JP2001309501A - Noncontact power supply device - Google Patents

Noncontact power supply device

Info

Publication number
JP2001309501A
JP2001309501A JP2000119203A JP2000119203A JP2001309501A JP 2001309501 A JP2001309501 A JP 2001309501A JP 2000119203 A JP2000119203 A JP 2000119203A JP 2000119203 A JP2000119203 A JP 2000119203A JP 2001309501 A JP2001309501 A JP 2001309501A
Authority
JP
Japan
Prior art keywords
power supply
supply device
core
primary
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000119203A
Other languages
Japanese (ja)
Inventor
Eiji Kondo
英二 近藤
Hitoshi Hosoe
仁 細江
Masuo Osumi
升男 大隅
Shinji Isaji
伸司 伊佐治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP2000119203A priority Critical patent/JP2001309501A/en
Publication of JP2001309501A publication Critical patent/JP2001309501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a noncontact power supply device in which a region for performing power supply operation is enlarged. SOLUTION: An arm 3b stretching to the outside from both ends of a primary core 3 whose longitudinal section is formed in a C-shape is installed, so that the transversal width of a power supply head 1 is constituted to be wide. As a result, magnetic flux can be interlinked with a secondary core 4 in a continuous and wide range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気機器等に電磁
誘導により非接触で電力を供給する給電装置の改良に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a power supply apparatus for supplying electric power to electric equipment or the like in a non-contact manner by electromagnetic induction.

【0002】[0002]

【従来の技術】従来から接触式の給電装置を利用した電
気機器として搬送装置がよく知られている。前記搬送装
置に利用される接触給電装置としては、例えば、給電側
(1次側)にトローリー線を引き回し、物体を乗載して
移動する受電側(2次側)に備えたブラシに前記トロー
リー線を接触させることにより、1次側から2次側に給
電を行っていた。
2. Description of the Related Art A transfer device is well known as an electric device using a contact-type power supply device. As the contact power supply device used in the transport device, for example, a trolley wire is routed to a power supply side (primary side), and a brush provided on a power receiving side (secondary side) on which an object is mounted and moves is mounted on the trolley. Power was supplied from the primary side to the secondary side by contacting the wires.

【0003】しかし、このような接触給電装置は、トロ
ーリー線とブラシが接触した際に大気中にカーボン粉が
飛散するため、クリーンルーム内での使用とか食料品の
搬送手段等、所謂、清潔,衛生状態の確保を至上とする
場所での使用は非常に困難であった。
However, in such a contact power supply device, when the trolley wire and the brush come into contact with each other, the carbon powder is scattered into the atmosphere, so that it is used in a clean room or means for transporting food, so-called clean and sanitary. It was very difficult to use it in places where it was necessary to secure the condition.

【0004】また、前記トローリー線とブラシは接触に
より磨耗するため、良好に給電動作を継続するには、頻
繁にメンテナンスして部品の交換が必要となる等、非常
に不経済であった。
Further, since the trolley wire and the brush are worn due to contact, it is extremely uneconomical, for example, frequent maintenance and replacement of parts are required to continue good power supply operation.

【0005】そこで、前述した問題を解決する手段とし
て、非接触式の給電装置が種々開発されているものの、
現状の搬送機器に用いられる非接触給電装置としては、
1次側に設置した高周波電流源にリッツ線(高周波にお
ける電流の表皮効果を軽減する電線)を接続し、このリ
ッツ線に電流を流して磁束を誘起させ、前記磁束を2次
側のコアに鎖交させることにより、2次側の負荷に給電
するというカレントトランス方式のものが一般に使用さ
れていた。
In order to solve the above-mentioned problem, various non-contact power supply devices have been developed.
As a non-contact power supply device used for current transport equipment,
A litz wire (electric wire for reducing the skin effect of high-frequency current) is connected to a high-frequency current source installed on the primary side, and a current is caused to flow through this litz wire to induce a magnetic flux. A current transformer type in which power is supplied to a load on the secondary side by linking is generally used.

【0006】このようなカレントトランス方式の非接触
給電装置においては、1次側の高周波電流源やリッツ線
が非常に高価であり、しかも、リッツ線を配線する際、
前記リッツ線を2次側のコアと接触しないように精度よ
く引き回さなければならず、非常に手間と時間を要し面
倒であった。
In such a non-contact power supply device of the current transformer type, the high-frequency current source and the litz wire on the primary side are very expensive.
The litz wire had to be routed with high precision so as not to come into contact with the core on the secondary side, which required much labor and time and was troublesome.

【0007】そこで、本発明者は、既に特許出願を行っ
た特願2000−073423号の明細書において、高
価な高周波電流源やリッツ線を用いることなく、安価
で、かつ、簡素な構成の非接触給電装置を提案した。
In view of this, the present inventor has disclosed in the specification of Japanese Patent Application No. 2000-073423, which has already filed a patent application, an inexpensive and simple configuration without using an expensive high-frequency current source or litz wire. A contact power supply was proposed.

【0008】[0008]

【発明が解決しようとする課題】然るに、前記特願20
00−073423号の明細書に記載した非接触給電装
置は、工場ラインの一定位置で給電動作(給電側と受電
側が相対的に移動せずに停止(固定)した状態で行う給
電動作)させる場合には非常に有効であるが、例えば、
搬送装置のように、給電側に対して相対的に移動する受
電側への給電動作を行うことはできなかった。
However, the above-mentioned Japanese Patent Application No.
The non-contact power supply device described in the specification of 00-073423 performs a power supply operation at a fixed position on a factory line (a power supply operation performed in a state where the power supply side and the power reception side are stopped (fixed) without relatively moving). Is very useful for, for example,
As in the case of the transfer device, the power supply operation to the power receiving side that moves relatively to the power supply side cannot be performed.

【0009】そこで、本発明は、前述した課題に鑑み、
給電側に対し相対的に移動する受電側に、連続状態で、
かつ、非接触で電力を給電できるようにした非接触給電
装置を提供する。
Therefore, the present invention has been made in view of the above-mentioned problems,
On the receiving side that moves relatively to the feeding side, in a continuous state,
In addition, a contactless power supply device capable of supplying electric power without contact is provided.

