JP2001332544A - Method of manufacturing insulating material - Google Patents

Method of manufacturing insulating material

Info

Publication number
JP2001332544A
JP2001332544A JP2000153912A JP2000153912A JP2001332544A JP 2001332544 A JP2001332544 A JP 2001332544A JP 2000153912 A JP2000153912 A JP 2000153912A JP 2000153912 A JP2000153912 A JP 2000153912A JP 2001332544 A JP2001332544 A JP 2001332544A
Authority
JP
Japan
Prior art keywords
insulating material
pressure
resin
gas
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000153912A
Other languages
Japanese (ja)
Inventor
Yoshinori Masaki
義則 政木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2000153912A priority Critical patent/JP2001332544A/en
Publication of JP2001332544A publication Critical patent/JP2001332544A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the manufacturing method of an insulating material which exhibits a remarkably low dielectric constant and satisfactory insulating property and which is superior in heat resistance. SOLUTION: In the manufacturing method of the insulating material, a process for dissolving gas in a gaseous state at an ordinary temperature and ordinary pressure into the insulating material at a high temperature and high pressure, for exposing it to an atmosphere lower than pressure in the dissolution at the reducing speed of 1 to 100 MPa/Hr, and for generating a micro gap is installed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は絶縁材料に関するも
のであり、更に詳しくは、電気・電子機器用、半導体装
置用として優れた特性を有する絶縁材料の製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating material, and more particularly to a method for producing an insulating material having excellent characteristics for use in electric / electronic devices and semiconductor devices.

【0002】[0002]

【従来の技術】電気電子機器用、半導体装置用材料に求
められている特性のなかで、電気特性と耐熱性は最も重
要な特性である。特に、近年、回路の微細化と信号の高
速化に伴い、誘電率の低い絶縁材料が要求されている。
この2つの特性を両立させるための材料として、耐熱性
樹脂を用いた絶縁材料が期待されている。例えば、従来
から用いられている二酸化シリコン等の無機の絶縁材料
は、高耐熱性を示すが、誘電率が高く、要求特性が高度
化している現在では、前述の特性について両立が困難に
なりつつあり、ポリイミド樹脂に代表される耐熱性樹脂
は、電気特性と耐熱性に優れ、2つの特性の両立が可能
であり、実際にプリント回路の絶縁層、カバーレイや半
導体装置のパッシベーション膜などに用いられている。
2. Description of the Related Art Among the characteristics required for materials for electric / electronic devices and semiconductor devices, electric characteristics and heat resistance are the most important characteristics. In particular, in recent years, with miniaturization of circuits and speeding up of signals, an insulating material having a low dielectric constant has been required.
An insulating material using a heat-resistant resin is expected as a material for satisfying these two characteristics. For example, conventionally used inorganic insulating materials such as silicon dioxide have high heat resistance, but have a high dielectric constant and the required characteristics are becoming increasingly sophisticated. Yes, heat-resistant resin represented by polyimide resin has excellent electrical properties and heat resistance, and can achieve both properties.It is actually used for insulation layer of printed circuit, coverlay, passivation film of semiconductor device, etc. Have been.

【0003】しかしながら、近年の半導体装置の高機能
化、高性能化にともない、電気特性、耐熱性について著
しい向上が必要とされているため、更に高性能な樹脂
が、必要とされるようになっている。特に、誘電率につ
いて、2.5を下回るような低誘電率材料が期待されて
おり、従来の絶縁材料では必要とされる特性に達してい
ない。これに対して、これまでには、例えば、ポリイミ
ド及び溶剤から成る樹脂組成物に、ポリイミド以外の熱
分解性樹脂を加え、加熱工程により、この熱分解性樹脂
を分解させて、空隙を形成することにより、絶縁材料の
誘電率を低減させることが試みられている。しかし、ポ
リイミド等の耐熱性樹脂と熱分解性樹脂が相溶するとガ
ラス転移点が低くなってしまうために、熱分解性樹脂を
分解させる際に、空隙が潰れていまい、誘電率を低減さ
せる効果が少ない。また、ポリイミド等の耐熱性樹脂と
熱分解性樹脂とを、相溶させずにうまく相分離構造を形
成せしめたとしても、熱分解性樹脂を分解させる際の加
熱方法等に、多大なる労力を要するものであった。
[0003] However, with recent advances in the functions and performance of semiconductor devices, remarkable improvements in electrical characteristics and heat resistance have been required, so that even higher performance resins have been required. ing. In particular, a low dielectric constant material having a dielectric constant of less than 2.5 is expected, and the properties required by conventional insulating materials have not been achieved. In contrast, heretofore, for example, to a resin composition comprising polyimide and a solvent, a heat-decomposable resin other than polyimide is added, and a heating step is performed to decompose the heat-decomposable resin to form voids. Thus, attempts have been made to reduce the dielectric constant of the insulating material. However, when the heat-resistant resin such as polyimide and the heat-decomposable resin are compatible with each other, the glass transition point is lowered, so that when the heat-decomposable resin is decomposed, the voids are crushed and the effect of reducing the dielectric constant is reduced. Less is. In addition, even if a heat-resistant resin such as polyimide and a thermally decomposable resin are successfully formed into a phase-separated structure without being compatible with each other, a great deal of labor is required for a heating method for decomposing the thermally decomposable resin. It was necessary.

