JP2001328900A - Method for forming thin film - Google Patents

Method for forming thin film

Info

Publication number
JP2001328900A
JP2001328900A JP2000142216A JP2000142216A JP2001328900A JP 2001328900 A JP2001328900 A JP 2001328900A JP 2000142216 A JP2000142216 A JP 2000142216A JP 2000142216 A JP2000142216 A JP 2000142216A JP 2001328900 A JP2001328900 A JP 2001328900A
Authority
JP
Japan
Prior art keywords
thin film
film
surface treatment
gas
hydroxyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000142216A
Other languages
Japanese (ja)
Inventor
Akinosuke Tera
亮之介 寺
Atsushi Yamamoto
敦司 山本
Harumi Suzuki
晴視 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000142216A priority Critical patent/JP2001328900A/en
Publication of JP2001328900A publication Critical patent/JP2001328900A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To relax stress generated in a thin film, and improve adhesion to the thin film, and further raise the film developing rate on a substrate by the Atomic Layer Epitaxy(ALE) method. SOLUTION: In forming Al2O3 film by ALE method using TMA and H2O on a glass substrate, CH3OH evaporated before forming film or during formation of film is introduced and surface treatment for increasing surface hydroxyl group concentration of the ground surface is carried out by exposing the ground surface in gas atmosphere of CH3OH.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板上に原子層成
長法(Atomic Layer Epitaxy)に
より薄膜を形成する薄膜の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a thin film on a substrate by an atomic layer epitaxy (Atomic Layer Epitaxy).

【0002】[0002]

【従来の技術】原子層成長法(Atomic Laye
r Epitaxy、以下、ALE法という)は、2種
以上の原料(元素または化合物)を交互に供給して、基
板表面の吸着反応、原料と目的生成物との蒸気圧の差を
利用することにより、1原子層または1分子層ずつ結晶
成長させる方法である。
2. Description of the Related Art Atomic layer growth (Atomic Layer)
r Epitaxy (hereinafter referred to as the ALE method) is a method in which two or more kinds of raw materials (elements or compounds) are alternately supplied to utilize an adsorption reaction on a substrate surface and a difference in vapor pressure between the raw materials and a target product. This is a method of growing crystals one atomic layer or one molecular layer at a time.

【0003】[0003]

【発明が解決しようとする課題】ALE法においては、
原料ガス分子の吸着機構は、Langmuir型であら
わせるような自己制御型の吸着機構が支配的な場合に限
られる。Langmuir型吸着機構では、原料の分圧
Piのもとで、原料の表面被覆率をθi、吸着速度定数
をKa、脱離速度定数をKdとすると、吸着速度はKa
Pi(1−θi)、脱離速度はKdθiで表される。こ
こで、吸着速度と脱離速度は等しいので、K=(Ka/
Kd)とすると、原料の表面被覆率θiは、次の数式1
にて示される。
SUMMARY OF THE INVENTION In the ALE method,
The adsorption mechanism of the source gas molecules is limited to the case where the self-control type adsorption mechanism such as the Langmuir type is dominant. In the Langmuir-type adsorption mechanism, when the surface coverage of the raw material is θi, the adsorption rate constant is Ka, and the desorption rate constant is Kd under the partial pressure Pi of the raw material, the adsorption rate is Ka.
Pi (1−θi) and the desorption rate are represented by Kdθi. Here, since the adsorption rate and the desorption rate are equal, K = (Ka /
Kd), the surface coverage θi of the raw material is given by
Indicated by

【0004】[0004]

【数1】θi=KaPi/(Kd+KaPi)=KPi
/(1+KPi) ここで、KPiが1より十分大きい、即ち、気相に存在
する原子または分子の量が吸着量に対し過飽和状態にな
っていれば、単原子層または単分子層形成が可能とな
る。
## EQU1 ## θi = KaPi / (Kd + KaPi) = KPi
/ (1 + KPi) Here, if KPi is sufficiently larger than 1, that is, if the amount of atoms or molecules present in the gas phase is supersaturated with respect to the adsorption amount, it is possible to form a monoatomic layer or a monolayer. Become.

【0005】しかしながら、KPiを1より十分大きい
状態としても、ほとんどの場合、下地面において、吸着
の立体障害や吸着サイトが不均一であり、単原子層また
は単分子層形成は実現されない。例えば、AlCl3
2Oとの反応によって500℃程度でALE法により
層を成長させると、0.045nm/サイクルの成膜レ
ートとなり、これは1分子層分に満たない。
However, even when KPi is set to a value sufficiently larger than 1, in most cases, the steric hindrance of adsorption and the adsorption sites are nonuniform on the base surface, and a monoatomic layer or a monomolecular layer cannot be formed. For example, when a layer is grown by the ALE method at about 500 ° C. by a reaction between AlCl 3 and H 2 O, the film formation rate becomes 0.045 nm / cycle, which is less than one molecular layer.

【0006】このことは、反応確率が低いことやガス流
れ等により、局所的にKPiが1より十分大きくないこ
とが原因である可能性も考えられるが、次に述べるよう
に表面吸着率の低下が大きいことが主原因であると考え
られる。まず、ALE成長過程では、下地面に吸着して
いる元素または化合物が、次に吸着する元素や化合物と
反応する。
[0006] This may be due to the fact that KPi is not sufficiently larger than 1 due to a low reaction probability or a gas flow. Is considered to be the main cause. First, in the ALE growth process, the element or compound adsorbed on the base surface reacts with the element or compound adsorbed next.

