JP2001338771A - Organic electroluminescent element and its manufacturing method - Google Patents

Organic electroluminescent element and its manufacturing method

Info

Publication number
JP2001338771A
JP2001338771A JP2001078903A JP2001078903A JP2001338771A JP 2001338771 A JP2001338771 A JP 2001338771A JP 2001078903 A JP2001078903 A JP 2001078903A JP 2001078903 A JP2001078903 A JP 2001078903A JP 2001338771 A JP2001338771 A JP 2001338771A
Authority
JP
Japan
Prior art keywords
cathode
organic
thickness
light emitting
work function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001078903A
Other languages
Japanese (ja)
Other versions
JP4810739B2 (en
Inventor
Katsuyuki Morii
克行 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2001078903A priority Critical patent/JP4810739B2/en
Publication of JP2001338771A publication Critical patent/JP2001338771A/en
Application granted granted Critical
Publication of JP4810739B2 publication Critical patent/JP4810739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/826Multilayers, e.g. opaque multilayers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic electroluminescent(EL) element which is driven by low voltage. SOLUTION: This element has a structure, where a positive electrode 2, a luminescent layer 4, a first negative electrode 5 formed of a material having work function of 3.0 eV or smaller and a second negative electrode 6 having a work function larger than that of the first negative electrode are laminated sequentially on a substrate 1 from the luminescent layer side, and the first and second electrodes having the total thickness of 100 Å or smaller are laminated, and light is emitted to the outside via at least the electrodes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディスプレイ、表
示光源などに用いられる電気的発光素子である有機エレ
クトロルミネッセンス素子及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electroluminescent device which is an electric light emitting device used for a display, a display light source and the like, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、液晶ディスプレイに替わる自発光
型ディスプレイとして、陽極及び陰極間に有機物からな
る発光層を設けた構造の発光素子(有機エレクトロルミ
ネッセンス素子、以下有機EL素子と記す)の開発が加
速している。その中でも、両電極側より光が取り出せる
ような、可視光領域での高透過性EL素子いわゆる透明
EL素子(TOLED)が、その素子の下部に別の表示
素子を配置できるなど重複した表示が可能なことから要
望されており、例えば Appl.Phys.Let
t.68(19)、6 May 1996の2606ペ
ージに具体的な構造が提案されている。当該文献には、
発光層として低分子材料であるアルミ錯体Alq3を用
い、陰極としてMgおよびAgの共蒸着により成膜し、
その上層に封止もしくは陰極の補佐としてスパッタによ
り成膜したITOを用いて素子を形成し、しきい値電圧
は8V程度を実現したことが開示されている。この構造
では、寿命及び発光層に用いる材料のしきい値特性の観
点から、陰極としてMg及びAlを用い、更にその上層
にITOを用いている。
2. Description of the Related Art In recent years, as a self-luminous display replacing a liquid crystal display, a light-emitting element (organic electroluminescence element, hereinafter referred to as an organic EL element) having a structure in which an organic light-emitting layer is provided between an anode and a cathode has been developed. Is accelerating. Among them, a highly transmissive EL element in the visible light region, so-called a transparent EL element (TOLED), which allows light to be extracted from both electrode sides, enables overlapping display, such as another display element can be arranged below the element. Therefore, for example, Appl. Phys. Let
t. 68 (19), 6 May 1996, p. 2606, a specific structure is proposed. The document includes:
An aluminum complex Alq3 which is a low molecular material is used as a light emitting layer, and a film is formed by co-evaporation of Mg and Ag as a cathode,
It is disclosed that an element is formed on the upper layer using ITO formed by sputtering or as a supplement to a cathode by sputtering to realize a threshold voltage of about 8V. In this structure, Mg and Al are used as the cathode, and ITO is further used as an upper layer from the viewpoint of the life and the threshold characteristics of the material used for the light emitting layer.

【0003】[0003]

【発明が解決しようとする課題】有機EL素子では、し
きい値の小さい発光材料を発光層に用い、仕事関数の小
さい金属材料を陰極として用い、低しきい値電圧による
駆動を実現することが提案されている。しかしながら、
上記文献で提案された透明EL素子の構造では、Mg及
びAlは仕事関数の点で充分ではなく、またその劣化を
防止するためITOをスパッタにより更に上記金属材料
上に積層させるため、Mgが酸化されてしまい、最終的
に素子のしきい値電圧上昇が避けられないといった問題
がある。
In an organic EL device, a light emitting material having a small threshold is used for a light emitting layer, a metal material having a small work function is used as a cathode, and driving with a low threshold voltage can be realized. Proposed. However,
In the structure of the transparent EL element proposed in the above document, Mg and Al are not sufficient in work function, and in order to prevent the deterioration, ITO is further laminated on the metal material by sputtering, so that Mg is oxidized. Therefore, there is a problem that the threshold voltage of the element is eventually increased.

【0004】本発明は、上記問題点に鑑みてなされたも
ので、その課題とするところは、低電圧駆動で高効率、
高透過性、長寿命を実現した有機EL素子及びその製造
方法を提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object the problem of low-voltage driving and high efficiency.
An object of the present invention is to provide an organic EL device having high transmittance and a long life and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】本発明によれば、基板上
に陽極と、有機材料からなる発光層と、仕事関数が3.
0eV以下の材料からなる第一陰極及び仕事関数が該第
一陰極より大きい材料からなる第二陰極が発光層側から
順次積層された構造であり、該第一及び第二陰極の合計
厚みが100オングストローム以下である陰極と、が積
層されてなり、少なくとも陰極を経て外部へ光が出射す
ることを特徴とする有機EL素子、が提供される。
According to the present invention, an anode, a light emitting layer made of an organic material, and a work function having a work function of 3.
A structure in which a first cathode made of a material having 0 eV or less and a second cathode made of a material having a work function larger than that of the first cathode are sequentially laminated from the light emitting layer side, and the total thickness of the first and second cathodes is 100 An organic EL device is provided, in which a cathode having a thickness of Å or less is laminated, and light is emitted to the outside through at least the cathode.

【0006】更に本発明によれば、基板上に陽極を形成
する工程と、前記陽極上方に有機材料からなる発光層を
形成する工程と、前記発光層上方に、発光層側より、仕
事関数が3.0eV以下の材料からなる第一陰極及び仕
事関数が該第一陰極より大きい材料からなる第二陰極
を、該第一及び第二陰極の合計厚みが100オングスト
ローム以下となるように積層し陰極を形成する工程とを
有する有機EL素子の製造方法、が提供される。
Further, according to the present invention, a step of forming an anode on a substrate, a step of forming a light emitting layer made of an organic material above the anode, and a step of forming a work function above the light emitting layer from the side of the light emitting layer. A first cathode made of a material having a work function of 3.0 eV or less and a second cathode made of a material having a work function larger than that of the first cathode are stacked so that the total thickness of the first and second cathodes becomes 100 Å or less. Forming an organic EL element.