【0004】[0004]

【発明が解決しようとする課題】本発明は、極めて低い
誘電率と良好な絶縁性を示すとともに、耐熱性にも優れ
た絶縁材料の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing an insulating material which exhibits an extremely low dielectric constant and good insulating properties, and also has excellent heat resistance.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記従来
の問題点を鑑み、鋭意検討を重ねた結果、以下の手段に
より、本発明を完成するに至った。即ち本発明は、常温
・常圧で気体状態のガスを高温高圧下で絶縁材料に溶解
させた後、1〜100MPa/Hrの減圧速度で溶解時
の圧力より低い雰囲気にさらして微小な空隙を発生する
工程を備えている絶縁材料の製造方法である。
Means for Solving the Problems The present inventors have made intensive studies in view of the above-mentioned conventional problems, and as a result, have completed the present invention by the following means. That is, according to the present invention, a gas in a gaseous state at normal temperature and normal pressure is dissolved in an insulating material under high temperature and high pressure, and then exposed to an atmosphere lower than the pressure at the time of melting at a decompression rate of 1 to 100 MPa / Hr to form fine voids. It is a method for manufacturing an insulating material including a step of generating.

【0006】[0006]

【発明の実施の形態】本発明の絶縁材料の製造方法の具
体例としては、絶縁材料用樹脂を、溶媒に溶解しワニス
とした後、適当な支持体、例えば、ガラス、金属、シリ
コーンウエハやセラミック基盤などに塗布する。具体的
な塗布の方法としては、スピンナーを用いた回転塗布、
スプレーコーターを用いた噴霧塗布、浸漬、印刷、ロー
ルコーティングなどがあげられる。このようにして塗膜
を形成した後、脱溶媒及び樹脂硬化のために高温下で加
熱乾燥を行うが、その際、常温・常圧で気体状態のガス
を、高圧下で絶縁材料中に溶解させた後に、1〜100
MPa/Hrの減圧速度で溶解時の圧力より低い雰囲気
にさらすことにより絶縁材料内部に微小な空隙を発生さ
せる。空隙内は高圧に保持されるため、従来技術の空隙
が潰れるという問題点を克服することができる上、相分
離構造の形成、熱分解性樹脂の分解加熱方法及び残存成
分の除去等、熱分解性樹脂の添加に起因する多くの課題
も生じない。従来の加熱乾燥を高圧下で行うことのみに
より、簡便に誘電率の低い絶縁材料を形成することがで
きる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a specific example of the method for producing an insulating material according to the present invention, a resin for an insulating material is dissolved in a solvent to form a varnish, and then a suitable support, for example, glass, metal, silicone wafer or the like is used. Apply to ceramic base etc. As a specific coating method, spin coating using a spinner,
Spray coating using a spray coater, dipping, printing, roll coating and the like can be mentioned. After forming the coating film in this way, heat drying is performed at a high temperature to remove the solvent and cure the resin. At this time, a gaseous gas at normal temperature and normal pressure is dissolved in the insulating material at a high pressure. After letting
By exposing to an atmosphere lower than the pressure at the time of melting at a reduced pressure of MPa / Hr, minute voids are generated inside the insulating material. Since the inside of the gap is kept at a high pressure, it is possible to overcome the problems of the prior art that the gap is crushed, and also to form a phase-separated structure, a method for heating and decomposing the thermally decomposable resin, and to remove the residual components by thermal decomposition. Many problems due to the addition of the conductive resin do not occur. Only by performing conventional heating and drying under high pressure, an insulating material having a low dielectric constant can be easily formed.

