JP2001339350A - Mobile free-space optical space communication unit - Google Patents

Mobile free-space optical space communication unit

Info

Publication number
JP2001339350A
JP2001339350A JP2000155592A JP2000155592A JP2001339350A JP 2001339350 A JP2001339350 A JP 2001339350A JP 2000155592 A JP2000155592 A JP 2000155592A JP 2000155592 A JP2000155592 A JP 2000155592A JP 2001339350 A JP2001339350 A JP 2001339350A
Authority
JP
Japan
Prior art keywords
mobile station
mobile
station
transmission
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000155592A
Other languages
Japanese (ja)
Inventor
Tetsuo Sakanaka
徹雄 坂中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000155592A priority Critical patent/JP2001339350A/en
Publication of JP2001339350A publication Critical patent/JP2001339350A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a mobile free-space optical space communication unit that can surely acquire a signal. SOLUTION: An arithmetic processing unit 44 of a fixed station receives position information of a mobile station positioned by a GPS unit by using a receiver 45, calculates the direction of a transmission light L21 on the basis of information, and outputs a drive signal to a longitudinal direction drive section 46 and a lateral direction drive section 47 provided to a transmission/ reception optical system 35 so that the transmission/reception optical system in directed in the direction of the mobile station. When mobile station uses an angle detection element to detect the transmission light L21 emitted from the fixed station, the mobile station immediately enters a tracking operation, allows the longitudinal direction drive section 46 and the lateral direction drive section 47 to drive the optical transmission reception optical system 35 to direct a received light L22 emitted from the mobile station in a direction of the fixed station and the fixed station receives the light L22 to start mutual communication.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自由空間中に光を
伝搬させて通信を行う移動体光空間通信装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mobile optical space communication apparatus for communicating by propagating light in free space.

【0002】[0002]

【従来の技術】図5は従来の移動体光空間伝送装置の説
明図を示し、例えば車両等の移動局1と道路脇に設置さ
れた固定局2の間を、光ビームL1、L2に信号を重畳
させて通信を行う。移動局1と固定局2は、移動体が通
信可能エリアに入った際に通信を開始する捕捉動作と、
捕捉した後に通信を持続するための追尾動作を行う機能
が必要になる。これを実現するためには、例えば図6に
示すような光空間通信装置が必要である。
2. Description of the Related Art FIG. 5 is an explanatory view of a conventional mobile optical space transmission apparatus. For example, signal beams L1 and L2 are transmitted between a mobile station 1 such as a vehicle and a fixed station 2 installed beside a road. Are superimposed to perform communication. The mobile station 1 and the fixed station 2 perform a capturing operation for starting communication when the mobile enters a communicable area;
A function of performing a tracking operation for maintaining communication after capturing is required. In order to realize this, for example, an optical space communication device as shown in FIG. 6 is required.

【0003】図6は光空間伝送装置の構成図を示し、光
空間通信装置の送信部には、送信する情報を含んだ主信
号が入力端子11から入力され、増幅器12を介して適
当なレベルに増幅される。また、発振器13においては
角度検出用の補助信号である所謂パイロット信号が生成
され、これら主信号とパイロット信号は合波器14で合
波され、受送信光学系15に設けられた半導体レーザー
や発光ダイオード等から成る発光素子16において電気
信号から光信号に変換され、送信光学系17により適当
な拡がり角を有する送信光L11となり、相手側装置に
向けて出射される。
FIG. 6 shows a configuration diagram of the free-space optical transmission apparatus. A main signal containing information to be transmitted is input from an input terminal 11 to a transmission section of the free-space optical communication apparatus. Is amplified. A so-called pilot signal, which is an auxiliary signal for angle detection, is generated in the oscillator 13, and the main signal and the pilot signal are multiplexed by the multiplexer 14. The electric signal is converted into an optical signal in the light emitting element 16 composed of a diode or the like, and the transmission optical system 17 forms a transmission light L11 having an appropriate divergent angle, which is emitted toward the partner device.

【0004】一方、相手側装置からの受信光L12は主
信号用の受信光学系18とパイロット信号用の受信光学
系19に入射し、それぞれAPD(アバランシェ・フォ
トダイオード)、PINフォトダイオード等から成る主
信号用受光素子20と角度検出素子21上に集光され
る。主信号用受光素子20により受信した主信号は光信
号から電気信号に変換され、増幅器22を介して出力端
子23から出力される。
On the other hand, a received light L12 from a partner device enters a receiving optical system 18 for a main signal and a receiving optical system 19 for a pilot signal, and comprises an APD (avalanche photodiode), a PIN photodiode, and the like. The light is focused on the main signal light receiving element 20 and the angle detecting element 21. The main signal received by the main signal light receiving element 20 is converted from an optical signal to an electric signal, and output from the output terminal 23 via the amplifier 22.