【0007】この時、系によっては、次に吸着する元素
や化合物が、既に吸着している複数の元素や化合物と反
応する。つまり、次に吸着する1個の元素や化合物が、
複数の吸着サイトに既に吸着している元素や化合物と反
応し結合するため、生成した目的生成物の結合力(分子
間力やファンデルワールス力)が、近接する吸着サイト
に吸着した元素または化合物にも働くので微視的な歪み
が生ずる。
At this time, depending on the system, the next adsorbed element or compound reacts with a plurality of already adsorbed elements or compounds. In other words, the next element or compound to be adsorbed is
The elements and compounds that have already been adsorbed to multiple adsorption sites react and bind, so the binding force (intermolecular force or Van der Waals force) of the generated target product is reduced to the elements or compounds adsorbed to adjacent adsorption sites. Therefore, microscopic distortion occurs.

【0008】そして、下地面に吸着している結合は、重
力や静電気力等にて吸着する物理吸着を除くと水素結合
などの強い結合であるため、上記の歪みは非常に大きい
ものとなる。これが原因でALE法にて成膜を続ける
と、結果として、出来上がった薄膜において、膜が収縮
しようとするいわば引っ張り応力が発生すると考えられ
る。
[0008] Since the bond adsorbed on the base surface is a strong bond such as a hydrogen bond excluding physical adsorption adsorbed by gravity, electrostatic force, or the like, the above distortion is extremely large. For this reason, if film formation is continued by the ALE method, as a result, it is considered that a so-called tensile stress is generated in the formed thin film so that the film tends to shrink.

【0009】ここで、このような複数の吸着サイト間に
結合力が及ぶ場合、たとえ全ての吸着サイトに均一に吸
着がなされた場合であっても、上記理由により薄膜内に
微視的な歪みが多少生じる。特に、下地面への吸着が不
均一である場合、やはり同様に反応するが、この場合、
微小空孔(元素等が吸着すべき吸着サイトであって吸着
がなされていない部分により生じる空孔)が存在する。
Here, when a bonding force is exerted between a plurality of such adsorption sites, even if all the adsorption sites are uniformly adsorbed, microscopic distortion occurs in the thin film for the above-mentioned reason. Occurs slightly. In particular, when the adsorption to the underlying surface is non-uniform, the same reaction still occurs, but in this case,
There are micropores (pores generated by a portion where an element or the like is to be adsorbed and is not adsorbed).

【0010】この微小空孔は、通常、反応後の目的生成
物の原子間距離よりも大きいため、近接元素または化合
物に働く結合力は、より大きくなる。従って、吸着が不
均一である場合には、上記の微視的な歪みも大きくな
り、問題となってくる。また、下地面への吸着が不均一
であると、薄膜の密着性が低下するのは明らかである。
さらに、吸着が不均一となることで、成膜領域において
部分的に成膜レートが遅い部分が生じ、結果的に全体の
成膜レートが遅くなる。
[0010] Since these microvoids are usually larger than the interatomic distance of the target product after the reaction, the bonding force acting on a nearby element or compound becomes larger. Therefore, when the adsorption is not uniform, the above-mentioned microscopic distortion is also increased, which causes a problem. Also, it is clear that the non-uniform adsorption on the underlying surface reduces the adhesion of the thin film.
Further, the non-uniform adsorption causes a portion where the film formation rate is partially low in the film formation region, and as a result, the whole film formation rate becomes slow.

【0011】以上のように、本発明者等の検討によれ
ば、ALE法はその成長機構から、優れた表面被覆率を
持つ薄膜を得ることが可能ではあるが、その元素または
化合物の下地面への吸着の不完全性から、本質的に薄膜
に引っ張り応力が発生し、薄膜のクラックや剥離といっ
た問題が生じ、また、薄膜の密着性の低下や成膜レート
が遅いといった問題も生じる。
As described above, according to the study of the present inventors, although the ALE method can obtain a thin film having an excellent surface coverage due to its growth mechanism, it is possible to obtain a thin film of the element or the compound. The incomplete adsorption of the thin film essentially generates tensile stress in the thin film, causing problems such as cracking and peeling of the thin film, and also causes problems such as a decrease in adhesion of the thin film and a low film forming rate.

【0012】本発明は上記問題に鑑み、基板上にALE
法により薄膜を形成する薄膜の形成方法において、薄膜
に発生する応力を緩和するとともに、薄膜の下地に対す
る密着性を向上させ、更に、成膜レートを向上させるこ
とを目的とする。
The present invention has been made in view of the above problems, and has been described in view of the above-described circumstances.
It is an object of the present invention to provide a thin film forming method for forming a thin film by a method, in which stress generated in the thin film is relieved, adhesion of the thin film to a base is improved, and a film forming rate is further improved.

【0013】[0013]

【課題を解決するための手段】本発明は、ALE法によ
り成膜を行う前または成膜中に、下地面に対して、ガス
の吸着サイトの表面密度を高める処理を行えばよいので
はないかとの考えに基づいてなされたものである。
According to the present invention, a process for increasing the surface density of gas adsorption sites on a base surface before or during film formation by the ALE method may be performed. It was made based on the idea of heels.

【0014】吸着サイトを決定付けるものは、下地面上
の水酸基である。これは、水酸基は水素結合による大き
な結合力を発生するため、下地に近づいてくる元素や化
合物を引きつけ、吸着しやすくできるためである。即
ち、下地面を水酸基化させる水酸基化終端処理を行うこ
とで、吸着サイトの表面密度を向上でき、薄膜の原料ガ
スの吸着を促進させることができる。
What determines the adsorption site is the hydroxyl group on the base surface. This is because a hydroxyl group generates a large bonding force due to a hydrogen bond, so that an element or a compound approaching the base can be attracted and easily adsorbed. That is, by performing the hydroxylation termination treatment for hydroxylating the base surface, the surface density of the adsorption site can be improved, and the adsorption of the raw material gas on the thin film can be promoted.

