JP2002005639A - Apparatus for inspecting surface - Google Patents

Apparatus for inspecting surface

Info

Publication number
JP2002005639A
JP2002005639A JP2000190203A JP2000190203A JP2002005639A JP 2002005639 A JP2002005639 A JP 2002005639A JP 2000190203 A JP2000190203 A JP 2000190203A JP 2000190203 A JP2000190203 A JP 2000190203A JP 2002005639 A JP2002005639 A JP 2002005639A
Authority
JP
Japan
Prior art keywords
light
imaging
illumination
subject
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000190203A
Other languages
Japanese (ja)
Inventor
Tetsuya Saito
哲哉 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000190203A priority Critical patent/JP2002005639A/en
Publication of JP2002005639A publication Critical patent/JP2002005639A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent lowering of the resolution of an optical system used in a surface inspection apparatus. SOLUTION: When the surface state of a specimen 4 is detected by having the surface of the specimen 4 irradiated with a light source 10 and lenses 11-13, receiving a plurality of reflected light 25a, 25b and 25c, having a different reflection angle range using lenses 21-23 and a trihedral prism 24, and picking up a plurality of images by means of light-receiving elements 25a, 25b and 25c, resolution is prevented from lowering by setting the aperture angle of illumination light irradiated via the light source 10 and lenses 11-13 larger than that of a focusing system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、金属板やフィル
ム等の平面状の表面のわずかな凹凸形状等を光学的に検
出する表面検査装置、特にその光学系の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface inspection apparatus for optically detecting slight irregularities on a planar surface of a metal plate, a film, or the like, and more particularly to an improvement of an optical system thereof.

【0002】[0002]

【従来の技術】この種の検査装置として、出願人は先に
特開平11−201913号公報に示すものを提案して
いる(以下、提案装置とも言う)。その実施例の要部を
図4に示す。この方式は、被検体の表面状態に応じて、
被検体表面からの反射光強度の角度分布が、被検体表面
上に照射される照明光強度の角度分布から変化すること
を利用し、照明された被検体表面の同一個所を互いに角
度範囲の異なる複数の反射光を受光して撮像し、反射光
強度の角度分布の変化を検出するもので、撮像した複数
の画像を組み合わせて処理することにより、被検体表面
の凹凸形状や反射率や粗さを検査することが可能であ
る。
2. Description of the Related Art As an inspection apparatus of this kind, the applicant has previously proposed an inspection apparatus disclosed in Japanese Patent Application Laid-Open No. Hei 11-201913 (hereinafter also referred to as a proposed apparatus). FIG. 4 shows a main part of the embodiment. This method depends on the surface condition of the subject,
Using the fact that the angular distribution of the reflected light intensity from the subject surface changes from the angular distribution of the illumination light intensity applied to the subject surface, the same location on the illuminated subject surface has a different angular range from each other. This is to detect and change the angular distribution of reflected light intensity by receiving and imaging a plurality of reflected light, and by combining and processing the captured images, the unevenness, reflectivity and roughness of the surface of the subject are processed. Can be tested.

【0003】すなわち、被検体表面を照射する照明手段
は光源10,レンズ11,レンズ12,レンズ13およ
び拡散板14からなり、光源10から放射された光はレ
ンズ11と拡散板14を通って所定の強度分布に整えら
れ、レンズ12,レンズ13を通ってスプリッタ30を
透過した部分が対物レンズ31を介して被検体4の表面
を照明する。被検体4の表面を照明する照明光15の強
度の角度分布は、レンズ12の光源側焦点位置にある拡
散板14上での照明光15の空間的強度分布から決ま
る。被検体4の表面の一個所からの反射光26は、再び
対物レンズ31を通ってスプリッタ30を反射した部分
が撮像手段のレンズ23により一旦収束され、さらにレ
ンズ22により平行光となるように屈折され、続いて3
面プリズム24により、その入射位置に応じて互いに異
なる方向に進む光束に分岐される。
That is, the illuminating means for illuminating the surface of the subject includes a light source 10, a lens 11, a lens 12, a lens 13, and a diffusion plate 14, and light emitted from the light source 10 passes through the lens 11 and the diffusion plate 14 to a predetermined position. And the portion transmitted through the splitter 30 through the lenses 12 and 13 illuminates the surface of the subject 4 via the objective lens 31. The angular distribution of the intensity of the illumination light 15 illuminating the surface of the subject 4 is determined from the spatial intensity distribution of the illumination light 15 on the diffusion plate 14 at the light source-side focal position of the lens 12. The reflected light 26 from one portion of the surface of the subject 4 passes through the objective lens 31 and is reflected by the splitter 30 again. The portion is once converged by the lens 23 of the imaging means, and further refracted by the lens 22 into parallel light. Followed by 3
The plane prism 24 splits the light into light beams traveling in different directions depending on the incident position.