【0010】[0010]

【問題を解決するための手段】請求項1記載の非接触給
電装置は、結合トランスの1次コアの本体部をC形に形
成し、前記C形に形成した本体部と前記本体部の脚の両
端より外側に延出する腕部により1次コアを構成した。
According to a first aspect of the present invention, there is provided a contactless power supply device, wherein a main body of a primary core of a coupling transformer is formed in a C shape, and the main body formed in the C shape and a leg of the main body are formed. The primary core was constituted by arms extending outward from both ends of the core.

【0011】請求項2記載の非接触給電装置は、結合ト
ランスの2次コアの本体部をC形に形成し、前記C形に
形成した本体部と前記本体部の脚の両端より外側に延出
する腕部により2次コアを構成した。
According to a second aspect of the present invention, the main body of the secondary core of the coupling transformer is formed in a C-shape, and the main body formed in the C-shape and extending outward from both ends of the legs of the main body. A secondary core was constituted by the protruding arms.

【0012】請求項3記載の非接触給電装置は、請求項
1,2記載の非接触給電装置において、結合トランスの
1次側には、1次コアと1次巻線を備えた給電ヘッド、
および、前記1次巻線に高周波の交番電流を流す給電回
路を複数併設した。
According to a third aspect of the present invention, there is provided a non-contact power supply device according to the first and second aspects, wherein a primary core and a primary winding are provided on a primary side of the coupling transformer;
Further, a plurality of power supply circuits for supplying a high-frequency alternating current to the primary winding are provided.

【0013】請求項4記載の非接触給電装置は、請求項
3記載の非接触給電装置において、結合トランスの1次
側には、複数の1次巻線に流す交番電流が同期するよう
に給電回路を制御する発振回路を備えて構成した。
According to a fourth aspect of the present invention, there is provided the non-contact power supply device according to the third aspect, wherein power is supplied to the primary side of the coupling transformer such that the alternating current flowing through the plurality of primary windings is synchronized. An oscillator circuit for controlling the circuit was provided.

【0014】請求項5記載の非接触給電装置は、請求項
1ないし4記載の非接触給電装置において、結合トラン
スの2次側には、2次コアと2次巻線を備えた受電ヘッ
ドと受電回路を複数併設した。
According to a fifth aspect of the present invention, there is provided the non-contact power supply device according to the first to fourth aspects, further comprising a power receiving head having a secondary core and a secondary winding on a secondary side of the coupling transformer. Multiple power receiving circuits were installed.

【0015】請求項6記載の非接触給電装置は、請求項
1ないし5記載の非接触給電装置において、結合トラン
スの2次側に備えた受電ヘッドは、1次側に複数備えた
給電ヘッドに対向させた状態で、1次コアの脚の両端よ
り外側に延出する腕部と同方向に平行移動するように構
成し、前記結合トランスの1次側の連続した範囲におい
て、結合トランスの2次側に連続給電可能とした。
According to a sixth aspect of the present invention, there is provided the contactless power supply device according to any one of the first to fifth aspects, wherein the power receiving head provided on the secondary side of the coupling transformer is connected to the plurality of power supply heads provided on the primary side. In a state where the armatures extend outward from both ends of the legs of the primary core, the armatures are configured to move in parallel in the same direction with the arm portions extending outward from both ends of the primary core. Continuous power can be supplied to the next side.

【0016】請求項7記載の非接触給電装置は、請求項
1ないし6記載の非接触給電装置において、結合トラン
スの1次コアの脚間に、前記脚間で鎖交する漏れ磁束を
渦電流にて減少させる非磁性体金属からなる漏れ磁束調
整機能素子を介挿した。
According to a seventh aspect of the present invention, there is provided the non-contact power supply device according to any one of the first to sixth aspects, wherein a leakage magnetic flux interlinking between the legs of the primary core of the coupling transformer is generated by eddy current. A leak magnetic flux adjusting function element made of a non-magnetic metal to be reduced by was inserted.

【0017】請求項8記載の非接触給電装置は、請求項
7記載の非接触給電装置において、磁束調整機能素子の
厚さを1mm以上に設定して構成した。
According to an eighth aspect of the present invention, in the non-contact power supply device according to the seventh aspect, the thickness of the magnetic flux adjusting function element is set to 1 mm or more.

【0018】請求項9記載の非接触給電装置は、請求項
1ないし8記載の非接触給電装置において、結合トラン
スの1次側に備えた給電ヘッドは、2次コアと対向する
面と、複数併設した給電ヘッド同士が隣接する面以外を
非磁性体の金属により形成したケーシングを備えて構成
した。
According to a ninth aspect of the present invention, the power supply head provided on the primary side of the coupling transformer has a surface facing the secondary core, and The power supply head is provided with a casing formed of a nonmagnetic metal except for the surface adjacent to the power supply heads.

【0019】請求項10記載の非接触給電装置は、請求
項1ないし9記載の非接触給電装置において、結合トラ
ンスの2次側に備えた受電ヘッドは、2次コアの脚の両
端より外側に延出する腕部の端面と、1次コアと対向す
る面以外を非磁性体の金属により形成したケーシングを
備えて構成した。
According to a tenth aspect of the present invention, there is provided the non-contact power feeding device according to the first to ninth aspects, wherein the power receiving head provided on the secondary side of the coupling transformer is located outside both ends of the legs of the secondary core. The casing was provided with a casing formed of a nonmagnetic metal except for the end face of the extending arm and the face facing the primary core.

【0020】本発明の非接触給電装置は、前記結合トラ
ンスの1次コアおよび2次コアを、縦断面形状をC形に
形成した本体部と、本体部の脚の両端より外側に延出す
る腕部にて構成することにより、1次コアにて誘起され
た磁束を広い範囲で2次コアに鎖交させることを可能と
した。
In the contactless power supply device of the present invention, the primary core and the secondary core of the coupling transformer extend outwardly from both ends of a main body having a C-shaped longitudinal section and legs of the main body. By configuring the arm, the magnetic flux induced in the primary core can be linked to the secondary core in a wide range.

【0021】また、本発明の非接触給電装置は、1次コ
アと高周波の交番電流を流すための給電回路とを複数併
設し、前記給電回路を同期運転するように構成したの
で、1次側の連続した範囲で給電動作を良好に行うこと
ができる。
Further, the non-contact power supply device of the present invention is provided with a plurality of primary cores and a plurality of power supply circuits for supplying a high-frequency alternating current, so that the power supply circuits are operated synchronously. The power supply operation can be performed satisfactorily in the continuous range of.