【0015】例えば、下地面がTiO2の場合、この下
地面をH2Oの気体に暴露させることにより、下地面に
表面水酸基が生ずる過程は、図5のように考えられる。
配位不飽和な表面Ti4 +イオンに吸着したH2Oは、隣
接するO2 -と水素結合をし、さらに、吸着H2OのOH
結合の切断により2つの表面水酸基が生成される。他の
酸化物についても、ほぼ同様な機構でH2Oの化学吸着
により表面水酸基が生成すると考えられる。
For example, when the underlying surface is made of TiO 2 , the process of exposing the underlying surface to H 2 O gas to generate surface hydroxyl groups on the underlying surface is considered as shown in FIG.
The H 2 O adsorbed on the coordinatively unsaturated surface Ti 4 + ion forms a hydrogen bond with the adjacent O 2 −, and further, the OH of the adsorbed H 2 O
Breakage of the bond produces two surface hydroxyl groups. It is considered that surface hydroxyl groups are also generated in other oxides by the chemical adsorption of H 2 O by a substantially similar mechanism.

【0016】請求項1〜請求項6記載の発明は、このよ
うな考えに基づいて実験検討を行った結果、見出された
ものであり、基板上に原子層成長法により薄膜を形成す
る方法であって、薄膜の成膜中及び成膜前の少なくとも
一方の時期に、下地面に対して表面水酸基濃度を高める
表面処理を行うことを特徴としている。
The invention described in claims 1 to 6 has been found as a result of an experimental study based on such a concept, and a method for forming a thin film on a substrate by an atomic layer growth method. In this case, the surface treatment for increasing the surface hydroxyl group concentration is performed on the underlying surface at least during or before the formation of the thin film.

【0017】それによれば、下地面における吸着サイト
の表面密度を向上でき、薄膜原料ガスの吸着を促進させ
ることができるため、下地面に対する元素や化合物の吸
着がより均一化する。従って、薄膜に発生する応力を緩
和するとともに、薄膜の下地に対する密着性を向上さ
せ、更に、成膜レートを向上させることができる。
According to this, the surface density of the adsorption sites on the base surface can be improved and the adsorption of the thin film source gas can be promoted, so that the adsorption of the elements and compounds on the base surface becomes more uniform. Therefore, the stress generated in the thin film can be reduced, the adhesion of the thin film to the base can be improved, and the film formation rate can be further improved.

【0018】また、請求項2の発明では、上記の表面処
理は、薄膜の原料とは異なる材料を用いて行うことを特
徴としている。この表面処理は、薄膜形成のための反応
には直接関与しないように、薄膜原料の導入時期とはタ
イミングをずらして行うが、本発明のように、薄膜原料
とは異なる材料を用いれば、当該表面処理を、より好適
に薄膜形成反応に関与しないようにすることができる。
Further, the invention of claim 2 is characterized in that the above-mentioned surface treatment is performed using a material different from the raw material of the thin film. This surface treatment is performed at a timing shifted from the introduction timing of the thin film raw material so as not to directly participate in the reaction for forming the thin film. However, as in the present invention, if a material different from the thin film raw material is used, the The surface treatment can be more suitably prevented from participating in the thin film forming reaction.

【0019】ここで、上記の表面処理は、下地面を、水
酸基を持つ分子の気体雰囲気中に暴露すること(請求項
3の発明)で行うことができる。この場合、水酸基を持
つ分子の気体を、当該分子をプラズマ化させた状態とし
たもの(請求項4の発明)とすれば、上記表面処理をよ
り効率的に行うことができる。また、上記表面処理は、
薄膜の成膜前に、下地面に対して、水酸基を持つ分子の
液体を噴霧すること(請求項5の発明)で行うこともで
きる。
Here, the above-mentioned surface treatment can be performed by exposing the base surface to a gas atmosphere of molecules having hydroxyl groups (the invention of claim 3). In this case, if the gas of the molecule having a hydroxyl group is in a state where the molecule is turned into plasma (the invention of claim 4), the surface treatment can be performed more efficiently. Also, the surface treatment is
Prior to the formation of the thin film, it can be performed by spraying a liquid of a molecule having a hydroxyl group onto the base surface (the invention of claim 5).

【0020】また、これらの表面処理方法に用いる水酸
基を持つ分子としては、H2O、H22、アルコール類
またはこれらの2種以上を組み合わせたものを、採用す
ることができる。
As the molecule having a hydroxyl group used in these surface treatment methods, H 2 O, H 2 O 2 , alcohols, or a combination of two or more of these can be employed.

【0021】なお、上記各手段の括弧内の符号は、後述
する実施形態に記載の具体的手段との対応関係を示す一
例である。
Note that the reference numerals in parentheses of the above means are examples showing the correspondence with specific means described in the embodiments described later.

【0022】[0022]

【発明の実施の形態】基板上に原子層成長法(ALE
法)により薄膜を形成する方法は、反応炉内に基板を設
置し、反応炉内へ、薄膜の原料ガスを導入することによ
りなされる。ここにおいて、下地面に対して表面水酸基
濃度を高める表面処理(以下、単に表面処理という)の
実行は、薄膜の成膜中及び成膜前の両方の時期にて行っ
ても、成膜中のみに行っても、成膜前のみに行っても良
い。
DETAILED DESCRIPTION OF THE INVENTION Atomic layer deposition (ALE) on a substrate
The method of forming a thin film by the method is performed by placing a substrate in a reaction furnace and introducing a raw material gas for the thin film into the reaction furnace. Here, the surface treatment (hereinafter, simply referred to as surface treatment) for increasing the surface hydroxyl group concentration on the base surface may be performed both during the film formation and before the film formation, or only during the film formation. Or may be performed only before film formation.

【0023】この表面処理に用いる材料としては、水酸
基を持つ分子よりなる化合物を用いることができ、具体
的には、H2O、H22、アルコール類またはこれらの
2種以上を組み合わせたものを採用することができる。
そして、これら表面処理用材料を用いた表面処理の方法
としては、次のような方法を採用することができる。
As the material used for the surface treatment, a compound consisting of a molecule having a hydroxyl group can be used. Specifically, H 2 O, H 2 O 2 , alcohols, or a combination of two or more of these are used. Things can be adopted.
The following method can be employed as a surface treatment method using these surface treatment materials.