【0007】なお上記低圧雰囲気にさらす際の減圧速度
は、系内を急激に不安定にさせない速度である必要か
ら、好ましくは1〜100MPa/Hrで、より好まし
くは3〜80MPa/Hrで、最も好ましくは5〜50
MPa/Hrである。1MPa/Hr未満では、空隙の
発生状態に変化はなくなり、減圧に要する時間だけが長
くなるので生産性という点から好ましくない。逆に10
0MPa/Hrを越えると系内が急激に不安定になるた
め、個々の空隙が成長して大きくなり、絶縁材料の機械
的強度を著しく低下させるので好ましくない。
[0007] The pressure reduction rate at the time of exposure to the low-pressure atmosphere is preferably 1 to 100 MPa / Hr, more preferably 3 to 80 MPa / Hr, since it is necessary not to make the inside of the system suddenly unstable. Preferably 5 to 50
MPa / Hr. If it is less than 1 MPa / Hr, there is no change in the state of generation of voids, and only the time required for depressurization becomes longer, which is not preferable in terms of productivity. Conversely 10
If the pressure exceeds 0 MPa / Hr, the inside of the system becomes rapidly unstable, so that individual voids grow and become large, and the mechanical strength of the insulating material is remarkably reduced.

【0008】空隙内部の誘電率は、絶縁材料に含まれる
樹脂又はその前駆体よりも低いので、10〜80容積%
の空隙を絶縁材料内部に発生させることにより、誘電率
を低減させることができる。空隙率が10容積%未満で
は、誘電率を低減させる効果が少なく、誘電率2.5以
下という目標レベルに到達することが困難となる。逆に
80容積%を越えると、絶縁材料に占める空隙の割合が
高過ぎるために、絶縁材料の機械的強度が著しく低下す
るので好ましくない。
Since the dielectric constant inside the void is lower than that of the resin or its precursor contained in the insulating material, the dielectric constant is 10 to 80% by volume.
By generating the voids inside the insulating material, the dielectric constant can be reduced. If the porosity is less than 10% by volume, the effect of reducing the dielectric constant is small, and it is difficult to reach the target level of a dielectric constant of 2.5 or less. Conversely, if it exceeds 80% by volume, the mechanical strength of the insulating material is significantly reduced because the proportion of the voids in the insulating material is too high, which is not preferable.

【0009】本発明に用いる空隙を構成するガスは絶縁
材料に含まれる樹脂又はその前駆体よりも誘電率が低
く、樹脂に不活性な気体であれば特に制限はなく、無機
ガス、フロンガス、低分子量の炭化水素などの有機ガス
等が挙げられるが、ガスの回収が不要という点で無機ガ
スが好ましい。無機ガスとしては、常温・常圧で気体で
ある無機物質であって、絶縁材料に溶解するものであれ
ば特に限定はなく、例えば二酸化炭素、窒素、アルゴ
ン、ネオン、ヘリウム、酸素等が好ましいが、絶縁材料
への溶解性が高く、また取り扱いが容易であるという点
から、二酸化炭素や窒素がより好ましい。これらは単独
で用いてもよく、2種以上を混合して用いてもよい。
The gas constituting the void used in the present invention is not particularly limited as long as it has a lower dielectric constant than the resin or its precursor contained in the insulating material and is inert to the resin. An organic gas such as a hydrocarbon having a molecular weight can be used, but an inorganic gas is preferable because the gas does not need to be recovered. The inorganic gas is not particularly limited as long as it is an inorganic substance that is a gas at normal temperature and normal pressure and is soluble in an insulating material, and is preferably, for example, carbon dioxide, nitrogen, argon, neon, helium, oxygen, or the like. Carbon dioxide and nitrogen are more preferred because they have high solubility in insulating materials and are easy to handle. These may be used alone or in combination of two or more.