【0007】[0007]

【発明の実施の形態】本発明の有機EL素子は、基板上
に設けられた陽極及び有機材料からなる発光層上に、仕
事関数が3.0eV以下の材料からなる第一陰極及び仕
事関数が該第一陰極より大きい材料からなる第二陰極が
発光層側から順次積層された構造であって、該第一及び
第二陰極の合計厚みが100オングストローム以下であ
る陰極が設けられており、陰極を経て外部へ光が出射す
る点で特徴的である。
BEST MODE FOR CARRYING OUT THE INVENTION In the organic EL device of the present invention, a first cathode made of a material having a work function of 3.0 eV or less and a work function made of a material having a work function of 3.0 eV are formed on an anode provided on a substrate and a light emitting layer made of an organic material. A structure in which a second cathode made of a material larger than the first cathode is sequentially laminated from the light emitting layer side, and a cathode having a total thickness of the first and second cathodes of 100 Å or less is provided. This is characteristic in that light is emitted to the outside via.

【0008】当該有機EL素子の好ましい態様として、
以下のものが挙げられる。 (1)前記陰極側が、透過性材料からなる封止層により
封止されてなる上記有機EL素子。 (2)前記第一陰極がCaからなることを特徴とする上
記有機EL素子。 (3)前記第一陰極の膜厚y(オングストローム)が5
0≦y≦80である上記有機EL素子。 (4)前記第一陰極の膜厚y(オングストローム)を5
5≦y≦65である上記有機EL素子。 (5)前記第二陰極がAlからなることを特徴とする上
記有機EL素子。 (6)前記第二陰極の膜厚z(オングストローム)を1
0≦z≦20である上記有機EL素子。 (7)前記発光層を構成する有機材料が、高分子材料か
らなる上記有機EL素子。
In a preferred embodiment of the organic EL device,
The following are mentioned. (1) The organic EL device in which the cathode is sealed with a sealing layer made of a transparent material. (2) The organic EL device, wherein the first cathode is made of Ca. (3) The thickness y (angstrom) of the first cathode is 5
The organic EL device described above, wherein 0 ≦ y ≦ 80. (4) The thickness y (angstrom) of the first cathode is set to 5
The organic EL device described above, wherein 5 ≦ y ≦ 65. (5) The organic EL device described above, wherein the second cathode is made of Al. (6) The thickness z (angstrom) of the second cathode is set to 1
The organic EL device described above, wherein 0 ≦ z ≦ 20. (7) The organic EL device, wherein the organic material forming the light emitting layer is a polymer material.

【0009】また、本発明の有機EL素子の製造方法
は、基板上に陽極を形成する工程と、前記陽極上方に有
機材料からなる発光層を形成する工程と、前記発光層上
方に、発光層側より、仕事関数が3.0eV以下の材料
からなる第一陰極及び仕事関数が該第一陰極より大きい
材料からなる第二陰極を、該第一及び第二陰極の合計厚
みが100オングストローム以下となるように積層し陰
極を形成する工程とを有するものである。
Further, in the method of manufacturing an organic EL device according to the present invention, a step of forming an anode on a substrate, a step of forming a light emitting layer made of an organic material above the anode, and a step of forming a light emitting layer above the light emitting layer From the side, a first cathode made of a material having a work function of 3.0 eV or less and a second cathode made of a material having a work function larger than the first cathode have a total thickness of the first and second cathodes of 100 Å or less. And forming a cathode to form a cathode.

【0010】上記有機EL素子の製造方法の好ましい態
様として以下のものが挙げられる。 (8)前記陽極の形成において、電極膜の製膜後、酸素
または大気プラズマ処理を行い、該処理における電流
x、時間tを10(mA)≦x≦15(mA)、5
(分)≦t≦7(分)とする上記有機EL素子の製造方
法。 (9)前記陽極の形成において、電極膜の製膜後、酸素
または大気プラズマ処理を行い、該処理における電流
x、時間tを、10(mA)≦x≦12(mA)、t=
5(分)とすることを特徴とする上記有機EL素子の製
造方法。
The following are preferred embodiments of the method for producing an organic EL device. (8) In the formation of the anode, after forming the electrode film, oxygen or air plasma treatment is performed, and the current x and time t in the treatment are set to 10 (mA) ≦ x ≦ 15 (mA), 5
(Minute) ≦ t ≦ 7 (minute). (9) In forming the anode, after forming the electrode film, oxygen or air plasma treatment is performed, and the current x and time t in the treatment are set to 10 (mA) ≦ x ≦ 12 (mA), t =
5. The method for producing an organic EL device according to claim 1, wherein the amount is 5 (minutes).

【0011】以下、本発明の実施形態を図面を参照して
具体的に説明する。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.

【0012】図1C:\WINDOWS\Program FilesParus Ater
AtertempA0056072wIMG_1.htmは、本発明の有機EL素子
の構造を示す断面図である。
FIG. 1C: \ WINDOWS \ Program FilesParus Ater
AtertempA0056072wIMG_1.htm is a cross-sectional view showing a structure of the organic EL device of the present invention.

【0013】同図に示す構造では、基板1上に、陽極
2、正孔注入/輸送層3、有機材料からなる発光層4、
仕事関数が3.0eV以下の材料からなる第一陰極5及
び仕事関数が該第一陰極より大きい材料からなる第二陰
極6(これら第一及び第二陰極の積層構造で、陰極が構
成される)が積層されている。そして、上記の積層構造
が、第一封止層7及び第二封止層8、更には封止基板9
により封止されている。
In the structure shown in FIG. 1, an anode 2, a hole injection / transport layer 3, a light emitting layer 4 made of an organic material,
A first cathode 5 made of a material having a work function of 3.0 eV or less and a second cathode 6 made of a material having a work function larger than the first cathode (the cathode is formed by a laminated structure of the first and second cathodes) ) Are stacked. Then, the above-described laminated structure includes the first sealing layer 7 and the second sealing layer 8, and furthermore, the sealing substrate 9.
Is sealed.

【0014】基板1としては、ガラス等の透明材料、又
は反射材料を用いることができる。透明材料を用いた場
合、当該基板1を経て外部へ光を出射させることができ
る。
As the substrate 1, a transparent material such as glass or a reflective material can be used. When a transparent material is used, light can be emitted to the outside via the substrate 1.

【0015】陽極として用いられる材料としては、例え
ばITOもしくはIDIXO(出光興産株式会社製)が
透明電極材料が挙げられる。基板上にこれらの材料をス
パッタ法等により堆積し電極を形成する。かかる透明電
極は、その材料の堆積後酸素プラズマ処理又は大気プラ
ズマ処理がなされることが好ましい。
As a material used for the anode, for example, ITO or IDIXO (made by Idemitsu Kosan Co., Ltd.) is a transparent electrode material. These materials are deposited on a substrate by a sputtering method or the like to form electrodes. Such a transparent electrode is preferably subjected to oxygen plasma treatment or atmospheric plasma treatment after deposition of the material.