【0024】まず、予め、水酸基を持つ分子よりなる化
合物を気化して、下地面をこの気体(水酸基を持つ分子
の気体)雰囲気に暴露する方法が挙げられる。例えば、
メタノールや水等の水酸基を持つ化合物の入った原料ボ
トルを加熱などして気化させ、N2やArなどのキャリ
アガスで、基板が入っている反応炉に導入すれば良い。
それにより、基板における薄膜の下地面が水酸基を持つ
分子の気体雰囲気中に暴露され、下地面に対して上記表
面処理が施される。
First, there is a method in which a compound comprising a molecule having a hydroxyl group is vaporized in advance, and the underlying surface is exposed to this gas (gas of a molecule having a hydroxyl group) atmosphere. For example,
A raw material bottle containing a compound having a hydroxyl group such as methanol or water may be vaporized by heating or the like, and then introduced into a reactor containing a substrate with a carrier gas such as N 2 or Ar.
As a result, the lower ground of the thin film on the substrate is exposed to the gaseous atmosphere of molecules having hydroxyl groups, and the above-described surface treatment is performed on the underlying surface.

【0025】ここで、水酸基を持つ分子の気体を、当該
分子をプラズマ化させた状態としたものとすれば、上記
表面処理をより効率的に行うことができる。即ち、反応
炉内において、対向して離間配置された一対の電極を設
け、これら電極の間に基板を設置して高周波電圧を印加
した状態で、水酸基を持つ分子の気体を導入する。する
と、当該分子がプラズマ化される(例えばCH3OHで
は、OH-やOHラジカルが生じる)ため、より活性な
反応が基板上で可能となり、効率的な表面処理が可能と
なる。
Here, when the gas of the molecule having a hydroxyl group is in a state where the molecule is converted into a plasma, the surface treatment can be performed more efficiently. That is, in the reaction furnace, a pair of electrodes which are opposed to and separated from each other are provided, a substrate is placed between these electrodes, and a gas having a hydroxyl group is introduced in a state where a high frequency voltage is applied. Then, the molecules are converted into plasma (for example, OH - and OH radicals are generated in CH 3 OH), so that a more active reaction can be performed on the substrate, and efficient surface treatment can be performed.

【0026】また、水酸基を持つ分子よりなる化合物の
液体を、下地面に対して噴霧するようにしても良い。例
えば、インジェクタなどを用いて、基板が配置された反
応炉内へ噴霧することが可能である。ただし、この場合
は、上記した下地面を水酸基を持つ分子の気体雰囲気に
暴露する方法に比べて、物理吸着する化合物が非常に多
く、これがALE法による層成長を阻害する。
Further, a liquid of a compound comprising a molecule having a hydroxyl group may be sprayed on the base surface. For example, it is possible to use an injector or the like to spray into a reactor in which the substrate is arranged. However, in this case, compared with the method of exposing the base surface to a gaseous atmosphere of molecules having a hydroxyl group, the number of compounds physically adsorbed is much larger, which hinders the layer growth by the ALE method.

【0027】そのため、基板を若干加熱したりN2やA
rガスなどの雰囲気にしたりして、この物理吸着分を除
去することが望ましい。さらには、真空にした反応炉内
に、水酸基を持つ化合物の液体を適量噴霧すれば、急激
な断熱膨張により気化するため、より効率的に噴霧によ
る表面処理が可能となる。
For this reason, the substrate is slightly heated or N 2 or A
It is desirable to remove this physically adsorbed component by using an atmosphere such as r gas. Furthermore, if a suitable amount of a liquid of a compound having a hydroxyl group is sprayed into a evacuated reactor, the compound is vaporized by rapid adiabatic expansion, so that surface treatment by spraying can be performed more efficiently.

【0028】次に、本実施形態について具体例を示しな
がら、更に説明する。ガラス基板上にTMA(テトラメ
チルアルミニウム、AlCl3)とH2Oにより、薄膜と
してAl23膜をALE成長させながら、メタノール
(CH3OH)の気体暴露による表面処理を行った場合
と行わない場合(比較例)とを示す。
Next, the present embodiment will be further described with reference to specific examples. Surface treatment by gas exposure of methanol (CH 3 OH) while performing ALE growth of an Al 2 O 3 film as a thin film with TMA (tetramethyl aluminum, AlCl 3 ) and H 2 O on a glass substrate No case (Comparative Example) is shown.

【0029】まず、ガラス基板上にTMAとH2Oを用
いたALE法によりAl23膜を形成する薄膜の形成方
法において、Al23膜の成膜前及び成膜中に、CH3
OHによる表面処理を行った場合(本実施形態の具体
例)を示す。そのフローを図1に示す。
First, in a thin film forming method for forming an Al 2 O 3 film on a glass substrate by an ALE method using TMA and H 2 O, the CH 2 film is formed before and during the formation of the Al 2 O 3 film. Three
A case where a surface treatment with OH is performed (a specific example of the present embodiment) is shown. The flow is shown in FIG.

【0030】40mm×40mm、厚さ1.1mmのガ
ラス製基板を、反応炉に入れた。その反応炉を40Pa
程度の真空にし、N2ガスを400sccm程度流しな
がら基板を加熱し基板温度を100℃に安定させた。C
3OHを原料ボトル内で30℃にて気化し、N2ガス4
00sccmで反応炉に30秒導入した。このCH3
Hの導入により、成膜前の表面処理を行った。
A glass substrate having a size of 40 mm × 40 mm and a thickness of 1.1 mm was placed in a reaction furnace. 40 Pa of the reactor
The substrate was heated under a vacuum of about 400 ° C. while flowing N 2 gas at about 400 sccm to stabilize the substrate temperature at 100 ° C. C
H 3 OH is vaporized in the raw material bottle at 30 ° C., and N 2 gas 4
It was introduced into the reactor at 00 sccm for 30 seconds. This CH 3 O
By introducing H, surface treatment before film formation was performed.