【0010】またガスを絶縁材料に溶解させる場合、超
臨界状態で溶解させることが好ましい。超臨界状態と
は、臨界温度、臨界圧力以上の状態を意味し、例えば二
酸化炭素の場合、30℃以上で7.3MPa以上であ
る。超臨界状態では、液体状態よりも粘性が低くかつ拡
散性が高いという特性を有し、また気体状態よりも密度
が大きいことから、絶縁材料中に、大量のガスを速やか
に溶解させることができるので好ましい。
When the gas is dissolved in the insulating material, it is preferable that the gas be dissolved in a supercritical state. The supercritical state means a state in which the temperature is equal to or higher than the critical temperature and the critical pressure. For example, in the case of carbon dioxide, the temperature is 30 ° C or higher and 7.3 MPa or higher. In the supercritical state, it has the property of being less viscous and more diffusive than the liquid state, and has a higher density than the gas state, so that a large amount of gas can be rapidly dissolved in the insulating material. It is preferred.

【0011】本発明の絶縁材料に含まれる樹脂は、その
前駆体も含むものであり、それらの例を挙げると、ポリ
イミド、ポリアミド酸、ポリアミド酸エステル、ポリイ
ソイミド、ポリアミドイミド、ポリアミド、ビスマレイ
ミド、ポリベンゾオキサゾール、ポリヒドロキシアミ
ド、ポリベンゾチアゾール、エポキシ等であるが、これ
らに限られるものではない。これらのなかで、ポリイミ
ド樹脂と、ポリアミド酸、ポリアミド酸エステル及びポ
リイソイミドなどのポリイミド前駆体、ポリベンゾオキ
サゾール樹脂と、ポリヒドロキシアミドなどのポリベン
ゾオキサゾール前駆体は、耐熱性が高く好ましく、密着
性を必要とする場合は、エポキシ樹脂が好ましい。ま
た、これらを単独で用いても良いし、混合あるいは共重
合させてもよい。
The resin contained in the insulating material of the present invention includes a precursor thereof, and examples thereof include polyimide, polyamic acid, polyamic ester, polyisoimide, polyamideimide, polyamide, bismaleimide, and poly (maleimide). Examples thereof include benzoxazole, polyhydroxyamide, polybenzothiazole, and epoxy, but are not limited thereto. Among these, a polyimide resin, a polyimide precursor such as polyamic acid, polyamic acid ester and polyisoimide, a polybenzoxazole resin, and a polybenzoxazole precursor such as polyhydroxyamide are preferable because of their high heat resistance and adhesion. If required, epoxy resins are preferred. These may be used alone, or may be mixed or copolymerized.

【0012】上記絶縁材料に含まれる樹脂のワニスに用
いる溶媒としては、N,N-ジメチルアセトアミド、N-メチ
ル-2-ピロリドン、テトラヒドロフラン、プロピレング
リコールモノメチルエーテル、プロピレングリコールモ
ノメチルエーテルアセテート、ジエチレングリコールモ
ノメチルエーテル、γ-ブチロラクトン、1,1,2,
2-テトラクロロエタン等が挙げられるが、これらに限
定されるものではない。また、これらを2種以上同時に
用いても良い。さらに、塗布性や含浸性を向上させるた
めに、界面活性剤を添加しても良い。
Solvents used for the resin varnish contained in the insulating material include N, N-dimethylacetamide, N-methyl-2-pyrrolidone, tetrahydrofuran, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether, γ-butyrolactone, 1,1,2,
Examples include, but are not limited to, 2-tetrachloroethane. Further, two or more of these may be used simultaneously. Further, a surfactant may be added in order to improve applicability and impregnation.

【0013】[0013]

【実施例】以下に、実施例により、本発明を具体的に説
明するが、本発明は、実施例の内容になんら限定される
ものではない。 「樹脂ワニスA」攪拌装置、窒素導入管、原料投入口を
備えたセパラブルフラスコ中、2,2−ビス(4−
(4,4’−アミノフェノキシ)フェニル)ヘキサフル
オロプロパン5.18g(0.01mol)と2,2’
−ビス(トリフルオロメチル)−4,4’−ジアミノビ
フェニル9.60g(0.03mol)を、乾燥したN
−メチル−2−ピロリドン(以下NMPと略す)200
gに溶解する。乾燥窒素下、10℃に溶液を冷却して、
ビフェニルテトラカルボン酸二無水物2.94g(0.
01mol)とヘキサフルオロイソプロピリデン−2,
2’−ビス(フタル酸無水物)13.32g(0.03
mol)を添加した。添加してから5時間後に室温まで
戻し、室温で2時間攪拌し、ポリイミド前駆体であるポ
リアミド酸の溶液を得た。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which by no means limit the present invention. In a separable flask equipped with a "resin varnish A" stirrer, nitrogen inlet tube and raw material inlet, 2,2-bis (4-
5.18 g (0.01 mol) of (4,4′-aminophenoxy) phenyl) hexafluoropropane and 2,2 ′
9.60 g (0.03 mol) of -bis (trifluoromethyl) -4,4'-diaminobiphenyl was dried in N
-Methyl-2-pyrrolidone (hereinafter abbreviated as NMP) 200
Dissolve in g. Cool the solution to 10 ° C under dry nitrogen,
2.94 g of biphenyltetracarboxylic dianhydride (0.
01 mol) and hexafluoroisopropylidene-2,
13.32 g of 2'-bis (phthalic anhydride) (0.03
mol) was added. Five hours after the addition, the temperature was returned to room temperature, and the mixture was stirred at room temperature for 2 hours to obtain a solution of polyamic acid as a polyimide precursor.