【0004】上記3面プリズム24の入出射面は、図中
の座標系のzx面と垂直に構成されるので、3面プリズ
ム24の入射光はいずれも図中の座標系のzx面と平行
な方向に偏向される。これらの光束はいずれもレンズ2
1により各受光素子20a,20b,20cの受光面上
に集光して結象する。これらの結象に与かる光束は、3
面プリズム24で分岐される前は、被検体表面からの反
射光26のうちの互いに異なる反射角の範囲にあった光
束25a,25b,25cである。つまり、図示のよう
な結象レンズ系を持つ撮像手段により、被検体表面の同
一個所を互いに異なる角度範囲の反射光により撮像した
複数の像が各受光素子20a,20b,20cから得ら
れる。図4の例では、3面プリズム24により被検体表
面からの反射光を3分岐し、対応する3つの受光素子で
受光しているが、一般には3分岐に限らず複数とするこ
とができる。つまり、多面プリズムを用いても良く、ま
たは多面ミラーもしくは回折格子を用いても良い。ま
た、これらを結象レンズ系の開口絞りとなる位置に設置
するのは、上記提案装置の場合と同様である。
Since the entrance / exit surface of the three-sided prism 24 is configured to be perpendicular to the zx plane of the coordinate system in the figure, any light incident on the three-sided prism 24 is parallel to the zx plane of the coordinate system in the figure. In a different direction. These light beams are all transmitted through the lens 2
1, the light is condensed and formed on the light receiving surfaces of the respective light receiving elements 20a, 20b, 20c. The luminous flux affecting these images is 3
Before being split by the surface prism 24, the light fluxes 25a, 25b, and 25c of the reflected light 26 from the surface of the subject that have different reflection angles are included. In other words, a plurality of images obtained by imaging the same location on the surface of the subject with reflected light in different angular ranges from each other are obtained from the respective light receiving elements 20a, 20b, and 20c by the imaging means having the imaging lens system as shown in the figure. In the example shown in FIG. 4, the reflected light from the surface of the subject is divided into three by the three-sided prism 24 and received by the corresponding three light receiving elements. That is, a polygon mirror may be used, or a polygon mirror or a diffraction grating may be used. Further, they are installed at a position to be the aperture stop of the imaging lens system in the same manner as in the case of the above-mentioned proposed device.

【0005】[0005]

【発明が解決しようとする課題】図4のような構成で
は、撮像手段の結象に係る光学系の開口は、多面プリズ
ムの光束を分岐している各面で与えられ、これは多面プ
リズムを除いた結象光学系の開口角を分割しているの
で、多面プリズムを除いた(多面プリズムのない)結象
光学系の開口角より小さくなる。一般に、結象光学系の
空間分解能は開口角の大きさで決まるため、この場合は
多面プリズムが無い状態で結象系を使う場合に比べて開
口を分割した方向の分解能は低くなっており、この装置
の分解能を向上させる上での制約となる。また、図4の
構成において、受光素子として直線状に並んだ複数の受
光面を有するラインセンサを用いて、被検体表面上で直
線状に並んだ複数の個所を同時並列に撮像すれば高速化
が可能であるが、そのためには被検体表面に照射される
照明光は、撮像される個所をカバーする照明範囲が必要
となり、その強度の角度分布は撮像範囲内で均一である
ことが望ましい。したがって、この発明の第1の課題
は、上記のような制約を無くして分解能を向上させるこ
とにあり、また、第2の課題は、撮像範囲内で均一とな
る照明光を得られるようにすることにある。
In the configuration as shown in FIG. 4, the aperture of the optical system relating to the imaging of the image pickup means is provided on each surface of the polygonal prism which splits the light beam. Since the aperture angle of the removed imaging optical system is divided, the aperture angle is smaller than that of the imaging optical system excluding the polygonal prism (without the polygonal prism). In general, since the spatial resolution of the imaging optical system is determined by the size of the aperture angle, in this case, the resolution in the direction in which the aperture is divided is lower than in the case where the imaging system is used without a polygonal prism. This is a limitation in improving the resolution of this device. In the configuration of FIG. 4, the speed can be increased by simultaneously imaging a plurality of linearly arranged portions on the surface of the subject using a line sensor having a plurality of linearly arranged light receiving surfaces as light receiving elements. However, for that purpose, the illumination light applied to the surface of the subject needs an illumination range that covers a portion to be imaged, and the angular distribution of the intensity is desirably uniform within the imaging range. Therefore, a first object of the present invention is to improve the resolution by eliminating the above-mentioned restrictions, and a second object is to obtain uniform illumination light within an imaging range. It is in.

【0006】[0006]