【0022】さらに、本発明の非接触給電装置は、2次
コアおよび受電回路を複数併設することにより、前記1
次コアに対向した状態で、前記2次コアおよび受電回路
を平行移動させれば、1次側から2次側の複数の負荷に
対して、順次電力を連続して供給することができ、利便
である。
Further, the non-contact power supply device of the present invention has a plurality of secondary cores and a plurality of power receiving circuits, so that
If the secondary core and the power receiving circuit are moved in parallel while facing the secondary core, power can be sequentially and continuously supplied from the primary side to a plurality of loads on the secondary side, which is convenient. It is.

【0023】しかも、本発明の非接触給電装置は、1次
コアの脚間に非磁性体の金属からなる磁束調整機能素子
を設置し、かつ、結合トランスの1次側のケーシング
を、2次コアと対向する面と、複数併設した結合トラン
スの1次側同士が隣接する面以外を非磁性体の金属によ
り構成し、また、前記結合トランスの2次側のケーシン
グを2次コアの脚の両端より外側に延出する腕部の端面
と、1次コアと対向する面以外を非磁性体の金属により
構成することによって、前記結合トランスの1次側で誘
起された磁束を、効率良く2次側に鎖交することができ
る。
Further, in the contactless power supply device of the present invention, a magnetic flux adjusting function element made of a nonmagnetic metal is installed between the legs of the primary core, and the casing on the primary side of the coupling transformer is connected to the secondary side. Except for the surface facing the core and the surface on which the primary sides of the plurality of coupling transformers are adjacent to each other, the casing on the secondary side of the coupling transformer is formed of a leg of the secondary core. The magnetic flux induced on the primary side of the coupling transformer can be efficiently reduced by constructing the end face of the arm extending outside from both ends and the face other than the face facing the primary core with a nonmagnetic metal. Can link to the next side.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施の形態を図1
ないし図9により説明する。図1は本発明の非接触給電
装置を構成する給電ヘッド1と受電ヘッド2を対向配置
した状態を示す図であり、図2,3は、前記給電ヘッド
1と受電ヘッド2をそれぞれ示す正面図である。
FIG. 1 is a block diagram showing an embodiment of the present invention.
This will be described with reference to FIG. FIG. 1 is a diagram showing a state in which a power supply head 1 and a power reception head 2 constituting a non-contact power supply device of the present invention are arranged facing each other. FIGS. 2 and 3 are front views showing the power supply head 1 and the power reception head 2, respectively. It is.

【0025】図1,2,3において、3a,4aは結合
トランスの1次コア3と2次コア4を構成する本体部で
あり、縦断面形状をC形に形成している。3b,4b
は、前記1次コア3と2次コア4の本体部3a,4aの
脚の両端より外側に延出する腕部であり、広範囲におけ
る給電動作を実現するために、1次側から2次側への磁
束の鎖交範囲を拡大している。
In FIGS. 1, 2, and 3, reference numerals 3a and 4a denote main bodies constituting the primary core 3 and the secondary core 4 of the coupling transformer, and have a C-shaped longitudinal section. 3b, 4b
Are arms extending outward from both ends of the legs of the main bodies 3a, 4a of the primary core 3 and the secondary core 4. The arms extend from the primary side to the secondary side in order to realize a wide range of power supply operation. The range of interlinkage of magnetic flux to is expanded.

【0026】図2,3において、前記2次コア4の腕部
4bが1次コア3の腕部3bと比較してその長さが短い
のは、2次側が移動体であるため、その大きさと重さを
考慮してのことである。
2 and 3, the length of the arm 4b of the secondary core 4 is shorter than that of the arm 3b of the primary core 3 because the secondary side is a movable body. And weight.

【0027】但し、前記1次コア3の腕部3bの長さに
おいても、コアの大きさ,コアの製作方法,コアの歩溜
まり等に制限がある関係上、所定の長さ以上にすること
は当然のことながら不可能であり、必要な給電範囲を構
成するためには、前記給電ヘッド1を複数併設する必要
がある。
However, the length of the arm 3b of the primary core 3 should be longer than a predetermined length due to limitations on the size of the core, the method of manufacturing the core, the yield of the core, and the like. Of course, this is not possible, and it is necessary to provide a plurality of the power supply heads 1 in order to configure a required power supply range.

【0028】また、図1,2,3において示す5,6
は、結合トランスの1次巻線と2次巻線であり、7,8
は前記1次巻線5と2次巻線6を巻回するために、1次
コア3と2次コア4の継鉄部に取付けられたボビンであ
る。9は前記1次コア3に取付けられる漏れ磁束調整機
能素子(以後、フラックスバリアという)であり、漏れ
磁束によって誘起される渦電流を利用して、前記漏れ磁
束を減少させるもので、図4にその1例を示す。
Further, 5, 6 shown in FIGS.
Are the primary and secondary windings of the coupling transformer, and 7, 8
Is a bobbin attached to the yoke of the primary core 3 and the secondary core 4 for winding the primary winding 5 and the secondary winding 6. Reference numeral 9 denotes a leakage flux adjusting function element (hereinafter, referred to as a flux barrier) attached to the primary core 3, which reduces the leakage flux by using an eddy current induced by the leakage flux. An example is shown.

【0029】前記フラックスバリア9は、図4に示すよ
うに、縦断面形状をC形に形成し、長手方向の中央に
は、前記1次コア3の本体部3aの脚を挿通する挿通孔
10が穿設され、その材質は非磁性体の金属によって構
成されている。
As shown in FIG. 4, the flux barrier 9 has a C-shaped longitudinal section, and an insertion hole 10 through which a leg of the main body 3a of the primary core 3 is inserted at the center in the longitudinal direction. Are formed, and the material is made of a non-magnetic metal.

【0030】そして、前記フラックスバリア9は、その
凹溝9a内に、前記1次コア3の腕部3bを、前記腕部
3bの両端面と、2次コアと対向する面以外を覆うよう
に収容している。
Then, the flux barrier 9 covers the arms 3b of the primary core 3 in the concave grooves 9a so as to cover the end faces of the arms 3b and the faces other than the faces facing the secondary core. Accommodating.

