operations Inc Liquid cooling capacitor and power inverter having low inductance bus structure
JP2011228566A (en) * 2010-04-22 2011-11-10 Denso Corp Cooler
JP2012196985A (en) * 2011-03-18 2012-10-18 Mitsubishi Heavy Ind Ltd Heater for heat medium and air conditioner for vehicle with the same
JPWO2015198642A1 (en) * 2014-06-23 2017-04-20 日本電気株式会社 Heat sink and heat dissipation method using heat sink
US10448545B2 (en) * 2015-03-10 2019-10-15 Hanon Systems Heat exchanger for cooling electrical element
US10818985B2 (en) 2015-03-10 2020-10-27 Hanon Systems Heat exchanger for cooling electrical element
CN107192283A (en) * 2017-05-11 2017-09-22 中国北方车辆研究所 The burner exhaust heat of pipe flat tube combination utilizes heat-exchanger rig
CN107192283B (en) * 2017-05-11 2019-08-30 中国北方车辆研究所 Round tube-flat tube combination burner exhaust heat utilizes heat-exchanger rig

Also Published As

Publication number Publication date
JP4085559B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
RU2524058C2 (en) Cooling module for cooling of electronic elements
US6408939B1 (en) Double heat exchanger
CA2820330C (en) Two-phase cooling system for electronic components
US8958208B2 (en) Semiconductor device
JP4479568B2 (en) Stacked cooler
JPH0624279A (en) Cooling device for electric automobile
US20220178627A1 (en) Multi-channel high-efficiency heat dissipation water-cooling radiator
KR20130105667A (en) Cooler and refrigeration device provided with same
US20200292249A1 (en) Heat exchanger
JP4140549B2 (en) Cooler
JP4085559B2 (en) Cooling fluid cooling type circuit device
JP2008221951A (en) Cooling system of electronic parts for automobile
JP2011233688A (en) Semiconductor cooling device
JP2021051883A (en) Battery unit
JP2010010195A (en) Cooling device for electronic component for automobile
JP4265510B2 (en) Cooler
JP2002009477A (en) Power module refrigerator for controlling electric motors
CN113701544B (en) Flat tube radiator and processing method of flat tube of radiator
JP4400502B2 (en) Stacked cooler
JP2004335516A (en) Power converter
JP4128935B2 (en) Water-cooled heat sink
CN216745672U (en) Double-channel folding inner finned tube structure
JP3810119B2 (en) Boiling cooler
CN216960622U (en) Heat dissipation device of heating element, vehicle-mounted computing equipment and vehicle
CN215336756U (en) Radiating assembly, radiator and air conditioner outdoor unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4085559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term