【課題を解決するための手段】このような課題を解決す
るため、請求項1の発明では、被検体の表面を照明する
照明手段と、照明される被検体表面を撮像する撮像手段
と、前記照明手段および撮像手段に共用される一つの対
物レンズとを備え、さらに、前記撮像手段は、一つまた
は複数のレンズから構成され前記被検体の表面の像を生
じる結像レンズ系と、この結像レンズ系の途中に配置さ
れ入射光束を進行方向が互いに異なる複数の光束に分岐
する多面プリズムまたは多面ミラーもしくは回折格子
と、前記分岐された光束毎の結像位置に配置される複数
の受光素子とを備え、前記被検体表面の同一個所に対し
同一入射面に含まれ互いに異なる反射角度範囲の反射光
による像を得ることにより、その表面状態に応じて変化
する前記反射光強度の角度分布を検出する表面検査装置
において、前記照明手段により前記対物レンズを介して
前記被検体表面に照射される照明光強度の角度分布範囲
が、前記撮像手段による前記入射面に沿った方向におい
て前記対物レンズの開口角の1/2以上の大きさである
ことを特徴とすることを特徴とする。上記請求項1の発
明では、前記多面プリズムまたは多面ミラーもしくは回
折格子を、前記結像レンズ系の開口絞りとなる位置に配
置することができ(請求項2の発明)、これら請求項1
または2の発明においては、前記被検体表面に照射され
る照明光強度の角度分布が、前記撮像手段が前記被検体
表面を見込む互いに異なる角度範囲を含む前記入射面に
沿った方向において前記対物レンズの光軸に関して対称
であることを特徴とすることができる(請求項3の発
明)。
According to the first aspect of the present invention, there is provided an illumination unit for illuminating a surface of an object, an imaging unit for imaging an illuminated surface of the object, and An illumination lens and one objective lens shared by the imaging means; and the imaging means is constituted by one or a plurality of lenses and generates an image of the surface of the subject; A polyhedral prism, polygon mirror, or diffraction grating that is disposed in the middle of the image lens system and splits an incident light beam into a plurality of light beams having different traveling directions, and a plurality of light receiving elements arranged at an image forming position for each of the branched light beams The reflected light intensity, which varies according to the surface state, by obtaining images with reflected light included in the same incident surface and different reflection angle ranges for the same spot on the surface of the subject. In a surface inspection device that detects an angular distribution, an angular distribution range of an illumination light intensity applied to the object surface via the objective lens by the illumination unit is such that the angle distribution range is in a direction along the incident surface by the imaging unit. It is characterized in that it has a size equal to or larger than 1/2 of the aperture angle of the objective lens. According to the first aspect of the present invention, the polyhedral prism, the polyhedral mirror, or the diffraction grating can be arranged at a position to be an aperture stop of the imaging lens system (the invention of the second aspect).
In the invention according to the second aspect, the angle distribution of the intensity of the illumination light applied to the surface of the subject includes the objective lens in a direction along the incident surface including mutually different angular ranges in which the imaging unit looks at the surface of the subject. (The invention of claim 3).

【0007】被検体の表面を照明する照明手段と、照明
される被検体表面を撮像する撮像手段と、前記照明手段
および撮像手段に共用される一つの対物レンズとを備
え、さらに、前記撮像手段は、一つまたは複数のレンズ
から構成され前記被検体の表面の像を生じる結像レンズ
系と、この結像レンズ系の途中に配置され入射光束を進
行方向が互いに異なる複数の光束に分岐する多面プリズ
ムまたは多面ミラーもしくは回折格子と、前記分岐され
た光束毎の結像位置に配置される複数の受光素子とを備
え、前記被検体表面の同一個所に対し同一入射面に含ま
れ互いに異なる反射角度範囲の反射光による像を得るこ
とにより、その表面状態に応じて変化する前記反射光強
度の角度分布を検出する表面検査装置において、前記受
光素子は、それぞれ直線状に並んだ複数の受光面を有
し、この複数の受光面に撮像される直線状の視野は前記
被検体表面上の前記入射面と直交する方向になるように
配置され、前記照明手段は、シリンドリカル面を含むレ
ンズ系を備え、前記撮像手段による前記入射面において
はクリティカル照明となり、前記入射面と直交し前記受
光素子の直線状の視野が含まれる面においてはケーラー
照明となるように構成されることを特徴とする。
[0007] Illumination means for illuminating the surface of the subject, imaging means for imaging the surface of the illuminated subject, and one objective lens shared by the illumination means and the imaging means, further comprising: the imaging means Is an imaging lens system composed of one or a plurality of lenses and generates an image of the surface of the subject, and is arranged in the middle of the imaging lens system and splits an incident light beam into a plurality of light beams having different traveling directions. A polygonal prism or polygonal mirror or diffraction grating, and a plurality of light receiving elements arranged at an image forming position for each of the branched light fluxes. In a surface inspection device that detects an angle distribution of the reflected light intensity that changes according to the surface state by obtaining an image by reflected light in an angle range, the light receiving elements are respectively A plurality of light-receiving surfaces arranged in a line, and a linear visual field imaged on the plurality of light-receiving surfaces is disposed so as to be in a direction orthogonal to the incident surface on the surface of the subject; Is provided with a lens system including a cylindrical surface, and becomes critical illumination on the incident surface by the imaging means, and becomes Koehler illumination on a surface orthogonal to the incident surface and including a linear visual field of the light receiving element. It is characterized by comprising.