【0031】11は前記結合トランスの1次側(1次コ
ア3,フラックスバリア9,1次巻線5,ボビン7)を
収容する前面と側面を開放した箱形のケーシングであ
り、12は結合トランスの2次側(1次コア4,2次巻
線6,ボビン8)を収容する、前記ケーシング11と同
構造のケーシングである。
Numeral 11 denotes a box-shaped casing which accommodates the primary side (primary core 3, flux barrier 9, primary winding 5, bobbin 7) of the coupling transformer and has an open front and side surfaces. This is a casing having the same structure as the casing 11, which accommodates the secondary side of the transformer (primary core 4, secondary winding 6, bobbin 8).

【0032】前記両ケーシング11,12は、ともに相
対向して配置したケーシング12,11の互いの開放側
が位置する面と、ケーシング11では複数併設した給電
ヘッド1同士が互いに隣接する面、ケーシング12は2
次コア4の腕部4bの端面と平行な面以外は非磁性体の
金属によって形成している。
The two casings 11 and 12 have a surface on which the open sides of the casings 12 and 11 are located opposite to each other, and a surface on which a plurality of power supply heads 1 are adjacent to each other. Is 2
The surface other than the surface parallel to the end surface of the arm portion 4b of the next core 4 is formed of a nonmagnetic metal.

【0033】なお、前記ケーシング11の複数併設した
給電ヘッド1同士が隣接する面と、ケーシング12の2
次コア4の腕部4bの端面と平行な面を非磁性体の金属
によって形成しないのは、給電ヘッド1と受電ヘッド2
間で、互いに対向する面以外からも磁束を鎖交できるよ
うにするためである。
It should be noted that the surface of the casing 11 where the plurality of power feeding heads 1 provided adjacent to each other are adjacent to each other
The reason why the surface parallel to the end surface of the arm portion 4b of the secondary core 4 is not formed of a nonmagnetic metal is that the power feeding head 1 and the power receiving head 2
This is because the magnetic flux can be interlinked from other than the surfaces facing each other.

【0034】以上のように構成した給電ヘッド1と受電
ヘッド2を、図5に示すように配置(給電ヘッド1を複
数併設し、受電ヘッド2を前記併設した給電ヘッド1の
手前を通過するように対向配置)することにより、前記
給電ヘッド1の1次コア3に誘起した磁束を、移動する
受電ヘッド2の2次コア4に良好に鎖交させて、電磁誘
導作用により非接触で電力を供給することができる。
The power feeding head 1 and the power receiving head 2 configured as described above are arranged as shown in FIG. 5 (a plurality of power feeding heads 1 are provided side by side, and the power receiving heads 2 pass in front of the power feeding heads 1 provided together. ), The magnetic flux induced in the primary core 3 of the power supply head 1 is favorably linked to the secondary core 4 of the moving power receiving head 2, and the electric power is supplied in a non-contact manner by the electromagnetic induction action. Can be supplied.

【0035】このとき、給電ヘッド1の1次コア3に誘
起された磁束は、フラックスバリア9およびケーシング
11を通過して、外部および1次コア3の脚間を繋ぐ方
向に漏出しようとするが、前記フラックスバリア9およ
びケーシング11の一部は非磁性体の金属によって形成
されているため、磁束が前記フラックスバリア9および
ケーシング11を通過すると、前記フラックスバリア9
およびケーシング11には、前記漏れ磁束を妨げる向き
に渦電流が発生する(図6参照)。
At this time, the magnetic flux induced in the primary core 3 of the power supply head 1 passes through the flux barrier 9 and the casing 11 and leaks in a direction connecting the outside and the legs of the primary core 3. Since a part of the flux barrier 9 and the casing 11 are formed of a non-magnetic metal, when the magnetic flux passes through the flux barrier 9 and the casing 11, the flux barrier 9
An eddy current is generated in the casing 11 and in a direction obstructing the leakage magnetic flux (see FIG. 6).

【0036】そして、前記渦電流の発生により、前記フ
ラックスバリア9およびケーシング11には、漏れ磁束
とは逆向きの磁束が誘起され、ケーシング11の外部に
漏出する磁束および1次コア3の脚間で鎖交する磁束を
減少させることができる。これにより、1次コア3に誘
起した磁束は、図7に示すように、効率よく2次コア4
に鎖交し、良好に受電側に電力を供給することができ
る。
The generation of the eddy current induces a magnetic flux in a direction opposite to the leakage magnetic flux in the flux barrier 9 and the casing 11, so that the magnetic flux leaks out of the casing 11 and the space between the legs of the primary core 3. Can reduce the interlinking magnetic flux. As a result, the magnetic flux induced in the primary core 3 is efficiently transferred to the secondary core 4 as shown in FIG.
And the power can be satisfactorily supplied to the power receiving side.

【0037】図8は前記複数併設した給電ヘッド1に接
続した給電ユニット13と、移動する受電ヘッド2に接
続した受電ユニット14を示しており、前記給電ユニッ
ト13は、図9に示す 1次巻線5に高周波の交番電流を
流す、給電ヘッド1と同数(図8では3個)の給電回路
15と、前記高周波の交番電流を各給電ヘッド1を構成
する1次巻線5間で同期させる発振回路16から構成さ
れ、交流電源17に接続されている。
FIG. 8 shows a power supply unit 13 connected to the plurality of power supply heads 1 and a power reception unit 14 connected to the moving power reception head 2. The power supply unit 13 is a primary winding shown in FIG. The same number (three in FIG. 8) of power supply circuits 15 as the number of power supply heads 1 for supplying a high-frequency alternating current to the wire 5 and the high-frequency alternating current are synchronized between the primary windings 5 constituting each power supply head 1. It comprises an oscillation circuit 16 and is connected to an AC power supply 17.

【0038】一方、前記受電ユニット14は、受電ヘッ
ド2との間に間隙を備えて配置される受電ヘッド2と負
荷18間に接続され、例えば、図示しない共振用のコン
デンサと過電圧保護回路より構成されている。なお、図
8では、受電ヘッド2および受電ユニット14,負荷1
8(以下、2次側ユニットと総称する)を1つづつ備え
た例について示したが、本発明は前記2次側ユニットを
複数備えて構成してもよい。
On the other hand, the power receiving unit 14 is connected between the power receiving head 2 disposed with a gap between the power receiving head 2 and the load 18 and includes, for example, a resonance capacitor (not shown) and an overvoltage protection circuit. Have been. In FIG. 8, the power receiving head 2, the power receiving unit 14, and the load 1
8 (hereinafter, collectively referred to as secondary units) has been described, but the present invention may be configured to include a plurality of the secondary units.