【0014】このポリアミド酸溶液に、ピリジン50g
を加えた後、無水酢酸5.1g(0.05mol)を滴
下し、系の温度を70℃に保って、7時間イミド化反応
を行った。 この溶液を20倍量の水中に滴下して沈殿
を回収し、60℃で72時間真空乾燥して、耐熱性樹脂
であるポリイミド樹脂の固形物を得た。ポリイミド樹脂
の分子量は、数平均分子量26000,重量平均分子量
54000であった。上記により合成したポリイミド樹
脂10.0gを、γ-ブチロラクトン/1,1,2,2-
テトラクロロエタン(70/30,vol/vol)5
0.0gに溶解し、絶縁材料用樹脂ワニス(樹脂ワニス
A)を得た。
[0014] 50 g of pyridine is added to this polyamic acid solution.
After the addition of, 5.1 g (0.05 mol) of acetic anhydride was added dropwise, and the imidation reaction was carried out for 7 hours while maintaining the temperature of the system at 70 ° C. This solution was dropped into 20 times the volume of water to collect a precipitate, which was then vacuum-dried at 60 ° C. for 72 hours to obtain a solid polyimide resin as a heat-resistant resin. The molecular weight of the polyimide resin was a number average molecular weight of 26,000 and a weight average molecular weight of 54,000. 10.0 g of the polyimide resin synthesized as described above was mixed with γ-butyrolactone / 1,1,2,2-
Tetrachloroethane (70/30, vol / vol) 5
It was dissolved in 0.0 g to obtain a resin varnish for an insulating material (resin varnish A).

【0015】「樹脂ワニスB」樹脂ワニスAの樹脂合成
においてポリイミド前駆体の合成に用いた2,2−ビス
(4−(4,4’−アミノフェノキシ)フェニル)ヘキ
サフルオロプロパン5.18g(0.01mol)と
2,2’−ビス(トリフルオロメチル)−4,4’−ジ
アミノビフェニル9.60g(0.03mol)とを
4,4’−ジアミノジフェニルエーテル8.01g
(0.04mol)に、ビフェニルテトラカルボン酸二
無水物2.94g(0.01mol)とヘキサフルオロ
イソプロピリデン−2,2’−ビス(フタル酸無水物)
13.32g(0.03mol)とをピロメリット酸二
無水物8.72g(0.04mol)に代えた以外は、
実施例1と同様にしてポリイミド前駆体であるポリアミ
ド酸の溶液を得た。
"Resin Varnish B" 5.18 g of 2,2-bis (4- (4,4'-aminophenoxy) phenyl) hexafluoropropane used for the synthesis of the polyimide precursor in the resin synthesis of resin varnish A .01 mol) and 9.60 g (0.03 mol) of 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl 8.01 g of 4,4′-diaminodiphenyl ether.
(0.04 mol), 2.94 g (0.01 mol) of biphenyltetracarboxylic dianhydride and hexafluoroisopropylidene-2,2'-bis (phthalic anhydride)
13.32 g (0.03 mol) was replaced with 8.72 g (0.04 mol) of pyromellitic dianhydride,
In the same manner as in Example 1, a solution of a polyamic acid as a polyimide precursor was obtained.