【0016】このプラズマ処理は、好ましくは、電流を
10mAから15mA、処理時間を5分から7分とし、
より好ましくは電流を10mAから12mAとし、5分
とする。処理時間が5分未満であるとき、特に400か
ら550nmまでの波長に関する透過率が、処理時間が
5分を超えるときに比べて、最大値で3から5%低下し
得る。一方、5分から10分の処理の間では、この波長
領域において、透過率の上昇は観測されない。例えば、
酸素プラズマ処理の場合サンユー電子製VPS020を
用い、2〜3回酸素にてパージした後処理を行うことが
好ましい。
In the plasma processing, preferably, the current is 10 mA to 15 mA, the processing time is 5 minutes to 7 minutes,
More preferably, the current is set to 10 mA to 12 mA for 5 minutes. When the processing time is less than 5 minutes, the transmittance, especially for wavelengths from 400 to 550 nm, can be reduced by a maximum of 3 to 5% compared to when the processing time is more than 5 minutes. On the other hand, during the processing for 5 to 10 minutes, no increase in transmittance is observed in this wavelength region. For example,
In the case of the oxygen plasma treatment, it is preferable to carry out the treatment after purging with oxygen two to three times using VPS020 manufactured by Sanyu Electronics.

【0017】また、電流が10mA未満であると、表面
処理の均一性が損なわれる恐れがあり、電流が15mA
を超えると、アッシングにより膜厚の低下が起こり得
る。
If the current is less than 10 mA, the uniformity of the surface treatment may be impaired.
When it exceeds, the thickness may be reduced by ashing.

【0018】また、600から800nmまでの波長に
関する透過率は、上記処理において、処理時間に依存し
て、透過率の低下が見られる。未処理の場合に比べて、
10分の処理を行った場合は、最大2%程度の透過率の
低下が見られる。これらの原因は、上記処理による透明
電極表面の酸化および欠陥の生成によるバンド構造の変
化であると考えられる。そのため、好ましくは、10m
A、5分程度の酸素プラズマ処理もしくは大気プラズマ
処理を行えばよく、それにより500nm近傍のより人
の感度が強いところの透過率の上昇と全可視領域での平
均的な透過率の上昇が実現できる。
In the above-described processing, the transmittance of a wavelength from 600 to 800 nm is reduced depending on the processing time. Compared to the unprocessed case,
When the processing is performed for 10 minutes, the transmittance is reduced by about 2% at the maximum. It is considered that these causes are caused by the change in the band structure due to the oxidation of the transparent electrode surface and the generation of defects due to the above treatment. Therefore, preferably 10m
A: Oxygen plasma treatment or atmospheric plasma treatment may be performed for about 5 minutes, thereby realizing an increase in transmittance near 500 nm where human sensitivity is higher and an average increase in transmittance in the entire visible region. it can.

【0019】尚、陽極2として上記のような透明電極材
料を用いた場合、基板1を経て外部へ光を出射させるこ
とができる。
When the above-mentioned transparent electrode material is used for the anode 2, light can be emitted to the outside via the substrate 1.

【0020】また、陽極2として、例えばPt、Ir,
Ni,Pd、Au等の金属からなる層、ITO等の透明
材料層とAl等の反射層の積層構造を用いることもでき
る。
As the anode 2, for example, Pt, Ir,
It is also possible to use a laminated structure of a layer made of a metal such as Ni, Pd, or Au, a transparent material layer such as ITO, and a reflective layer such as Al.

【0021】更に、当該陽極2が形成された基板は、陽
極が複数配置され、各陽極に薄膜トランジスタ等のスイ
ッチング素子が備えられたアクティブマトリクス基板で
あることが好ましい。
Further, the substrate on which the anode 2 is formed is preferably an active matrix substrate in which a plurality of anodes are arranged and each anode is provided with a switching element such as a thin film transistor.

【0022】本実施形態では、電極2及び発光層4間
に、正孔注入/輸送層3を設ける。ここで、正孔注入/
輸送層とは、陽極から正孔を発光層側に注入及び/又は
輸送する機能を奏する層である。かかる正孔注入/輸送
層3には、好ましくは、ポリエチレンジオキシチオフェ
In this embodiment, a hole injection / transport layer 3 is provided between the electrode 2 and the light emitting layer 4. Here, hole injection /
The transport layer is a layer having a function of injecting and / or transporting holes from the anode to the light emitting layer side. The hole injection / transport layer 3 is preferably made of polyethylene dioxythiophene.

【0023】[0023]

【化1】 とポリスチレンスルフォン酸Embedded image And polystyrene sulfonic acid

【0024】[0024]

【化2】 の混合物、銅フタロシアニンなどが用いられる。Embedded image And copper phthalocyanine.

【0025】発光層4には、低分子系有機発光材料、高
分子系有機発光材料のいずれかを用いられるが、好まし
くはフルオレン系高分子、特に好ましくは
For the light emitting layer 4, either a low molecular weight organic light emitting material or a high molecular weight organic light emitting material is used, preferably a fluorene type polymer, particularly preferably.

【0026】[0026]

【化3】 またPPV(ポリp−フェニレンビニレン)などの高分
子有機材料が用いられる。
Embedded image Further, a high molecular organic material such as PPV (poly p-phenylene vinylene) is used.

【0027】陰極のうち、第一陰極5には、上述したよ
うに仕事関数が3.0eV以下の材料が用いられる。か
かる陰極材料としては、特に好ましくは、Caが用いら
れる。特に、Caが、小さな仕事関数により低しきい値
電圧を、可視光に対する低反射率から高透過率を実現で
きる点で好ましい。かかる第一陰極の厚みは、好まく
は、50から80オングストローム、より好ましくは5
5から65オングストロームとする。膜厚50オングス
トローム未満では、上層である第二陰極6の仕事関数に
影響を受け、素子のしきい値電圧の上昇が生じる恐れが
ある。また、80オングストローム以上では、透過率の
減少が顕著になる恐れがある。特に、Caを用いる場
合、Caは可視の波長領域のほとんどに吸収を持ってい
るため、過度に厚くなると陰極側において全体的に黒さ
が目立ってくる。特に、Ca膜が80オングストローム
近傍を境に、電気的に導通が得られる程度の厚さを持っ
た連続膜になるためと考えられる。この観点からも、第
二陰極の厚みを80オングストローム以下とすることが
好ましい。また、第二陰極6として、Auを用いること
もできる。
Among the cathodes, the first cathode 5 is made of a material having a work function of 3.0 eV or less as described above. As such a cathode material, Ca is particularly preferably used. In particular, Ca is preferable because it can realize a low threshold voltage with a small work function and a high transmittance from a low reflectance with respect to visible light. The thickness of such a first cathode is preferably between 50 and 80 Angstroms, more preferably between 5 and 80 Angstroms.
5 to 65 angstroms. If the thickness is less than 50 angstroms, the work function of the upper second cathode 6 may affect the threshold voltage of the device. If the thickness is 80 Å or more, the transmittance may be significantly reduced. In particular, when Ca is used, Ca has absorption in most of the visible wavelength region, and therefore, if it is excessively thick, blackness is generally conspicuous on the cathode side. In particular, it is considered that the Ca film becomes a continuous film having a thickness such that electrical conduction can be obtained around 80 Å. From this viewpoint as well, it is preferable that the thickness of the second cathode be 80 Å or less. Also, Au can be used as the second cathode 6.