【0039】つづいて、前記給電ユニット13の構成に
ついて、図9を用いて詳しく説明する。図9は、前記給
電ユニット13の構成の1例を示すものであり、いわゆ
るプッシュプル方式といわれるもので、図9に示す給電
ユニット13は、給電回路15を2個併設した状態を示
している。
Next, the configuration of the power supply unit 13 will be described in detail with reference to FIG. FIG. 9 shows an example of the configuration of the power supply unit 13, which is a so-called push-pull system. The power supply unit 13 shown in FIG. 9 shows a state in which two power supply circuits 15 are provided side by side. .

【0040】図9に示すように、前記給電ユニット13
は、 1次巻線5にセンタータップを設け、直流電源19
のプラス側に接続し、1次巻線5の巻始めと巻終わりを
スイッチング素子(図9では、トランジスタ)20,2
1のコレクタに接続し、前記トランジスタ20,21の
エミッタを直流電源19のグランド側に接続する。
As shown in FIG. 9, the power supply unit 13
Is provided with a center tap on the primary winding 5 and a DC power supply 19
Of the primary winding 5 are connected to switching elements (transistors in FIG. 9) 20, 2
1 and the emitters of the transistors 20 and 21 are connected to the ground side of the DC power supply 19.

【0041】また、図9に示す発振回路16は、その出
力をフリップフロップ22の入力に接続し、一方、前記
フリップフロップ22は、その出力端子Q1 ,Q2 (Q
1 とQ2 は逆位相の出力端子である)を前記トランジス
タ20,21のベースにそれぞれ接続することにより、
給電ユニット13を構成する。
The output of the oscillation circuit 16 shown in FIG. 9 is connected to the input of the flip-flop 22, while the flip-flop 22 has its output terminals Q 1 , Q 2 (Q
1 and Q 2 are output terminals having opposite phases) to the bases of the transistors 20 and 21 respectively.
The power supply unit 13 is configured.

【0042】なお、前記給電ユニット13内の直流電源
19は、図8に示す交流電源17を整流平滑して得られ
た電源であり、直流電源19を前記給電ユニット13に
接続すると、発振回路16の高周波の出力信号がフリッ
プフロップ22を介してトランジスタ20,21のベー
スに送信され、1次巻線5に高周波の交番電流を流すこ
とができる。
The DC power supply 19 in the power supply unit 13 is a power supply obtained by rectifying and smoothing the AC power supply 17 shown in FIG. 8, and when the DC power supply 19 is connected to the power supply unit 13, the oscillation circuit 16 Is output to the bases of the transistors 20 and 21 via the flip-flop 22, and a high-frequency alternating current can flow through the primary winding 5.

【0043】前記発振回路16は、フリップフロップ2
2に接続され、さらに、複数併設した給電回路15(図
9では2個)にそれぞれ接続するようにしたので、各給
電回路15は同期して駆動し、各給電回路15に接続さ
れる1次巻線5にも電流が同期して流れる。
The oscillation circuit 16 includes a flip-flop 2
2 and further connected to a plurality of power supply circuits 15 (two in FIG. 9), so that each of the power supply circuits 15 is driven synchronously, and the primary circuit connected to each of the power supply circuits 15 is connected. A current also flows through the winding 5 in synchronization.

【0044】この結果、各給電ヘッド15に誘起される
磁束も同期し、複数併設した給電ヘッド13同士が隣接
する部分の磁束も、各給電ヘッド13毎に同周波数,同
位相となるため、隣接する給電ヘッド1で誘起された磁
束は打消し合うことなく、間隙を介して受電ヘッド2に
鎖交し、2次巻線6に電流が流れる。
As a result, the magnetic flux induced in each of the power supply heads 15 is also synchronized, and the magnetic flux in the portion where the plurality of power supply heads 13 are adjacent to each other has the same frequency and the same phase for each of the power supply heads 13. The magnetic flux induced by the feeding head 1 is linked to the receiving head 2 through the gap without canceling each other, and a current flows through the secondary winding 6.

【0045】そして、前記受電ヘッド2に接続される受
電ユニット14は共振用のコンデンサにより共振回路が
形成されているため、共振周波数ではインピーダンスが
低下し、負荷18に共振周波数と同じ周波数の電流が流
れ、負荷18を良好に動作させることができる。
Since the power receiving unit 14 connected to the power receiving head 2 has a resonance circuit formed by a resonance capacitor, the impedance decreases at the resonance frequency, and a current having the same frequency as the resonance frequency is supplied to the load 18. The flow and the load 18 can be operated well.

【0046】このように、給電ヘッド1を複数併設した
とき、給電ユニット13を備えて、前記給電ヘッド1に
誘起される磁束を同期させることにより、前記給電ヘッ
ド1に対向して受電ヘッド2が移動する場合でも、前記
受電ヘッド2に良好に磁束を鎖交させることができ、受
電側に接続した負荷18を確実に動作させることができ
る。
As described above, when a plurality of power supply heads 1 are provided in parallel, the power supply unit 13 is provided to synchronize the magnetic flux induced in the power supply heads 1 so that the power reception heads 2 face the power supply heads 1. Even when moving, the magnetic flux can be satisfactorily linked to the power receiving head 2, and the load 18 connected to the power receiving side can be reliably operated.

【0047】なお、前述した実施例では、非接触給電装
置の1次コア3と2次コア4の本体部3a,4aの縦断
面形状をC型形状とした例について説明したが、本発明
は、これに限定することなく、1次側から2次側へ磁束
が鎖交できれば、どのような形状のコアを使用してもよ
いことは勿論である。
In the above-described embodiment, an example has been described in which the vertical cross-sectional shape of the main body portions 3a and 4a of the primary core 3 and the secondary core 4 of the contactless power feeding device is C-shaped. However, the present invention is not limited to this, and as long as a magnetic flux can be linked from the primary side to the secondary side, it goes without saying that a core having any shape may be used.