【0008】[0008]

【発明の実施の形態】図1はこの発明の第1の実施の形
態を示す構成図である。被検体表面を照射する照明手段
が光源10,レンズ11,レンズ12およびレンズ13
からなり、光源10から放射された光がレンズ11から
レンズ13を通りスプリッタ30を透過した部分が対物
レンズ31を介して被検体4の表面を照明するのは、図
4と同様である。従って、ここでは、被検体4の表面を
照射する照明光15(図4参照)の強度の、図1に示す
座標系のzx面に沿った角度分布範囲が、対物レンズ3
1の開口角の1/2以上の大きさとなるように、光源1
0から対物レンズ31までの配置と各レンズの仕様を決
めるようにした点が特徴である。
FIG. 1 is a configuration diagram showing a first embodiment of the present invention. Illumination means for irradiating the surface of the subject includes a light source 10, a lens 11, a lens 12, and a lens 13.
The light emitted from the light source 10 passes through the lens 11 through the lens 13 and passes through the splitter 30 to illuminate the surface of the subject 4 via the objective lens 31 as in FIG. Accordingly, here, the angular distribution range of the intensity of the illumination light 15 (see FIG. 4) irradiating the surface of the subject 4 along the zx plane of the coordinate system shown in FIG.
1 light source 1
The feature is that the arrangement from 0 to the objective lens 31 and the specifications of each lens are determined.

【0009】例えば、対物レンズ31の焦点距離fが2
mm、開口数NAが0.73、鏡筒長が無限遠補正の場
合は、開口全幅角θはθ=2sin-1(NA)=94
°、入射側の口径の直径wはw=2・f・NA=2.9
2mmとなるので、レンズ13から対物レンズ31に入
射する光束の直径dを2.0mmとすれば被検体4に照
射される照明光15(図4参照)の強度の、図1に示す
座標系のzx面に沿った角度分布全幅φはφ=sin-1
(d/2f)=60°となり、対物レンズ31の開口角
全幅θの1/2以上になる。
For example, if the focal length f of the objective lens 31 is 2
mm, the numerical aperture NA is 0.73, and the lens barrel length is corrected to infinity, the full aperture angle θ is θ = 2 sin −1 (NA) = 94.
°, the diameter w of the aperture on the incident side is w = 2 · f · NA = 2.9.
Assuming that the diameter d of the light beam entering the objective lens 31 from the lens 13 is 2.0 mm, the coordinate system shown in FIG. 1 of the intensity of the illumination light 15 (see FIG. 4) applied to the subject 4 is 2 mm. Of the angular distribution along the zx plane is φ = sin -1
(D / 2f) = 60 °, which is equal to or more than 開口 of the total opening angle width θ of the objective lens 31.

【0010】被検体4の表面の一個所からの反射光26
(図4参照)は、再び対物レンズ31を通りスプリッタ
30を反射した部分が撮像手段のレンズ23により一旦
収束され、さらにレンズ22により平行光となるように
屈折され、続いて3面プリズム24により、その入射位
置に応じて互いに異なる方向に進む光束に分岐される。
ここで3面プリズム24の入出射面は、図1に示す座標
系のzx面と垂直に構成されるので、3面プリズム24
への入射光はいずれも上記座標系のzx面と平行な方向
に偏向される。これらの光束はいずれもレンズ21によ
り各受光素子20a,20b,20cの受光面に集光し
て結像する。これらの結像に与かる光束は3面プリズム
24で分岐される前は、被検体表面からの反射光26
(図4参照)のうちの互いに異なる反射角の範囲にあっ
た光束25a,25b,25cであるので、被検体表面
の同一個所を互いに異なる角度範囲の反射光により撮像
した複数の像が各受光素子の出力から得られる。
The reflected light 26 from one location on the surface of the subject 4
4 (see FIG. 4), the portion reflected by the splitter 30 again through the objective lens 31 is once converged by the lens 23 of the imaging means, further refracted by the lens 22 so as to become parallel light, and subsequently by the three-sided prism 24. Are split into light beams that travel in different directions depending on the incident position.
Here, the entrance / exit surface of the three-sided prism 24 is perpendicular to the zx plane of the coordinate system shown in FIG.
Any light incident on the coordinate system is deflected in a direction parallel to the zx plane of the coordinate system. All of these light beams are condensed by the lens 21 on the light receiving surfaces of the respective light receiving elements 20a, 20b, and 20c to form an image. Before being split by the three-sided prism 24, the light flux contributing to these images is reflected light 26 from the subject surface.
Since the light beams 25a, 25b, and 25c in the ranges of the different reflection angles in FIG. 4 are different from each other, a plurality of images obtained by imaging the same portion of the surface of the subject with the reflected lights in the different angle ranges are different from each other. Obtained from the output of the device.

【0011】ここで、対物レンズ31からレンズ21ま
でを含む結像光学系で、3面プリズム24が無い場合の
系の開口絞りが対物レンズの開口角で決まるように構成
されているとして、3面プリズム24が無い状態での結
像光学系の分解能δは、照明光15(図4参照)の波長
λが650nm、対物レンズ31の開口数NAが0.7
3ならばδ=0.61・λ/NA=0.53μmとなる
が、3面プリズム24があると各受光素子に対するこの
系の開口角が分割されるため、3面プリズム24がその
開口角を3等分に分岐するとして、3面プリズム24を
含む結像光学系の実効的な開口数NA'は0.24とな
りそのときの分解能δ'は、δ'=0.61・λ/NA'
=1.6μmとなる。
Here, assuming that the image forming optical system including the objective lens 31 to the lens 21 is configured such that the aperture stop of the system without the three-sided prism 24 is determined by the aperture angle of the objective lens, 3 The resolution δ of the imaging optical system without the plane prism 24 is such that the wavelength λ of the illumination light 15 (see FIG. 4) is 650 nm and the numerical aperture NA of the objective lens 31 is 0.7.
If it is 3, δ = 0.61 · λ / NA = 0.53 μm. However, if the three-sided prism 24 is provided, the aperture angle of this system for each light receiving element is divided, so that the three-sided prism 24 has its aperture angle. Is divided into three equal parts, the effective numerical aperture NA ′ of the imaging optical system including the three-plane prism 24 is 0.24, and the resolution δ ′ at that time is δ ′ = 0.61 · λ / NA. '
= 1.6 μm.