【0028】かかる第一陰極は、例えば1×10-6torr
以上の真空度で真空蒸着形成することができる。
The first cathode is, for example, 1 × 10 -6 torr
Vacuum deposition can be performed at the above degree of vacuum.

【0029】一方、陰極のうち、第二陰極6には、上述
した第一陰極5より仕事関数が大きい材料が用いられ
る。材料としては、仕事関数の大きさが第一陰極の材料
と大きく異なるものではなく、酸素にある程度安定で且
つ連続膜を形成し易い材料を用いることが好ましい。具
体的には、Al、Agが挙げられる。
On the other hand, among the cathodes, the second cathode 6 is made of a material having a higher work function than the first cathode 5 described above. As the material, it is preferable to use a material that does not greatly differ in work function from the material of the first cathode, and is somewhat stable to oxygen and easily forms a continuous film. Specifically, Al and Ag are mentioned.

【0030】特に、第一陰極として、Caを用いる場合
には、第二陰極の材料としてAl等を用いることが好ま
しい。かかる第二陰極の厚みは、好ましくは、10から
20オングストローム、より好ましくは10オングスト
ロームとする。10オングストローム未満では、電気的
導通が取れず、また、20オングストロームを超える
と、第二陰極の材料(特に金属材料)自身の金属反射に
より透過率の減少が顕著になる恐れがある。
In particular, when using Ca as the first cathode, it is preferable to use Al or the like as the material of the second cathode. The thickness of such a second cathode is preferably between 10 and 20 angstroms, more preferably 10 angstroms. If the thickness is less than 10 angstroms, electrical continuity cannot be obtained. If the thickness exceeds 20 angstroms, the transmittance of the second cathode material (particularly, the metal material) may be significantly reduced due to the metal reflection of the material itself.

【0031】本発明では、上述したように、第一陰極に
仕事関数の低い(3.0eV以下)材料の層を設け、当
該第一陰極上にこれより仕事関数が大きく連続層となる
層を第二陰極として設けて、第一陰極の劣化を防止し、
更にこれら第一陰極及び第二陰極の積層構造の合計厚み
を100オングストローム以下とすることで、陰極側で
の光透過性を確保する。
In the present invention, as described above, a layer of a material having a low work function (3.0 eV or less) is provided on the first cathode, and a layer having a larger work function and becoming a continuous layer is provided on the first cathode. Provided as a second cathode, to prevent degradation of the first cathode,
Further, by setting the total thickness of the laminated structure of the first cathode and the second cathode to 100 angstroms or less, light transmittance on the cathode side is ensured.

【0032】これら、陰極の積層構造の形成方法として
は、好ましくは、第一陰極を蒸着により製膜後、真空度
が第一陰極蒸着時と同程度になったことを確認した後、
第二陰極を第一陰極と同様の条件により製膜する。
As a method of forming the cathode laminated structure, preferably, after forming the first cathode by vapor deposition, after confirming that the degree of vacuum is substantially equal to that at the time of the first cathode vapor deposition,
The second cathode is formed under the same conditions as the first cathode.

【0033】第一封止層7としては、例えば、LiF、
SiO、SiO2を用いる。特に、LiFは真空蒸着法
により容易に製膜ができることから、陰極製膜から不活
性雰囲気下での一連の作業として、一度も大気にさらす
ことなく素子化でき、材料自身にも酸素原子がないこと
から限りなくゼロに近い無酸素下を維持できる特徴を持
つ。また、可視光領域での透過率も高く、透過性を損な
うこともない。膜厚および蒸着速度は、300から50
0オングストローム、8オングストローム/sec以上
とする。膜厚300オングストローム未満では、外気か
らの水および酸素、また上層となる第二封止層8からの
侵入する水および酸素から下層となる陰極を封止するこ
とは難しい。また、500オングストロームを超えた膜
では、蒸着時の熱輻射により素子(多くは発光層)がダ
メージを受け、本来のEL発光特性を損なう恐れがあ
る。また、蒸着速度においても8オングストローム/s
ecでは蒸着時間が長時間にわたるため、同様に熱輻射
による素子劣化が起こる。このことから、蒸着速度も制
限を受け、8オングストローム/sec以上を必要とす
る。
As the first sealing layer 7, for example, LiF,
SiO and SiO 2 are used. In particular, since LiF can be easily formed by a vacuum deposition method, as a series of operations under an inert atmosphere from a cathode film formation, it can be made into an element without being exposed to the air, and the material itself has no oxygen atoms. It has the feature that it can be maintained under oxygen-free condition close to zero. Further, the transmittance in the visible light region is high, and the transmittance is not impaired. The film thickness and deposition rate are between 300 and 50
0 angstrom, 8 angstrom / sec or more. If the film thickness is less than 300 angstroms, it is difficult to seal water and oxygen from outside air and water and oxygen from the upper second sealing layer 8 to the lower cathode. On the other hand, if the thickness exceeds 500 angstroms, the element (often a light-emitting layer) may be damaged by heat radiation at the time of vapor deposition, and the original EL light-emitting characteristics may be impaired. Also, the deposition rate is 8 Å / s.
In the case of ec, since the deposition time is long, the device is similarly deteriorated by heat radiation. For this reason, the deposition rate is also limited, and requires 8 Å / sec or more.

【0034】第二封止層8としては、例えば、透明な熱
硬化型エポキシ樹脂もしくは光硬化型エポキシ樹脂を用
いる。特に、熱硬化型エポキシ樹脂が好ましく、具体的
には、ディッピングにより塗布し封止基板9であるガラ
ス基板をのせ、不活性雰囲気下にて硬化することによっ
て、封止層を得る。また、当該エポキシ樹脂としては、
防湿性樹脂として、DPpure60(3M社製)、S
TYCAST1269A(Emeron)等が挙げられ
る。
As the second sealing layer 8, for example, a transparent thermosetting epoxy resin or a photocurable epoxy resin is used. In particular, a thermosetting epoxy resin is preferred. Specifically, a sealing substrate is obtained by applying a glass substrate as the sealing substrate 9 by applying by dipping and curing the glass substrate in an inert atmosphere. Also, as the epoxy resin,
As a moisture-proof resin, DPpure60 (manufactured by 3M), S
TYCAST1269A (Emeron) and the like.

【0035】以下、本発明を実施例に沿ってより具体的
に説明する。
Hereinafter, the present invention will be described more specifically with reference to examples.

【0036】(実施例1)図1に示す構造の有機EL素
子を作製した。
Example 1 An organic EL device having the structure shown in FIG. 1 was manufactured.

【0037】以下の操作はすべてクリーンルームにて行
った。
The following operations were all performed in a clean room.