【0016】この溶液を20倍量の水中に滴下して沈殿
を回収し、25℃で72時間真空乾燥して、耐熱性樹脂
であるポリイミドの前駆体であるポリアミド酸の固形物
を得た。得られたポリアミド酸の数平均分子量は270
00,重量平均分子量は55000であった。上記によ
り合成したポリアミド酸10.0gを、γ-ブチロラク
トン/1,1,2,2-テトラクロロエタン(70/3
0,vol/vol)50.0gに溶解し、絶縁体用樹
脂ワニス(樹脂ワニスB)を得た。
This solution was dropped into 20 times the volume of water to collect a precipitate, which was then vacuum-dried at 25 ° C. for 72 hours to obtain a solid of polyamic acid, which is a precursor of polyimide as a heat-resistant resin. The number average molecular weight of the obtained polyamic acid is 270.
The weight average molecular weight was 55,000. 10.0 g of the polyamic acid synthesized as described above was mixed with γ-butyrolactone / 1,1,2,2-tetrachloroethane (70/3).
(0, vol / vol) to obtain a resin varnish for an insulator (resin varnish B).

【0017】「実施例1」厚さ200nmのタンタルを
成膜したシリコンウエハ上に、樹脂ワニスAをスピンコ
ートしたものを高圧容器内に収容し、二酸化炭素雰囲気
下で加熱硬化した。加熱硬化の際は、120℃で4分
間、150℃で30分間保持した後、プランジャーポン
プを用いて二酸化炭素を加圧供給しながら、容器内を4
00℃、50MPaで60分間保持した。その後、加熱
を中止し、平均8MPa/Hrの減圧速度で常圧まで減
圧した。このようにして、厚さ0.8μmの絶縁材料の
被膜を得た。この絶縁材料の被膜上に、面積0.1cm
2のアルミの電極を蒸着により形成し、基板のタンタル
との間のキャパシタンスをLCRメーターにより測定し
た。膜厚、電極面積、キャパシタンスから絶縁材料の誘
電率を算出したところ、2.3であった。また、絶縁材
料の密度を密度勾配管により求めたところ、1.07で
あった。二酸化炭素を注入せず、空隙が全くない場合の
密度は1.41であったので、これから空隙率は24.
1%と算出された。結果を表1にまとめる。さらにTE
Mで絶縁材料皮膜の断面を観察したところ、直径が0.
7nmで長さが5nmの空隙が均一に分散していること
が分かった。
Example 1 A silicon wafer on which a 200 nm-thick tantalum film was formed and spin-coated with a resin varnish A was placed in a high-pressure container, and heated and cured in a carbon dioxide atmosphere. In the case of heat curing, the container is kept at 120 ° C. for 4 minutes and at 150 ° C. for 30 minutes.
It was kept at 00 ° C. and 50 MPa for 60 minutes. Thereafter, the heating was stopped and the pressure was reduced to normal pressure at an average pressure reduction rate of 8 MPa / Hr. Thus, a 0.8 μm thick coating of an insulating material was obtained. On this insulating material film, an area of 0.1 cm
The electrodes 2 of aluminum is formed by vapor deposition, the capacitance between the tantalum substrate was measured by an LCR meter. The dielectric constant of the insulating material calculated from the film thickness, the electrode area, and the capacitance was 2.3. The density of the insulating material was determined to be 1.07 by a density gradient tube. The density when no carbon dioxide was injected and no voids were found to be 1.41.
It was calculated to be 1%. The results are summarized in Table 1. Further TE
When the cross section of the insulating material film was observed at M, the diameter was found to be 0.
It was found that voids having a length of 7 nm and a length of 5 nm were uniformly dispersed.

【0018】「実施例2」厚さ200nmのタンタルを
成膜したシリコンウエハ上に、樹脂ワニスBをスピンコ
ートしたものを高圧容器内に収容し、二酸化炭素雰囲気
で加熱硬化した。加熱硬化の際は、120℃で4分間、
150℃で30分間保持した後、プランジャーポンプを
用いて二酸化炭素を加圧供給しながら、容器内を400
℃、50MPaで60分間保持した。その後、加熱を中
止し、平均8MPa/Hrの減圧速度で常圧まで減圧し
た。このようにして、厚さ0.7μmの絶縁材料の被膜
を得た。実施例1と同様にして、この絶縁材料の誘電
率、密度を測定し、空隙率を算出した結果を表1に示
す。さらにTEMで絶縁材料皮膜の断面を観察したとこ
ろ、直径が0.7nmで長さが6nmの空隙が均一に分
散していることが分かった。
Example 2 A silicon wafer on which a 200 nm-thick tantalum film was formed and spin-coated with a resin varnish B was accommodated in a high-pressure container and heated and cured in a carbon dioxide atmosphere. In the case of heat curing, at 120 ° C for 4 minutes,
After maintaining at 150 ° C. for 30 minutes, the inside of the container was kept at 400 ° C. while supplying carbon dioxide under pressure using a plunger pump.
The temperature was maintained at 50 MPa for 60 minutes. Thereafter, the heating was stopped and the pressure was reduced to normal pressure at an average pressure reduction rate of 8 MPa / Hr. Thus, a coating of an insulating material having a thickness of 0.7 μm was obtained. Table 1 shows the results of measuring the dielectric constant and density of this insulating material and calculating the porosity in the same manner as in Example 1. Further, when the cross section of the insulating material film was observed with a TEM, it was found that voids having a diameter of 0.7 nm and a length of 6 nm were uniformly dispersed.