【0012】一方、照明光15(図4参照)の被検体4
の表面上でのスポットサイズsは、前述の様に照明光1
5の角度分布全幅φが60°とすればs=0.61・λ
/sin(φ/2)=0.79μmとなる。結局、各受
光素子への結像では、結像光学系による被検体表面のx
方向の分解能が1.6μmであるものの、実際に結像に
与かるのは、その視野内で照明されている幅0.79μ
mの部分からの反射光だけであることから、結像光学系
の分解能を超えて照明光で決まる分解能の像が得られ
る。このように、結像光学系の途中で光束は複数に分岐
されるので、それぞれの実効的な開口数は少なくとも対
物レンズの開口数の半分以下になるのに対し、照明光の
角度分布範囲を対物レンズの開口角の1/2以上の大き
さとすることで、結像光学系の分解能を超える分解能の
像を得ることができる。なお、照明光強度の角度分布が
対物レンズの光軸に関して対称であることに限定しない
ときは、光源を照明光学系の光軸からシフトさせる場合
もあるが、図1のように照明光学系を対物レンズの光軸
に関して対称に構成すれば、照明光強度の角度分布範囲
を最も大きくすることができる。
On the other hand, the subject 4 is exposed to the illumination light 15 (see FIG. 4).
The spot size s on the surface of the illumination light 1
Assuming that the full width φ of the angular distribution of No. 5 is 60 °, s = 0.61 · λ
/Sin(φ/2)=0.79 μm. Eventually, in the image formation on each light receiving element, x
Although the resolution in the direction is 1.6 μm, what actually affects the image formation is the 0.79 μm width illuminated in the field of view.
Since there is only the reflected light from the portion m, an image having a resolution determined by the illumination light exceeding the resolution of the imaging optical system can be obtained. As described above, since the light flux is split into a plurality of rays in the middle of the imaging optical system, the effective numerical aperture of each is at least half or less of the numerical aperture of the objective lens, whereas the angular distribution range of the illumination light is limited. By setting the size equal to or more than の of the aperture angle of the objective lens, it is possible to obtain an image with a resolution exceeding the resolution of the imaging optical system. When the angular distribution of the illumination light intensity is not limited to being symmetrical with respect to the optical axis of the objective lens, the light source may be shifted from the optical axis of the illumination optical system, but as shown in FIG. If it is configured symmetrically with respect to the optical axis of the objective lens, the angle distribution range of the illumination light intensity can be maximized.

【0013】図2はこの発明の第2の実施の形態を示す
構成図である。被検体表面を照射する照明手段が光源1
0,レンズ11,シリンドリカルレンズ16,17から
なり、光源10から放射された光がレンズ11からシリ
ンドリカルレンズ17を通りスプリッタ30を透過した
部分が対物レンズ31を介して被検体4の表面を照明す
る。被検体4の表面からの反射光26(図4参照)は、
再び対物レンズ31を通りスプリッタ30を反射した部
分が撮像手段のレンズ23により一旦収束され、さらに
レンズ22により平行光となるように屈折され、続いて
3面プリズム24により、その入射位置に応じて互いに
異なる方向に進む光束に分岐される。ここで3面プリズ
ム24の入出射面は、図2に示す座標系のzx面と垂直
に構成されるので、3面プリズム24への入射光はいず
れも上記座標系のzx面と平行な方向に偏向される。こ
れらの光束はいずれもレンズ21により各受光素子27
a,27b,27cの受光面に集光して結像する。
FIG. 2 is a configuration diagram showing a second embodiment of the present invention. The illumination means for irradiating the surface of the subject is a light source 1
0, a lens 11, and cylindrical lenses 16 and 17, and a portion where light emitted from the light source 10 passes from the lens 11 through the cylindrical lens 17 and passes through the splitter 30 illuminates the surface of the subject 4 via the objective lens 31. . The reflected light 26 (see FIG. 4) from the surface of the subject 4 is
The portion reflected by the splitter 30 again through the objective lens 31 is once converged by the lens 23 of the imaging means, further refracted by the lens 22 so as to become parallel light, and subsequently by the three-sided prism 24 in accordance with the incident position. The light is split into light beams traveling in different directions. Here, since the input / output surface of the three-sided prism 24 is configured to be perpendicular to the zx plane of the coordinate system shown in FIG. 2, any light incident on the three-sided prism 24 is directed in a direction parallel to the zx plane of the coordinate system. Is deflected to These light beams are all transmitted to the respective light receiving elements 27 by the lens 21.
The light is condensed on the light receiving surfaces a, 27b and 27c to form an image.