【0038】洗浄された150mm角ガラス基板1上に
(透明)電極(陽極)2(IDIXO)を1000オン
グストロームの厚みでスパッタにより成膜した。条件は
真空度1×10-4Pa以下で、ArおよびO2を10:
1の流量比、320V、0.15mA、14分とした。
次に、そのガラス基板上に形成された陽極の膜について
酸素プラズマ処理を、電流10mA、5分の条件で行っ
た。具体的には、サンユー電子製VPS020を用い、
2〜3回酸素にてパージした後処理を行った。
On the cleaned 150 mm square glass substrate 1, a (transparent) electrode (anode) 2 (IDIXO) was formed by sputtering to a thickness of 1000 angstroms. The conditions are as follows: the degree of vacuum is 1 × 10 −4 Pa or less;
The flow rate ratio was 1, 320 V, 0.15 mA, and 14 minutes.
Next, an oxygen plasma treatment was performed on the anode film formed on the glass substrate under the conditions of a current of 10 mA for 5 minutes. Specifically, using Sanyu Electronics VPS020,
A post-treatment was performed after purging with oxygen two or three times.

【0039】これより以下の処理はグローブボックス内
で進めた。グローブボックスの条件は、酸素濃度0.0
1ppm以下、水の露点−70℃以下とした。
From this, the following processing proceeded in the glove box. The condition of the glove box is that the oxygen concentration is 0.0
The dew point of water was 1 ppm or less and -70 ° C or less.

【0040】まず、上記プラズマ処理された電極2上に
正孔注入/輸送材料として、ポリチオフェン誘導体であ
るPEDOT(ポリエチレンジオキシチオフェン)とP
SS(ポリスチレンスルフォン酸)の混合物を塗布し
た。これら混合物はバイトロンPとしてバイエル社から
購入することができる。ここでは、バイトロンPとPS
Sを5:1で混合し、水で1.5倍に希釈したものを用
い、スピンコートにより成膜を行った。条件はスロープ
1秒3000回転45秒で膜厚600オングストローム
を得た。これを、200℃、10分間の焼成により、膜
化を行い正孔注入/輸送層3を形成した。
First, PEDOT (polyethylenedioxythiophene), which is a polythiophene derivative, is used as a hole injecting / transporting material on the plasma-treated electrode 2.
A mixture of SS (polystyrene sulfonic acid) was applied. These mixtures can be purchased from Bayer as Baytron P. Here, Baytron P and PS
S was mixed at 5: 1 and diluted 1.5 times with water to form a film by spin coating. The conditions were as follows: a slope of 1 second and 3,000 rotations for 45 seconds to obtain a film thickness of 600 Å. This was fired at 200 ° C. for 10 minutes to form a film, thereby forming a hole injection / transport layer 3.

【0041】次に、正孔注入/輸送層3上に、下記構造
のフルオレン系高分子をキシレン溶媒に溶解した溶液を
スピンコートにより膜厚800オングストロームに塗布
し、発光層4を得た。
Next, a solution obtained by dissolving a fluorene-based polymer having the following structure in a xylene solvent was applied on the hole injecting / transporting layer 3 by spin coating to a thickness of 800 Å to obtain a light emitting layer 4.

【0042】[0042]

【化4】 続いて、発光層4上に、まず、第一陰極5としてCaを
真空蒸着装置により成膜(堆積)した。真空蒸着装置
は、グローブボックス内に配置したものを用いた。真空
度は、1×10-6torr程度より始める。蒸着速度は、3
オングストローム/secとし、膜厚を70オングスト
ロームとした。次に、再度、真空度が1×10-6torr程
度になるのを待ち、第二陰極6として、Alを3オング
ストローム/sec の蒸着速度で膜厚10オングスト
ロームに成膜した。
Embedded image Subsequently, first, Ca was deposited (deposited) on the light emitting layer 4 as the first cathode 5 using a vacuum evaporation apparatus. The vacuum evaporation apparatus used was arranged in a glove box. The degree of vacuum starts from about 1 × 10 −6 torr. The deposition rate is 3
Angstrom / sec, and the film thickness was 70 angstrom. Next, after waiting for the degree of vacuum to be about 1 × 10 −6 torr again, Al was formed as the second cathode 6 at a deposition rate of 3 Å / sec to a film thickness of 10 Å.

【0043】続いて、第二陰極6上に、第一封止層7と
して、LiFを8オングストローム/secの蒸着速度
で膜厚500オングストロームに成膜した。
Subsequently, LiF was formed on the second cathode 6 as the first sealing layer 7 to a thickness of 500 Å at a deposition rate of 8 Å / sec.

【0044】冷却後、第一封止層7上に防湿性のエポキ
シ樹脂であるDPpure60(3M社製)を塗布して
(膜厚200μm)第二封止層8とした後、封止基板9
としての封止ガラス(厚み0.3mm)を張り合わせ、
ホットプレートにより50℃12時間の条件でプレスし
硬化を行った。この際、エポキシ樹脂内の泡を脱泡する
ために、0.1Torr程度の真空下で上記加熱を行っ
た。こうして有機EL素子を得た。
After cooling, DPpure60 (manufactured by 3M) which is a moisture-proof epoxy resin is applied on the first sealing layer 7 (thickness: 200 μm) to form a second sealing layer 8.
Sealing glass (thickness 0.3 mm) as
Pressing was performed on a hot plate at 50 ° C. for 12 hours to cure. At this time, the above heating was performed under a vacuum of about 0.1 Torr in order to remove bubbles in the epoxy resin. Thus, an organic EL device was obtained.

【0045】得られた有機EL素子について、透過率及
びしきい値電圧の測定を行った。透過率の測定は、分光
器(日立製作所社製)を用いて、ベースラインを空気と
し、集光部に3mm径のピンホールを置き、測定を行っ
た。またしきい値電圧は、BM−7(トプコン社製)を
用いて行い、5Cd/m2の輝度が出力された電圧をし
きい値電圧と定義する。
The transmittance and the threshold voltage of the obtained organic EL device were measured. The transmittance was measured using a spectroscope (manufactured by Hitachi, Ltd.) with a base line of air and a pinhole having a diameter of 3 mm in the light-collecting portion. The threshold voltage is determined using BM-7 (manufactured by Topcon Corporation), and the voltage at which the luminance of 5 Cd / m 2 is output is defined as the threshold voltage.

【0046】結果を図2に示す。FIG. 2 shows the results.

【0047】同図に示す結果によれば、可視光領域のほ
ぼ全体にわたって、50%以上の透過率をもっているこ
とが分かる。ガラス基板1の厚みが1.1mmであり、
その透過率が75%程度であることを考えると。ガラス
に対しては、70%以上の透過率を達成していることと
なる。この時の、しきい値電圧は3Vであった。
According to the results shown in the figure, it is found that the transmittance is 50% or more over almost the entire visible light region. The thickness of the glass substrate 1 is 1.1 mm,
Consider that the transmittance is about 75%. This means that a transmittance of 70% or more for glass is achieved. At this time, the threshold voltage was 3V.