【0031】この後、TMA、H2O、CH3OHの順に
キャリアガスであるN2ガス400sccmで反応炉に
導入した。TMAおよびH2Oは、原料ボトル内にて室
温で気化し、キャリアガスであるN2ガス400scc
mで反応炉に導入した。
Thereafter, TMA, H 2 O, and CH 3 OH were introduced into the reaction furnace in the order of 400 sccm of N 2 gas as a carrier gas. TMA and H 2 O are vaporized in the raw material bottle at room temperature, and N 2 gas 400 scc as a carrier gas
m into the reactor.

【0032】反応炉へのガスは、まず気化TMAを0.
6秒導入した後、パージとしてN2ガスを2.4秒導入
した。その後、同様に気化H2Oを1.0秒、N2パージ
を1.0秒のガス導入時間にて成膜した。その後、成膜
中の表面処理を行うために、気化CH3OHをN2ガス4
00sccmで反応炉に3秒導入し、気相中のCH3
Hを排気するためN2パージを3sccm行った。
The gas to be supplied to the reaction furnace is prepared by first evaporating TMA to 0.1.
After the introduction for 6 seconds, N 2 gas was introduced for 2.4 seconds as a purge. Thereafter, similarly, a film was formed with a gas introduction time of vaporized H 2 O of 1.0 second and N 2 purge of 1.0 second. Thereafter, in order to perform surface treatment during film formation, vaporized CH 3 OH is changed to N 2 gas 4.
Introduced to the reaction furnace at 00 sccm for 3 seconds, and CH 3 O
N 2 purge was performed at 3 sccm to exhaust H.

【0033】このTMA導入→パージ→H2O導入→パ
ージ→CH3OH導入→パージのサイクルを5000回
繰り返し成膜を行った。この間、反応炉の圧力は150
〜320Paであり、基板温度は反応炉内のヒータによ
って100℃に保持した。成膜が終了した後は、N2
スを400sccm導入しながら、放置冷却を行い、基
板温度が70℃になった時点で反応炉を大気圧にし、基
板を取り出した。
This TMA introduction → purge → H 2 O introduction → purge → CH 3 OH introduction → purge cycle was repeated 5000 times to form a film. During this time, the reactor pressure was 150
The substrate temperature was kept at 100 ° C. by a heater in the reaction furnace. After completion of the film formation, the substrate was left standing and cooled while introducing N 2 gas at 400 sccm, and when the substrate temperature reached 70 ° C., the reactor was brought to atmospheric pressure and the substrate was taken out.

【0034】この手法により、膜厚約480nmのAl
23膜が得られた。この時の成膜レートは0.096n
m/サイクルであった。また成膜前後のガラス基板の反
り量から測定したAl23膜の応力は引っ張り応力で、
220MPaであった。
By this method, an Al film having a thickness of about 480 nm
A 2 O 3 film was obtained. The deposition rate at this time is 0.096 n
m / cycle. The stress of the Al 2 O 3 film measured from the amount of warpage of the glass substrate before and after film formation is a tensile stress,
It was 220 MPa.

【0035】次に、比較例として、ガラス基板上にTM
AとH2OによりAl23膜をALE成長させ、表面処
理を行わなかった場合を示す。そのフローを図2に示
す。上記と同様のサイズのガラス製基板を、反応炉に入
れ、上記具体例と同様に、反応炉を40Pa程度の真空
にし、N2ガスを400sccm程度流しながら基板を
加熱し基板温度を100℃に安定させた。
Next, as a comparative example, TM was placed on a glass substrate.
A case is shown in which an Al 2 O 3 film is grown by ALE using A and H 2 O, and no surface treatment is performed. The flow is shown in FIG. A glass substrate of the same size as above is placed in a reaction furnace, and the reaction furnace is evacuated to about 40 Pa and heated to a substrate temperature of 100 ° C. while flowing N 2 gas at about 400 sccm, similarly to the above specific example. Stabilized.

【0036】その後、TMA、H2Oの順にキャリアガ
スであるN2ガス400sccmで反応炉に導入した。
反応炉へのガスは、まず、気化TMAを0.6秒導入し
た後、基板表面に吸着した分子以外の気相に存在する過
剰のTMAを取り除くためのパージとしてN2ガスを
2.4秒導入した。その後、同様に気化H2Oを1.0
sec、N2パージを4.0秒のガス導入時間にて成膜
した。
Thereafter, TMA and H 2 O were introduced into the reaction furnace in the order of 400 sccm of N 2 gas as a carrier gas.
First, vaporized TMA was introduced into the reaction furnace for 0.6 seconds, and then N 2 gas was purged for 2.4 seconds as a purge for removing excess TMA existing in the gas phase other than molecules adsorbed on the substrate surface. Introduced. Thereafter, similarly, vaporized H 2 O was added for 1.0 hour.
The N 2 purge was formed for 4.0 seconds with a gas introduction time of 4.0 seconds.

【0037】このTMA導入→パージ→H2O導入→パ
ージのサイクルを5000回繰り返し成膜を行った。こ
の間、反応炉の圧力は150〜300Paであり、基板
温度は反応炉内のヒータによって100℃に保持した。
成膜が終了した後は、N2ガスを400sccm導入し
ながら、放置冷却を行い、基板温度が70℃になった時
点で反応炉を大気圧にし、基板を取り出した。
The cycle of TMA introduction → purge → H 2 O introduction → purge was repeated 5000 times to form a film. During this time, the pressure in the reactor was 150 to 300 Pa, and the substrate temperature was kept at 100 ° C. by a heater in the reactor.
After completion of the film formation, the substrate was left standing and cooled while introducing N 2 gas at 400 sccm, and when the substrate temperature reached 70 ° C., the reactor was brought to atmospheric pressure and the substrate was taken out.