【0014】これらの結像に与かる光束は3面プリズム
24で分岐される前は被検体表面からの反射光26(図
4参照)のうちの互いに異なる反射角の範囲にあった光
束25a,25b,25cであるので、被検体表面の同
一個所を互いに異なる角度範囲の反射光により撮像した
複数の像が各受光素子の出力から得られる。各受光素子
27a,27b,27cはそれぞれ複数の受光面を有
し、それらは図示座標系のzx面と垂直な方向に直線状
に並んでいるので、この場合の各受光素子は被検体表面
上の、図示座標系のy軸と平行な直線状の部分を撮像す
ることになる。このことから、各受光素子27a,27
b,27cは例えばy軸方向に伸びたラインセンサを想
定している。
Before being split by the three-sided prism 24, the light beams contributing to the image formation are reflected by the light beams 25a and 25a of the reflected light 26 (see FIG. 4) from the surface of the subject which have different angles of reflection. 25b and 25c, a plurality of images obtained by imaging the same location on the surface of the object with reflected light in different angular ranges are obtained from the outputs of the respective light receiving elements. Each of the light receiving elements 27a, 27b, and 27c has a plurality of light receiving surfaces, which are linearly arranged in a direction perpendicular to the zx plane of the illustrated coordinate system. In this case, an image of a linear portion parallel to the y-axis of the illustrated coordinate system is taken. From this, each light receiving element 27a, 27
b and 27c assume line sensors extending in the y-axis direction, for example.

【0015】図2の照明手段について、図3を参照して
説明する。図3(a)は図2の照明手段の正面図であ
り、従って図2と同じになっている。図3(b)は同じ
く図2の照明手段の側面図である。すなわち、図2およ
び図3(a)では、シリンドリカルレンズ16と17は
図示の座標系のzx面内では屈折力を持たないように配
置され、光源10の像が被検体4の表面に結ばれる光学
系となっている。このような照明光の配光方式は、クリ
ティカル照明として広く知られているものである。図示
座標系のzx面内での光源10の放射強度の角度分布
が、被検体4の表面に照射される照明光強度の図示座標
系のzx面内での角度分布を決めている。
The illumination means of FIG. 2 will be described with reference to FIG. FIG. 3 (a) is a front view of the illumination means of FIG. 2, and is therefore the same as FIG. FIG. 3B is a side view of the illumination unit of FIG. That is, in FIGS. 2 and 3A, the cylindrical lenses 16 and 17 are arranged so as not to have a refractive power in the zx plane of the illustrated coordinate system, and the image of the light source 10 is formed on the surface of the subject 4. It is an optical system. Such a light distribution method of illumination light is widely known as critical illumination. The angular distribution of the radiation intensity of the light source 10 on the zx plane of the illustrated coordinate system determines the angular distribution of the illumination light intensity applied to the surface of the subject 4 on the zx plane of the illustrated coordinate system.

【0016】図3(b)では、シリンドリカルレンズ1
6と17は図示の座標系のyz面内では屈折力を持ち、
光源10の各点から出た光線はいずれも被検体4の表面
上で図示座標系のy軸に沿って広がる照明範囲の全体に
達する。このような照明光の配光方式は、ケーラー照明
として広く知られているものである。以上に説明したよ
うに、撮像手段は図中座標系のzx面に沿った反射角度
の互いに異なる複数の反射光により被検体表面を撮像し
て、反射光強度のこの方向の角度分布を検出するが、そ
の元になる照明光のこの方向の角度分布は光源10の放
射強度の角度分布により与えられる。被検体表面上の撮
像範囲は各受光素子の受光面の並びによって図中の座標
系のy方向に直線状になるが、照明範囲もこの方向に広
げられていることにより、撮像個所全体をカバーでき
る。照明範囲を撮像範囲に比べ十分大きくすることで、
撮像範囲内での照明光強度のzx面に沿った角度分布を
一様にすることができる。
In FIG. 3B, the cylindrical lens 1
6 and 17 have refractive power in the yz plane of the illustrated coordinate system,
All the light rays emitted from each point of the light source 10 reach the entire illumination range extending along the y-axis of the illustrated coordinate system on the surface of the subject 4. Such a light distribution system of illumination light is widely known as Koehler illumination. As described above, the imaging unit captures an image of the subject surface with a plurality of reflected lights having different reflection angles along the zx plane of the coordinate system in the drawing, and detects the angular distribution of the reflected light intensity in this direction. However, the angular distribution of the original illumination light in this direction is given by the angular distribution of the radiation intensity of the light source 10. The imaging range on the surface of the subject is linear in the y direction of the coordinate system in the figure due to the arrangement of the light receiving surfaces of the respective light receiving elements, but the illumination range is also widened in this direction to cover the entire imaging location. it can. By making the illumination range sufficiently larger than the imaging range,
It is possible to make the angular distribution of the illumination light intensity along the zx plane uniform within the imaging range.