【0019】「比較例1」厚さ200nmのタンタルを
成膜したシリコンウエハ上に、樹脂ワニスAをスピンコ
ートした後、窒素雰囲気のオーブン中で加熱硬化した。
加熱硬化の際は、120℃で4分間、150℃で30分
間保持した後、400℃で60分間保持し、加熱を中止
した。このようにして、厚さ0.8μmの絶縁材料の被
膜を得た。実施例1と同様にして、この絶縁材料の誘電
率、密度を測定し、空隙率を算出した結果を表1に示
す。TEMによる絶縁材料皮膜の断面観察で空隙は観察
されなかった。
Comparative Example 1 A resin varnish A was spin-coated on a silicon wafer on which a 200 nm-thick tantalum film was formed, and then heated and cured in an oven in a nitrogen atmosphere.
In the case of heat curing, after holding at 120 ° C. for 4 minutes and at 150 ° C. for 30 minutes, holding at 400 ° C. for 60 minutes, heating was stopped. Thus, a 0.8 μm thick coating of an insulating material was obtained. Table 1 shows the results of measuring the dielectric constant and density of this insulating material and calculating the porosity in the same manner as in Example 1. No void was observed in the cross section of the insulating material film by TEM.

【0020】「比較例2」厚さ200nmのタンタルを
成膜したシリコンウエハ上に、樹脂ワニスBをスピンコ
ートした後、窒素雰囲気のオーブン中で加熱硬化した。
加熱硬化の際は、120℃で4分間、150℃で30分
間保持した後、400℃で60分間保持し、加熱を中止
した。このようにして、厚さ0.8μmの絶縁材料の被
膜を得た。実施例1と同様にして、この絶縁材料の誘電
率、密度を測定し、空隙率を算出した結果を表1に示
す。TEMによる絶縁材料皮膜の断面観察で空隙は観察
されなかった。
Comparative Example 2 A resin varnish B was spin-coated on a silicon wafer on which a 200 nm-thick tantalum film was formed, and then cured by heating in an oven in a nitrogen atmosphere.
In the case of heat curing, after holding at 120 ° C. for 4 minutes and at 150 ° C. for 30 minutes, holding at 400 ° C. for 60 minutes, heating was stopped. Thus, a 0.8 μm thick coating of an insulating material was obtained. Table 1 shows the results of measuring the dielectric constant and density of this insulating material and calculating the porosity in the same manner as in Example 1. No void was observed in the cross section of the insulating material film by TEM.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】本発明の微小な空隙を発生する工程を備
えている絶縁材料の製造方法によれば、電気特性および
耐熱性に優れた絶縁材料を得ることが可能になり、これ
らの特性が要求される様々な分野、例えば、半導体用の
層間絶縁膜、多層回路の層間絶縁膜などとして有用であ
る。
According to the method of the present invention for producing an insulating material having the step of generating minute voids, it is possible to obtain an insulating material having excellent electrical characteristics and heat resistance. It is useful as various fields required, for example, as an interlayer insulating film for a semiconductor, an interlayer insulating film of a multilayer circuit, and the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29K 79:00 H01L 21/90 S Q ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B29K 79:00 H01L 21/90 SQ