【0005】一方、角度検出素子21は例えば図7に示
すような素子21a〜21dの4つの素子に分割された
構造のフォトダイオードから成り、この角度検出素子2
1上に光スポットSが集光された際の素子21a〜21
dの出力を比較することにより、送受信光学系15に対
する相手側装置からの受信光L12の入射角度を検知す
ることができる。
On the other hand, the angle detecting element 21 comprises a photodiode having a structure divided into four elements, for example, elements 21a to 21d as shown in FIG.
1. Elements 21a to 21 when light spot S is condensed on 1
By comparing the output of d, the incident angle of the reception light L12 from the partner device with respect to the transmission / reception optical system 15 can be detected.

【0006】角度検出素子21における角度信号は演算
処理部24において演算処理され、光スポットSが角度
検出素子21の中央に照射され、受信光L12と送受信
光学系15の角度差がゼロになるように、演算処理部2
4は縦方向駆動部25と横方向駆動部26を駆動する。
送信光学系17と受信光学系18、19は光軸の角度が
一致するように調整されており、この結果として送信光
L11も相手側装置の方向に出射される。このようにし
て、移動局1と固定局2の相互間で追尾動作が行われ
る。
The angle signal from the angle detecting element 21 is subjected to arithmetic processing in an arithmetic processing section 24, so that a light spot S is applied to the center of the angle detecting element 21 so that the angle difference between the reception light L12 and the transmission / reception optical system 15 becomes zero. And the arithmetic processing unit 2
4 drives the vertical drive unit 25 and the horizontal drive unit 26.
The transmission optical system 17 and the reception optical systems 18 and 19 are adjusted so that the angles of the optical axes coincide with each other. As a result, the transmission light L11 is also emitted in the direction of the partner device. In this manner, the tracking operation is performed between the mobile station 1 and the fixed station 2.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上述の従
来例においては、追尾動作機能による通信を行うために
は、その前に図5における互いの光ビームL1、L2を
捕捉しなければならない。互いに信号を捕捉できる範囲
は、相手側装置からの光ビームの範囲内に自装置が入っ
ており、かつ必要な信号強度が得られる距離内に限定さ
れている。光ビームの拡がり角を大きくすれば光の照射
範囲は広くなるが、信号強度が弱くなるために通信可能
な距離の範囲が狭まる。
However, in the above-mentioned conventional example, in order to perform communication by the tracking operation function, the light beams L1 and L2 in FIG. 5 must be captured before the communication. The range in which signals can be captured by each other is limited to the range where the own device is included in the range of the light beam from the partner device and the required signal strength is obtained. Increasing the divergence angle of the light beam increases the light irradiation range, but reduces the signal intensity, thereby narrowing the range of the communicable distance.

【0008】通常では、初期状態における固定局2の装
置は、通信可能な距離の稍々下方を向いた状態で道路上
に設置されており、また移動局1の装置は通信可能な距
離で固定局2の高さに相当する稍々上方を向いた状態で
設置されている。このような状態において、移動局1で
ある車両が固定局2に接近し、互いの照射範囲内に入る
と角度検出素子21が相手側装置の光ビームを捕捉して
追尾動作機能が働く。
Normally, the equipment of the fixed station 2 in the initial state is installed on the road with the communication distance slightly downward, and the equipment of the mobile station 1 is fixed at the communication distance. It is installed with a slightly upward position corresponding to the height of the station 2. In such a state, when the vehicle that is the mobile station 1 approaches the fixed station 2 and enters the irradiation range of each other, the angle detecting element 21 captures the light beam of the partner device and the tracking operation function operates.

【0009】しかし、上述したように捕捉可能範囲は限
定されており、路面状態による車両の上下の振れ、加減
速による上下の傾き、ハンドル操作による左右の傾き等
の変動があり、屡々光ビームが外れて捕捉に成功しない
まま、車両が捕捉可能範囲を通り過ぎてしまうことがあ
る。このようになると自動追尾機能も行われず、通信が
全くできない状態になる。このように従来の装置では、
通信を開始するための初期の信号捕捉に不確実性を有し
ている。
However, as described above, the captureable range is limited, and there are fluctuations such as vertical swing of the vehicle due to road surface conditions, vertical tilt due to acceleration / deceleration, left / right tilt due to steering operation, etc. The vehicle may pass through the captureable range without being successfully captured. In this case, the automatic tracking function is not performed, and the communication cannot be performed at all. Thus, in the conventional device,
There is uncertainty in the initial signal acquisition to initiate communication.