【0048】(実施例2)実施例1に示す方法おいて陽
極である透明電極膜の酸素プラズマ処理時間を0から1
分毎10分まで変化させた陽極が積層されたガラス基板
を得た。処理時間0、5(実施例)、10分の陽極が積
層されたガラス基板の透過スペクトル(波長ごとの透過
率)を測定した。結果を図3示す。また、処理時間0か
ら1分毎10分までの陽極が積層されたガラス基板につ
いて、450nm、550nm、700nmにおける透
過率を測定した。結果を表1に示す。
(Example 2) In the method shown in Example 1, the oxygen plasma treatment time of the transparent electrode film as the anode was set to 0 to 1
A glass substrate was obtained in which the anodes were changed every minute up to 10 minutes. The transmission spectrum (transmittance for each wavelength) of the glass substrate on which the anodes were laminated for treatment times of 0, 5 (Example), and 10 minutes was measured. FIG. 3 shows the results. In addition, the transmittance at 450 nm, 550 nm, and 700 nm of the glass substrate on which the anode was laminated for a processing time of 0 to 1 minute every 10 minutes was measured. Table 1 shows the results.

【0049】[0049]

【表1】 青色領域(450nm)では、処理時間5分まで透過率
の上昇が見られた。緑色領域(550nm)では、大き
な変化は見られないものの、5分程度の処理時間で透過
率最大を示した。赤色領域(700nm)では、程度は
少ないものの処理時間が増すにつれて、透過率は低下す
る。これらの現象は、表面層が処理により酸化され、物
質が一部変わることによる、バンド構造の変化と考えら
れる。このことから、5分程度の処理時間が最適である
と考えられる。
[Table 1] In the blue region (450 nm), an increase in transmittance was observed up to a processing time of 5 minutes. In the green region (550 nm), no significant change was observed, but the maximum transmittance was exhibited in a processing time of about 5 minutes. In the red region (700 nm), the transmittance decreases, though to a lesser extent, as the processing time increases. These phenomena are considered to be changes in the band structure due to oxidation of the surface layer by the treatment and partial change of the substance. From this, it is considered that the processing time of about 5 minutes is optimal.

【0050】(実施例3)実施例1において第一陰極の
膜厚を40、50、60、80、90、100オングス
トロームとした他は、実施例1と同様にして有機EL素
子を得た。各有機EL素子のしきい値電圧及波長500
nmにおける透過率を測定した。表2に、実施例1(第
一陰極の膜厚70オングストローム)の結果とともに、
しきい値電圧およ透過率(波長領域550nm)の結果
を示す。
Example 3 An organic EL device was obtained in the same manner as in Example 1 except that the thickness of the first cathode was changed to 40, 50, 60, 80, 90, and 100 Å. Threshold voltage and wavelength of each organic EL device 500
The transmittance in nm was measured. Table 2 shows the results of Example 1 (the thickness of the first cathode was 70 Å).
The results of threshold voltage and transmittance (wavelength region of 550 nm) are shown.

【0051】[0051]

【表2】 しきい値電圧については、第一陰極の膜厚が70オング
ストローム近傍で漸近した。これ以下の膜厚ではしきい
値電圧の上昇が観測されている。第二陰極の仕事関数の
影響もしくは第二陰極の膜厚の不十分さから来る抵抗値
の上昇が原因していると考えられる。
[Table 2] The threshold voltage was asymptotic when the thickness of the first cathode was around 70 Å. At a film thickness less than this, an increase in the threshold voltage is observed. This is considered to be caused by the influence of the work function of the second cathode or an increase in the resistance value caused by the insufficient thickness of the second cathode.

【0052】透過率については、第一陰極の膜厚ととも
に低下し、90オングストローム(第一、第二陰極の合
計厚みで100オングストローム)くらいまでが許容範
囲であり、当該第一陰極の膜厚がこれを超えるレベルで
は(第一、第二陰極の合計厚みで100オングストロー
ムを超えるレベル)で透過率が過度に小さくなった。こ
れら結果から特に好ましくは第一陰極の厚みが70オン
グストローム程度が最適であると考えられる。
The transmittance decreases with the thickness of the first cathode, and is within an allowable range up to about 90 Å (the total thickness of the first and second cathodes is about 100 Å). At a level higher than this (a level exceeding 100 Å in total thickness of the first and second cathodes), the transmittance was excessively low. From these results, it is considered that the most preferable thickness of the first cathode is about 70 angstroms.

【0053】(実施例4)実施例1において第二陰極の
膜厚を5、15、20、25、40オングストロームと
した他は、実施例1と同様にして有機EL素子を得た。
各有機EL素子のしきい値電圧及500nmにおける透
過率を測定した。表3に、実施例1(第二陰極の膜厚1
0オングストローム)の結果とともに、しきい値電圧お
よび透過率の結果を示す。
Example 4 An organic EL device was obtained in the same manner as in Example 1, except that the thickness of the second cathode was changed to 5, 15, 20, 25, and 40 angstroms.
The threshold voltage and the transmittance at 500 nm of each organic EL element were measured. Table 3 shows Example 1 (film thickness 1 of second cathode).
0 Angstrom), the results of the threshold voltage and the transmittance.

【0054】[0054]

【表3】 しきい値電圧については、10オングストローム以上で
あれば変化は見られない。10オングストローム以下で
は、導通が得られないことから発光しないと考えられ
る。一定値であることから、第二陰極の仕事関数の影響
はないと考えられる。透過率の減少は、Caよりも顕著
である。これは、導通性の高いかつ反射率の高いAlの
ためだと考えられる。
[Table 3] No change is seen in the threshold voltage if it is 10 Å or more. At 10 Å or less, it is considered that no light is emitted because conduction cannot be obtained. Since it is a constant value, it is considered that there is no influence of the work function of the second cathode. The decrease in transmittance is more pronounced than Ca. This is considered to be due to Al having high conductivity and high reflectance.

【0055】[0055]

【発明の効果】以上詳述したように、本発明によれば、
可視領域の透過率が改善され、かつ封止不良が改善され
て、外気の酸素や水分等の影響を極力排除でき、長寿命
でかつ低電圧駆動の可視光領域における透過率の高い有
機EL素子が提供できる。
As described in detail above, according to the present invention,
Organic EL device with improved transmittance in the visible region, improved sealing failure, and the elimination of the influence of outside air such as oxygen and moisture as much as possible. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る有機EL素子の素子
構造を示す断面図である。
FIG. 1 is a sectional view showing an element structure of an organic EL element according to one embodiment of the present invention.

【図2】本発明の実施例1により作成された有機EL素
子の可視光領域の透過スペクトルを示す図である。
FIG. 2 is a view showing a transmission spectrum in a visible light region of the organic EL device prepared according to Example 1 of the present invention.