【0038】この手法により、膜厚約400nmのAl
23膜が得られた。この時の成膜レートは0.08nm
/サイクルであった。また成膜前後のガラス基板の反り
量から測定したAl23膜の応力は、引っ張り応力で、
430MPaであった。
By this method, an Al film having a thickness of about 400 nm
A 2 O 3 film was obtained. The deposition rate at this time is 0.08 nm
/ Cycle. The stress of the Al 2 O 3 film measured from the amount of warpage of the glass substrate before and after film formation is a tensile stress,
It was 430 MPa.

【0039】図3は、上記本実施形態の具体例と比較例
との結果に基づき、本発明の応力緩和の効果を具体的に
示す図である。表面処理を行った方は応力が緩和されて
いるのが分かる。また、図4は、上記本実施形態の具体
例と比較例との結果に基づき、本発明の成膜レート向上
の効果を具体的に示す図である。表面処理を行った場合
は行わなかった場合に比べて、成膜レートは約1.2倍
に速くなり、成膜レートも向上している。また、成膜レ
ートが向上したことから、吸着が均一化し、薄膜の密着
性も向上できていると言える。
FIG. 3 is a diagram specifically showing the effect of stress relaxation of the present invention based on the results of the specific example of this embodiment and the comparative example. It can be seen that the stress was reduced when the surface treatment was performed. FIG. 4 is a diagram specifically showing the effect of improving the film forming rate of the present invention based on the results of the specific example of the present embodiment and the comparative example. When the surface treatment was performed, the film formation rate was about 1.2 times faster than when the surface treatment was not performed, and the film formation rate was also improved. In addition, it can be said that since the film formation rate has been improved, the adsorption has become uniform, and the adhesion of the thin film has also been improved.

【0040】このように、ALE法において、薄膜の成
膜中及び成膜前の少なくとも一方の時期に、下地面に対
して表面水酸基濃度を高める表面処理を行うことによ
り、下地面における吸着サイトの表面密度を向上でき、
薄膜原料ガスの吸着を促進させることができるため、下
地面に対する元素や化合物の吸着がより均一化する。従
って、薄膜に発生する応力を緩和するとともに、薄膜の
下地に対する密着性を向上させ、更に、成膜レートを向
上させることができる。
As described above, in the ALE method, the surface treatment for increasing the surface hydroxyl concentration on the base surface is performed at least during or before the formation of the thin film, so that the adsorption sites on the base surface can be reduced. Surface density can be improved,
Since the adsorption of the thin-film source gas can be promoted, the adsorption of the elements and compounds on the base surface becomes more uniform. Therefore, the stress generated in the thin film can be reduced, the adhesion of the thin film to the base can be improved, and the film formation rate can be further improved.

【0041】ここで、上記の表面処理は、薄膜の原料
(上記例ではTMAやH2O)とは異なる材料(上記例
ではCH3OH)用いて行うことにより、表面処理が、
薄膜形成のための反応には直接関与しないようにするこ
とを、好適に実現できる。なお、表面処理を薄膜原料と
同じ材料で行っても良い。例えば、上記具体例の場合、
表面処理をH2Oで行っても良い。この場合、TMA導
入→パージ→薄膜原料としてのH2O導入→パージ→表
面処理用材料としてのH2O導入→パージのサイクルを
行うようにすればよい。
Here, the surface treatment is performed by using a material (CH 3 OH in the above example) different from the raw material of the thin film (TMA or H 2 O in the above example).
It is possible to suitably realize that the reaction for forming a thin film is not directly involved. The surface treatment may be performed using the same material as the thin film material. For example, in the case of the above example,
The surface treatment may be performed with H 2 O. In this case, it is sufficient to perform the cycle of H 2 O introduced → purge as H 2 O introduced → purge → surface treatment material as TMA introduction → purge → thin material.

【0042】また、表面処理用材料としては、水酸基を
持つ分子以外にも、例えば、エーテル系化合物、ケトン
系化合物、カルボン酸系化合物等の、エーテル結合、カ
ルボキシル基、カルボニル基を持つ分子等から適宜選択
しても良い。
Examples of the surface treatment material include molecules having an ether bond, a carboxyl group, and a carbonyl group, such as ether compounds, ketone compounds, and carboxylic compounds, in addition to molecules having a hydroxyl group. It may be selected as appropriate.

【0043】なお、本発明は、例えば、基板上に、一対
の電極間に有機発光層を挟んでなる構造体を配置してな
る有機EL素子において、この構造体を被覆して保護す
る保護膜を形成する場合等に適用することができる。
The present invention provides, for example, a protective film for covering and protecting this structure in an organic EL device having a structure in which an organic light emitting layer is interposed between a pair of electrodes on a substrate. Can be applied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る薄膜の形成方法を示す
流れ図である。
FIG. 1 is a flowchart showing a method for forming a thin film according to an embodiment of the present invention.

【図2】比較例としての薄膜の形成方法を示す流れ図で
ある。
FIG. 2 is a flowchart showing a method for forming a thin film as a comparative example.

【図3】本発明の薄膜の応力緩和の効果を具体的に示す
図である。
FIG. 3 is a view specifically showing the effect of stress relaxation of the thin film of the present invention.

【図4】本発明の成膜レート向上の効果を具体的に示す
図である。
FIG. 4 is a diagram specifically showing an effect of improving a film forming rate according to the present invention.

【図5】下地面がTiO2の場合のH2O暴露による表面
水酸基が生ずる過程の推定メカニズムを示す図である。
FIG. 5 is a view showing a presumed mechanism of a process in which a surface hydroxyl group is generated by exposure to H 2 O when a base surface is TiO 2 .