【0017】[0017]

【発明の効果】第1の発明によれば、結像光学系の開口
角を分割したことによる分解能の低下は照明光により補
われるので、開口の分割が無い場合に近い分解能を確保
することが可能となる利点が得られる。また、第2の発
明によれば、受光素子として直線上に複数の受光面を有
するラインセンサを用いることができ、被検体表面上の
複数個所を同時並列に撮像して高速化することが可能に
なる。
According to the first aspect of the present invention, the decrease in resolution due to the division of the aperture angle of the imaging optical system is compensated for by the illumination light, so that a resolution close to the case where there is no division of the aperture can be ensured. The possible advantages are obtained. Further, according to the second aspect, a line sensor having a plurality of light receiving surfaces on a straight line can be used as the light receiving element, and a plurality of locations on the surface of the subject can be simultaneously imaged in parallel to increase the speed. become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施の形態を示す構成図であ
る。
FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】この発明の第2の実施の形態を示す構成図であ
る。
FIG. 2 is a configuration diagram showing a second embodiment of the present invention.

【図3】図2の照明手段を説明する説明図である。FIG. 3 is an explanatory diagram illustrating the illumination unit of FIG. 2;

【図4】提案装置を示す構成図である。FIG. 4 is a configuration diagram showing a proposed device.

【符号の説明】[Explanation of symbols]

10…光源、11,12,13,21,22,23…レ
ンズ、16,17…シリンドリカルレンズ、20a,2
0b,20c…受光素子、24…3面プリズム、25
a,25b,25c…光束、,27a,27b,27c
…受光素子(ラインセンサ)、30…スプリッタ、31
…対物レンズ、4…被検体。
10 light source, 11, 12, 13, 21, 22, 23 ... lens, 16, 17 ... cylindrical lens, 20a, 2
0b, 20c: light receiving element, 24: three-sided prism, 25
a, 25b, 25c: luminous flux, 27a, 27b, 27c
... Light receiving element (line sensor), 30 ... Splitter, 31
... Objective lens, 4 ... Subject.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被検体の表面を照明する照明手段と、照
明される被検体表面を撮像する撮像手段と、前記照明手
段および撮像手段に共用される一つの対物レンズとを備
え、さらに、前記撮像手段は、一つまたは複数のレンズ
から構成され前記被検体の表面の像を生じる結像レンズ
系と、この結像レンズ系の途中に配置され入射光束を進
行方向が互いに異なる複数の光束に分岐する多面プリズ
ムまたは多面ミラーもしくは回折格子と、前記分岐され
た光束毎の結像位置に配置される複数の受光素子とを備
え、前記被検体表面の同一個所に対し同一入射面に含ま
れ互いに異なる反射角度範囲の反射光による像を得るこ
とにより、その表面状態に応じて変化する前記反射光強
度の角度分布を検出する表面検査装置において、 前記照明手段により前記対物レンズを介して前記被検体
表面に照射される照明光強度の角度分布範囲が、前記撮
像手段による前記入射面に沿った方向において前記対物
レンズの開口角の1/2以上の大きさであることを特徴
とする表面検査装置。
An illumination unit configured to illuminate a surface of the object; an imaging unit configured to image an illuminated surface of the object; and an objective lens shared by the illumination unit and the imaging unit. The imaging means includes an imaging lens system including one or a plurality of lenses to generate an image of the surface of the subject, and an incident light beam disposed in the middle of the imaging lens system and a plurality of light beams having different traveling directions from each other. A multifaceted prism or a multifaceted mirror or a diffraction grating that branches, and a plurality of light receiving elements arranged at an image forming position for each of the branched light fluxes. In a surface inspection device that obtains images by reflected light in different reflection angle ranges and detects an angular distribution of the reflected light intensity that changes according to the surface state, The angle distribution range of the intensity of the illumination light applied to the surface of the subject via the object lens is at least 以上 of the aperture angle of the objective lens in a direction along the incident surface by the imaging unit. A surface inspection device characterized by the above-mentioned.
【請求項2】前記多面プリズムまたは多面ミラーもしく
は回折格子を、前記結像レンズ系の開口絞りとなる位置
に配置することを特徴とする請求項1に記載の表面検査
装置。
2. The surface inspection apparatus according to claim 1, wherein the polygon prism, the polygon mirror, or the diffraction grating is arranged at a position to be an aperture stop of the imaging lens system.
【請求項3】前記被検体表面に照射される照明光強度の
角度分布が、前記撮像手段が前記被検体表面を見込む互
いに異なる角度範囲を含む前記入射面に沿った方向にお
いて前記対物レンズの光軸に関して対称であることを特
徴とする請求項1または2に記載の表面検査装置。
3. The light of the objective lens in a direction along the incident surface, wherein the angular distribution of the intensity of the illumination light applied to the surface of the object includes different angular ranges in which the imaging means looks at the surface of the object. The surface inspection apparatus according to claim 1, wherein the surface inspection apparatus is symmetric with respect to an axis.
【請求項4】被検体の表面を照明する照明手段と、照明
される被検体表面を撮像する撮像手段と、前記照明手段
および撮像手段に共用される一つの対物レンズとを備
え、さらに、前記撮像手段は、一つまたは複数のレンズ
から構成され前記被検体の表面の像を生じる結像レンズ
系と、この結像レンズ系の途中に配置され入射光束を進
行方向が互いに異なる複数の光束に分岐する多面プリズ
ムまたは多面ミラーもしくは回折格子と、前記分岐され
た光束毎の結像位置に配置される複数の受光素子とを備
え、前記被検体表面の同一個所に対し同一入射面に含ま
れ互いに異なる反射角度範囲の反射光による像を得るこ
とにより、その表面状態に応じて変化する前記反射光強
度の角度分布を検出する表面検査装置において、 前記受光素子は、それぞれ直線状に並んだ複数の受光面
を有し、この複数の受光面に撮像される直線状の視野は
前記被検体表面上の前記入射面と直交する方向になるよ
うに配置され、 前記照明手段は、シリンドリカル面を含むレンズ系を備
え、前記撮像手段による前記入射面においてはクリティ
カル照明となり、前記入射面と直交し前記受光素子の直
線状の視野が含まれる面においてはケーラー照明となる
ように構成されることを特徴とする表面検査装置。
4. An illumination device for illuminating a surface of a subject, an imaging device for imaging an illuminated surface of the subject, and one objective lens shared by the illumination device and the imaging device. The imaging means includes an imaging lens system including one or a plurality of lenses to generate an image of the surface of the subject, and an incident light beam disposed in the middle of the imaging lens system and a plurality of light beams having different traveling directions from each other. A multifaceted prism or a multifaceted mirror or a diffraction grating that branches, and a plurality of light receiving elements arranged at an image forming position for each of the branched light fluxes. In a surface inspection device that obtains images by reflected light in different reflection angle ranges and detects an angular distribution of the reflected light intensity that changes according to the surface state, the light receiving elements each include: A plurality of light receiving surfaces arranged in a straight line, and a linear visual field imaged on the plurality of light receiving surfaces is disposed so as to be in a direction orthogonal to the incident surface on the surface of the subject; Is provided with a lens system including a cylindrical surface, and becomes critical illumination on the incident surface by the imaging means, and becomes Koehler illumination on a surface orthogonal to the incident surface and including a linear visual field of the light receiving element. A surface inspection device characterized by being constituted.
JP2000190203A 2000-06-23 2000-06-23 Apparatus for inspecting surface Withdrawn JP2002005639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000190203A JP2002005639A (en) 2000-06-23 2000-06-23 Apparatus for inspecting surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000190203A JP2002005639A (en) 2000-06-23 2000-06-23 Apparatus for inspecting surface