【0010】本発明の目的は、上述の問題点を解消し、
確実に信号を捕捉することのできる移動体光空間通信装
置を提供することにある。
An object of the present invention is to solve the above-mentioned problems,
It is an object of the present invention to provide a mobile optical space communication device capable of reliably capturing a signal.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る移動体光空間通信装置は、固定局と、車
両等の移動体に設置した移動局の間を光無線により通信
を行う移動体光空間通信装置であって、前記移動局は、
人工衛星からの電波を受信して自位置を測位する測位手
段と、前記測位手段による測位で得られた位置情報を固
定局に無線で送信する手段とを有し、前記固定局は、前
記移動局からの位置情報を無線で受信する手段と、前記
移動局の位置情報と自位置より自局が前記移動局と通信
を行うか否かを判定する手段と、光ビームの出射方向を
求めるための演算処理手段と、求められた前記光ビーム
の出射方向に送信光ビームを向けるための駆動手段とを
有することを特徴とする。
SUMMARY OF THE INVENTION A mobile optical space communication apparatus according to the present invention for achieving the above object communicates optically between a fixed station and a mobile station installed in a mobile body such as a vehicle. A mobile optical space communication device for performing, wherein the mobile station comprises:
Positioning means for receiving a radio wave from an artificial satellite to measure its own position, and means for wirelessly transmitting position information obtained by positioning by the positioning means to a fixed station, wherein the fixed station includes Means for wirelessly receiving position information from a station, means for determining whether or not the own station communicates with the mobile station based on the position information and own position of the mobile station, and obtaining an emission direction of a light beam. And driving means for directing the transmission light beam in the determined emission direction of the light beam.

【0012】また、本発明に係る移動体光空間通信装置
は、固定局と、車両等の移動体に設置された移動局の間
を光無線により通信を行う移動体光空間通信装置であっ
て、前記移動局は、人工衛星からの電波を受信して自位
置を測位する測位手段と、前記測位手段による測位で得
られた位置情報を制御センタに無線で送信する手段とを
有し、前記固定局は、前記制御センタから無線又は有線
で前記移動局の位置情報又は光ビームの出射方向の指令
情報を受信する手段と、前記移動局の位置情報と自位置
から前記光ビームの出射方向を求めるための演算処理手
段と、求められた前記光ビームの出射方向に送信光を向
けるための駆動手段又は前記光ビームの出射方向の指令
情報に基づいて前記送信光を出射方向に向けるための駆
動手段とを有することを特徴とする。
A mobile optical free-space communication device according to the present invention is a mobile optical free-space communication device for performing optical wireless communication between a fixed station and a mobile station installed in a mobile body such as a vehicle. The mobile station has positioning means for receiving a radio wave from an artificial satellite to measure its own position, and means for wirelessly transmitting position information obtained by positioning by the positioning means to a control center, The fixed station wirelessly or wiredly receives from the control center the position information of the mobile station or the command information of the emission direction of the light beam, and the position information of the mobile station and the emission direction of the light beam from its own position. Arithmetic processing means for obtaining, and driving means for directing transmission light in the obtained emission direction of the light beam or driving for directing the transmission light in the emission direction based on command information on the emission direction of the light beam Having means And wherein the door.

【0013】[0013]

【発明の実施の形態】本発明を図示の実施の形態に基づ
いて詳細に説明する。図1は本発明の実施の形態におけ
る固定局側の光空間伝送装置の構成図を示している。送
信部には主信号を送信するための入力端子31が設けら
れており、増幅器32に接続されている。また、角度検
出用の補助信号である所謂パイロット信号が生成される
発振器33が設けられ、増幅器32と発振器33の出力
は合波器34に接続されている。合波器34の出力は送
受信光学系35に設けられた半導体レーザーや発光ダイ
オード等から成る発光素子36に接続され、発光素子3
6の進行方向に送信光学系37が配置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail based on the illustrated embodiment. FIG. 1 shows a configuration diagram of an optical free space transmission apparatus on the fixed station side according to an embodiment of the present invention. The transmitting section is provided with an input terminal 31 for transmitting a main signal, and is connected to an amplifier 32. An oscillator 33 for generating a so-called pilot signal, which is an auxiliary signal for angle detection, is provided. The outputs of the amplifier 32 and the oscillator 33 are connected to a multiplexer 34. The output of the multiplexer 34 is connected to a light emitting element 36 such as a semiconductor laser or a light emitting diode provided in a transmission / reception optical system 35, and the light emitting element 3
The transmission optical system 37 is disposed in the traveling direction of the transmission optical system 6.