【0048】また、前記フラックスバリア9の形状とし
ても、縦断面形状をC型に形成し、長手方向の中央に挿
通孔10を穿孔した例について説明したが、本発明は、
この形状に限定することなく、1次コア3の脚間で鎖交
する漏れ磁束を減少させることが可能であれば、フラッ
クスバリア9の形状および設置場所は適宜変更してもよ
いことは当然である。
As for the shape of the flux barrier 9, an example in which the longitudinal cross-sectional shape is formed in a C-shape and the insertion hole 10 is formed in the center in the longitudinal direction has been described.
Without being limited to this shape, as long as it is possible to reduce the leakage magnetic flux interlinking between the legs of the primary core 3, the shape and the installation location of the flux barrier 9 may be appropriately changed. is there.

【0049】さらに、給電ユニット13内の回路は、図
9に示すものに限定せず、1次巻線5に高周波の交番電
流を流すものであれば、それに適用できる回路構成を利
用してもよい。
Further, the circuit in the power supply unit 13 is not limited to the one shown in FIG. 9, and any circuit structure that can apply a high-frequency alternating current to the primary winding 5 can be used. Good.

【0050】以上のように、本発明の非接触給電装置
は、広い範囲での給電動作が可能であるため、結合トラ
ンスの 1次側に対して2次側が移動している場合におい
ても、前記1次側から2次側に良好に非接触で電力の供
給ができ、例えば、移動物体の搬送を行うコンベア等に
も電力の供給ができ、非常に便利である。
As described above, the non-contact power feeding device of the present invention can perform a power feeding operation in a wide range. Therefore, even when the secondary side is moving with respect to the primary side of the coupling transformer, the above-described operation is possible. Power can be supplied from the primary side to the secondary side in a good contactless manner. For example, power can be supplied to a conveyor for transporting moving objects, which is very convenient.

【0051】また、本発明の非接触給電装置は、従来の
給電側の端子と受電側のブラシを接触させて電力の供給
を行う場合のように、カーボン粉を発生することが全く
ないため、作業環境が安全で、しかも、衛生的であるこ
とはもとより、接触により磨耗するブラシのメンテナン
スも不要となるため、作業環境の改善を良好にはかるこ
とができる。
Further, the non-contact power supply device of the present invention does not generate carbon powder at all, unlike the conventional case where power is supplied by contacting a power supply terminal with a power receiving brush. Not only is the working environment safe and sanitary, but also maintenance of the brushes worn by contact is not required, so that the working environment can be improved satisfactorily.

【0052】さらに、本発明の非接触給電装置は、高価
なリッツ線や高周波電流源を使用せず、また、前記リッ
ツ線を2次コアと接触しないように精度よく配線する必
要もないため、経済的な負担を軽減できる利点もある。
Further, the contactless power supply device of the present invention does not use an expensive litz wire or a high-frequency current source, and it is not necessary to wire the litz wire with high accuracy so as not to contact the secondary core. There is also an advantage that the economic burden can be reduced.

【0053】[0053]

【発明の効果】本発明の非接触給電装置は、給電ヘッド
を幅広に形成し、前記給電ヘッドを複数併設した際に
は、前記給電ヘッドに誘起する磁束が同期するように制
御可能としたので、連続した広い範囲での給電動作が可
能となり、給電ヘッドに対して受電ヘッドが移動してい
る場合でも、電力を途切れさせることなく、連続的に、
かつ、良好に非接触状態で供給することができ、便利で
ある。
According to the non-contact power supply device of the present invention, the power supply head is formed to be wide, and when a plurality of the power supply heads are provided, control can be performed so that the magnetic flux induced in the power supply heads is synchronized. The power supply operation can be continuously performed over a wide range. Even when the power receiving head is moving with respect to the power supply head, the power can be continuously supplied without interruption.
In addition, it can be conveniently supplied in a non-contact state, which is convenient.

【0054】また、本発明の非接触給電装置は、コアの
脚間に、非磁性体の金属からなる磁束調整機能素子を備
え、かつ、1次側と2次側のケーシングの一部を非磁性
体の金属にて構成することにより、漏れ磁束等を減少さ
せ、効率よく2次側に磁束を鎖交させることができ、電
力の給電効率を良好に上昇させることができる。
Further, the non-contact power feeding device of the present invention includes a magnetic flux adjusting function element made of a non-magnetic metal between legs of the core, and a part of the primary side and the secondary side casing is non-conductive. By using a magnetic metal, leakage magnetic flux and the like can be reduced, the magnetic flux can be efficiently linked to the secondary side, and the power supply efficiency can be improved satisfactorily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非接触給電装置を構成する給電ヘッド
と受電ヘッドを対向配置した状態を示す側面図である。
FIG. 1 is a side view showing a state in which a power supply head and a power reception head constituting a non-contact power supply device of the present invention are arranged to face each other.

【図2】前記給電ヘッドの正面図である。FIG. 2 is a front view of the power supply head.

【図3】前記受電ヘッドの正面図である。FIG. 3 is a front view of the power receiving head.

【図4】前記給電ヘッドを構成する磁束調整機能素子の
形状を示す図である。
FIG. 4 is a diagram showing a shape of a magnetic flux adjusting function element constituting the power supply head.

【図5】本発明の非接触給電装置の実施状況を説明する
説明図である。
FIG. 5 is an explanatory diagram illustrating an implementation state of a non-contact power supply device of the present invention.

【図6】漏れ磁束により渦電流が発生する状況を示す説
明図である。
FIG. 6 is an explanatory diagram showing a situation in which an eddy current is generated by leakage magnetic flux.

【図7】前記給電ヘッドから受電ヘッドに流れる磁束の
様子を示す説明図である。
FIG. 7 is an explanatory diagram showing a state of a magnetic flux flowing from the power supply head to the power receiving head.

【図8】給電ユニットと受電ユニットの接続状態を示す
ブロック図である。
FIG. 8 is a block diagram illustrating a connection state between a power supply unit and a power receiving unit.

【図9】前記給電ユニットの回路構成を示す回路図であ
る。
FIG. 9 is a circuit diagram showing a circuit configuration of the power supply unit.