フロントページの続き (72)発明者 鈴木 晴視 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 4G077 AA03 BB01 DB08 DB13 EE01Continued on the front page (72) Inventor Harumi Suzuki 1-1-1, Showa-cho, Kariya-shi, Aichi F-term in DENSO Corporation (reference) 4G077 AA03 BB01 DB08 DB13 EE01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基板上に原子層成長法により薄膜を形成
する方法であって、前記薄膜の成膜中及び成膜前の少な
くとも一方の時期に、下地面に対して表面水酸基濃度を
高める表面処理を行うことを特徴とする薄膜の形成方
法。
1. A method for forming a thin film on a substrate by an atomic layer growth method, comprising: increasing a surface hydroxyl group concentration with respect to an underlayer surface at least during or before forming the thin film. A method for forming a thin film, comprising performing a treatment.
【請求項2】 前記表面処理は、前記薄膜の原料とは異
なる材料を用いて行うことを特徴とする請求項1に記載
の薄膜の形成方法。
2. The method according to claim 1, wherein the surface treatment is performed using a material different from a material of the thin film.
【請求項3】 前記表面処理は、前記下地面を、水酸基
を持つ分子の気体雰囲気中に暴露することによりなされ
ることを特徴とする請求項1または2に記載の薄膜の形
成方法。
3. The method according to claim 1, wherein the surface treatment is performed by exposing the base surface to a gas atmosphere of molecules having hydroxyl groups.
【請求項4】 前記水酸基を持つ分子の気体は、当該分
子をプラズマ化させた状態としたものであることを特徴
とする請求項3に記載の薄膜の形成方法。
4. The method for forming a thin film according to claim 3, wherein the gas of the molecule having a hydroxyl group is in a state where the molecule is converted into a plasma.
【請求項5】 前記表面処理は、前記薄膜の成膜前に、
前記下地面に対して、水酸基を持つ分子の液体を噴霧す
ることによりなされることを特徴とする請求項1または
2に記載の薄膜の形成方法。
5. The method according to claim 1, wherein the surface treatment is performed before forming the thin film.
The method according to claim 1, wherein the method is performed by spraying a liquid of a molecule having a hydroxyl group onto the base surface.
【請求項6】 前記水酸基を持つ分子が、H2O、H2
2、アルコール類またはこれらの2種以上を組み合わせ
たものであることを特徴とする請求項3ないし5のいず
れか1つに記載の薄膜の形成方法。
6. The compound having a hydroxyl group as H 2 O, H 2 O
2, an alcohol or forming a thin film according to any one of claims 3 to 5, characterized in that a combination of two or more thereof.
JP2000142216A 2000-05-15 2000-05-15 Method for forming thin film Withdrawn JP2001328900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000142216A JP2001328900A (en) 2000-05-15 2000-05-15 Method for forming thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000142216A JP2001328900A (en) 2000-05-15 2000-05-15 Method for forming thin film

Publications (1)

Publication Number Publication Date
JP2001328900A true JP2001328900A (en) 2001-11-27

Family

ID=18649229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000142216A Withdrawn JP2001328900A (en) 2000-05-15 2000-05-15 Method for forming thin film

Country Status (1)