【0014】一方、移動局側の装置からの光ビームの入
射方向には、主信号用の受信光学系38とパイロット信
号用の受信光学系39がそれぞれ並列に配置されてお
り、その集光方向にはそれぞれAPD、PINフォトダ
イオード等から成る主信号用受光素子40と角度検出素
子41が配置されている。主信号用受光素子40の出力
は増幅器42を介して出力端子43に接続され、角度検
出素子41の出力は演算処理部44に接続されている。
On the other hand, a receiving optical system 38 for the main signal and a receiving optical system 39 for the pilot signal are arranged in parallel in the incident direction of the light beam from the apparatus on the mobile station side. , A main signal light receiving element 40 including an APD, a PIN photodiode, and the like, and an angle detecting element 41 are disposed. The output of the main signal light receiving element 40 is connected to an output terminal 43 via an amplifier 42, and the output of the angle detecting element 41 is connected to an arithmetic processing unit 44.

【0015】演算処理部44には、移動局から位置情報
を受信する電波受信装置45が接続されている。また、
演算処理部44の出力は、受送信光学系35に設けられ
た縦方向駆動部46と横方向駆動部47に接続されてい
る。
The arithmetic processing unit 44 is connected to a radio wave receiving device 45 for receiving position information from a mobile station. Also,
The output of the arithmetic processing unit 44 is connected to a vertical driving unit 46 and a horizontal driving unit 47 provided in the transmission / reception optical system 35.

【0016】また、図2は移動局の概略図を示してお
り、この移動局51には図6と同様な構成の光空間通信
装置52と、人工衛星からの電波を受信して現在地の緯
度、経度、高度を測定する所謂GPS装置53と、この
GPS装置53により得られた情報を送信するため電波
送信装置54が設けられている。
FIG. 2 is a schematic diagram of a mobile station. The mobile station 51 has a space optical communication device 52 having the same configuration as that shown in FIG. A so-called GPS device 53 for measuring the distance, longitude and altitude, and a radio wave transmitting device 54 for transmitting information obtained by the GPS device 53 are provided.

【0017】通常では、GPS装置53は4つの人工衛
星よりの電波の到達時間差より測位するが、更に地上に
設置された基準局からの電波で補正データを取り込むこ
とにより数m程度の精度で測位が可能である。また、日
本では基準局の補正データは、FMラジオ放送のデータ
送信チャンネルに挿入されている。
Normally, the GPS device 53 performs positioning based on the arrival time difference of radio waves from four artificial satellites. However, by acquiring correction data using radio waves from a reference station installed on the ground, positioning can be performed with an accuracy of about several meters. It is possible. In Japan, the correction data of the reference station is inserted in the data transmission channel of FM radio broadcasting.

【0018】GPS装置53で得られた自装置の位置情
報は、送信装置54で適当なフォーマットの位置信号に
変換された後に、固定局の光空間伝送装置に送信され
る。
The position information of the own device obtained by the GPS device 53 is converted into a position signal of an appropriate format by the transmission device 54, and then transmitted to the optical space transmission device of the fixed station.

【0019】図1に示す固定局の入力端子31から入力
された主信号は、増幅器32により適当なレベルの電気
信号に増幅され、発振器33で生成されたパイロット信
号と共に合波器34で合成される。合波器34において
合成された電気信号は、送受信光学系35に設けられた
発光素子36に入力される。この発光素子36は電気信
号を光信号に変換し、送信光学系37を介して送信光L
21として移動局51の装置に向けて送信する。
A main signal input from an input terminal 31 of the fixed station shown in FIG. 1 is amplified to an electric signal of an appropriate level by an amplifier 32, and is combined with a pilot signal generated by an oscillator 33 by a multiplexer 34. You. The electric signal synthesized in the multiplexer 34 is input to a light emitting element 36 provided in a transmission / reception optical system 35. The light emitting element 36 converts an electric signal into an optical signal, and transmits the transmission light L via a transmission optical system 37.
As 21, it is transmitted to the device of the mobile station 51.