【符号の説明】[Explanation of symbols]

1 給電ヘッド 2 受電ヘッド 3 1次コア 4 2次コア 3a,4a 本体部 3b,4b 腕部 5 1次巻線 6 2次巻線 9 磁束調整機能素子 10 挿通孔 11,12 ケーシング 13 給電ユニット 14 受電ユニット 15 給電回路 16 発振回路 17 交流電源 18 負荷 19 直流電源 20,21 トランジスタ 22 フリップフロップ DESCRIPTION OF SYMBOLS 1 Power supply head 2 Power receiving head 3 Primary core 4 Secondary core 3a, 4a Body part 3b, 4b Arm part 5 Primary winding 6 Secondary winding 9 Magnetic flux adjustment function element 10 Insertion hole 11, 12 Casing 13 Power supply unit 14 Power receiving unit 15 Power supply circuit 16 Oscillation circuit 17 AC power supply 18 Load 19 DC power supply 20, 21 Transistor 22 Flip-flop

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊佐治 伸司 長野県長野市川中島町原1280 長野愛知電 機株式会社内 Fターム(参考) 5H105 BB07 CC02 CC19 DD10  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shinji Isaji 1280 Kawanakajimachohara, Nagano City, Nagano Prefecture F-term (reference) in Nagano Aichi Electric Machinery Co., Ltd. 5H105 BB07 CC02 CC19 DD10

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 結合トランスの1次側と2次側との間に
所定の間隙を設けて、電磁誘導により非接触で電力を供
給可能とした給電装置において、前記結合トランスの1
次コアの本体部をC形に形成し、前記C形に形成した本
体部と前記本体部の脚の両端より外側に延出する腕部に
より1次コアを構成したことを特徴とする非接触給電装
置。
1. A power supply device in which a predetermined gap is provided between a primary side and a secondary side of a coupling transformer so that electric power can be supplied in a non-contact manner by electromagnetic induction.
Non-contact, characterized in that the main body of the secondary core is formed in a C-shape, and the primary core is constituted by the main body formed in the C-shape and the arms extending outward from both ends of the legs of the main body. Power supply.
【請求項2】 結合トランスの1次側と2次側との間に
所定の間隙を設けて、電磁誘導により非接触で電力を供
給可能とした給電装置において、前記結合トランスの2
次コアの本体部をC形に形成し、前記C形に形成した本
体部と前記本体部の脚の両端より外側に延出する腕部に
より2次コアを構成したことを特徴とする非接触給電装
置。
2. A power supply device in which a predetermined gap is provided between a primary side and a secondary side of a coupling transformer so that electric power can be supplied in a non-contact manner by electromagnetic induction.
Non-contact, characterized in that the main body of the secondary core is formed in a C-shape, and a secondary core is constituted by the main body formed in the C-shape and arms extending outward from both ends of the legs of the main body. Power supply.
【請求項3】 請求項1,2記載の非接触給電装置にお
いて、前記結合トランスの1次側には、1次コアと1次
巻線を備えた給電ヘッド、および、前記1次巻線に高周
波の交番電流を流す給電回路を複数併設したことを特徴
とする非接触給電装置。
3. The non-contact power supply device according to claim 1, wherein a power supply head including a primary core and a primary winding is provided on a primary side of the coupling transformer, and the power supply head includes a primary winding. A non-contact power supply device comprising a plurality of power supply circuits for supplying a high-frequency alternating current.
【請求項4】 請求項3記載の非接触給電装置におい
て、結合トランスの1次側には、複数の1次巻線に流す
交番電流が同期するように給電回路を制御する発振回路
を備えて構成したことを特徴とする非接触給電装置。
4. The non-contact power supply device according to claim 3, further comprising an oscillation circuit on the primary side of the coupling transformer for controlling the power supply circuit so that the alternating current flowing through the plurality of primary windings is synchronized. A non-contact power feeding device characterized by comprising.
【請求項5】 請求項1ないし4記載の非接触給電装置
において、前記結合トランスの2次側には、2次コアと
2次巻線を備えた受電ヘッドと受電回路を複数併設した
ことを特徴とする非接触給電装置。
5. The non-contact power feeding device according to claim 1, wherein a plurality of power receiving heads each including a secondary core and a secondary winding and a plurality of power receiving circuits are provided on a secondary side of the coupling transformer. Characteristic non-contact power supply device.
【請求項6】 請求項1ないし5記載の非接触給電装置
において、前記結合トランスの2次側に備えた受電ヘッ
ドは、1次側に複数備えた給電ヘッドに対向させた状態
で、1次コアの脚の両端より外側に延出する腕部と同方
向に平行移動するように構成し、前記結合トランスの1
次側の連続した範囲において、結合トランスの2次側に
連続給電可能としたことを特徴とする非接触給電装置。
6. The non-contact power feeding device according to claim 1, wherein the power receiving head provided on the secondary side of the coupling transformer faces the plurality of power feeding heads provided on the primary side. The armature extending outward from both ends of the legs of the core is configured to move in parallel in the same direction, and one of the coupling transformers
A non-contact power supply device capable of continuously supplying power to a secondary side of a coupling transformer in a continuous range on a secondary side.
【請求項7】 請求項1ないし6記載の非接触給電装置
において、結合トランスの1次コアの脚間に、前記脚間
で鎖交する漏れ磁束を渦電流にて減少させる非磁性体金
属からなる漏れ磁束調整機能素子を介挿したことを特徴
とする非接触給電装置。
7. The non-contact power supply device according to claim 1, wherein a non-magnetic metal material is provided between legs of the primary core of the coupling transformer to reduce leakage magnetic flux linked between the legs by eddy current. A non-contact power supply device characterized in that a leakage magnetic flux adjusting function element is inserted.
【請求項8】 請求項7記載の非接触給電装置におい
て、前記磁束調整機能素子は、その厚さを1mm以上に
設定して構成したことを特徴とする非接触給電装置。
8. The non-contact power supply device according to claim 7, wherein the magnetic flux adjusting function element has a thickness set to 1 mm or more.
【請求項9】 請求項1ないし8記載の非接触給電装置
において、前記結合トランスの1次側に備えた給電ヘッ
ドは、2次コアと対向する面と、複数併設した給電ヘッ
ド同士が隣接する面以外を非磁性体の金属により形成し
たケーシングを備えて構成したことを特徴とする非接触
給電装置。
9. The contactless power supply device according to claim 1, wherein a power supply head provided on the primary side of the coupling transformer has a surface facing the secondary core and a plurality of power supply heads adjacent to each other. A non-contact power supply device comprising a casing formed of a non-magnetic metal other than the surface.
【請求項10】 請求項1ないし9記載の非接触給電装
置において、前記結合トランスの2次側に備えた受電ヘ
ッドは、2次コアの脚の両端より外側に延出する腕部の
端面と、1次コアと対向する面以外を非磁性体の金属に
より形成したケーシングを備えて構成したことを特徴と
する非接触給電装置。
10. The non-contact power feeding device according to claim 1, wherein the power receiving head provided on the secondary side of the coupling transformer has an end face of an arm extending outward from both ends of the leg of the secondary core. A non-contact power supply device comprising a casing formed of a non-magnetic metal other than a surface facing the primary core.
JP2000119203A 2000-04-20 2000-04-20 Noncontact power supply device Pending JP2001309501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000119203A JP2001309501A (en) 2000-04-20 2000-04-20 Noncontact power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000119203A JP2001309501A (en) 2000-04-20 2000-04-20 Noncontact power supply device