Country Link
JP (1) JP2001328900A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551929B1 (en) 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
US6620670B2 (en) 2002-01-18 2003-09-16 Applied Materials, Inc. Process conditions and precursors for atomic layer deposition (ALD) of AL2O3
US6620723B1 (en) 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US6660126B2 (en) 2001-03-02 2003-12-09 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US6720027B2 (en) 2002-04-08 2004-04-13 Applied Materials, Inc. Cyclical deposition of a variable content titanium silicon nitride layer
US6729824B2 (en) 2001-12-14 2004-05-04 Applied Materials, Inc. Dual robot processing system
US6734020B2 (en) 2001-03-07 2004-05-11 Applied Materials, Inc. Valve control system for atomic layer deposition chamber
US6765178B2 (en) 2000-12-29 2004-07-20 Applied Materials, Inc. Chamber for uniform substrate heating
US6773507B2 (en) 2001-12-06 2004-08-10 Applied Materials, Inc. Apparatus and method for fast-cycle atomic layer deposition
US6825447B2 (en) 2000-12-29 2004-11-30 Applied Materials, Inc. Apparatus and method for uniform substrate heating and contaminate collection
US6827978B2 (en) 2002-02-11 2004-12-07 Applied Materials, Inc. Deposition of tungsten films
US6833161B2 (en) 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
US7659158B2 (en) 2008-03-31 2010-02-09 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US7695563B2 (en) 2001-07-13 2010-04-13 Applied Materials, Inc. Pulsed deposition process for tungsten nucleation
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US7732327B2 (en) 2000-06-28 2010-06-08 Applied Materials, Inc. Vapor deposition of tungsten materials
US7745333B2 (en) 2000-06-28 2010-06-29 Applied Materials, Inc. Methods for depositing tungsten layers employing atomic layer deposition techniques
US7779784B2 (en) 2002-01-26 2010-08-24 Applied Materials, Inc. Apparatus and method for plasma assisted deposition
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US7780788B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US7780785B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US7794544B2 (en) 2004-05-12 2010-09-14 Applied Materials, Inc. Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US7798096B2 (en) 2006-05-05 2010-09-21 Applied Materials, Inc. Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool
US7867914B2 (en) 2002-04-16 2011-01-11 Applied Materials, Inc. System and method for forming an integrated barrier layer
US7964505B2 (en) 2005-01-19 2011-06-21 Applied Materials, Inc. Atomic layer deposition of tungsten materials
US8123860B2 (en) 2002-01-25 2012-02-28 Applied Materials, Inc. Apparatus for cyclical depositing of thin films
US8323754B2 (en) 2004-05-21 2012-12-04 Applied Materials, Inc. Stabilization of high-k dielectric materials
US9040969B2 (en) 2012-09-20 2015-05-26 Denso Corporation Organic electroluminescence display device and method for manufacturing the same
US9587310B2 (en) 2001-03-02 2017-03-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620723B1 (en) 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US7846840B2 (en) 2000-06-28 2010-12-07 Applied Materials, Inc. Method for forming tungsten materials during vapor deposition processes
US6551929B1 (en) 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
US7745333B2 (en) 2000-06-28 2010-06-29 Applied Materials, Inc. Methods for depositing tungsten layers employing atomic layer deposition techniques
US7732327B2 (en) 2000-06-28 2010-06-08 Applied Materials, Inc. Vapor deposition of tungsten materials
US7674715B2 (en) 2000-06-28 2010-03-09 Applied Materials, Inc. Method for forming tungsten materials during vapor deposition processes
US6825447B2 (en) 2000-12-29 2004-11-30 Applied Materials, Inc. Apparatus and method for uniform substrate heating and contaminate collection
US6765178B2 (en) 2000-12-29 2004-07-20 Applied Materials, Inc. Chamber for uniform substrate heating
US9012334B2 (en) 2001-02-02 2015-04-21 Applied Materials, Inc. Formation of a tantalum-nitride layer
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US8114789B2 (en) 2001-02-02 2012-02-14 Applied Materials, Inc. Formation of a tantalum-nitride layer
US6660126B2 (en) 2001-03-02 2003-12-09 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US9587310B2 (en) 2001-03-02 2017-03-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US6734020B2 (en) 2001-03-07 2004-05-11 Applied Materials, Inc. Valve control system for atomic layer deposition chamber
US7695563B2 (en) 2001-07-13 2010-04-13 Applied Materials, Inc. Pulsed deposition process for tungsten nucleation
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US7780788B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US7780785B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US8668776B2 (en) 2001-10-26 2014-03-11 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
US6773507B2 (en) 2001-12-06 2004-08-10 Applied Materials, Inc. Apparatus and method for fast-cycle atomic layer deposition
US6729824B2 (en) 2001-12-14 2004-05-04 Applied Materials, Inc. Dual robot processing system
US6620670B2 (en) 2002-01-18 2003-09-16 Applied Materials, Inc. Process conditions and precursors for atomic layer deposition (ALD) of AL2O3
US8123860B2 (en) 2002-01-25 2012-02-28 Applied Materials, Inc. Apparatus for cyclical depositing of thin films
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US7779784B2 (en) 2002-01-26 2010-08-24 Applied Materials, Inc. Apparatus and method for plasma assisted deposition
US6827978B2 (en) 2002-02-11 2004-12-07 Applied Materials, Inc. Deposition of tungsten films
US7745329B2 (en) 2002-02-26 2010-06-29 Applied Materials, Inc. Tungsten nitride atomic layer deposition processes
US6833161B2 (en) 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
US6720027B2 (en) 2002-04-08 2004-04-13 Applied Materials, Inc. Cyclical deposition of a variable content titanium silicon nitride layer
US7867914B2 (en) 2002-04-16 2011-01-11 Applied Materials, Inc. System and method for forming an integrated barrier layer
US8282992B2 (en) 2004-05-12 2012-10-09 Applied Materials, Inc. Methods for atomic layer deposition of hafnium-containing high-K dielectric materials
US8343279B2 (en) 2004-05-12 2013-01-01 Applied Materials, Inc. Apparatuses for atomic layer deposition
US7794544B2 (en) 2004-05-12 2010-09-14 Applied Materials, Inc. Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US8323754B2 (en) 2004-05-21 2012-12-04 Applied Materials, Inc. Stabilization of high-k dielectric materials
US7964505B2 (en) 2005-01-19 2011-06-21 Applied Materials, Inc. Atomic layer deposition of tungsten materials
US7798096B2 (en) 2006-05-05 2010-09-21 Applied Materials, Inc. Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool
US8043907B2 (en) 2008-03-31 2011-10-25 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US7659158B2 (en) 2008-03-31 2010-02-09 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US9040969B2 (en) 2012-09-20 2015-05-26 Denso Corporation Organic electroluminescence display device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2001328900A (en) Method for forming thin film
JP2020533808A (en) Defect removal of selective deposition by chemical etching
JP3889071B2 (en) Crystalline semiconductor manufacturing method
JP4325095B2 (en) Manufacturing method of SiC element
JP3889073B2 (en) Crystalline semiconductor manufacturing method
JP2007016277A (en) Method for forming silicon oxide film
KR102027776B1 (en) Method for manufacturing pattern using infinite area-selective atomic layer deposition
JPS6046372A (en) Thin film forming method
JP2982055B2 (en) Method for producing fine metal particles of gold, silver or copper
JPH02208925A (en) Formation of semiconductor film
JPH0658889B2 (en) Thin film formation method
JPH0431391A (en) Epitaxial growth
JP2000331942A (en) Manufacture of semiconductor thin film, apparatus for the same, and semiconductor device
JPS6355929A (en) Manufacture of semiconductor thin film
JP2997849B2 (en) Method for forming silicon oxide film
JPS6225249B2 (en)
JPS6341014A (en) Epitaxial growth method
JPS6242417A (en) Thin film forming method
JP2003055294A (en) Raw material for cvd and method for producing the same and method for chemical vapor deposition of ruthenium or ruthenium compound thin film
KR970013401A (en) Method for manufacturing crystalline semiconductor
JPS63282270A (en) Production of semiconductor device
JPH01103991A (en) Formation of artificial diamond film
JP2001003176A (en) Method for forming fine structure pattern
JPH04214629A (en) Wiring formation method
JPH0713944B2 (en) Chemical vapor deposition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807