【0020】また、移動局51の光空間通信装置52よ
り受信した受信光L22は、並列に配置された主信号用
の受信光学系38、パイロット信号用の受信光学系39
に入射する。受信光学系38に入射した受信光L22は
主信号用受光素子40に入射し、光信号から電気信号に
変換される。更に、変換された電気信号は増幅器42に
おいて、適当なレベルの電気信号に増幅され出力端子4
3に出力される。一方、受信光学系39に入射した受信
光L22は角度検出素子41に入射し、光信号から電気
信号に変換され、変換された電気信号は演算処理部44
に入力される。
The received light L22 received from the free-space optical communication device 52 of the mobile station 51 is converted into a main signal receiving optical system 38 and a pilot signal receiving optical system 39 arranged in parallel.
Incident on. The received light L22 that has entered the receiving optical system 38 enters the main signal light receiving element 40 and is converted from an optical signal into an electric signal. Further, the converted electric signal is amplified by an amplifier 42 to an electric signal of an appropriate level,
3 is output. On the other hand, the reception light L22 that has entered the reception optical system 39 enters the angle detection element 41, is converted from an optical signal into an electric signal, and the converted electric signal is processed by the arithmetic processing unit 44.
Is input to

【0021】演算処理装置44は受信装置45により受
信した移動局51の位置情報を基に送信光L21の出射
方向を算出し、送受信光学系35が移動局51の方向に
向くように、受送信光学系35に設けられた縦方向駆動
部46と横方向駆動部47に駆動信号を出力する。
The arithmetic processing unit 44 calculates the emission direction of the transmission light L 21 based on the position information of the mobile station 51 received by the reception unit 45, and performs reception and transmission so that the transmission / reception optical system 35 is directed to the mobile station 51. A drive signal is output to a vertical drive unit 46 and a horizontal drive unit 47 provided in the optical system 35.

【0022】移動局51は角度検出素子において固定局
から出射された送信光L21を検出すると、直ちに追尾
動作に入り、移動局51から出射する受信光L22が固
定局の方向に向けられるように縦方向駆動部と横方向駆
動部が駆動し、固定局もそれを受けて追尾動作に入って
相互の通信が開始される。送信光学系37と受信光学系
39は光軸の角度が一致するように調整されており、こ
の結果、送信光L21が移動局51の装置の方向に駆動
される。このようにして、移動局51と固定局相互の間
で追尾動作が行われる。
When the mobile station 51 detects the transmitted light L21 emitted from the fixed station by the angle detecting element, it immediately starts a tracking operation, and vertically moves the received light L22 emitted from the mobile station 51 so as to be directed to the fixed station. The directional drive unit and the lateral drive unit are driven, and the fixed station also receives the signal and starts a tracking operation to start mutual communication. The transmission optical system 37 and the reception optical system 39 are adjusted so that the angles of the optical axes coincide with each other. As a result, the transmission light L21 is driven in the direction of the device of the mobile station 51. Thus, the tracking operation is performed between the mobile station 51 and the fixed station.

【0023】固定局は移動局から出射された送信光を捕
捉して通信状態に入るまでは、移動局との距離の変化に
拘わらず、継続して移動局の方向を向き続けるように駆
動されるため、移動局が固定局の捕捉可能範囲にいる間
に捕捉を成功させなければならないという制限はなくな
り、より確実な捕捉動作が可能となる。
Until the fixed station captures the transmitted light emitted from the mobile station and enters the communication state, the fixed station is driven to continue in the direction of the mobile station regardless of the change in the distance to the mobile station. Therefore, there is no limitation that the mobile station must succeed in capturing while the mobile station is in the capturing range of the fixed station, and a more reliable capturing operation can be performed.

【0024】図3は通信方法の説明図を示し、道路上に
或る間隔で配置されている固定局61は、それぞれ図1
に示すような電波受信装置45を用いて移動局51から
発信された移動局51の位置情報を受信して、演算処理
部44に送る。演算処理部44は受信した位置情報を基
に次のような処理を行う。
FIG. 3 is an explanatory diagram of the communication method. Fixed stations 61 arranged at a certain interval on the road are shown in FIG.
The position information of the mobile station 51 transmitted from the mobile station 51 is received by using the radio wave receiving device 45 as shown in FIG. The arithmetic processing unit 44 performs the following processing based on the received position information.

【0025】先ず、移動局51の位置と、メモリに書き
込まれている等により予め分かっている複数の固定局6
1のうち、移動局51と交信するのに最も近いか否か等
により、どの固定局61が移動局51との交信に最も適
しているか否かを判定する。
First, the position of the mobile station 51 and a plurality of fixed stations 6 known in advance by being written in a memory or the like are determined.
1, it is determined whether or not the fixed station 61 is most suitable for communicating with the mobile station 51 based on whether or not it is closest to communicating with the mobile station 51.

【0026】次に、固定局61の1つが自位置が交信を
行うと判定した場合には、移動局51の位置と自装置の
位置、及び自装置の送信光L21の初期出射方向等の基
準部の方向、これもメモリに書き込まれている等による
既知の方向から送信光L21の出射方向を算出し、光学
系35の駆動部46、47に駆動信号を出力して、送信
光L21の出射方向を移動局51が位置する方向に向け
る。
Next, when one of the fixed stations 61 determines that its own position performs communication, the position of the mobile station 51, its own position, and the initial emission direction of the transmission light L21 of its own device are determined. The emission direction of the transmission light L21 is calculated from the direction of the unit, which is also a known direction, for example, which is also written in the memory, and a drive signal is output to the driving units 46 and 47 of the optical system 35 to output the transmission light L21. The direction is directed to the direction in which the mobile station 51 is located.