【図3】本発明の実施例における酸素プラズマ処理によ
る素子の透過率の変化を、その時間依存性として示した
透過スペクトルを示す図である。
FIG. 3 is a diagram showing a transmission spectrum in which a change in transmittance of an element due to an oxygen plasma treatment according to an embodiment of the present invention is shown as a time dependency thereof.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 陽極 3 正孔注入/輸送層 4 発光層 5 第一陰極 6 第二陰極 7 第一封止層 8 第二封止層 9 封止基板 REFERENCE SIGNS LIST 1 glass substrate 2 anode 3 hole injection / transport layer 4 light emitting layer 5 first cathode 6 second cathode 7 first sealing layer 8 second sealing layer 9 sealing substrate

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】基板上に陽極と、有機材料からなる発光層
と、仕事関数が3.0eV以下の材料からなる第一陰極
及び仕事関数が該第一陰極より大きい材料からなる第二
陰極が発光層側から順次積層された構造であり、該第一
及び第二陰極の合計厚みが100オングストローム以下
である陰極とが積層されてなり、少なくとも陰極を経て
外部に光が出射することを特徴とする有機エレクトロル
ミネッセンス素子。
An anode, a light emitting layer made of an organic material, a first cathode made of a material having a work function of 3.0 eV or less, and a second cathode made of a material having a work function larger than the first cathode are formed on a substrate. A structure in which the first and second cathodes have a total thickness of 100 angstroms or less and are stacked, and light is emitted to the outside through at least the cathode. Organic electroluminescent element.
【請求項2】前記陰極側が、光透過性材料からなる封止
層により封止されてなる請求項1記載の有機エレクトロ
ルミネッセンス素子。
2. The organic electroluminescence device according to claim 1, wherein said cathode side is sealed with a sealing layer made of a light transmitting material.
【請求項3】前記第一陰極がCaからなることを特徴と
する請求項1記載の有機エレクトロルミネッセンス素
子。
3. The organic electroluminescence device according to claim 1, wherein said first cathode is made of Ca.
【請求項4】前記第一陰極の膜厚y(オングストロー
ム)を50≦y≦80とすることを特徴とする請求項1
記載の有機エレクトロルミネッセンス素子。
4. The method according to claim 1, wherein the thickness y (angstrom) of the first cathode satisfies 50 ≦ y ≦ 80.
The organic electroluminescent device according to the above.
【請求項5】前記第一陰極の膜厚y(オングストロー
ム)を55≦y≦65とすることを特徴とする請求項1
記載の有機エレクトロルミネッセンス素子。
5. The method according to claim 1, wherein the thickness y (angstrom) of the first cathode is 55 ≦ y ≦ 65.
The organic electroluminescent device according to the above.
【請求項6】前記第二陰極がAlからなることを特徴と
する請求項1記載の有機エレクトロルミネッセンス素
子。
6. The organic electroluminescence device according to claim 1, wherein said second cathode is made of Al.
【請求項7】前記第二陰極の膜厚z(オングストロー
ム)を10≦z≦20とすることを特徴とする請求項1
記載の有機エレクトロルミネッセンス素子。
7. The method according to claim 1, wherein the thickness z (angstrom) of the second cathode is 10 ≦ z ≦ 20.
The organic electroluminescent device according to the above.
【請求項8】 前記発光層を構成する有機材料が、高分
子材料からなる請求項1乃至7のいずれかに記載の有機
エレクトロルミネッセンス素子。
8. The organic electroluminescence device according to claim 1, wherein the organic material constituting the light emitting layer is made of a polymer material.
【請求項9】 基板上に陽極を形成する工程と、 前記陽極上方に有機材料からなる発光層を形成する工程
と、 前記発光層上方に、発光層側より、仕事関数が3.0e
V以下の材料からなる第一陰極及び仕事関数が該第一陰
極より大きい材料からなる第二陰極を、該第一及び第二
陰極の合計厚みが100オングストローム以下となるよ
うに積層し陰極を形成する工程とを有する有機エレクト
ロルミネッセンス素子の製造方法。
9. A step of forming an anode on a substrate; a step of forming a light emitting layer made of an organic material above the anode; and a work function of 3.0 e above the light emitting layer from the light emitting layer side.
V and a second cathode made of a material whose work function is larger than that of the first cathode, and laminated so that the total thickness of the first and second cathodes is 100 angstroms or less. And a method of manufacturing an organic electroluminescent device.
【請求項10】 前記陽極を形成する工程において、電
極膜の製膜後、酸素または大気プラズマ処理を行い、該
処理における電流x、時間tを10(mA)≦x≦15
(mA)、5(分)≦t≦7(分)とすることを特徴と
する請求項9記載の有機エレクトロルミネッセンス素子
の製造方法。
10. In the step of forming an anode, after forming an electrode film, oxygen or atmospheric plasma treatment is performed, and a current x and a time t in the treatment are set to 10 (mA) ≦ x ≦ 15.
10. The method for manufacturing an organic electroluminescent device according to claim 9, wherein (mA), 5 (minutes) ≦ t ≦ 7 (minutes).
【請求項11】 前記陽極を形成する工程において、電
極膜の製膜後、酸素または大気プラズマ処理を行い、該
処理における電流x、時間tを、10(mA)≦x≦1
2(mA)、t=5(分)とすることを特徴とする請求
項9記載の有機エレクトロルミネッセンス素子の製造方
法。
11. In the step of forming an anode, after forming an electrode film, oxygen or air plasma treatment is performed, and a current x and a time t in the treatment are set to 10 (mA) ≦ x ≦ 1.
10. The method for manufacturing an organic electroluminescent device according to claim 9, wherein 2 (mA) and t = 5 (minutes).
JP2001078903A 2000-03-21 2001-03-19 Organic electroluminescence device and method for producing the same Expired - Lifetime JP4810739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001078903A JP4810739B2 (en) 2000-03-21 2001-03-19 Organic electroluminescence device and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000078664 2000-03-21
JP2000-78664 2000-03-21
JP2000078664 2000-03-21
JP2001078903A JP4810739B2 (en) 2000-03-21 2001-03-19 Organic electroluminescence device and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001338771A true JP2001338771A (en) 2001-12-07
JP4810739B2 JP4810739B2 (en) 2011-11-09

Family

ID=26587972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001078903A Expired - Lifetime JP4810739B2 (en) 2000-03-21 2001-03-19 Organic electroluminescence device and method for producing the same

Country Status (1)