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 常温・常圧で気体状態のガスを高温高圧
下で絶縁材料に溶解させた後、1〜100MPa/Hr
の減圧速度で溶解時の圧力より低い雰囲気にさらして微
小な空隙を発生する工程を備えている絶縁材料の製造方
法。
1. A gas in a gaseous state at normal temperature and normal pressure is dissolved in an insulating material under high temperature and high pressure, and then 1 to 100 MPa / Hr
A method for producing an insulating material, comprising the step of exposing to an atmosphere lower than the pressure at the time of melting at a reduced pressure rate to generate minute voids.
【請求項2】 高温高圧下がガスの超臨界状態である請
求項1記載の絶縁材料の製造方法。
2. The method for producing an insulating material according to claim 1, wherein the high temperature and high pressure are in a supercritical state of the gas.
【請求項3】 絶縁材料の空隙率が10〜80容積%で
ある請求項1〜3記載のいずれかの絶縁材料の製造方
法。
3. The method according to claim 1, wherein the porosity of the insulating material is 10 to 80% by volume.
【請求項4】 絶縁材料が、ポリイミド樹脂又はポリイ
ミド前駆体、ポリベンゾオキサゾール樹脂又はポリベン
ゾオキサゾール前駆体、エポキシ樹脂の少なくとも1種
を含む請求項1〜3記載のいずれかの絶縁材料の製造方
法。
4. The method for producing an insulating material according to claim 1, wherein the insulating material includes at least one of a polyimide resin or a polyimide precursor, a polybenzoxazole resin, a polybenzoxazole precursor, and an epoxy resin. .
【請求項5】 ガスが二酸化炭素、窒素又はその混合ガ
スである請求項1〜4記載のいずれかの絶縁材料の製造
方法。
5. The method according to claim 1, wherein the gas is carbon dioxide, nitrogen, or a mixed gas thereof.
JP2000153912A 2000-05-25 2000-05-25 Method of manufacturing insulating material Pending JP2001332544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000153912A JP2001332544A (en) 2000-05-25 2000-05-25 Method of manufacturing insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000153912A JP2001332544A (en) 2000-05-25 2000-05-25 Method of manufacturing insulating material

Publications (1)

Publication Number Publication Date
JP2001332544A true JP2001332544A (en) 2001-11-30

Family

ID=18659085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000153912A Pending JP2001332544A (en) 2000-05-25 2000-05-25 Method of manufacturing insulating material

Country Status (1)

Country Link
JP (1) JP2001332544A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006500769A (en) * 2002-09-20 2006-01-05 ハネウェル・インターナショナル・インコーポレーテッド Interlayer adhesion promoter for low-k materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006500769A (en) * 2002-09-20 2006-01-05 ハネウェル・インターナショナル・インコーポレーテッド Interlayer adhesion promoter for low-k materials

Similar Documents

Publication Publication Date Title
JP4896309B2 (en) Method for producing porous polyimide resin
JP5928705B2 (en) Method for producing polyimide precursor solution, polyimide precursor solution using the same, and porous polyimide
JP2000044719A (en) Porous polyimide, its precusor and manufacture of porous polyimide
JP2001098160A (en) Resin composition for insulating material and insulating material using the same
JP2002003724A (en) Insulating material and method of producing the same
JP2001332544A (en) Method of manufacturing insulating material
JP3681106B2 (en) Organic insulating film material and organic insulating film
JP2001011181A (en) Resin composition for electrical insulation material and electrical insulation material using the same
JP2002220564A (en) Coating varnish for insulation film and insulation film by using the same
JP2001226599A (en) Resin composition for forming multi-layered wiring with void and multi-layered wiring with void using the same
JP2001217234A (en) Insulation material and its manufacturing method
JP2001354852A (en) Resin composition for insulation film and insulation film using the same
JP2004087336A (en) Insulating film material, coating varnish for insulating film and insulating film using this
JP2002356577A (en) Resin for porous insulating film, porous insulating film and production method thereof
JP2001283638A (en) Resin composition for insulating material and insulating material using the same
WO2013111241A1 (en) Polyimide precursor and resin composition using same
JP4590690B2 (en) Resin composition for insulating material and insulating material using the same
JP4951831B2 (en) Resin composition for insulating film and insulating film using the same
JP3724785B2 (en) Resin composition for insulating film and insulating film using the same
JP2001256829A (en) Composition for insulating material and insulating material and its manufacturing method
JP2000265057A (en) Heat-resistant resin precursor composition, production of heat-resistant resin, and heat-resistant resin
JP2001011180A (en) Resin composition for electrical insulation material and electrical insulation material using the same
JPH02167741A (en) Preparation of metal/polyimide composite
JP2002245855A (en) Resin component for insulation material, and insulation material using the same
JP2002222809A (en) Method for manufacturing porous insulation film