【0027】固定局61からの受信光L22の拡がり径
がGPS装置53の精度よりも大きく設定されていれ
ば、移動局51が1つの固定局61からの送信光L21
を把え、角度検出素子41で光信号が検出されると直ち
に移動局51は追尾動作に入り、移動局51からの送信
光が固定局61の方向に向けられ、固定局61もその光
を受けて追尾動作に入り、相互の通信が開始される。
If the spread diameter of the received light L22 from the fixed station 61 is set to be larger than the accuracy of the GPS device 53, the mobile station 51 can transmit the transmitted light L21 from one fixed station 61.
As soon as the optical signal is detected by the angle detecting element 41, the mobile station 51 starts a tracking operation, the transmission light from the mobile station 51 is directed to the fixed station 61, and the fixed station 61 also changes the light. In response to this, a tracking operation is started, and mutual communication is started.

【0028】このように、移動局51が固定局61から
の送信光L21を把えて追尾動作に入るまでは、固定局
61からの送信光L21は移動局51の位置の変化に応
じて移動局51を追尾する。そのため、移動局51が固
定局61の捕捉可能範囲にいる間に捕捉を成功させなけ
ればならないという制限はなくなり、より確実な捕捉動
作が可能となる。
As described above, until the mobile station 51 grasps the transmission light L21 from the fixed station 61 and starts the tracking operation, the transmission light L21 from the fixed station 61 changes according to the change in the position of the mobile station 51. Track 51. Therefore, there is no restriction that the mobile station 51 must succeed in capturing while the mobile station 51 is in the capturing range of the fixed station 61, and a more reliable capturing operation can be performed.

【0029】上述の例では、各固定局61が直接に移動
局61からの位置情報を受信したが、図4に示すように
複数の固定局71と移動局51を一括して管理する制御
センタ72が設けることができる。
In the above example, each fixed station 61 directly receives the position information from the mobile station 61. However, as shown in FIG. 4, a control center that manages a plurality of fixed stations 71 and the mobile station 51 collectively. 72 may be provided.

【0030】移動局51からの位置情報を制御センタ7
2が受信し、制御センタ72は各固定局71に無線又は
有線の通信手段で情報又は指令信号を送信するという方
式が採用されている。無線の場合には、固定局71側の
受信装置45は制御センタ72からの電波信号を受信す
る機能を有し、また有線の場合は固定局71は受信装置
45の代りにモデム等の回線終端装置が設けられてい
る。
The location information from the mobile station 51 is transmitted to the control center 7.
2, the control center 72 transmits information or command signals to each fixed station 71 by wireless or wired communication means. In the case of wireless communication, the receiving device 45 of the fixed station 71 has a function of receiving a radio signal from the control center 72. In the case of wired communication, the fixed station 71 uses a line terminal such as a modem instead of the receiving device 45. A device is provided.

【0031】また、制御センタ72からの信号は次のよ
うな形態が考えられる。先ず、制御センタ72から固定
局71には移動局51の位置情報を送信し、固定局51
はその情報を受信して先の例と同様に送信光L21の方
向を演算により算出して、その方向に向ける。
The signal from the control center 72 may take the following forms. First, the location information of the mobile station 51 is transmitted from the control center 72 to the fixed station 71,
Receives the information, calculates the direction of the transmission light L21 by calculation in the same manner as in the previous example, and directs it in that direction.

【0032】また、制御センタ72で予め記憶されてい
る固定局71の位置と、受信した移動局51の位置から
交信を行うべき固定局71を決定すると共に、その固定
局71の送信光L21の方向を演算により算出して、固
定局71にはビーム方向を指示した指令信号を送出す
る。固定局71はその信号を基に、指示された方向の移
動局51に向けて送信光を送信する。
The fixed center 71 to be contacted is determined from the position of the fixed station 71 previously stored in the control center 72 and the position of the received mobile station 51, and the transmission light L21 of the fixed station 71 is determined. The direction is calculated by calculation, and a command signal indicating the beam direction is sent to the fixed station 71. The fixed station 71 transmits a transmission light toward the mobile station 51 in the designated direction based on the signal.