Country Link
JP (1) JP4810739B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257620A (en) * 2002-02-27 2003-09-12 Samsung Sdi Co Ltd Display device and manufacturing method therefor
JP2004046218A (en) * 2002-07-09 2004-02-12 Semiconductor Energy Lab Co Ltd Method for determining duty ratio of driving of light emitting device and driving method using same duty ratio
JP2004200170A (en) * 2002-12-17 2004-07-15 Samsung Sdi Co Ltd Donor film for low molecule full color organic el element using laser transfer method and manufacturing method of low molecule full color organic el element using this film
JP2004227944A (en) * 2003-01-23 2004-08-12 Semiconductor Energy Lab Co Ltd Method for manufacturing display device
JP2005026221A (en) * 2003-06-13 2005-01-27 Semiconductor Energy Lab Co Ltd Electron injection composition for light emitting element, light emitting element, and light emitting device
JP2005071696A (en) * 2003-08-21 2005-03-17 Sharp Corp Organic el device
US7169636B2 (en) 2002-12-13 2007-01-30 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of light emitting device and manufacturing device thereof
US7700958B2 (en) 2002-07-05 2010-04-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having pixel portion surrounded by first sealing material and covered with second sealing material
US8004183B2 (en) 2002-01-25 2011-08-23 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing thereof
US8519619B2 (en) 2002-04-23 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US9000429B2 (en) 2002-04-24 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing same
US9153168B2 (en) 2002-07-09 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Method for deciding duty factor in driving light-emitting device and driving method using the duty factor
US9166202B2 (en) 2002-06-07 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
US9412804B2 (en) 2002-04-26 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method of the same
JP7325570B2 (en) 2016-05-30 2023-08-14 ノヴァレッド ゲーエムベーハー Organic light-emitting diode comprising an organic semiconductor layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03141588A (en) * 1989-10-27 1991-06-17 Ricoh Co Ltd Electroluminescent device
JPH1092585A (en) * 1996-07-05 1998-04-10 Bayer Ag Cleaning method for base electrode
JPH10144957A (en) * 1996-09-20 1998-05-29 Internatl Business Mach Corp <Ibm> Optically transparent diffusion barrier in organic light-emitting diode and upper electrode
JPH10223377A (en) * 1997-02-04 1998-08-21 Internatl Business Mach Corp <Ibm> Light emitting diode
JPH118073A (en) * 1997-06-16 1999-01-12 Idemitsu Kosan Co Ltd Organic el display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03141588A (en) * 1989-10-27 1991-06-17 Ricoh Co Ltd Electroluminescent device
JPH1092585A (en) * 1996-07-05 1998-04-10 Bayer Ag Cleaning method for base electrode
JPH10144957A (en) * 1996-09-20 1998-05-29 Internatl Business Mach Corp <Ibm> Optically transparent diffusion barrier in organic light-emitting diode and upper electrode
JPH10223377A (en) * 1997-02-04 1998-08-21 Internatl Business Mach Corp <Ibm> Light emitting diode
JPH118073A (en) * 1997-06-16 1999-01-12 Idemitsu Kosan Co Ltd Organic el display device

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020178137A (en) * 2002-01-25 2020-10-29 株式会社半導体エネルギー研究所 Display device
JP2020178136A (en) * 2002-01-25 2020-10-29 株式会社半導体エネルギー研究所 Display device
US8747178B2 (en) 2002-01-25 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of light emitting device
US8450925B2 (en) 2002-01-25 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing thereof
US8937429B2 (en) 2002-01-25 2015-01-20 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing thereof
US8004183B2 (en) 2002-01-25 2011-08-23 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing thereof
JP2016167640A (en) * 2002-01-25 2016-09-15 株式会社半導体エネルギー研究所 Light-emitting device
JP2003257620A (en) * 2002-02-27 2003-09-12 Samsung Sdi Co Ltd Display device and manufacturing method therefor
US9287330B2 (en) 2002-04-23 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US9978811B2 (en) 2002-04-23 2018-05-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US8519619B2 (en) 2002-04-23 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US9831459B2 (en) 2002-04-24 2017-11-28 Semiconductor Energy Laboratory Co., Ltd. Display module with white light
US9362534B2 (en) 2002-04-24 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing same
US9165987B2 (en) 2002-04-24 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing same
US10454059B2 (en) 2002-04-24 2019-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing same
US9000429B2 (en) 2002-04-24 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing same
US9412804B2 (en) 2002-04-26 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method of the same
US9853098B2 (en) 2002-04-26 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method of the same
US9166202B2 (en) 2002-06-07 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
US7985606B2 (en) 2002-07-05 2011-07-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing light emitting device
US9601712B2 (en) 2002-07-05 2017-03-21 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US8455916B2 (en) 2002-07-05 2013-06-04 Semiconductor Energy Laboratory, Ltd. Light emitting device and method of manufacturing the same
US8927979B2 (en) 2002-07-05 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US10566569B2 (en) 2002-07-05 2020-02-18 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US7700958B2 (en) 2002-07-05 2010-04-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having pixel portion surrounded by first sealing material and covered with second sealing material
US9929377B2 (en) 2002-07-05 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Arrangement of sealing materials for display device
US9153168B2 (en) 2002-07-09 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Method for deciding duty factor in driving light-emitting device and driving method using the duty factor
JP2004046218A (en) * 2002-07-09 2004-02-12 Semiconductor Energy Lab Co Ltd Method for determining duty ratio of driving of light emitting device and driving method using same duty ratio
US8237176B2 (en) 2002-12-13 2012-08-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7169636B2 (en) 2002-12-13 2007-01-30 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of light emitting device and manufacturing device thereof
US7569859B2 (en) 2002-12-13 2009-08-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of light emitting device and manufacturing device thereof
US8044411B2 (en) 2002-12-13 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8482011B2 (en) 2002-12-13 2013-07-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP2004200170A (en) * 2002-12-17 2004-07-15 Samsung Sdi Co Ltd Donor film for low molecule full color organic el element using laser transfer method and manufacturing method of low molecule full color organic el element using this film
JP2004227944A (en) * 2003-01-23 2004-08-12 Semiconductor Energy Lab Co Ltd Method for manufacturing display device
JP2005026221A (en) * 2003-06-13 2005-01-27 Semiconductor Energy Lab Co Ltd Electron injection composition for light emitting element, light emitting element, and light emitting device
JP2005071696A (en) * 2003-08-21 2005-03-17 Sharp Corp Organic el device
JP7325570B2 (en) 2016-05-30 2023-08-14 ノヴァレッド ゲーエムベーハー Organic light-emitting diode comprising an organic semiconductor layer

Also Published As

Publication number Publication date
JP4810739B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
KR101295988B1 (en) Stacked organic electroluminescent devices
JP4628104B2 (en) Light emitting device and manufacturing method thereof
TWI322635B (en) Method of fabricating light emitting device
KR100441415B1 (en) Opto-electrical devices
KR101200859B1 (en) Oled device with short reduction
He et al. High performance organic polymer light-emitting heterostructure devices
JP4739098B2 (en) Electronic cold light emission device
JP3963712B2 (en) Organic EL element structure
JP4810739B2 (en) Organic electroluminescence device and method for producing the same
US20040070334A1 (en) Encapsulated electrode
US6853130B2 (en) Organic electroluminescent device and manufacturing method therefor
JP4782550B2 (en) Method for manufacturing organic electroluminescent device
KR100888148B1 (en) Organic Electro luminescence Device and fabrication method of thereof
US20020110703A1 (en) Organic electroluminescent device with self-aligned insulating fillers and method for manufacturing the same
JP2001307871A (en) Electroluminescent element
JP2003347063A (en) Organic electroluminescent display element and manufacturing method therefor
Chin Role of the polymeric hole injection layer on the efficiency and stability of organic light emitting diodes with small molecular emitters
JP2002170670A (en) Organic elecroluminescent element and its manufacturing method as well as organic electroluminescent display
JP5036961B2 (en) Organic electroluminescence display device
JP2000348865A (en) Organic electroluminescent element
KR100567220B1 (en) Organic light emitting device and display on the basis of organic light emitting device with improved effciency
JP2000068068A (en) Organic el and its manufacture
KR20050114204A (en) Multi-pixel display devices and method for forming the same
JP2009252792A (en) Organic luminescence element
KR20050001614A (en) fabrication method of Polymer Organic Electro luminescence Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R150 Certificate of patent or registration of utility model

Ref document number: 4810739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term