Publications (1)

Publication Number Publication Date
JP2002005639A true JP2002005639A (en) 2002-01-09

Family

ID=18689709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000190203A Withdrawn JP2002005639A (en) 2000-06-23 2000-06-23 Apparatus for inspecting surface

Country Status (1)

Country Link
JP (1) JP2002005639A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047010A (en) * 2005-08-10 2007-02-22 Nano System Solutions:Kk Wafer periphery inspection method
JP2015001421A (en) * 2013-06-14 2015-01-05 コニカミノルタ株式会社 Multi-angle colorimeter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047010A (en) * 2005-08-10 2007-02-22 Nano System Solutions:Kk Wafer periphery inspection method
JP2015001421A (en) * 2013-06-14 2015-01-05 コニカミノルタ株式会社 Multi-angle colorimeter

Similar Documents

Publication Publication Date Title
US5894345A (en) Optical method of detecting defect and apparatus used therein
JP3440465B2 (en) Multi-slit scanning imaging device
US20080278790A1 (en) Apparatus with enhanced resolution for measuring structures on a substrate for semiconductor manufacture and use of apertures in a measuring apparatus
EP0856728B1 (en) Optical method and apparatus for detecting defects
JPS63765B2 (en)
KR100679643B1 (en) Apparatus for performing an auto-focus operation employing a pattern for the auto-focus operation and method for performing an auto-focus operation using the same
JP2010145468A (en) Height detection device and toner height detection apparatus using the same
JP7411682B2 (en) Light sheet microscopy and methods for determining the refractive index of objects in the sample space
JPH10239036A (en) Three-dimensional measuring optical device
US20220291140A1 (en) Defect inspection device and defect inspection method
JP2002005639A (en) Apparatus for inspecting surface
TWI699510B (en) Increasing dynamic range of a height sensor for inspection and metrology
JP3688560B2 (en) Optical measuring device
JP2005017127A (en) Interferometer and shape measuring system
JP3575586B2 (en) Scratch inspection device
JPS63113518A (en) Optical sensor device and appearance inspecting device
CN111983795B (en) Method and device for monitoring the focus state of a microscope
JP2000295639A (en) Lighting device for inspecting solid-state image pickup element and adjustment tool used for the same
JP2009042128A (en) Height measuring device
CN106908386B (en) Optical pickup device
JP2003161610A (en) Optical measurement device
US6750436B2 (en) Focus error detection apparatus and method having dual focus error detection path
JP2001324314A (en) Measuring instrument
JPH11304640A (en) Inspection apparatus for optical element
JP2002311388A (en) Optical system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20040216

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040531