【0033】[0033]

【発明の効果】以上説明したように本発明に係る移動体
光空間通信装置は、固定局と車両等の移動局の間の移動
体光空間通信装置において、移動局に自位置を測位する
手段と、測位によって得られた位置情報を直接又は制御
センタを経由して固定局に送信する手段を設け、固定局
側はその位置情報に基づいて送信光ビームの出射方向を
移動局に向けることにより、移動局と固定局が互いの信
号を捕捉して通信を開始するための捕捉動作が容易かつ
確実に実施できる。
As described above, the mobile optical free-space communication apparatus according to the present invention is a mobile optical free-space communication apparatus between a fixed station and a mobile station such as a vehicle. And means for transmitting the position information obtained by the positioning to the fixed station directly or via the control center, and the fixed station side directs the emission direction of the transmission light beam to the mobile station based on the position information. In addition, a capturing operation for the mobile station and the fixed station to capture each other's signals and start communication can be easily and reliably performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】固定局側の光空間通信装置の構成図である。FIG. 1 is a configuration diagram of a free-space optical communication device on a fixed station side.

【図2】移動局の概略図である。FIG. 2 is a schematic diagram of a mobile station.

【図3】移動体空間通信方法の説明図である。FIG. 3 is an explanatory diagram of a mobile space communication method.

【図4】移動体空間通信方法の説明図である。FIG. 4 is an explanatory diagram of a mobile space communication method.

【図5】従来の移動体光空間通信装置の説明図である。FIG. 5 is an explanatory diagram of a conventional mobile optical space communication device.

【図6】従来の光空間通信装置の構成図である。FIG. 6 is a configuration diagram of a conventional optical space communication device.

【図7】角度検出素子の説明図である。FIG. 7 is an explanatory diagram of an angle detection element.

【符号の説明】[Explanation of symbols]

31 入力端子 35 送受信光学系 37 送信光学系 38、39 受信光学系 40 受光素子 41 角度検出器 43 出力端子 44 演算処理部 45 電波受信装置 46 縦方向駆動部 47 横方向駆動部 51 移動局 52 光空間通信装置 53 GPS装置 54 電波送信装置 61、71 固定局 72 制御センタ Reference Signs List 31 input terminal 35 transmission / reception optical system 37 transmission optical system 38, 39 reception optical system 40 light receiving element 41 angle detector 43 output terminal 44 arithmetic processing unit 45 radio wave receiver 46 vertical driving unit 47 horizontal driving unit 51 mobile station 52 light Spatial communication device 53 GPS device 54 Radio wave transmission device 61, 71 Fixed station 72 Control center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固定局と、車両等の移動体に設置した移
動局の間を光無線により通信を行う移動体光空間通信装
置であって、前記移動局は、人工衛星からの電波を受信
して自位置を測位する測位手段と、前記測位手段による
測位で得られた位置情報を固定局に無線で送信する手段
とを有し、前記固定局は、前記移動局からの位置情報を
無線で受信する手段と、前記移動局の位置情報と自位置
より自局が前記移動局と通信を行うか否かを判定する手
段と、光ビームの出射方向を求めるための演算処理手段
と、求められた前記光ビームの出射方向に送信光ビーム
を向けるための駆動手段とを有することを特徴とする移
動体光空間通信装置。
1. A mobile optical space communication device for performing optical wireless communication between a fixed station and a mobile station installed on a mobile object such as a vehicle, wherein the mobile station receives a radio wave from an artificial satellite. And a means for wirelessly transmitting position information obtained by positioning by the positioning means to a fixed station, wherein the fixed station wirelessly transmits position information from the mobile station. Means for determining whether or not the own station communicates with the mobile station based on the position information and the own position of the mobile station, an arithmetic processing means for determining the emission direction of the light beam, And a driving unit for directing the transmission light beam in the emission direction of the light beam.
【請求項2】 固定局と、車両等の移動体に設置された
移動局の間を光無線により通信を行う移動体光空間通信
装置であって、前記移動局は、人工衛星からの電波を受
信して自位置を測位する測位手段と、前記測位手段によ
る測位で得られた位置情報を制御センタに無線で送信す
る手段とを有し、前記固定局は、前記制御センタから無
線又は有線で前記移動局の位置情報又は光ビームの出射
方向の指令情報を受信する手段と、前記移動局の位置情
報と自位置から前記光ビームの出射方向を求めるための
演算処理手段と、求められた前記光ビームの出射方向に
送信光を向けるための駆動手段又は前記光ビームの出射
方向の指令情報に基づいて前記送信光を出射方向に向け
るための駆動手段とを有することを特徴とする移動体光
空間通信装置。
2. A mobile optical space communication device for performing optical wireless communication between a fixed station and a mobile station installed in a mobile object such as a vehicle, wherein the mobile station transmits radio waves from an artificial satellite. Positioning means for receiving and positioning the own position, and means for wirelessly transmitting position information obtained by positioning by the positioning means to a control center, the fixed station is wireless or wired from the control center Means for receiving the position information of the mobile station or command information of the emission direction of the light beam, arithmetic processing means for determining the emission direction of the light beam from the position information and the own position of the mobile station, Moving body light having driving means for directing the transmission light in the emission direction of the light beam or driving means for directing the transmission light in the emission direction based on command information on the emission direction of the light beam; Spatial communication device.
JP2000155592A 2000-05-26 2000-05-26 Mobile free-space optical space communication unit Pending JP2001339350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000155592A JP2001339350A (en) 2000-05-26 2000-05-26 Mobile free-space optical space communication unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000155592A JP2001339350A (en) 2000-05-26 2000-05-26 Mobile free-space optical space communication unit