Publications (1)

Publication Number Publication Date
JP2001309501A true JP2001309501A (en) 2001-11-02

Family

ID=18630226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000119203A Pending JP2001309501A (en) 2000-04-20 2000-04-20 Noncontact power supply device

Country Status (1)

Country Link
JP (1) JP2001309501A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338820A (en) * 2000-05-29 2001-12-07 Hitachi Medical Corp Gapped transformer and non-contact power transmitting equipment using the same and x-ray ct device
JP2003158027A (en) * 2001-11-22 2003-05-30 Aichi Electric Co Ltd Contactless power feeding apparatus and support structure thereof
JP2009135346A (en) * 2007-11-30 2009-06-18 Mie Denshi Kk Movable transmission apparatus
JP2009135344A (en) * 2007-11-30 2009-06-18 Mie Denshi Kk Guiding device
WO2010001540A1 (en) * 2008-07-04 2010-01-07 村田機械株式会社 Traveling vehicle system
WO2011046399A2 (en) * 2009-10-15 2011-04-21 Korea Advanced Institute Of Science And Technology Device for canceling undesirable magnetic field around on-line electric vehicle, method of manufacturing the same, and on-line electric vehicle capable of canceling undesirable magnetic field
WO2011110620A3 (en) * 2010-03-12 2012-08-09 Johannes Wittmann Assembly for inductive energy transmission to electrically operated road vehicles
WO2015125276A1 (en) * 2014-02-21 2015-08-27 富士通株式会社 Power transmission apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4643797B2 (en) * 2000-05-29 2011-03-02 株式会社日立メディコ Transformer with gap, non-contact power supply device using the same, and X-ray CT device
JP2001338820A (en) * 2000-05-29 2001-12-07 Hitachi Medical Corp Gapped transformer and non-contact power transmitting equipment using the same and x-ray ct device
JP2003158027A (en) * 2001-11-22 2003-05-30 Aichi Electric Co Ltd Contactless power feeding apparatus and support structure thereof
JP2009135346A (en) * 2007-11-30 2009-06-18 Mie Denshi Kk Movable transmission apparatus
JP2009135344A (en) * 2007-11-30 2009-06-18 Mie Denshi Kk Guiding device
US8519570B2 (en) 2008-07-04 2013-08-27 Murata Machinery, Ltd. Traveling vehicle system
WO2010001540A1 (en) * 2008-07-04 2010-01-07 村田機械株式会社 Traveling vehicle system
TWI471235B (en) * 2008-07-04 2015-02-01 Murata Machinery Ltd Running the car system
JP4985850B2 (en) * 2008-07-04 2012-07-25 村田機械株式会社 Traveling vehicle system
WO2011046399A2 (en) * 2009-10-15 2011-04-21 Korea Advanced Institute Of Science And Technology Device for canceling undesirable magnetic field around on-line electric vehicle, method of manufacturing the same, and on-line electric vehicle capable of canceling undesirable magnetic field
WO2011046399A3 (en) * 2009-10-15 2011-10-13 Korea Advanced Institute Of Science And Technology Device for canceling undesirable magnetic field around on-line electric vehicle, method of manufacturing the same, and on-line electric vehicle capable of canceling undesirable magnetic field
WO2011110620A3 (en) * 2010-03-12 2012-08-09 Johannes Wittmann Assembly for inductive energy transmission to electrically operated road vehicles
WO2015125276A1 (en) * 2014-02-21 2015-08-27 富士通株式会社 Power transmission apparatus
JPWO2015125276A1 (en) * 2014-02-21 2017-03-30 富士通株式会社 Power transmission equipment
US10454311B2 (en) 2014-02-21 2019-10-22 Fujitsu Limited Power transmitting apparatus

Similar Documents

Publication Publication Date Title
US11509168B2 (en) Wireless power supply system and power transmission device thereof
Trevisan et al. A 1-kW contactless energy transfer system based on a rotary transformer for sealing rollers
US10946749B2 (en) Movable power coupling and a robot with movable power coupling
JP2001309501A (en) Noncontact power supply device
US20040119572A1 (en) Hf transformer assembly having a higher leakage inductance boost winding
JP6696563B2 (en) Power transmitting device, power receiving device, and wireless power feeding system
JP4059828B2 (en) Non-contact power feeding device
EP2793356B1 (en) Combination with a linear motor device and a contactless electric power supply device
PL1684394T3 (en) Medium/low voltage transformer station
EP1124650B1 (en) Inductive energy transfer system
JP2001268823A (en) Non-contact feeder system
JPH09266121A (en) Non-contact type power supply
JP4165523B2 (en) Contactless power supply
Kim et al. Performance analysis of magnetic power pads for inductive power transfer systems with ferrite structure variation
Mirić et al. Wireless power supply of moving linear actuator enclosed in stainless-steel
CN107851505B (en) Device for inductively transmitting energy from a primary conductor system to a vehicle having a secondary winding
KR20200038518A (en) Double­sided flat inductor assembly
JP2005027401A (en) Noncontact power receiving unit and vehicle
JPH08126107A (en) Power feeder deevice without contact
JP2004119748A (en) Iron core structure for contactless power supply apparatus
Raval et al. 3D inductive power transfer power system
Qiu et al. A comparative study of flux cancellation among multiple interconnected modular pads in lumped IPT system
Jiang et al. Design and analysis of cubical compact coils for wireless power transfer
Kim et al. Design and characteristics analysis parameter calculation of contact-less power transmission system
Trevisan et al. A 1-kW wireless power transfer link for welding rollers