Publications (1)

Publication Number Publication Date
JP2001339350A true JP2001339350A (en) 2001-12-07

Family

ID=18660517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000155592A Pending JP2001339350A (en) 2000-05-26 2000-05-26 Mobile free-space optical space communication unit

Country Status (1)

Country Link
JP (1) JP2001339350A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033545A (en) * 2004-07-20 2006-02-02 Railway Technical Res Inst Optical communication system between train and land
JP2009504110A (en) * 2005-08-02 2009-01-29 アイティーティー マニュファクチャリング エンタープライジーズ, インコーポレイテッド Acquisition, indication, and tracking architecture for laser communications
JP2012504354A (en) * 2008-09-29 2012-02-16 ノーテル・ネットワークス・リミテッド Gigabit wireless transmission
JP2012186662A (en) * 2011-03-07 2012-09-27 Nec Corp Optical space communication device, communication method thereof, and optical space communication system
JP2014220676A (en) * 2013-05-09 2014-11-20 日本電気株式会社 Optical space communication system, communication station, and its control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033545A (en) * 2004-07-20 2006-02-02 Railway Technical Res Inst Optical communication system between train and land
JP2009504110A (en) * 2005-08-02 2009-01-29 アイティーティー マニュファクチャリング エンタープライジーズ, インコーポレイテッド Acquisition, indication, and tracking architecture for laser communications
JP4729104B2 (en) * 2005-08-02 2011-07-20 アイティーティー マニュファクチャリング エンタープライジーズ, インコーポレイテッド Acquisition, indication, and tracking architecture for laser communications
JP2012504354A (en) * 2008-09-29 2012-02-16 ノーテル・ネットワークス・リミテッド Gigabit wireless transmission
JP2012186662A (en) * 2011-03-07 2012-09-27 Nec Corp Optical space communication device, communication method thereof, and optical space communication system
JP2014220676A (en) * 2013-05-09 2014-11-20 日本電気株式会社 Optical space communication system, communication station, and its control method

Similar Documents

Publication Publication Date Title
JP2009085951A (en) Radar sensor for detecting traffic environment in vehicle
WO2019082700A1 (en) Control device, control method, program, and storage medium
CN110739994B (en) Free space optical communication link establishing method
JP2892725B2 (en) Surveying system
WO2018101707A1 (en) Correcting device and method for location determination error of gnss
US20010043626A1 (en) Optical free-space communication apparatus
CN106420285A (en) Handheld blind guiding equipment
JP2765563B2 (en) Airport plane aircraft identification method
JP2001339350A (en) Mobile free-space optical space communication unit
KR102037945B1 (en) Composite Optical System for Multi-Target Detection and Apparatus Therefor
JPH08178652A (en) Surveying device
KR20170055739A (en) system to identify vehicle location information
JP2001333018A (en) Mobile object free-space optical communication equipment
JPH03291582A (en) Gps signal repeating device
ES2308696T3 (en) COMMUNICATION SYSTEM BY MULTI-USER OPTICAL CONNECTION, MULTI-USER TERMINAL AND ASSOCIATED COMMUNICATION PROCEDURE.
KR102075427B1 (en) Wireless inducememt system for driving vehicle, auto driving apparatus and driving method thereof
JP3528987B2 (en) Unmanned survey system
JPH07333338A (en) Distance measuring equipment
CN112994794A (en) Ground verification system, method and device for space optical communication terminal
JP2001127682A (en) Communication system
KR20190037990A (en) Apparatus and method for detecting position of mobile mapping system
JP3052906B2 (en) Spatial optical transmission equipment
US20070236677A1 (en) Geo-location with laser and sensor system
JPS63278179A (en) Earth observing device
KR0126119B1 (en) Moving object tracking method